
HAL Id: hal-04239848
https://hal.science/hal-04239848

Submitted on 14 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework to Maximize Group Fairness for Workers
on Online Labor Platforms

Anis El Rabaa, Shady Elbassuoni, Jihad Hanna, Amer Mouawad, Ayham
Olleik, Sihem Amer-Yahia

To cite this version:
Anis El Rabaa, Shady Elbassuoni, Jihad Hanna, Amer Mouawad, Ayham Olleik, et al.. A Framework
to Maximize Group Fairness for Workers on Online Labor Platforms. Data Science and Engineering,
2023, 8 (2), pp.146-176. �10.1007/s41019-023-00213-y�. �hal-04239848�

https://hal.science/hal-04239848
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A Framework to Maximize Group Fairness for Workers on
Online Labor Platforms

Anis El Rabaa · Shady Elbassuoni · Amer Mouawad · Jihad Hanna ·
Ayham Olleik · Sihem Amer-Yahia

Received: date / Accepted: date

Abstract As the number of online labor platforms and

the diversity of jobs on these platforms increase, ensur-

ing group fairness for workers needs to be the focus of

job-matching services. Risk of discrimination occurs in

two different job-matching services: when someone is

looking for a job (i.e., a job seeker) and when someone

wants to deploy jobs (i.e., a job provider). To maximize

their chances of getting hired, job seekers submit their

profiles on different platforms. Similarly, job providers

publish their job offers on multiple platforms to reach a

wider and more diverse workforce. In this paper, we pro-

pose a theoretical framework to maximize group fair-

This work is supported by the Ford Foundation and the
American University of Beirut Research Board (URB)

Anis El Rabaa
Computer Science Department
American University of Beirut, Lebanon
E-mail: ase29@mail.aub.edu

Shady Elbassuoni
Computer Science Department
American University of Beirut, Lebanon
E-mail: se58@aub.edu.lb

Amer Mouawad
Computer Science Department
American University of Beirut, Lebanon
E-mail: aa368@aub.edu.lb

Jihad Hanna
Electrical and Computer Engineering Department
American University of Beirut, Lebanon
E-mail: jgh20@mail.aub.edu

Ayham Olleik
Electrical and Computer Engineering Department
American University of Beirut, Lebanon
E-mail: abo00@mail.aub.edu

Sihem Amer-Yahia
CNRS, University Grenoble Alpes, France
E-mail: sihem.amer-yahia@univ-grenoble-alpes.fr

ness for workers 1) when job seekers are looking for

jobs on multiple online labor platforms, and 2) when

jobs are being deployed by job providers on multiple

online labor platforms. In our proposed framework, we

formulate each goal as different optimization problems

with different constraints, prove most of them are com-

putationally hard to solve and propose various efficient

algorithms to solve all of them in reasonable time. We

then design a series of experiments that rely on syn-

thetic and semi-synthetic data generated from a real-

world online labor platform to evaluate our proposed

framework.

Keywords group fairness · online labor platforms ·
crowdsourcing · optimization · job seeker · job provider

1 Introduction

Online labor platforms such as TaskRabbit1 and Up-

work2 are gaining popularity as platforms to hire work-

ers to perform certain jobs. On these platforms, people

can find temporary workers in the physical world (e.g.,

someone to clean an apartment in New York City), or

remote workers such as ”someone to develop a mobile

app” or ”someone to design a website” by submitting

a description of the job and receiving a ranked list

of potential workers deemed qualified for the job by

the platform. These platforms thus rely heavily on job-

matching services. A job seeker (i.e., a worker looking

for a job) provides her job interests and skills and is

matched to certain jobs available on the platform. On

the other hand, a job provider (i.e., an employer looking

for workers to perform a certain job) provides a descrip-

tion of the job and is matched to potential workers. In

1 https://www.taskrabbit.com/
2 https://www.upwork.com/

sihemameryahia
AUTHORS’ COPY

2 Anis El Rabaa et al.

the majority of these platforms, such job-matching ser-

vices are algorithmic and most of the time opaque.

The algorithmic and opaque nature of job-matching

services in online labor platforms thus raises fairness

concerns. For instance, consider a job provider look-

ing for someone to move furniture in San Francisco on

an online labor platform such as TaskRabbit. The job

provider receives a ranked list of potential workers on

the platform for this job. Such ranking will be con-

sidered unfair if it is biased towards certain groups of

people, say where white males are consistently ranked

above black males or white females. This commonly

happens since such ranking usually depends on the rat-

ings of workers on the platform and the number of their

past jobs, both of which perpetuate bias against certain

groups of workers [13,21,6].

In online labor platforms, job seekers and job

providers face many limitations, such as inability to

state own constraints when seeking a job or limited

control on job deployment. As the number of such

online labor platforms and the jobs available on them

increase, it becomes crucial to provide both job seekers

and job providers with means to assess and compare

the fairness of different jobs on different platforms.

This can then be used to inform job seekers about

which jobs on which platforms are deemed the most

fair with respect to their demographic groups, thus

maximizing their chances of landing jobs. Similarly,

this can be used by job providers to decide on which

platforms to deploy which jobs so as to maximize

worker fairness.

In this paper, we propose a theoretical framework

that can be used to assess and compare worker fairness

of multiple jobs on multiple online labor platforms. We

focus on group fairness, which is defined as the fair

treatment of all groups of people [3,27], where groups

are defined using protected attributes such as gender,

age, or ethnicity. For example, the worker groups could

be males, females, asians, whites, blacks, black females,

young white males, etc. Our framework encapsulates

multiple group fairness definitions proposed in the lit-

erature, such as demographic parity, disparate impact,

and disparate treatment. It does so by defining a single

function f(j, p, g), where j is a job, p is a platform, g is

a demographic group, and f(j, p, g) is a fairness value

of job j on platform p for group g.

Our framework can be used by two types of end-

users: 1) job seekers looking to find which jobs to apply

to on which platforms, and 2) job providers looking to

deploy multiple jobs on multiple platforms. To be able

to serve these two types of users, we formulate a series

of optimization problems that aim to maximize worker

group fairness subject to various constraints such as

payment constraints, number of jobs applied to, etc.

Optimization Problems for Job Seekers. Our first and

second optimization problems aim to maximize worker

fairness for job seekers. Given a set of worker groups

that the job seeker belongs to, a set of jobs of interest,

and a set of platforms on which these jobs might be

available, our goal in the first optimization problem we

propose is to find the top-k fairest job-platform pairs.

The worker can then use those k retrieved pairs to focus

her efforts on when applying for jobs. We also consider

the case where jobs are associated with rewards. That

is, we assume that each job available on a platform

is associated with a reward. This constitutes the basis

for our second optimization problem, where the goal is

to find the top-k fairest job-platform pairs such that

their total reward is above a certain threshold. In this

case, the worker’s goal is the find the top-k fairest job-

platform pairs that increase her chances of landing a

job, while guarantying a minimum reward or payment.

Optimization Problems for Job Providers. Our third

and fourth optimization problems aim to maximize

worker fairness when a job provider is deploying a set

of jobs on different platforms. We assume that each job

is associated with a cost on a platform it is available

on, and that this cost differs from one platform to

the other. Given a set of jobs to be deployed on a

set of platforms and a budget, our goal in the third

optimization problem is to assign each job to at most

one platform such that the total cost of the jobs

assigned does not exceed the budget and the total

fairness of the assigned jobs is maximized. A slight

variation of this optimization problem is our fourth and

final optimization problem we define. Given a set of

jobs to be deployed on a set of platforms and a budget

for each platform, our goal is to assign each job to at

most one platform such that the total cost of the jobs

assigned to each platform does not exceed its budget

, and the total worker fairness of the assigned jobs is

maximized. The result of both optimization problems

can thus be used by the job provider to decide on

which platforms to deploy her jobs so as to maximize

worker fairness subject to budget constraint(s) the job

provider might have.

Computational Solutions. We prove that three of our

four optimization problems are computationally hard

by reduction to well-known NP hard problems such as

Knapsack [17] and General Assignment problems [18],

and we propose algorithms to efficiently solve all four

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 3

of them. More precisely, for the first Job Seeker opti-

mization problem, we propose an adaptation of Fagin’s

Top-k algorithm [8] to solve the problem. For the the

second Job Seeker problem, we propose a new Dynamic

Programing algorithm to solve the problem. Similarly,

for the first Job Provider optimization problem, we also

propose a Dynamic Programming algorithm to solve

that problem and finally, for the second Job Provider

problem, we explore various exact and approximation

algorithms from the literature to solve our fourth opti-

mization problem.

Empirical Validation. We also design a series of exper-

iments using synthetic and semi-synthetic data gener-

ated from TaskRabbit, a real-world online labor plat-

form, to evaluate our proposed framework and algo-

rithms. More precisely, we use synthetic data to demon-

strate the scalability of our proposed algorithms as the

number of jobs, the number of platforms and the num-

ber of worker groups increase and to compare them to

adequate baselines. Our experiments demonstrate that

our proposed algorithms scale very well and that they

consistently outperform the compared-to baselines. On

the other hand, we use semi-synthetic data to conduct

case studies that highlight the merits of the solutions

generated by our proposed algorithms from a qualita-

tive perspective. Our qualitative experiments confirm

that our framework can indeed increase the chances of

job seekers landing jobs and can result in maximizing

worker fairness when job providers are deploying jobs,

subject to various constraints such as reward or budget

ones.

The rest of the paper is organized as follows. In Sec-

tion 2, we review related work that addresses fairness

in online labor platforms. In Section 3, we describe our

proposed framework, which is composed of four opti-

mization problems and algorithms to solve them effi-

ciently. In Section 4, we describe the experiments that

we used to evaluate our proposed framework and their

results. Finally, we conclude and present future work in

Section 5.

2 Related Work

Fairness of ranking is an increasingly trending topic

in research. Many works have already underlined the

importance of fair rankings, and their impact on the

actual selection of ranked items by users. As Singh

and Joachims explained in [22], the probability of a

ranked item being selected (e.g., a job candidate be-

ing hired) decreases significantly with lower ranking

positions; a concept referred to as exposure. Along the

same topic, the experiment in [16] studied user behav-

ior when presented with manipulated Google search re-

sults, and found that users exhibit ”partial bias” to-

wards an item’s rank, tending to select items at the

top of search results. Fairness of ranking is thus espe-

cially important for online labor platforms, where unfair

rankings of workers can lead to disparate distributions

of work opportunities or income [2].

Many notable works focused on assessing fairness

of a worker ranking in online labor platforms. For

instance, the authors in [12] found evidence of bias in

two prominent online labor platforms, TaskRabbit and

Fiverr. In both platforms, they found that perceived

gender and race have significant correlations with

worker evaluations, and even with worker rankings in

the case of TaskRabbit. In [5], the author examined

gender bias in the resume search platforms Indeed,

Monster and CareerBuilder. Two notions of fairness

issues were considered: a) ranking bias, which is the

disparity of ranking distributions across genders (group

unfairness), and b) unfairness, i.e., the gap in ranking

between male and female applicants having the same

qualifications (individual unfairness). The author

found evidence of both issues on all three platforms.

Notable efforts have also been made to quantify

unfairness [7,11,6,10]. In [7,11,6], the authors formu-

lated an optimization problem to find the partitioning

of workers (based on their protected attibutes) that ex-

hibits the highest unfairness based on a given scoring

function. They used Earth Mover’s Distance (EMD) be-

tween score distributions as a measure of unfairness.

In [1], the authors proposed a unified framework to

study fairness in online jobs. They defined two generic

fairness problems: quantification, which is finding the

k worker groups, or jobs or locations, for which a job

search site is most or least unfair, and comparison,

which is finding the locations at which fairness between

two groups differs from all locations, or finding the jobs

for which fairness at two locations differ from all jobs for

instance. They adapted Fagin top-k algorithms to ad-

dress their fairness problems and case-studied two par-

ticular job search sites: Google job search and TaskRab-

bit.

To address fairness of ranking in online labor

platforms, various methods have been proposed to

actively generate fair rankings. Many of them are

post-processing methods (e.g., [24,2,4,26]), where

given an existing ranking of workers, a new ordering of

the workers is generated so as to satisfy certain fairness

constraints. On the other hand, in-processing methods

address ranking bias of an algorithm at the training

phase, such as the DELTR Learn-to-Rank framework

in [25].

4 Anis El Rabaa et al.

Our proposed work differs from all the reviewed re-

lated work above in that it is, to the best of our knowl-

edge, the first to establish a generic framework that can

be used to assess and compare worker fairness of multi-

ple jobs on multiple online labor platforms. Our frame-

work can accommodate all definitions of group fairness

proposed before. It also has multiple use cases from

the perspective of both job seekers and job providers.

It can be deployed as a stand-alone service on top of

existing online labor platforms to maximize fairness of

job-matching services on these platforms when job seek-

ers are being matched to jobs and when job providers

are deploying jobs on these platforms. Our framework

is theoretically founded and we propose an extensive

and thorough experimental setup to evaluate it using

both synthetic as well as real-world generated data.

3 Framework

Our framework assumes the presence of an unbounded

number of platforms on which an unbounded number

of jobs are available. A job can be available on multiple

platforms, and each job is associated with a different

fairness value for each worker group on each platform.

The worker groups are defined using one or more pro-

tected attributes such as gender, ethnicity, age and so

on. For example, the worker groups could be males,

females, asians, whites, blacks, black females, young

white males, etc.

More precisely, we assume that a job j for demo-

graphic group g on platform p is associated with a fair-

ness value f(j, p, g). Without loss of generality, we as-

sume that f(j, p, g) is a value between 0 and 1, and that

the higher the value is, the more fair job j is considered

for group g on platform p. To obtain such fairness val-

ues for each job-platform-group tuple, we assume the

presence of a blackbox that takes as input a job j, a

platform p and a group g and returns a fairness value

f(j, p, g) between 0 and 1. We do not make any as-

sumptions on how these fairness values are computed

and thus different methods for computing them that

depend on different group fairness notions can be seam-

lessly plugged into our framework. Sihem: Say first that

the different fairness definitions proposed before can be

accommodated. Shady: We already mention that, do

you suggest we rephrase? In our experiments, we make

use of the framework in [1], which uses two different

notions for computing group fairness.

Furthermore, we assume the presence of two predi-

cates: a(j, p) which is only true if job j is available on

platform p, and e(j, p, g) which is only true if group

g is available for job j on platform p. This is done to

accommodate the fact that in practice in online labor

platforms not all jobs are and not all worker groups are

available on every platform. Our framework thus oper-

ates on an incomplete weighted bipartite graph where

the first set of nodes represent jobs, the second set of

nodes represent platforms and there is an edge between

a job j and a platform p only if a(j, p) = true. More-

over, each edge in this bipartite graph is associated with

a set of weights {f(j, p, g)|g ∈ G∧e(j, p, g) = true} that

correspond to the different fairness values for the differ-

ent groups that exist in the platform p for job j. Figure

1 shows an example of such bipartite graph.

The main goal of our framework is to assess and

compare worker fairness of multiple jobs on multiple

platforms, which can then be used to maximize fair-

ness of job-matching services on online labor platforms

when job seekers are being matched to jobs and when

job providers are deploying jobs on these platforms, To

achieve this goal, we define four different optimization

problems, two for the job seeker case and two for the

job provider case. We prove that three of our optimiza-

tion problems are at least as hard as NP-hard problems

and we propose a set of algorithms to solve the four of

them efficiently.

3.1 Maximizing Fairness for Job Seekers

A job seeker is a person looking for the top-k fairest

jobs available on different platforms that fits her in-

terests or skills. A job seeker belongs to multiple demo-
graphic groups. For example, a job seeker can be female,

white, and middle-aged. We also consider combinations

of these values to exhaust all the groups the job seeker

belongs to. That is, in our example, the job seeker would

be also a white female, a middle-aged white, and a

middle-aged white female. Our first optimization prob-

lem for maximizing fairness for job seekers is defined

below.

Problem 1 (Unconstrained) Job Seeker Prob-

lem: Given a set of demographic groups G that the job

seeker belongs to, a set of jobs of interest J , and a set

of platforms P on which these jobs might be available,

our goal is to find the top-k fairest (j, p) pairs, where

j ∈ J is a job, p ∈ P is a platform, and the pair (j, p)

means job j on platform P . Our job-seeker problem

can then be formulated as the following optimization

problem:

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 5

< f(j1, p1, g1), ..., f(j1, p1, gn) >

< f(j2, p2, g1), ..., f(j2, p2, gn) >

< f(j2 , pP , g1), ..., f(j2 , pP , gn) >

< f(jJ , pP , g1), ..., f(jJ , pP , gn) >

Jobs P latforms

j1

j2

jJ

p1

p2

pP

Fig. 1: An example bipartite graph with jobs on one side and platforms on the other side. Each edge between a

job j and a platform p has a set of weights representing the fairness values of job j for the different groups g on

platform p

argmax
S

∑
(j,p)∈S

min
g∈G∧e(j,p,g)=true

f(j, p, g)

subject to: S ⊆ J × P
a(j, p) = true ∀(j, p) ∈ S
|S| = k

Since each job seeker belongs to different worker

groups, we need to aggregate the different fairness val-

ues for each group the job seeker belongs to in order

to obtain a single fairness value for a job-platform pair.

In the optimization problem above, we use minimum

as an aggregation operator. Thus, we take a conserva-

tive worst-case approach here to quantify the fairness

value of a job-platform pair for a given job seeker. Other

aggregation methods such as taking the average or the

maximum can be also applied without any fundamental

changes.

The input in the job-seeker problem is a set of jobs

J , a set of platforms P , and all the demographic groups

G that the job seeker belongs to. A naive approach to

solve the job-seeker problem defined above is to loop

over all jobs, all the platforms and all the groups, and

for each job-platform pair (j, p) such that a(j, p) is true,

it computes the minimum fairness for that pair overall

groups G the job seeker belongs to. It then returns the

k job-platform pairs with the highest minimum fair-

ness over all groups G. The complexity of this naive

approach is thus O(|J ||P ||G|).
A more efficient approach can make use of optimal

aggregation algorithms such as Fagin’s Algorithm [8]

provided we use a monotone aggregation function (such

as the minimum in our formulation) to compute the

fairness value of a job-platform pair over groups. To

be able to do this, we assume the existence of a set

of inverted lists, one for each worker group g. The in-

verted index Ig contains an entry for each job-platform

pair (j, p) where e(j, p, g) is true. The entries in Ig are

sorted in descending order based on the fairness values

f(j, p, g).

Our optimal-aggregation algorithm (Algorithm 1) is

an adaptation of Fagin’s Threshold algorithm to solve

our job-seeker problem. The algorithm operates on |G|
inverted lists, one for each group, and it uses a thresh-

old value τ initially set to −∞, a cursor (line counter)

initially set to 0, and a min-heap topk that will store

the top-k job-platform pairs seen so far. The algorithm

then reads the inverted lists in parallel using sequential

access. It starts by reading the first entry (cursor = 0,

so first line) from each list. Each of the entries read cor-

responds to a job-platform pair, and its associated fair-

ness value for the group corresponding to the inverted

list that entry belongs to. τ is then set to the largest

of these values, and for each of the pairs, we derive its

aggregated fairness value by looking up its equivalent

entries from the other inverted lists (using random ac-

cess). The topk set is updated with the newly-read pairs

(and their aggregated fairness values) if necessary, and

cursor is incremented by 1 for the next iteration (so as

to read the next line of the lists). The algorithm keeps

iterating until topk contains k elements and τ becomes

smaller than the smallest fairness value in topk. The

worst-case scenario for this algorithm is reading all en-

tries from all lists, giving a worst-case time complexity

of O(|J ||P||G|), where |J | is the total number of jobs

6 Anis El Rabaa et al.

< f(j1, p1, g1), ..., f(j1, p1, gn) >, r(j1, p1)

< f(j2, p2, g1), ..., f(j2, p2, gn) >, r(j2, p2)

< f(j2 , pP , g1), ..., f(j2 , pP , gn) >, r(j2 , pP)

< f(jJ , pP , g1), ..., f(jJ , pP , gn) >, r(jJ , pP)

Jobs P latforms

j1

j2

jJ

p1

p2

pP

Fig. 2: An example bipartite graph for the Constrained Job Seeker problem. In addition to the fairness values per

group, each edge between a job j and a platform p has a weight r(j, p) representing the reward of job j on platform

p

in the inverted lists (i.e., all possible jobs; which is usu-

ally different from |J |, the number of jobs of interest

for the seeker), and |P| is the total number of plat-

forms (again different from |P |, which is the number of

platforms that is provided as input to the algorithm).

Shady: Why does Algorithm 1 have blue header and

footer? Anis: Fixed, there was a comment (in blue) go-

ing through it, which is now moved.Shady: It still has

blue headers and footers.

We also consider a scenario where the job seeker is

interested in retrieving the top-k fairest job-platform

pairs, subject to some user-defined constraints. For in-

stance, one such constraint could be minimum reward

as follows. Assume that each job j available on platform

p is associated with a reward r(j, p), representing the

earnings the job seeker can make by executing job j on

platform p. Thus, each edge in our bipartite graph will

include an additional weight as shown in Figure 2. In

this case, the goal of the job seeker can be formulated

as the following optimization problem.

Problem 2 Constrained Job Seeker Problem:

Given a set of demographic groups G that the job

seeker belongs to, a set of jobs of interest J , and

a set of platforms P on which these jobs might be

available, our goal is to find the top-k fairest (j, p)

pairs, where j ∈ J is a job, p ∈ P is a platform, and

the pair (j, p) means job j on platform P and such

that the total reward for the selected job-platform

pairs is above a certain threshold R. Our constrained

job-seeker problem can then be formulated as the

following optimization problem:

argmax
S

∑
(j,p)∈S

min
g∈G∧e(j,p,g)=true

f(j, p, g)

subject to: S ⊆ J × P
a(j, p) = true ∀(j, p) ∈ S
|S| = k∑
(j,p)∈S

r(j, p) ≥ R

The same problem can be formulated as an Integer

Linear Programming optimization problem as follows:

max
∑
j∈J

∑
p∈P

min
g∈G∧e(j,p,g)=true

f(j, p, g)× x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J, ∀p ∈ P
x(j, p) = 1→ a(j, p) = true ∀j ∈ J, ∀p ∈ P∑
j∈J

∑
p∈P

x(j, p) = k ∀j ∈ J, ∀p ∈ P

∑
j∈J

∑
p∈P

r(j, p)× x(j, p) ≥ R

Theorem 1 The Constrained Job Seeker problem is

polynomial-time reducible to the optimization variant of

the Knapsack problem and is therefore at least as hard.

Note that since the Knapsack optimization problem

is known to be at least as hard as its decision version,

also known to be NP-Complete [17], this theorem gives

us a lower bound on the hardness of the Constrained

Job Seeker problem.

Sihem: The proof is long, Maybe we could have a

sketch here and put the proof in the appendix or an

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 7

Algorithm 1 Top-k Job Seeker Algorithm

1: Input: a set of jobs J , a set of platforms P , a set of
groups G, k

2: output: the k (j, p) pairs with the highest minimum fair-
ness over all groups G

3: topk ← minHeap() . Initialization
4: cursor ← 0
5: while topk.minV alue() < τ or topk.size() < k do
6: τ ← −∞
7: for g ∈ G do
8: ((j, p), f(j, p, g))← Ig.getEntry(cursor) . Read

entry at current line (cursor)
9: if j ∈ J and p ∈ P then

10: if τ < f(j, p, g) then . Update threshold
value

11: τ ← f(j, p, g)
12: end if
13: min← f(j, p, g)
14: for g′ ∈ G and g′ 6= g do . Perform random

access on all other lists
15: if e(j, p, g′) is true then
16: f(j, p, g′)← Ig′ .getV alue((j, p))
17: if f(j, p, g′) < min then
18: min← f(j, p, g′)
19: end if
20: end if
21: end for
22: if topk.size() < k then . Update top-k set (if

needed)
23: topk.insert(((j, p),min)
24: else
25: if topk.minV alue() < min then
26: topk.pop()
27: topk.insert((j, p),min)
28: end if
29: end if
30: end if
31: end for
32: cursor ← cursor + 1
33: end while
34: return topk

extended report registered in arxiv (preferred option)?

Shady: I agree with Sihem. Anis: Alright, moved the

proof to the appendix.

Proof See Appendix A. Shady: Add a sketch of the

proof here. Please seek Amer’s help with this.

Next, we describe how to solve this problem effi-

ciently in practice. The similarity with the Knapsack

problem gives a nearly immediate dynamic program-

ming (DP) solution that we describe in Algorithms 2

and 3. Anis: Is this approach really ”nearly immedi-

ate” to the Knapsack DP? The proposed solution is a

recursive approach, where for a given ordering of the

job-platform pairs in a list, we take each pair and re-

cursively find a) the best fairness value attainable if we

choose this pair to be in the top-k results, and b) the

best fairness attainable if we do not choose this pair.

Based on the results of both options, the decision is

made to either take the pair or leave it aside. To avoid

repetitive calculations, we make use of DP by storing

intermediate results in matrices, for ease of reuse by

subsequent recursive calls. Shady: Not quite sure the

description of the algorithm is sufficient. Anis: Not sure

how to describe further. Maybe Prof. Amer and Jihad

can help here?

In terms of complexity, this algorithm is composed

of two stages. First, there is an initialization or pre-

processing phase, which loops over the |J | × |P | input

job-platform pairs, computes their aggregated fairness

value over the |G| groups and then arranges the pairs

into a list of (job, platform, fairness, reward) tuples.

This phase’s time complexity is then O(|J |P ||G|).
Second, comes the recursive DP phase described

above, which has a time complexity of O(|J ||P |kR).

So overall, this algorithm has a time complexity of

O(max(|J ||P ||G|, |J ||P |kR)).

Anis: NOTE: The running time stated in Al-

gorithm 2 was O(|J ||P |kR). However, if we take

into account the preprocessing phase which has run-

time O(|J ||P ||G), then the overall runtime becomes

O(max(|J ||P ||G|, |J ||P |kR)), as discussed in the above

paragraph. Shady: Run this by Amer. Also, not sure

the explanation of this is clear enough.

3.2 Maximizing Fairness for Job Providers

A job provider is a person looking to deploy a set of jobs

on different platforms. In online labor platforms, typi-

cally each job j is associated with a cost c(j, p) on every

platform p it is available on, and this cost differs from

one platform to the other. This extends our bipartite

graph in Figure 1 so that each edge is now associated

with an additional weight that represents the cost of de-

ploying job j on platform p. An example of such graph

is depicted in Figure 3. The goal of the job provider is

thus to deploy the jobs on the platforms such that the

overall worker group fairness is maximized, while satis-

fying a budget constraint. To reduce deployment cost,

we impose that each job is deployed on at most one

platform. This goal can be formulated as the following

optimization problem.

Problem 3 Job Provider Problem with Global

Budget: Given a set of jobs J to be deployed on a set

of platforms P and a budget B, our goal is to assign

each job j ∈ J to at most one platform p ∈ P such

that the total cost of the jobs assigned does not exceed

the budget B and the total fairness of the assigned jobs

is maximized. Our job-provider problem can be formu-

lated as the following optimization problem (in Integer

Linear Programming form):

8 Anis El Rabaa et al.

< f(j1, p1, g1), ..., f(j1, p1, gn) >, c(j1, p1)

< f(j2, p2, g1), ..., f(j2, p2, gn) >, c(j2, p2)

< f(j2 , pP , g1), ..., f(j2 , pP , gn) >, c(j2 , pP)

< f(jJ , pP , g1), ..., f(jJ , pP , gn) >, c(jJ , pP)

Jobs P latforms

j1

j2

jJ

p1

p2

pP

Fig. 3: An example bipartite graph for the Job Provider problem. In addition to the fairness values per group,

each edge between a job j and a platform p has a weight c(j, p) equal to the cost of deploying job j on platform p

max
∑
j∈J

∑
p∈P

min
g|e(j,p,g)=true

f(j, p, g)× x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P
x(j, p) = 1→ a(j, p) = true ∀j ∈ J,∀p ∈ P∑
j∈J

∑
p∈P

c(j, p)× x(j, p) ≤ B

∑
p∈P

x(j, p) ≤ 1 ∀j ∈ J

In some cases, a job provider might have a separate

budget for each platform on which the jobs are to be de-

ployed, rather than a global budget over all platforms.

This can be formulated as the following optimization

problem.

Problem 4 Job Provider Problem with Local

Budget: Given a set of jobs J to be deployed on a

set of platforms P and a budget bp for each platform

p ∈ P , our goal is to assign each job j ∈ J to at most

one platform p ∈ P such that the total cost of the

jobs assigned does not exceed the total budget for all

platforms for which the jobs are assigned, and the total

fairness of the assigned jobs is maximized. Our second

version of the job-provider problem can be formulated

as the following optimization problem:

max
∑
j∈J

∑
p∈P

min
g|e(j,p,g)=true

f(j, p, g)× x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J, ∀p ∈ P
x(j, p) = 1→ a(j, p) = true ∀j ∈ J, ∀p ∈ P∑
j∈J

c(j, p)× x(j, p) ≤ bp ∀p ∈ P∑
p∈P

x(j, p) ≤ 1 ∀j ∈ J

We next prove that both job provider problems are

computationally hard.

Theorem 2 The Job Provider with Global Budget and

the Job Provider with Local Budget problems are both

polynomial-time reducible to the optimization variant of

the Knapsack problem and are therefore at least as hard.

Proof Constraining both problems to one group and

one platform gives the optimization version of the

Knapsack problem, known to be at least as hard as the

decision version, which is known to be NP-Hard.

Like Problem 2, the similarity between Problem 3

and the Knapsack problem gives a near-immediate dy-

namic programming algorithm, described in Algorithm

4. This approach is essentially an iterative DP method,

akin to the Knapsack one, where increasingly large

subproblems of the original problem are solved. Solving

these subproblems gradually populates a DP matrix

called DP , where DP [i][t] stores the optimal fairness

obtainable when considering the first i job-platform

pairs, at budget limit t. Using this DP matrix to store

the subproblems’ optimal values helps in reducing

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 9

Algorithm 2 Constrained Job Seeker Algorithm

1: Input: A set of jobs J , a set of platforms P , a set of
groups G, and two integers k and R.

2: Output: The k (j, p) pairs with the highest minimum
fairness over all groups G having reward at least R. Run-
ning time is O(max(JPG, JPkR)).

. Step 1: Initialization + aggregation of fairness values

3: minFair[1...len(J)][1...len(P)] ← new 2D array initial-
ized to +∞.

4: for j ∈ J and p ∈ P and g ∈ G do
5: if e(j, p, g) = true then
6: minFair[j][p]← min(minFair[j][p], f(j, p, g))
7: end if
8: end for

9: L← Empty list
10: for j ∈ J and p ∈ P do
11: (j, p, f, r)← (j, p,minFair[j][p], r(j, p))
12: L.append((j, p, f, r))
13: end for

. Step 2: Call recursive DP procedure (see Algorithm 3)

14: DP [0...len(L)][0...k][0...R]← new 3D array initialized to
−1.

15: choice[0...len(L)][0...k][0...R]← new 3D array initialized
to −1.

16: maxFairness← recursiveMaxFairness(1, L, k, R, DP,
choice)

17: if maxFairness = −∞ then return φ

. Step 3: Read result (optimal assignment) from the
choice matrix and return

18: i← 0, result← φ
19: while i 6= len(L) do
20: if choice[i][k][R] = 0 then
21: i← i+ 1
22: continue
23: end if
24: result.add((j, p))
25: k ← k − 1
26: R← max(0, R− L[i].r)
27: i← i+ 1
28: end while

29: return result

computation time, by avoiding repetitive calculations.

Complexity-wise, this algorithm is composed of two

main parts: a preprocessing phase similar to Algorithm

2’s with running time O(|J ||P ||G|), and the DP

phase described above, that iteratively populates a

(|J ||P |) × B matrix, and thus has a running time of

O(|J ||P |B). Therefore, the overall time complexity for

this algorithm is O(max(|J ||P ||G|, JPB)).

As for Problem 4, if the aggregation of fairness val-

ues for each group is done a priori, then the problem

becomes equivalent to LEGAP, a variant of the Gener-

alized Assignment Problem (GAP) where each job must

Algorithm 3 Recursive Maximum Fairness Algorithm

1: procedure recursiveMaxFair-
ness(i, L, k, R, DP, choice)

2: if k = 0 then return R = 0 ? 0 : −∞
3: if i > N then return −∞
4: if DP [i][k][R] 6= −1 then return DP [i][k][R]

5: dontTakePair ← recursiveMaxFair-
ness(i+ 1, L, k, R, DP, choice)

6: takePair ← recursiveMaxFairness(i + 1, L, k −
1, R− L[i].r, DP, choice)

7: if dontTakePair = −∞ and takePair = −∞ then
return DP [i][k][R] = −∞

8: if dontTakePair 6= −∞ and takePair 6= −∞ then
9: choice[i][k][R] ← (dontTakePair < L[i].f +
takePair)

10: return DP [i][k][R] ←
max(dontTakePair, L[i].f + takePair)

11: end if
12: if dontTakePair ≥ 0 then
13: choice[i][k][R]← 0
14: return DP [i][k][R]← dontTakePair
15: end if
16: choice[i][k][R]← 1
17: return DP [i][k][R]← L[i].f+ takePair
18: end procedure

be assigned to at most one platform instead of exaclty

one [18]. And since LEGAP is proven to be equivalent

to the ”standard” GAP [18,23], then Problem 4 (with

pre-aggregated fairness values) is equivalent to GAP.

This implies that Problem 4 is, like GAP, strongly NP-

hard.

The advantage of this equivalence is that GAP al-

gorithms from the literature can solve our problem [9,

18,20,15]. The only adjustment required to our prob-

lem is to add a dummy platform pdummy, set its associ-

ated fairness values to zero (so f(j, pdummy, g) = 0 ∀j ∈
J, g ∈ G), cost values to 1 (so c(j, pdummy) = 0 ∀j ∈ J),

and its budget limit to |J |. This creates an instance

of GAP that is equivalent to our problem, and thus

can be directly solved by available GAP algorithms.

On the other hand, however, the strong NP-hardness

of Problem 4 gives us a few limitations. By the prop-

erty of strong NP-hardness, we have that: 1) no exact

pseudo-polynomial time algorithm (such as DP-based

methods) can exist for our problem, unless P = NP;

and 2) no polynomial-time approximation scheme with

a mathematically-guaranteed solution quality can exist

either, unless P = NP [18]. Therefore, when proposing

an adequate algorithm to solve Problem 4, we are left

with two possible choices: either non polynomial-time

exact algorithms, or more efficient heuristics with no

mathematical guarantee on solution accuracy.

With this in mind, we start first by exploring exact

GAP algorithms from the literature. A common out-

10 Anis El Rabaa et al.

Algorithm 4 Job Provider Problem with Global Bud-

get Algorithm

1: Input: A set of jobs J , a set of platforms P , a set of
groups G, and an integer B.

2: Output: The maximum size subset of (j, p) pairs with
the highest minimum fairness over all groups G having
cost at most B and where each job is assigned to at most
one platform. Running time is O(max(JPG, JPB)).

. Step 1: Initialization, aggregation of fairness values
3: minFair[1...len(J)][1...len(P)] ← new 2D array initial-

ized to +∞.
4: for j ∈ J and p ∈ P and g ∈ G do
5: if e(j, p, g) = true then
6: minFair[j][p] = min(minFair[j][p], f(j, p, g))
7: end if
8: end for

. Step 2: Iterative DP: For each subproblem containing
the first i jobs, DP [i][t] will store the optimal fairness
obtainable from these jobs at budget limit t.

9: DP [0...len(J)][0...B]← new 3D array initialized to 0.
10: for i ∈ [0, len(J)) and t ∈ [0, B] do
11: dp[i+ 1][t]← max(dp[i+ 1][t], dp[i][t])
12: for j ∈ [1...len(P)] do
13: (f, c)← (minFair[J [i]][P [j]], c(J [i], P [j]))
14: if c+ t ≤ B then
15: dp[i+1][c+t]← max(dp[i+1][c+t], f+dp[i][t])
16: end if
17: end for
18: end for

. Step 3: Get total cost of the optimal assignment found
19: maxFairness← 0
20: b← 0
21: N ← len(J)
22: for t ∈ [0...B] do
23: if dp[N][t] > maxFairness then
24: maxFairnes← dp[N][t]
25: b← t
26: end if
27: end for

. Step 4: Read result (optimal assignment) from the DP
matrix and return

28: result← Empty list
29: while N 6= 0 do
30: (j)← J [N]
31: if dp[N − 1][b] 6= dp[N][b] then
32: for i ∈ [1...len(P)] do
33: if b ≥ c(j, P [i]) and dp[N][b] =

minFair[j][P [i]] + dp[N − 1][b− c(j, P [i])] then
34: result.append((j, P [i]))
35: b← b− c(j, P [i])
36: break
37: end if
38: end for
39: end if
40: N ← N − 1
41: end while

42: return result

line for solving GAP is the branch-and-bound (BB)

method. We examine three algorithms from this cat-

egory: 1) the BB with multiplier adjustment method

(MAM) by Fisher et al. [9,18], 2) the BB with steepest

descent MAM by Karabakal et al. [15], and 3) the BB

with variable fixing by Posta et al. [20]. These three

algorithms all use the BB technique, the main differ-

ences between them being the way lower bounds are

computed, the branching strategies, and extra compu-

tations involved (such as variable fixing in [20]). A scal-

ability comparison of these algorithms is included in

Section 4.

Shady: Add some complexity analysis. I understand

that we are using solutions from the literature, but it

would still be good to provide bounds on these different

approaches and algorithms. Anis: The papers of these

approaches do not provide time complexity claims for

them, except for MTHG which is O(|J ||P |log|P |+|J |2).

For the exact BB approaches, their worst case scenario

includes visiting all possible solutions (O((|P |+ 1)|J|)),

plus additional computations (like computing the ini-

tial lower bound, or extra computations inside a search

node for the Posta et al.’s algorithm). So the BB algo-

rithms have exponential runtime, but I cannot give an

exact complexity claim for them.

Anis: For the heuristics, all I can say is that MTHG

is polynomial as mentioned above. The other heuristics

(TS and LS Descent) use the solution of MTHG as a

starting point and improve on it, so their runtime is

O([theMTHG one above] + somevalue). For TS pre-

cisely, it is O([MTHG runtime] + |J |2|P |) (thus also

polynomial) because of its iteration limit we set to

100 × |J |. For LS Descent we did not set an iteration

limit so I am not sure.

For use cases where efficiency is more essential

than solution accuracy, heuristic algorithms may also

be worth considering. For this, we explore and test

various heuristics from the literature that solve GAP,

including: 1) MTHG, a polynomial-time greedy search

with regret measure proposed by Martello and Toth

[18]; 2) a Local Search Descent method by Osman

[19]; and 3) a Tabu Search method by Osman [19].

A comparison of these algorithms, both in terms of

performance and solution quality, can be found in

Section 4.

4 Experiments

To evaluate our proposed framework, we design two sets

of experiments. The first set aims to study the scalabil-

ity of our proposed algorithms to solve the different job

seeker and job provider optimization problems as the

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 11

number of jobs, the number of platforms and the num-

ber of worker groups increase. For such experiments,

we rely on purely synthetic data. The second set of

experiments aim to qualitatively analyze the solutions

provided by our algorithms for the different problems

and for that we use semi-synthetic data generated from

a real-world online platform.

We divide this section as follows. First, we explain

how the semi-synthetic dataset (used in qualitative ex-

periments) is generated. We then describe the differ-

ent experiments (both scalability and qualitative) and

their results for the job seeker problems. Finally, we

describe the experiments and the results for the job

provider ones.

4.1 Data Generation

To simulate multiple, semi-synthetic platforms, we use

the TaskRabbit dataset from [1], and generate eight

different ”worlds” from it using interventions. An in-

tervention is a sampling of the initial dataset’s workers

such that the sampled ”world” matches a specific dis-

tribution of protected attributes (in our case either on

gender or ethnicity). When generated, each of the ob-

tained worlds is treated as a separate platform. The

resulting dataset, consisting of the original TaskRabbit

data and the eight new worlds, is saved to files for ease

of reuse, and we refer to these nine platforms collec-

tively as the alternative worlds.

The worlds world1 to world4 are created based on

gender interventions from the original world as follows:

world1 has percentages of males and females switched

compared to the original; world2 is composed of 50%

males and 50% females; world3 is composed of 30%

males and 70% females; and finally world4 is composed

of 70% males and 30% females.

The worlds world5 to world8 are created based on

ethnicity interventions from the original world as fol-

lows: world5 contains 33% black, 33% white, and 34%

asian workers. Worlds 6 through 8 are created from

switching the percentages of two of the ethnicities from

the original world. So, world6 is created by swapping

the percentages of whites and blacks, world7 by swap-

ping those of whites and asians, and finally world8 by

swapping those of blacks and asians. A summary of the

resulting platforms and their worker distributions can

be found in Table 1. In the remainder of this section,

we will be interchangeably using the words world and

platform to refer to platforms.

4.2 Job Seeker Experiments

4.2.1 Algorithms Implementation

For the Unconstrained Job Seeker problem, both the

naive algorithm that loops over all jobs, all platforms

and all groups, and the top-k algorithm were imple-

mented in Python 3.8, as the function to compute fair-

ness values defined in [1], and needed for the naive al-

gorithm, was already implemented in Python. For the

top-k algorithm, the index files were built as simple

text files for sequential access, each accompanied with

a positions table for random access.

For the Constrained Job Seeker variant, we imple-

mented the proposed algorithm in C++, since this rou-

tine relies on dynamic programming.

All scalability experiments were run on the same

computer, an Apple MacBook Pro with a 2.3 GHz dual-

core Intel Core i5 processor. Throughout this paper,

all solving times are measured as CPU time, except

for the Unconstrained Job Seeker experiments. For the

latter, real (wall-clock) time was used, since the top-

k algorithm relies on disk reads and memory accesses,

which should be accounted for.

For all qualitative experiments, the fairness scoring

function used is the EMD metric from [1].

4.2.2 Unconstrained Problem Scalability Experiments

To compare the performance of our two Unconstrained

Job Seeker algorithms at various scales, we built a fully-

synthetic dataset consisting of 5000 jobs and 70 plat-

forms. Each job in each platform is represented as a
file, containing a ranked list of its fictional workers. The

number of these workers for each job-platform pair is

a random value between 0 and 50. In addition, each

worker is assigned values for two protected attributes,

also at random. Then, the corresponding index files for

the top-k algorithm are built from the generated data.

On this new dataset, we run both the naive and top-

k algorithms we implemented, using increasing values of

|J |, |P |, and k on each run3. To compute fairness values,

we use the two metrics defined in [1], namely Earth

Mover Distance (EMD) and Exposure. Therefore, this

scalability experiment is run for both metrics.

The experiment then goes as follows. For each run,

we generate ten fictional job seekers, and assign to each

of them |J | jobs and |P | platforms of interest at ran-

dom. Then, we find the top-k job-platform pairs for

3 |J | is the number of jobs, |P | is the number of platforms,
and k is the number of job-platform pairs with the maximum
fairness to be returned by the algorithms.

12 Anis El Rabaa et al.

World Male Female

Taskrabbit 0.75 0.25
World1 0.26 0.74
World2 0.50 0.50
World3 0.30 0.70
World4 0.70 0.30
World5 0.74 0.26
World6 0.72 0.28
World7 0.74 0.26
World8 0.75 0.25

(a) Gender statistics

World Black White Asian

Taskrabbit 0.24 0.69 0.07
World1 0.27 0.66 0.07
World2 0.25 0.68 0.07
World3 0.26 0.67 0.07
World4 0.24 0.69 0.07
World5 0.33 0.33 0.34
World6 0.69 0.24 0.07
World7 0.24 0.07 0.69
World8 0.07 0.69 0.24

(b) Ethnicity statistics

World
Male
Asian

Male
Black

Male
White

Female
Asian

Female
Black

Female
White

Taskrabbit 0.05 0.17 0.52 0.02 0.07 0.17
World1 0.02 0.06 0.18 0.05 0.21 0.48
World2 0.04 0.11 0.35 0.03 0.14 0.33
World3 0.02 0.07 0.21 0.05 0.20 0.46
World4 0.05 0.16 0.49 0.02 0.08 0.20
World5 0.26 0.24 0.25 0.08 0.09 0.08
World6 0.05 0.49 0.18 0.02 0.20 0.06
World7 0.52 0.17 0.05 0.16 0.07 0.02
World8 0.18 0.05 0.52 0.06 0.02 0.17

(c) Group statistics

Table 1: Platform statistics for the alternative worlds (in percentages)

each seeker using both the naive and the top-k algo-

rithms. Each possible (|J |, |P |, k) combination is ran

for all seekers, and the average running time of each

algorithm per combination is recorded.

After performing all the runs, we first plot the exe-

cution time versus the number of job-platform pairs for

all values of k in Figure 4. As the curves for the differ-

ent values of k show very similar trends, we only focus

on k = 20 for comparing the naive and the top-k algo-

rithms. A plot comparing runtimes for both algorithms

at k = 20 is shown in Figure 5. As the figure shows, a

general trend is that as the number of pairs (N = J×P)

increases, the naive algorithm becomes much slower,

while the top-k algorithm becomes slightly faster until

its speed eventually plateaus, which indicates that the

top-k algorithm scales much better than the naive one.

Also, it seems that the naive algorithm performs better

using the Exposure fairness metric rather than EMD,

as EMD is more computationally expensive.

Next, we analyze how well the top-k algorithm scales

as the number of protected attributes n increases. For

this, we generate a new synthetic index, which also as-

sumes 5000 jobs and 70 platforms. This index is essen-

tially a large set of index files that map each new job-

platform pair to a random fairness value, and where

each index file represents one group.

At this stage, it is important to distinguish between

a protected attribute and a group. While a protected

attribute is only one attribute or characteristic, such

as gender or age, a group represents a combination

of one or more protected attributes that are assigned

a value, e.g. {gender : ”female”}. This means that,

when n attributes are being considered, each worker

then belongs to all groups that are combinations of one

or more of their protected attributes’ values. For ex-

ample, a male asian worker belongs not only to the

group {gender : ”male”, ethnicity : ”asian”}, but also

to {gender : ”male”} and {ethnicity : ”asian”}. As-

suming that a worker can only have one value for an

attribute at a given point in time (e.g., a worker does

not have two ages at the same time), then the total

number of groups that each worker belongs to is 2n−1,

which is the size of the powerset of the attributes set,

minus the empty set.

So, each synthetic index file corresponds to a group,

and therefore, when we consider n protected attributes

for each seeker, we need to read 2n−1 index files concur-

rently for each seeker during the top-k algorithm run.

This therefore hints at an exponential growth in run-

time as we increase n, which is confirmed by the plot

in Figure 6.

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 13

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

k

5

10

15

20

30

(a) naive time wrt. N (metric: EMD)

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

k

5

10

15

20

30

(b) Top-k time wrt. N (metric: EMD)

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

k

5

10

15

20

30

(c) Naive time wrt. N (metric: Exposure)

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)
k

5

10

15

20

30

(d) Top-k time wrt. N (metric: Exposure)

Fig. 4: Naive vs. top-k performance for different values of k

4.2.3 Unconstrained Problem Qualitative Experiments

We design two experiments in this section. The first

one focuses on the alternative worlds, and how their de-

mographic group distributions affect the search results

for seekers of different groups. This experiment goes as

follows: generate six seekers (one per gender-ethnicity

combination), assign the same |J | = 20 random jobs

of interest to all seekers, set their platforms of inter-

est to be the nine alternative worlds, and fetch the top

five fairest (j, p) pairs for each seeker using the top-k

algorithm. For each top-five result set, the number of

occurrences of each platform is recorded in Figure 7,

and the number of occurrences of each job in Figure 8.

Looking at the world frequency results, we see that

platforms world2 and world4 are present in all of the

seekers’ top-five results, suggesting that these worlds

are fair to every group for the twenty chosen jobs of

interest. On the other hand, we see that taskrabbit and

world7 do not occur in any of the seekers’ top-five re-

sults, which suggests these platforms are the least fair of

the bunch for the chosen jobs. For the job frequencies,

we notice that the job ”Cleaning in London, UK” ap-

pears across the board, implying that this job is fair to

all demographic groups in our study. Other frequently

appearing jobs are ”Furniture Shopping and Assembly

in Colombus, OH”, which appears in the top-five for all

groups except the Black ones, and ”Pack for a Move in

Raleigh, NC” which appears for all groups except the

Asian ones.

The second experiment investigates how the chosen

worlds of preference affect a seeker’s chances of finding

fair jobs. For this, we fix one random set of jobs of inter-

est, and assign it to all six seekers. Then, for each seeker

14 Anis El Rabaa et al.

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

Naive

Top-k

(a) Time wrt. N (metric: EMD)

0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Number of job-platform pairs

T
im

e
(s

)

Naive

Top-k

(b) Time wrt. N (metric: Exposure)

Fig. 5: Naive vs. Top-k Times for k = 20

and each alternative world pi, we retrieve the seeker’s

top-5 fairest jobs in platform pi. Then, we also retrieve

the seeker’s overall top-5 fairest jobs in all platforms

combined. Finally, for each top-5 result set, the sum

of the jobs’ fairness values is computed and compared

against the ones of the other sets. The obtained results

are shown in Figure 9.

We notice that world7 has the lowest sum of fairness

values across the board, which indicates that world7 is

the least fair platform for the chosen set of jobs. Recall

that world7 is the world sampled from taskrabbit such

that the percentage of asians and whites is reversed.

As asians form quite a minority in taskrabbit (7% of

all workers), this world has by far the fewest number

of workers in it, which can negatively affect fairness

values.

0 1 2 3 4 5 6 7
0

50

100

150

Number of protected attributes

T
im

e
(s

)

k

5

10

15

20

30

Fig. 6: Top-k algorithm runtime vs the number of pro-

tected attributes n

Fig. 7: Occurrences of each World in the seekers’ top-5

results

To further understand the reason behind world7’s

relatively poor fairness performance on the selected

jobs, we compare statistics between this world and

world2, one of the worlds that fared the best in our

previous tests. We first compare the number of workers

between world2 and world7 for the 20 jobs as shown in

Figure 10. The plot shows that the 20 jobs in world7

have in general very few workers compared to world2,

with most of these jobs containing less than five

workers each. Also, we notice that many of these jobs

only contain workers from a very few groups (especially

the jobs that have very few workers). This leaves many

demographic groups unrepresented in these jobs, hence

we have no fairness data for the affected (job, world,

group) combinations. As a result, these combinations

cannot appear in any seeker’s top results.

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 15

Fig. 8: Occurrences of each Job in the seekers’ top-5 results

4.2.4 Constrained Problem Scalability Experiments

Shady: From here on, it seems we are only using one

notion of fairness, is that correct? and which one is it?

EMD? If yes, explicitly mention that and why. Anis:

Done, see below.

Our previous experiments above established that

our framework does indeed support multiple notions

of fairness (EMD and Exposure in our case). So, from

this point on, our experiments only focus on one fairness

metric (EMD for qualitative expriements, random val-

ues for fully-synthetic scalability experiments) to avoid

duplication of effort. Also, as explained later in Section

4.2.5, the DP-based algorithms of Section 3 expect fair-

ness values as integers. For this, the fairness values we

use in the following experiments are all integers rather

than floats, and we do provide a method to convert

fairness values from the [0, 1] float range to an integer

range in Section 4.2.5.

For the Constrained Job Seeker problem, we study

the scalability of our Dynamic Programming algorithm

(Algorithm 2) proposed in Section 3. To do this, we

created a synthetic set of N job-platform pairs, where

each pair is associated with a set of fairness values (one

per group, selected at random between 1000 and 9999)

and a reward value, selected at random between 10 and

99. From there, the task is to find, for various values of

N and k, the top-k pairs that maximize fairness while

satisfying a reward threshold of 80 × k. For now, the

number of protected attributes n considered is fixed

to n = 2 (and so, the number of groups considered is

22 − 1 = 3). Shady: Explain why and how the fairness

values were turned into integers. Anis: Done, see above

paragraph.

So, for each run, we pick different fairness and re-

ward values at random, and then find the desired op-

timum result in two ways: 1) using our Dynamic Pro-

gramming (DP) algorithm from Section 3, and 2) an

off-the-shelf Integer Linear Programming (ILP) solver

(Google’s ORTools4). We execute 10 such runs for every

(N , k) combination, and record the average runtime of

each algorithm over the 10 runs. The results are sum-

marized and compared in the plots of Figure 11.

As the plots show, the proposed DP algorithm finds

the desired results much faster than the general-purpose

ILP solver, for all values of k considered. Both algo-

rithm’s runtimes seem to increase as N gets larger, but

this observed increase for DP is less pronounced and

4 https://developers.google.com/optimization

16 Anis El Rabaa et al.

Fig. 9: Sum of fairness values of the top-5 (j, p) pairs per seeker

much more linear than for ILP. This suggests that the

proposed DP scales much better than ILP in terms of

N . With respect to k, we see the DP algorithm’s run-

ning time also increases with k, but the ILP’s seems to

remain mostly unchanged as k varies, suggesting that

the ILP’s running time does not depend much on k.

Next, we examine how the DP algorithm performs

as the number of protected attributes n increases. For

this, we repeat the experiment above, but instead of set-

ting n = 2 protected attributes, we run the experiment

for increasing values of n. The results of this experiment

are shown in Figure 12.

From the plot, we can see that up until n = 11,

the solving time does not change much, but then

grows exponentially after that point. Remember that

the DP algorithm consists of two main stages: a

”preprocessing” stage where the minimum fairness

of each job-platform pair is computed, with time

complexity O(JPG), followed by a solving phase

using dynamic programming, of complexity O(JPkR).

Back to the plot, the point where the time starts

increasing exponentially is the point where the value

of JPG becomes significant (same order of magnitude)

compared to JPkR. From there, we conclude that as

long as the number of groups G = 2n − 1 is of smaller

order of magnitude than KR, then the DP algorithm’s

time will not depend much on n.

4.2.5 Constrained Problem Qualitative Experiments

As the Constrained Job Seeker algorithm requires fair-

ness values to be input as integers, and our current

values are floats between 0 and 1, we need to convert

our values to integers before running the algorithm. The

idea is then to truncate each fairness value to d signif-

icant digits, and then multiply the result by 10d. For

example, if d = 2, then a fairness value of 0.831 will

be mapped to the integer 83, and the range of possible

integer values will be between 0 and 99.

However, we need to ensure that d is large enough

to avoid mapping too many fairness values to the same

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 17

Fig. 10: Comparing worker counts for the 20 selected jobs in world2 vs. world7

integer, yet small enough that the fairness integers are

not too large or too granular.

An optimal value of d would be the smallest value

that gives us enough precision when truncating the fair-

ness values, so as to avoid too many collisions when

mapping to integers. To find the optimal d, we con-

sidered integers from 1 to 8 as candidate values. For

each candidate value of d, we took all fairness values

of our semi-synthetic data’s index, and mapped them

to d-digit integers. We then binned the resulting values

in a histogram, where the bins are {0, 1, 2, ..., 10d − 1},
so that we get for each possible integer value, the fre-

quency of fairness values that were actually mapped to

it.

From there, we record 1) the largest frequency ob-

served (in percentage), which gives us the size of the

largest collision in the histogram; and 2) the entropy of

the obtained fairness values, which we use as an indica-

tor of how well-distributed (and not biased towards cer-

tain values) the mappings are. Comparing these metrics

between candidate values of d shows us how much ”im-

provement” (fewer collisions) there is going from one

precision d to the next. The observed values are shown

in Figure 13 and Figure 15.

Looking at Figure 13 (with a clearer view in Fig-

ure 14), the size of the largest collision decreases sig-

nificantly from d = 1 to d = 2, followed by a slower

decrease at d = 3, before stagnating mostly between

d = 4 and 6. Then we see another marginal decrease at

d = 7. This means that the biggest precision gains we

see lie between d = 1 and d = 3, with a relative gain

starting from d = 7 onwards.

Also, Figure 15 reveals that the increase in entropy

is most noticeable from d = 1 till d = 4, with much

slower increases from there till d = 6, followed by a

further increase at d = 7. As entropy is a good indica-

tor of the spread and variety of the obtained fairness

values, we can then conclude that the most impactful

decreases in collisions occur between d = 1 and d = 4,

with other relative improvements seen from d = 7 and

on. Therefore, we conclude from the three figures that

d = 4 is a reasonable precision to use.

We now conduct two experiments on the Con-

strained Job Seeker problem, using the exact same

setting as the previous Unconstrained Job Seeker

problem qualitative experiments: same seekers, same

jobs J and platforms P of interest. The experiments

themselves are very similar to their unconstrained

18 Anis El Rabaa et al.

0 1,000 2,000 3,000 4,000 5,000
0

5

10

15

20

Number of job-platform pairs

T
im

e
(s

)

k

5

10

15

20

30

(a) ILP time wrt. N

0 1,000 2,000 3,000 4,000 5,000
0

5

10

15

20

Number of job-platform pairs

T
im

e
(s

)

k

5

10

15

20

30

(b) DP wrt. N

Fig. 11: Comparing performance of the ORTools solver

(ILP) to the proposed Dynamic Programming algo-

rithm (DP) algorithm

counterparts, with the only difference being that here,

each job-platform pair is associated with a reward

value between 1 and 100, and now each seeker aims to

select the top-5 pairs that maximize the fairness values

they get, while having a total reward of at least 400.

The goal of the two experiments is to confirm

whether our newly-added reward constraint is ac-

tually affecting the obtained top-k results, which

would demonstrate the effectiveness of our proposed

algorithm.

For the first experiment, we use the same seekers as

the first Unconstrained Job Seeker problem qualitative

experiment run, and find the top-5 job-platform pairs

for each seeker while satisfying the new reward thresh-

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

Number of protected attributes

T
im

e
(s

)

k

5

10

15

20

30

Fig. 12: DP algorithm runtimes wrt. the number of pro-

tected attributes n

0 2 4 6 8
0

0.1

0.2

0.3

0.4

Precision

L
a
rg

es
t

F
re

q
.

in
H

is
to

g
ra

m

Group

male

female

asian

black

white

male asian

male black

male white

female asian

female black

female white

Fig. 13: Variation in largest frequency observed wrt.

precision used (lower is better)

old of 400. Then, we record the number of times each

world (i.e., platform) and job occurs in every seeker’s

resultset, as shown in the plots of Figures 16 and 17.

Also shown are the sum of (four-digit) fairness values

and the sum of rewards for each resultset, which can be

seen in Table 2.

Looking at Figures 16 and 17, we notice that for

both plots, the results shown are different from those

of the corresponding Unconstrained Job Seeker prob-

lem run, even though both experiments share the exact

same setting aside from the reward threshold. This in-

dicates that the latter is actively affecting results. Also,

the values in Table 2 confirm that the reward constraint

is indeed met, while still providing satisfactory fairness

values.

Next, for the second experiment, we use again the

same sets of seekers, jobs and platforms as we did previ-

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 19

0 2 4 6 8
0

5 · 10−2

0.1

0.15

Precision

L
a
rg

es
t

F
re

q
.

in
H

is
to

g
ra

m

Group

male

female

asian

black

white

male asian

male black

male white

female asian

female black

female white

Fig. 14: A closer look of the plot in Figure 13

0 2 4 6 8
0

2

4

6

8

10

12

Precision

E
n
tr

o
p
y

S
co

re

Group

male

female

asian

black

white

male asian

male black

male white

female asian

female black

female white

Fig. 15: Variation in entropy wrt. precision (higher is

better)

Seeker Sum of Fairness Values Sum of Rewards

Male Asian 43434 402
Male Black 38456 400
Male White 39750 401

Female Asian 43434 402
Female Black 38607 402
Female White 38753 401

Table 2: Sums of fairness values and rewards of the top-

k pairs chosen. As expected, the sum of rewards for each

seeker is indeed over 400

ously. From there, we find for each seeker and each plat-

form pi in P , the top-five jobs in platform pi that max-

imize fairness, while satisfying the reward constraint.

Then, we similarly find the seeker’s (constrained) top-

five pairs for all platforms in P combined. Finally, we

record the sum of fairness values for each obtained re-

sult set as shown in Figure 18, and compare the results

to the ones of the corresponding unconstrained run. We

note here again that the results of the two experiments

differ, which further confirms that the reward constraint

is taking effect as expected.

4.3 Job Provider Experiments

4.3.1 Algorithms Implementation

For the Job Provider with Global Budget problem vari-

ant, we implemented the proposed Dynamic Program-

ming algorithm in C++. For the Local Budget variant,

we implemented the algorithms in C++ as well, except

for the Posta et al.’s algorithm, whose C code was taken

from the authors’ GitHub repository5, and Karabakal

et al.’s algorithm, for which we used the C code from

the technical report in [14].

All scalability experiments were run on the same

computer, an Apple MacBook Pro with a 2.3 GHz dual-

core Intel Core i5 processor. Solving times are again

measured in CPU time.

4.3.2 Job Provider with Global Budget Scalability

Experiments

To assess the scalability of our proposed algorithm, we

first create problem instances as follows. For given val-

ues of |J | and |P |, and for a fixed number of protected

attributes n = 2, we generate N = |P | × |J | job-

platform pairs. Each pair is associated with 2n − 1 = 3

fairness values, selected at random between 1000 and

9999, and one cost value selected at random between

50 and 150. The task is then to find the subset of job-

platform pairs with the highest fairness, while respect-

ing a budget limit of 50× |J |.
So, for increasing values of |J | and |P |, we create 100

such problem instances per (J, P) combination. This

time we went for a 100 instances instead of ten, because

the solving time of this algorithm is very short and

prone to slight fluctuations, so averaging time over more

instances is needed to have a stable reading. Next, each

of the instances is solved using two methods: 1) our

proposed DP algorithm; and 2) the Google ORTools

ILP sovler. The average solving time of each method

over the 100 instances is then recorded. The results are

shown in Figure 19, which reveals that the DP solving

times are faster than the ILP times for all values of N ,

and that the DP times increase more slowly than the

ILP times as N increases.

Next, as the budget limit B is part of the DP algo-

rithm’s time complexity, we design a second scalability

experiment to see how solving times are affected by the

value of B. For this, we fix the number of jobs and of

platforms to |J | = |P | = 50, and generate 100 instances

worth of fairness values and cost values in the same way

as the experiment above. Then, each instance (i.e., set

5 https://github.com/postamar/gap-solver

20 Anis El Rabaa et al.

Fig. 16: Distribution of the top-5 pairs among worlds for each seeker

Fig. 17: Distribution of the top-5 pairs among jobs of interest for each seeker

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 21

Fig. 18: Sums of fairness values of the top five (j, p) pairs per seeker and world

0 1,000 2,000 3,000 4,000 5,000
0

5 · 10−2

0.1

0.15

0.2

0.25

Number of job-platform pairs

T
im

e
(s

)

ILP

DP

Fig. 19: DP algorithm vs. ILP solver scalability wrt.

number of pairs N

of fairness and cost values) is solved with increasing val-

ues of B, by both the DP algorithm and the ORTools

solver as a reference. Average running times are shown

in Figure 20, hinting at a linear increase in the DP’s

solving time as B increases.

4.3.3 Job Provider with Global Budget Qualitative

Experiments

We design two experiments in this section. The first

aims to find to what extent the platforms chosen affect

fairness results, for the same jobs of interest. For this,

we take one job provider, and fix their jobs of interest

to 20 jobs selected at random. Each of the 20 jobs is

assigned a cost, selected as a random integer between

50 and 150. From there, for each alternative world pi,

we solve the Job Provider with Global Budget problem

for the platform pi, the selected 20 jobs, and a budget

limit of 1000. We then do the same but with all al-

ternative worlds combined. The optimal fairness value

found for each instance is recorded, and displayed in

the plot of Figure 21. (Note that unlike the Job Seeker

problems, the plot here is two-dimensional, since the

”seeker” dimension is not relevant for the Job Provider

problems). The plot shows that the optimal fairness

22 Anis El Rabaa et al.

1 2 3 4 5

·104

0

0.1

0.2

0.3

0.4

0.5

Budget limit

T
im

e
(s

)

ILP

DP

Fig. 20: DP algorithm vs. ILP solver scalability wrt.

budget limit B

value found is not the same for each platform, and that

choosing all platforms together (the ”Overall” entry in

the plot) yields a much better fairness value than any

of the nine platforms separately. Thus, our conclusion

here is two-fold: first, the best fairness achievable varies

from platform to platform, so choosing a platform of in-

terest wisely is important; and second, higher fairness

values are achievable when choosing multiple platforms

of interest instead of just one.

The second experiment aims to answer the question:

does a higher budget limit necessarily imply better fair-

ness results? For this, we take again one job provider,
with the same 20 jobs of interest as the previous exper-

iment, and we fix the provider’s platforms of interest

to be all nine alternative worlds. From there, we solve

the Job Provider with Global Budget problem for this

provider, with the same jobs and the same platforms of

interest, but with budget limits varying between 1000

and 2000. For each budget limit considered, the opti-

mal fairness value found is recorded and displayed in

Figure 22. As shown by the plot, the obtained fair-

ness value increases slightly at first as the budget limit

becomes more permissive, before eventually plateauing

when the budget limit reaches 1300. This happens be-

cause, in this particular problem instance, the job-to-

platform assignment with the highest fairness possible

has a cost of 1204. Thus, any input budget limit greater

than 1204 will return this optimal assignment, with no

further improvement possible on the fairness value ob-

tained. Therefore, the answer to our question above is

yes, a higher budget limit can imply better fairness re-

sults, but only up to a certain point.

ta
sk

ra
bb

it

w
or

ld
1

w
or

ld
2

w
or

ld
3

w
or

ld
4

w
or

ld
5

w
or

ld
6

w
or

ld
7

w
or

ld
8

ov
er

al
l

2

4

6

8
·104

F
a
ir

n
es

s

Fig. 21: Optimal fairness value obtained per platform(s)

of interest

1,000 1,200 1,400 1,600 1,800 2,000

7.2

7.3

7.4

·104

Budget limit set

F
a
ir

n
es

s

Fig. 22: Optimal fairness value obtained for the same

problem instance, but with varying budget limits

4.3.4 Job Provider with Local Budgets Scalability

Experiments

Recall that for this problem, we are comapring a se-

lection of both exact and heuristic algorithms from the

literature. To compare these algorithms for solving our

problem, we develop a scalability experiment as follows.

For increasing values of |J | and |P |, and for a fixed

number of attributes n = 2, we generate 100 problem

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 23

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Number of job-platform pairs

T
im

e
(s

)

Algorithm

Karabakal et al.

Posta et al.

ILP

Fig. 23: Exact algorithms’ runtimes wrt. N (number of

pairs)

instances as follows. First, we assign to each job in J

a set of 2n − 1 = 3 fairness values, selected at random

between 1000 and 9999, and a cost value selected at

random between 50 and 149. Next, each platform p in

P is assigned a budget limit bp, where:

bp =

⌈
100× |J |
|P |

⌉
+ ε

and where ε is a random integer between 0 and 49.

The point of the above formula is to roughly even

out the budget limits across platforms, while still hav-

ing some fluctuation in the bp values. The goal is then

to solve these problem instances using each of the algo-

rithms considered, as well as a generic ILP solver (OR-

Tools), while recording each method’s solving times and

optimality gaps.

Starting with exact algorithms, the three methods

we are comparing are:

– The BB algorithm by Fisher et al. [9], following the

pseudo-code in [18];

– The BB algorithm by Karabakal et al. After param-

eter tuning, we set the root subgradient iteration

limit (”ROOTSUBITLIM”) to 200, the subgradi-

ent limit at other nodes to 100, and the maximum

branching limit to 200,000, with all other parame-

ters being kept at their defaults.

– The BB algorithm by Posta et al. After parameter

tuning, we set the subgradient iteration limit to 30,

the root bundle iteration count to 25000, and leave

other parameters at their default values.

For the three algorithms, the experiment is run on

the same problem instances. Early on in the tests, we

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Number of job-platform pairs

T
im

e
(s

)

Algorithm

LS

MTHG

TS

ILP

(a) Runtimes wrt. N

0 1,000 2,000 3,000 4,000 5,000
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Number of job-platform pairs

O
p

ti
m

a
li

ty
G

a
p

(%
)

Algorithm

LS

MTHG

TS

(b) Optimality gaps wrt. N (where 1 = 100%)

Fig. 24: Heuristic algorithms’ runtimes and perfor-

mance wrt. N (number of pairs)

notice the Fisher et al. algorithm’s solving times to be

substantially slower than for the other two algorithms,

despite our best efforts at optimizing our code. There-

fore, this algorithm was dropped from the rest of our

benchmark. The time results of the benchmark for the

remaining algorithms versus ORTools can be found in

Figure 23. In the absolute, both Karabakal et al.’s and

Posta et al.’s algorithms scale fairly well with our prob-

lems’ sizes, with Karabakal et al.’s method having a

slight edge, however neither of them being much faster

than the ILP solver.

Next, we move on to heuristic algorithms. The

heuristic algorithms we compared are:

– MTHG

– Osman’s LS Descent method (LS)

– Osman’s Tabu Search method (TS)

24 Anis El Rabaa et al.

For the Tabu Search method, the iteration limit was

set to 100× |J |, the tabu list size to 20× |J |; all other

parameters for all the algorithms were kept to their

defaults. The three algorithms are then compared to

each other and to ORTools based on solving time, and

also based on solution quality this time. Here, solution

quality is computed as the gap between the optimal

value found by a heuristic, zh, and the one found by

ORTools, zopt (which is assumed to be optimal), via

the following formula:

optimality gaph =

{
zopt−zh

zopt
if zopt 6= 0

0 otherwise.

The results are shown in Figure 24, revealing that

all three heuristic approaches perform much faster than

the ILP solver at scale, while returning decently accu-

rate solutions within 2% from optimality on average.

Therefore, if exact solution is not a must, then heuris-

tics can be a solid, more efficient alternative to exact

algorithms.

4.3.5 Job Provider with Local Budgets Qualitative

Experiments

We design two experiments in this section. The first one

aims to find, for a given (total) budget limit, whether

higher fairness values are achievable with fewer plat-

forms (but with higher budget limits each), or with

more platforms (and lower budget limits each). For

this, we take the same nine worlds and twenty jobs as

in Section 4.3.3. The twenty jobs are fixed as jobs of

interest, and the fairness values for each job-platform

pair are kept the same as in Section 4.3.3. We also

fix a (total) budget limit of 1000, again like in Sec-

tion 4.3.3’s first experiment. The idea is then to vary

the number of platforms |P | of interest, and divide the

budget limit evenly across these platforms (if the to-

tal limit is not divisible by |P |, then the remainder

amount after division is added to the last platform).

We run nine runs for this experiment: in the first run,

we have P = {taskrabbit} as platform of interest, in

the second run P = {taskrabbit, world1}, in the third,

P = {taskrabbit, world1, world2}, etc. In each run, the

Job Provider with Local Budget problem is solved us-

ing the Karabakal et al. algorithm [15], and the total

fairness value of the optimal assignment is recorded.

The results of this experiment are displayed in Fig-

ure 25. The plot shows an apparent trade-off: at first,

fairness values generally increase, as we get more op-

tions (job-platform pairs) to choose from. However, as

we increase the number of platforms further, the budget

limits keep getting tighter on each platform, and so we

2 4 6 8

2

3

4

5

6

·104

Number of platforms of interest
T

o
ta

l
F

a
ir

n
es

s

Fig. 25: Optimal fairness value obtained with different

number of platforms of interest

start seeing a decrease in the total fairness value. There-

fore, using our framework, the answer to the question

above is that choosing the right number of platforms

poses a trade-off, that should be handled on a case-by-

case scenario.

Our second experiment aims to find the extent to

which a platform of interest can affect the obtained fair-

ness values. For this, we reuse the same setup as the first

experiment, but this time at each run, only one plat-

form is selected individually. That is, for the first run,

P = {taskrabbit}, for the second run, P = {world1},
the third, P = {world2}, etc., plus one final run where

all platforms combined are selected. Results are shown

in Figure 26. As we can see, the fairness value chosen

does vary from platform to platform, with all things re-

maining constant, which implies that choosing a plat-

form of interest must be done wisely.

Also, when comparing these results with those of

the equivalent experiment for the Global Budget vari-

ant (Section 4.3.3 as shown in Figure 21.), we see that

they are all identical, except for the last run (where

all platforms are combined). This is because for one

platform, both the Global and the Local Budget Job

Provider problems are equivalent, and thus their algo-

rithms return the same results. For the last run, the

fairness values obtained in the local budget experiment

are lower, since the constraints are tighter compared

to the global budget one. While the total budget of

1000 is the same, the local budget variant has addi-

tional constraints on how costs should be distributed

over all platforms.

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 25

ta
sk

ra
bb

it

W
or

ld
1

W
or

ld
2

W
or

ld
3

W
or

ld
4

W
or

ld
5

W
or

ld
6

W
or

ld
7

W
or

ld
8

O
ve

ra
ll

2

4

6

8
·104

F
a
ir

n
es

s

Fig. 26: Optimal fairness value obtained per platform(s)

of interest

5 Conclusion and Future Work

In this paper, we proposed a framework to assess and

compare worker group fairness for multiple jobs on

multiple online labor platforms. We based our frame-

work on realistic use cases for both job seekers and job

providers, which we formulated as four optimization

problems. We also proved that three of these problems

are at least NP-hard. As shown by our experiments,

the algorithms we proposed for all four problems are

efficient, and answer useful fairness-related inquiries.

Our framework does not assume any particular notion

of fairness, and can thus be used with any group

fairness notion or quantification method.

Possible future work includes using our framework

to conduct real-world case studies, where real jobs and

platforms are examined from a fairness standpoint.

Also, it would be interesting to adapt our framework to

handle fairness issues other than ranking, such as bias

in worker ratings and evaluations and to deploy our

framework as a standalone service on top of existing

online labor platforms.

References

1. Amer-Yahia, S., Elbassuoni, S., Ghizzawi, A., Borromeo,
R., Hoareau, E., Mulhem, P.: Fairness in online jobs:{A}
case study on taskrabbit and google. In: Interna-
tional Conference on Extending Database Technologies
(EDBT) (2020)

2. Biega, A.J., Gummadi, K.P., Weikum, G.: Equity of at-
tention: Amortizing individual fairness in rankings. In:
The 41st international acm sigir conference on research &
development in information retrieval, pp. 405–414 (2018)

3. Calders, T., Verwer, S.: Three naive bayes approaches
for discrimination-free classification. Data Mining and
Knowledge Discovery 21(2), 277–292 (2010). DOI
10.1007/s10618-010-0190-x. URL https://doi.org/10.

1007/s10618-010-0190-x

4. Celis, L.E., Straszak, D., Vishnoi, N.K.: Ranking with
fairness constraints. arXiv preprint arXiv:1704.06840
(2017)

5. Chen, L.: Measuring algorithms in online marketplaces.
Ph.D. thesis, Northeastern University (2017)

6. Elbassuoni, S., Amer-Yahia, S., Ghizzawi, A.: Fairness of
scoring in online job marketplaces. ACM Transactions
on Data Science 1(4), 1–30 (2020)

7. Elbassuoni, S., Amer-Yahia, S., Ghizzawi, A., Atie, C.:
Exploring fairness of ranking in online job market-
places. In: 22nd International Conference on Extending
Database Technology (EDBT) (2019)

8. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation al-
gorithms for middleware. Journal of computer and sys-
tem sciences 66(4), 614–656 (2003)

9. Fisher, M.L., Jaikumar, R., Van Wassenhove, L.N.: A
multiplier adjustment method for the generalized assign-
ment problem. Management science 32(9), 1095–1103
(1986)

10. Geyik, S.C., Ambler, S., Kenthapadi, K.: Fairness-aware
ranking in search & recommendation systems with appli-
cation to linkedin talent search. In: Proceedings of the
25th acm sigkdd international conference on knowledge
discovery & data mining, pp. 2221–2231 (2019)

11. Ghizzawi, A., Marinescu, J., Elbassuoni, S., Amer-Yahia,
S., Bisson, G.: Fairank: An interactive system to explore
fairness of ranking in online job marketplaces. In: 22nd
International Conference on Extending Database Tech-
nology (EDBT) (2019)

12. Hannák, A., Wagner, C., Garcia, D., Mislove, A.,
Strohmaier, M., Wilson, C.: Bias in online freelance mar-
ketplaces: Evidence from taskrabbit and fiverr. In: Pro-
ceedings of the 2017 ACM conference on computer sup-
ported cooperative work and social computing, pp. 1914–
1933 (2017)

13. Jahanbakhsh, F., Cranshaw, J., Counts, S., Lasecki,
W.S., Inkpen, K.: An experimental study of bias in plat-
form worker ratings: The role of performance quality and
gender. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pp. 1–13 (2020)

14. Karabakal, N.: A c code for solving the generalized as-
signment problem. Tech. rep. (1992)

15. Karabakal, N., Bean, J.C., Lohmann, J.R.: A steepest
decent [sic] multiplier adjustment method for the gener-
alized assignment problem. Tech. rep. (1993)

16. Keane, M.T., O’Brien, M., Smyth, B.: Are people biased
in their use of search engines? Communications of the
ACM 51(2), 49–52 (2008)

17. Lagoudakis, M.G.: The 0-1 knapsack problem–an intro-
ductory survey (1996)

18. Martello, S., Toth, P.: Knapsack Problems: Algorithms
and Computer Implementations. John Wiley & Sons,
Inc., USA (1990)

19. Osman, I.H.: Heuristics for the generalised assign-
ment problem: simulated annealing and tabu search ap-
proaches. Operations-Research-Spektrum 17(4), 211–225
(1995)

26 Anis El Rabaa et al.

20. Posta, M., Ferland, J.A., Michelon, P.: An exact method
with variable fixing for solving the generalized assignment
problem. Computational Optimization and Applications
52(3), 629–644 (2012)

21. Rosenblat, A., Levy, K.E., Barocas, S., Hwang, T.: Dis-
criminating tastes: Uber’s customer ratings as vehicles for
workplace discrimination. Policy & Internet 9(3), 256–
279 (2017)

22. Singh, A., Joachims, T.: Fairness of exposure in rankings.
In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
2219–2228 (2018)

23. Yagiura, M., Ibaraki, T.: Generalized assignment prob-
lem. In: T.F. Gonzalez (ed.) Handbook of Approximation
Algorithms and Metaheuristics (Chapman & Hall/Crc
Computer & Information Science Series). Chapman &
Hall/CRC (2007)

24. Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Mega-
hed, M., Baeza-Yates, R.: Fa* ir: A fair top-k ranking
algorithm. In: Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management, pp.
1569–1578 (2017)

25. Zehlike, M., Castillo, C.: Reducing disparate exposure in
ranking: A learning to rank approach. In: Proceedings of
The Web Conference 2020, pp. 2849–2855 (2020)

26. Zehlike, M., Sühr, T., Baeza-Yates, R., Bonchi, F.,
Castillo, C., Hajian, S.: Fair top-k ranking with multiple
protected groups. Information Processing & Management
59(1), 102,707 (2022)

27. Zliobaite, I.: A survey on measuring indirect discrimi-
nation in machine learning. CoRR abs/1511.00148
(2015). URL http://arxiv.org/abs/1511.00148

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms 27

Appendix A Proof of Theorem 1

Theorem 1 The Constrained Job Seeker problem is

polynomial-time reducible to the optimization variant of

the Knapsack problem and is therefore at least as hard.

Proof Note that by having only one group and one plat-

form, the problem reduces to the following: Given a list

M of pairs mi = (fi, ri), where fi is the assigned fair-

ness value and ri the reward value, select k pairs such

that fairness is maximized and the total reward is at

least R. Using this version of the problem, we give a

polynomial-time reduction from the optimization ver-

sion of Knapsack. Given a list L of pairs ai = (vi, wi),

where vi represents the value of the pair and wi its

weight, and an integer W , the Knapsack problem asks

for a subset of L of maximum value such that the total

weight is at most W .

Shady: slightly confused by the notion of Ji being a

pair. Anis: Renamed J to M , ji to mi. Running out of

letters...

Given an instance of the Knapsack problem where

|L| = n, create a list M of n pairs mi = (fi, ri) where

fi = vi and ri = W − wi. Moreover, add n additional

pairs (0,W) to M . Set k = n and R = (n − 1)W .

We now prove equivalence of both instances. In other

words, we prove that L contains a subset of total value

X, satisfying the Knapsack constraints, if and only if M

contains a subset of size n with total fairness X, satis-

fying the Constrained Job Seeker Problem constraints.

Assume L contains a subset A of size s (s ≤ n) of

total value X and total weight WA ≤ W . Construct

a subset B of size n = k of M by taking ∀pi ∈ A its

equivalent mi ∈ M , and finally add n − s ≤ n pairs of

the form (0,W). Let FB denote the total fairness of B

and RB its total reward.

FB =
∑

mi∈B
fi =

∑
pi∈A

vi + (n− s)× 0 = X

RB =
∑

mi∈B
ri = sW −

∑
pi∈A

wi + (n− s)W

Therefore,

RB = nW −WA ≥ nW −W = (n− 1)W = R

Assume now that M has a subset B of size k = n

of total fairness X and total reward RB ≥ R. Let s

denote the number of pairs (0,W) in B. By removing

those s elements from B, we get a new set B′ consisting

of elements originating from pairs in L, of total fairness

X (since all removed pairs had f = 0) and total reward

RB′ = RB − sW ≥ (n − s − 1)W . Construct the set

A = {pi : mi ∈ B′} ⊆ L. Let VA denote the total value

of A and WA its total weight.

VA =
∑
pi∈A

vi =
∑

mi∈B′
fi = X

RB′ =
∑

mi∈B′
ri = (n− s)W −

∑
pi∈A

wi ≥ (n− s)W −W

Therefore,
∑
pi∈A

wi = WA ≤W .

