Md Mouinul Islam

Mahsa Asadi

Sihem Amer-Yahia
email: sihem.amer-yahia@univ-grenoble-alpes.fr

Senjuti Basu
email: senjutib@njit.edu

A generic

Keywords: Diversification, Top-k Algorithms, Query processing

published or not. The documents may come

Introduction

Diversity has a wide variety of applications in search, recommendation [START_REF] Abbar | Real-time recommendation of diverse related articles[END_REF][START_REF] Abbar | Diverse near neighbor problem[END_REF][START_REF] Esfandiari | Multi-session diversity to improve user satisfaction in web applications[END_REF][START_REF] Parambath | A coverage-based approach to recommendation diversity on similarity graph[END_REF][START_REF] Vargas | Coverage, redundancy and size-awareness in genre diversity for recommender systems[END_REF][START_REF] Wang | Sequence-based context-aware music recommendation[END_REF] and data exploration. The goal of diversification algorithms is to return results that are relevant as well as cover user intent. In the data management community, returning top-k diverse results of a query has been extensively studied, and there exists many seminal works [START_REF] Carbonell | The use of mmr, diversity-based reranking for reordering documents and producing summaries[END_REF][START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF][START_REF] Yu | It takes variety to make a world: diversification in recommender systems[END_REF] that propose objective functions and efficient algorithms to achieve a trade-off between relevance and diversity.

The original implementation of many representative algorithms, such as, GMM [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF], MMR [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF], SWAP [START_REF] Yu | It takes variety to make a world: diversification in recommender systems[END_REF] that do not make any assumptions on the nature of the diversity functions are iterative in nature and make the decision of updating the top-k set by making a greedy choice based on the current top-k set and the remaining records that are not yet in top-k. These representative algorithms go through the cumbersome step of pairwise diversity computation of records between and across these two sets even to make a single update in the top-k set. Indeed, for a large database containing N records, this repetitive computation is expensive O(N), since typically k << N . We are also aware of a handful of existing works [START_REF] Fraternali | Top-k bounded diversification[END_REF][START_REF] Mouratidis | Geometric aspects and auxiliary features to top-k processing[END_REF] that are specifically designed on geometric space and avoid this repetitive computation. However, to the best of our knowledge, most of the existing works assume this expensive computation to be necessary, when diversity is designed for arbitrary non-metric functions or even studied in general metric space. Contrarily, our effort here is to reduce that computation without making any explicit assumptions about the diversity function, that is, considering diversity functions to be fully arbitrary or even non-metric.

AUTHORS' COPY

Our first contribution lies in identifying one major computational bottleneck in existing popular diversification algorithms and how to accelerate that process (Section 2.1). In Section 2.2, we identify the basic ingredients of developing DivGetBatch() as an access primitive such that it remains agnostic to any specific underlying diversity or distance computation function. This primitive is also guaranteed to produce identical top-k results as of the original diversity algorithms. The fundamental idea is to make the comparison go over a group of records, as opposed to record pairs, thereby accelerating the computation. In other words, the large number of N records are to be grouped in a small number of C nodes and some higher level diversity aggregates are to be maintained between the nodes. Towards that, we develop a generic computation framework that builds an index I-tree offline and maintains two other auxiliary data-structures (MinsimMatrixNode and MaxsimMatrixNode) that are highly generic in nature and suitable to handle updates. Indeed, the design of I-tree is rather simple and may appear to share resemblance with existing indexing techniques (Section 7 contains detailed discussion and empirical evaluation towards that). Our primary contribution lies in proposing a simple enough indexing technique that could be easily designed using off-theshelf popular record partitioning algorithms, such as, K-Means [START_REF] Han | Data mining concepts and techniques third edition[END_REF], but study how to make it generic enough to work on a variety of diversification algorithms over arbitrary diversification functions. In fact, existing popular indexing techniques, such as K-B-D-tree [START_REF] Robinson | The kdb-tree: a search structure for large multidimensional dynamic indexes[END_REF], kdtree [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF], M-Tree [START_REF] Ciaccia | M-tree: An efficient access method for similarity search in metric spaces[END_REF], Ball-Tree [START_REF] Kumar | What is a good nearest neighbors algorithm for finding similar patches in images?[END_REF], R-tree [START_REF] Guttman | R-trees: A dynamic index structure for spatial searching[END_REF] assume that coordinate information of the records are available and used to create data structures to answer a large spectrum of distance queries, where distance may be based on Euclidean, cosine similarity, or general L p norms. However, I-tree assumes the records to be atomic and the diversity function to be arbitrary (refer to Section 8 for further comparison).

Our second contribution is to develop query processing algorithms for MMR, GMM, and SWAP [START_REF] Carbonell | The use of mmr, diversity-based reranking for reordering documents and producing summaries[END_REF][START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF][START_REF] Yu | It takes variety to make a world: diversification in recommender systems[END_REF] using DivGetBatch() (Sections 3, 4, 5). Fundamentally, we have rewired the original algorithms to run over pairs of groups of records as opposed to pairs of records to save up processing time. We make nontrivial theoretical claims and proofs on the exactness and the running time of the augmented algorithms in expectation and in the worst case. As an example, we prove that augmented SW AP (Aug-SWAP) takes O(N/C * k * log k + N) time in expectation compared to O(N * k * log k) time of the original algorithm. It is easy to notice that augmented SW AP is guaranteed to run faster than the original algorithm, as M ax(N/C * k * log k, N) (C is the number of groups) is smaller than N * k * log k. The summary of the complexity results are presented in Tables 1 and2.

Our third contribution is developing principled solutions for creating and maintaining I-tree (Section 6). I-tree is a complete m-ary tree [START_REF] Cormen | Introduction to algorithms[END_REF] with height l. There exists many ways to build I-tree (e.g., hierarchical graph partitioning or clustering could be used). We identify that the main computational bottleneck of I-tree under batch updates lies in updating MinsimMatrixNode and MaxsimMatrixNode. Therefore, we formalize the index maintenance problem as an optimization problem, with the goal of minimizing the number of updates in these data structures. We present an integer programming-based exact solution OPTMn for that, and a greedy heuristic GrMn that is highly scalable in nature.

Our final contribution is experimental (Section 7). We use two large real-world datasets, one large publicly available synthetic dataset to show that the augmented algorithms return results identical to their originals, while ensuring between a 3× to 24× speedup on large datasets. We study the effects of different parameters empirically and provide guidance for appropriate design choice. We empirically present exhaustive results to pre-process and maintain I-tree. Our empirical results corroborate our theoretical analyses. Moreover, we compare the proposed index I-tree with a set of existing indexing structure, such as, M-Tree [START_REF] Ciaccia | M-tree: An efficient access method for similarity search in metric spaces[END_REF], KD-Tree [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF], and Ball-Tree [START_REF] Kumar | What is a good nearest neighbors algorithm for finding similar patches in images?[END_REF]. These latter trees are primarily designed for the Euclidean space. Our experimental results unanimously selects I-tree as the winner. The augmented algorithms implemented using I-tree is at least 18× faster in query processing and as much as 170× faster for certain configuration. I-tree achieves more than 1.5× speedup during the index construction and at times it is more than 20× faster w.r.t. the baselines.

To summarize, we make the following contributions:

-We develop DivGetBatch(), an access primitive and show how to integrate it inside popular diversity algorithms to save up running time (Sections 3, 4, 5). We present in depth theoretical analyses of the augmented algorithms. -We propose a computational framework to support DivGetBatch()(Section 6. The framework consists of a pre-computed index I-tree and a query processing step. We also present non-trivial solutions to maintain I-tree under dynamic updates. -We run an extensive experimentation that demonstrates the effectiveness of building and maintaining I-tree and DivGetBatch(), and corroborates our theoretical claims (Section 7).

Background and Approach

This section is organized in two parts. In Section 2.1, we present the background of the studied problem and define it. In Section 2.2, we present the fundamental ideas of our approach.

Motivating Example & Problem Definition

The basic principle of existing diversification algorithms, such as MMR, GMM, and SWAP is either to incrementally build a top-k set of diverse results or to greedily replace records in a top-k list to find the most diverse ones. In both cases, the leading cost directly depends on the number of pairwise record comparisons. Imagine a toy database D containing N = 10 records. Since the records are considered atomic, Table 4 shows a recordrecord similarity matrix, simM atrixRecord, normalized between [0-1] for our example. Diversity between r i , r j is simply 1 -sim(r i , r j). Given a query Q, in order to produce k = 2 results, an algorithm such as MMR [START_REF] Carbonell | The use of mmr, diversity-based reranking for reordering documents and producing summaries[END_REF] first assigns all 10 records in D to a potential candidate set R. Then it iterates over all 10 records once to find the best record in terms of M R score (based on diversity and relevance), and adds that to the result set S and discards that from R. It repeats the same process once more to produce the resulting set S = {r 10 , r 8 }.

In particular, there is a repeated pairwise computation of the following kind:

While k ≤ 2 : rec ← R[1] For i = 2; i <= |R|; i + + if MR(Q, R[i], S) ≥ MR(Q, rec, S) rec ← R[i] EndFor S ← S rec, R ← R -rec k ← k + 1 EndWhile
Problem Definition 1 Develop an access primitive DivGetBatch() and integrate it inside existing popular diversity algorithms. DivGetBatch() satisfies the following three criteria.

-It guarantees identical top-k results as that of the original algorithms. -It is generic, i.e., it works for any diversity functions -diversity being metric or not. -When integrated inside existing algorithms, it accelerates the computation and returns the results faster.

The proposed primitive simplifies the aforementioned implementation as follows -instead of iterating over the entire R set (which is O(N)), it returns potentially a much smaller set of records CandR, from which the result set S would be updated.

1 CandR ← DivGetBatch(R, Q, S) 2 While k ≤ 2 : 3 rec ← M ax(M R(CandR, Q, S)) 4 S ← S rec, CandR ← CandR -rec 5 k ← k + 1 6 EndWhile

Approach

DivGetBatch() is designed by developing a computational framework, described in Figure 1. The basic idea is to store "higher level aggregates"', such as minimum and maximum diversity scores of a group of records instead of keeping individual pairwise diversity scores between the records. We formally define the minimum and maximum diversity scores as bounds in later sections. As an example, if the same set of records are grouped in three nodes, as shown inside the indexing box of Figure 1 and the maximum and minimum diversity scores are preserved between them, node 2 and node 3 can be discarded in the first iteration of processing of MMR pruning 6 out of the 10 records and returning only {r 1 , r 2 , r 4 , r 10 } in R. This indeed leads to a significant speedup.

Offline vs. Online. In this work, we do not make any assumptions about the data distributions or query distributions. Thus, our proposed approach is data and query independent. A keen reader may notice that to accelerate diversity computation using I-tree, one has to "group" records and maintain some higher level aggregates between them. Grouping a large database of N records is time-consuming, as that would require partitioning them based on pairwise diversity. Indeed, this process of grouping must happen once and offline. Precisely because of this, we resort to pre-process the records to group them and develop index I-tree, and use that later for processing diversity queries. This is the offline computation of the proposed framework. Just like DivGetBatch(), I-tree is a general purpose complete tree like structure and could be designed in more than one way. It needs to satisfy three properties.

-I-tree has m arity and l height or levels (user inputs). -Two highly important auxiliary data structures maintain similarity bounds between the nodes in I-tree: MinsimMatrixNode and MaxsimMatrixNode for maintaining minimum and maximum similarity bounds1 . -For three nodes n, n ′ , and n j in I-tree, if n is a parent of n ′ , and n j is part of a different subtree and at the same level as n, the following relationship holds: Min sim(n, n ′) ≥ Min sim(n, n j), and Max sim(n, n ′) ≥ Max sim(n, n j), (basically nodes that are part of the same subtree have higher min and max similarity bounds compared to the nodes that are not).

Algorithm

Variant Expected time w.r.t |CandR| M M R Original Augmented O(N * k 2) O(C * k 2 + N + k i=1 |CandR i | * k GM M Original Augmented O(N * k) O(C * k + k i=1 |CandR i |) SW AP Original Augmented O(N * k * log k) O(N + N i=1 |CandR i | N * (C + k * log k))
M M R Original Augmented O(N * k 2) O((N/C + C) * k 2 + N) O(N * k 2) O((N/m l + m l) * k 2 + N) GM M Original Augmented O(N * k) O(N/C + C) * k) O(N * k) O(N/m l + m l) * k) SW AP Original Augmented O(N * k * log k) O(N/C * k * log k + N) O(N * k * log k) O(N/m l * k * log k + N) Index Activity Time Space Time Space I-tree Construction Maintenance O(N * C 2 * t + N 2) O(N * |Y |) O(C 2) O(C 2) O(N * m 2l * t + N 2) O(N * |Y |) O(m 2l) O(m 2l)
The indexing algorithm BuildTree (Algorithm 5) partitions (refer to the Subroutine Partition) the records. It also maintains additional data structures that contain similarity scores between nodes for efficient query processing. An example of a two-level index tree is shown in Fig. 2. At the first level, BuildTree creates a root node containing all N records and m children of the root node. From the point of abstraction, it is not important at this stage to describe how the data is partitioned. Basically, the goal is to keep similar records together while separating non-similar ones. There are multiple off-the-shelf techniques such as clustering and graph partitioning to carry out this task. In our implementation, we use the popular k-means algorithm [START_REF] Han | Data mining concepts and techniques third edition[END_REF] for partitioning. The algorithm repeats the partitioning procedure until it reaches l levels. We refer to Section 6 for further details.

Next, we present the generic recipe of using Di-vGetBatch() online or during the query processing time. end for 8:

M ← Skip-Nodes(I-tree, y, uBs, lBs) 9:

V ← { I-tree [y].nodes -M } 10: end for 11: CandR = {r | r ∈ n, n ∈ V } 12: return CandR explore the subtree under it. b. Skip-Nodes: based on the previous decision, the algorithm either skips the node and its entire subtree or explores the node. Algorithm 1 shows the pseudo-code of the DivGetBatch() API.

M M R Query Processing with DivGetBatch()

The first algorithm we study is M M R [START_REF] Carbonell | The use of mmr, diversity-based reranking for reordering documents and producing summaries[END_REF] algorithm. We describe the original version of the algorithm and our augmented version and provide theoretical analysis on how our augmented version outperforms the original one.

M M R algorithm

Maximal Marginal Relevance (M M R) algorithm is a seminal work on result diversification [START_REF] Carbonell | The use of mmr, diversity-based reranking for reordering documents and producing summaries[END_REF]. M M R is based on Marginal Relvance (MR) score (Equation 1) that it maximizes in each iteration. Given a query, MR introduces a λ coefficient to strike a balance between the relevance score, computed between the records and the query, and the diversity score, computed between the records themselves.

M M R is greedy in nature that grows the size of the top-k set by adding records one by one in the top-k set by considering the relevance of the record and diversity with the previously selected records, using the formula below:

M M R(r) ← argmax r∈R\S M R(r), M R(r) ← λsim(r, Q) -(1 -λ)max rj ∈S sim(r, r j), (1
)
where Q is the query, S is the previously selected items, R is the remaining records in the dataset, r is a candidate record from R, and r j is another record from S. λ is a tunable parameter. The time-consuming part of the algorithm lies in computing the MR score for each r ∈ {R \ S} and returning the one with the highest MR score.

The M M R algorithm takes O(|R| × |S|), when we add one new record to set S, demonstrating that it has an order of N × k. The algorithm repeats k times and produces top-k results.

Aug-MMR algorithm

Aug-MMR algorithm is designed to circumvent this aforementioned time consuming computation by leveraging DivGetBatch(). The general idea is to return a small subset of records, as opposed to all |R| records (which is O(N)) in each iteration, thereby saving computation. The rest of the algorithm is identical to its original version and is presented in Algorithm 2.

We now describe subroutine 2, how DivGetBatch() exactly works in Aug-MMR. Inputs to DivGetBatch() 1) and mathematically can be expressed as follows:

lBM R node ← λMin sim(node, Q)- max node ′ ∈Z (1 -λ)Max sim(node, node ′), (2) uBM R node ← λMax sim(node, Q)- min node ′ ∈Z (1 -λ)Min sim(node, node ′), (3
)
where Z is the set of nodes that contain S, Min sim(node, Q) and Max sim(node, Q) are the minimum and the maximum similarity between any records in node and Q, respectively, and Min sim(node, node ′) and Max sim(node, node ′) are the minimum and the maximum similarity between any two records in node and node ′ , respectively. Since lBM R is the smallest score of node, it is calculated by taking the minimum of sim score in the first part of the equation and subtracting that from the maximum of sim score in the second part. Contrarily, uBM R refers to the maximum MR score of node (Equation 3) and can be calculated by reversing the min and max of the (Equation 2).

Skip-Nodes: The argument of node skipping is simple -if the uBM R score of a node is not larger than the lBM R of another node, then the former node and its entire subtree could be pruned. The records from the remaining nodes form the CandR set. CandR ← DivGetBatch(I-tree, R, S, Q, M M R) 4:

CandR ← {N -{r ∈ I -tree.n | uBM R n < (4) max ∀n ′ (lBM R n ′)}}
S = {S M M R(r) r∈CandR } 5: end for 6: return S this is done by finding the maximum value of lBM R n ′ of all nodes and then discard ones with uBM R less than it.

Running Example: A step by step calculation of DivGetBatch() is shown in Table 5. The maximum and minimum similarity between node 1 and query Q is 0.180 and 0.191. In first iteration of Calculate-Bounds, lower bound of MR of node 1 which is lBM R node1 = 0.8 * 0.180 -(1 -0.8) * 0 = 0.144, and upper bound of MR of node 1 , uBM R node1 = 0.8 * 0.191 -(1 -0.8) * 0 = 0.153. Similarly, lBM R node2 , uBM R node2 , lBM R node3 , and uBM R node3 are -0.047, 0.044, 0.029, and 0.033, respectively. In Skip-Nodes, the maximum of all lBM Rs is found 0.144 which is lBM R node1 .

uBM R node2 and uBM R node3 are smaller than lBM R node1 . Therefore, node 2 and node 3 are discarded from further calculation in iteration 1. Records of node 1 {r 1 , r 2 , r 4 , r 10 } are returned by DivGetBatch() to Aug-MMR algorithm. Aug-MMR performs calculation similar to original M M R on {r 1 , r 2 , r 4 , r 10 } which results in S = {r 10 }. Likewise, the maximum and minimum similarity between node 1 and node 1 are 0.969 and 1.0. In the second iteration of Calculate-Bounds, lBM R node1 = 0.8 * 0.180 -(1 -0.8) * 0.969 = -0.050 and uBM R node1 = 0.8 * 0.191-(1-0.8) * 1.0 = -0.047. Similarity, lBM R node2 , uBM R node2 , lBM R node3 , and uBM R node3 are 0.028, 0.029, 0.010, and 0.009, respectively. In Skip-Nodes, the maximum of all lBM Rs is lBM R node2 = 0.028. uBM R node1 and uBM R node3 are smaller than lBM R node2 . Thus, node 1 and node 3 are discarded from further calculation in iteration 2.

Records of node 2 {r 3 , r 8 , r 9 } are returned by DivGet-Batch() to Aug-MMR algorithm. Aug-MMR performs calculation similar to original M M R on {r 3 , r 8 , r 9 } which results in S = {r 10 , r 8 }

Aug-MMR algorithm proofs

Claim 1 Aug-MMR returns identical top-k results as that of original M M R.

Proof The proof is constructed using one helper lemma and one observation: Lemma 1 proves that DivGet-Batch() never prunes a record that is part of the original top-k; Observation 1 shows that once the control comes back from DivGetBatch(), Aug-MMR works exactly as the original M M R in each iteration. Combining these lemma and observation, Aug-MMR returns identical top-k results as that of the original M M R.

Lemma 1 DivGetBatch() never prunes a record that is part of the original top-k.

Proof As part of this proof, we first prove that Skip-Nodes never discards the record which has the highest MR score in that iteration.

Recall Property 1 and note that for every two nodes n and n ′ in the same subtree, if n is a parent of n ′ , then n contains all records in n ′ , thereby having larger uBM R and lBM R values. Therefore, if a node n is skipped, any child of n is also safe to be skipped.

We use helper Lemma 2 to prove that the actual M R score of any record in a node node is bounded between uBM R node and lBM R node . Let us assume, the next desired record r d ∈ node d produces maximum MR value among all R \ S records. M R r d is greater than minM R node for ∀node. Using Equation 6:

M R r d ≥ max node∈I-tree[l].nodes minM R node ≥ max node∈I-tree[l].nodes (lBM R node), Using Equation 6, M R r d = M axM R node d ≤ uBM R node d . As a result, uBM R node d ≥ M R r d ≥ max node∈I-tree[l].nodes (lBM R node). (5
)
According to Equation 5 and Equation 4, node d will not be discarded, and all records inside node d including r d will be returned by DivGetBatch() or send to the next level for further processing. This logic extends for all the iterations. Therefore, DivGetBatch() never prunes a record that is part of the original top-k.

Lemma 2 MR score of any record r ∈ node (say M R r) is bounded by upper and lower bound uBM R node and lBM R node , respectively. That is,

lBM R node ≤ M R r∈node ≤ uBM R node . (6)
Proof We will first prove that maximum relevance value (say M R rmax) of any record (say r max ∈ node) is less than equal to uBM R node . Where, M R rmax can be expressed as:

M R rmax = λsim(r max , Q)-(1-λ)max rj ∈S sim(r max , r j)]. (7)
First part of the equation 7 is always less than equals to first part of the equation 3. That is:

λsim(r max , Q) ≤ λmax ri∈node sim(r i , Q) = λMax sim(node, Q), (8)
Next, we show that second part of the equation 7 is always greater than second part of the equation 3.

Let us assume; r w ∈ S produces max value for the second part of Equation 7. That second part can be rewritten as (1 -λ)sim(r max node , r w). Let us assume, r w ∈ node w where node w ∈ Z. For any node ′ ∈ Z, we can write:

(1 -λ)sim(r max , r w) ≥ (1 -λ)min ri∈node,rj ∈node ′ sim(r i , r j) ≥ min node ′ ∈Z (1 -λ)Min sim(node, node ′), (9)
From these two inequalities 8 and 9, we can con-

clude M R rmax ≤ uBM R node or, M R r∈node ≤ uBM R node .
Similarly, the lower bound lBM R node can be shown as follows: lBM R node ≤ minM R node . Thus, any record in node is certain to have MR value in between uBM R node and lBM R node .

Observation 1 Once the control comes back from Di-vGetBatch(), Aug-MMR works exactly as the original M M R in each iteration.

Aug-MMR has identical M R score calculation and M M R selection as that of the original M M R.

T Aug-MMR = O(C * k 2 + N + k i=1 |CandR i | * k).
The expected case analysis basically delves deeper into the analysis of Part 2 and studies the expected running time considering different size of CandR i and its corresponding probability.

Let us assume, in iteration i, the |CandR i | records touch x number of nodes in I-tree. Indeed, x i is the number of nodes with |CandR i | records in I-tree, that the augmented algorithms have to access during the query processing. Let us also assume node n i contains v i records. We start the proof assuming there is only one level in I-tree (i.e., l = 1), and then generalize it later on. If l = 1, the expected running time of Part 2 calculation of Aug-MMR in the i-th iteration is:

E = O(C i=1 prob(x i) × computation cost Aug-MMR (x i)).

Now, probability of returning x nodes = C

x * probability of x nodes getting selected * probability of (Cx) nodes not getting selected. Without further assumption on the data as well as query distribution, we as-sume that each node has an equal probability of getting selected. The probability of choosing a node is 1/C. Therefore, the probability of not getting selected is (1

-1/C).
The size of the returned record set, i.e., |CandR|, if x = i nodes are accessed:

|CandR| i = (1/C) i * (1 -1/C) C-i * [(v 1 + v 2 + ... + v i) + (v 1 + v 3 + ... + v i+1) + (v 2 + v 3 + ... + v i+1) + (v 3 + v 4 + ... + v i+2) + . . .] = (1/C) i * (1 -1/C) C-i * C -1 i -1 * (v 1 + v 2 + . . . + v C) = (1/C) i * (1 -1/C) C-i * C -1 i -1 * N.
Therefore, the overall expected cost of Part 2 is:

|CandR| = N * C i=1 (1/C) i * (1 -1/C) C-i * C -1 i -1 = N * (1/C)/(1 -1/C) * C i=1 (1/C) i-1 * (1 -1/C) C-(i-1) * C -1 i -1 . Let j = i -1 : = N * (1/C)/(1 -1/C) * C-1 j=0 (1/C) j * (1 -1/C) C-j * C -1 j = N * (1/C)/(1 -1/C) * (1 -1/C) * C-1 j=0 (1/C) j * (1 -1/C) (C-1)-j * C -1 j = N * (1/C)/(1 -1/C) * (1 -1/C) * (1/C + 1 -1/C) C-1 = N/C.
Expected running time of Aug-MMR algorithm considering both Part 1 and Part 2 computation is:

E Aug-MMR = O((N/C + C) * k 2 + N).
Now consider the case when l > 1. Probability of selecting a node in first level is 1/m, given m is the arity of I-tree. Probability of selecting a node in second level = probability of selecting that node out of m node in that branch * probability of selecting it's parent = 1/m 2 . Similarly, Probability of selecting a node at leaf node is 1/m l = 1/C. Thus, in the general case, when l > 1, expected running time of Aug-MMR is O((N/C + C) * k 2 + N), which is same as before.

Worst-case Aug-MMR . In the worst-case, all N records are returned by DivGetBatch() in each iteration, which makes

k i=1 |CandR i | = N * k. Thus, the worst-case running time is O((N + C) * k 2).

GM M Query Processing with DivGetBatch()

The second algorithm we study is GM M algorithm. We describe the original version of the algorithm and our augmented version and similar to the previous section. We also provide proofs on how our augmented version outperforms the original one.

GM M algorithm

The next algorithm we study is GM M [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF] that tries to find a subset of k most diverse records among N records by maximizing the minimum pairwise distance. GM M does not require any external query. Based on the original design, the first two records in the result set S are provided in constant time by an oracle. Then, the algorithm iteratively goes through all records in R and finds a record whose minimum diversity (maximum similarity) with the previously selected records is the largest (smallest). It continues until |S|=k. The objective function is: GM M (r) ← argmax r∈R\S min rj ∈S Div(r, r j), [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF] where Div(r, r j) is the diversity score between record r and r j . A keen reader may notice that GM M uses diversity (Div) in the objective function, whereas, in our study, we store similarity between records. Unless specified otherwise, Div = 1 -sim. The two similarity matrices, one that captures the similarity between every pair of records, and the other that captures that of between nodes, could be used to calculate Div.

Aug-GMM algorithm

Aug-GMM leverages the DivGetBatch() API to reduce the number of records to iterate on. Algorithm 3 describes the pseudo-code, where the DivGetBatch() returns a small subset of records CandR which later on is fed to the original GM M algorithm to get the nextBest record.

Calculate-Bounds: This function keeps track of the upper and lower bounds of scores between nodes (uBGM M and lBGM M , respectively) using the same principles as that of the original GM M objective function (Equation 10). lBGM M node ← min node ′ ∈Z min Div(node, node ′), [START_REF] Berchtold | The x-tree: An efficient and robust access method for points and rectangles[END_REF] uBGM M node ← min node ′ ∈Z max Div(node, node ′), [START_REF] Beygelzimer | Cover trees for nearest neighbor[END_REF] where Z is the set of nodes containing S, min Div(node, node ′) and max Div(node, node ′) are the minimum and the maximum diversity scores between any two records in node and node ′ , respectively. In Equation 11, minimum of the minimum diversity over all nodes in Z ensures the lower bound of GM M , such that all records in node will have equal or greater value than lBGM M node . Conversely, in Equation 12, minimum of the maximum diversity over all nodes in Z ensures the upper bounds, such that all records in node will have equal or lower GM M value than uBGM M node .

Skip-Nodes : This function is identical to Skip-Nodes of M M R in principle. The skip-rationale of Aug-GMM is:

CandR ← {N -{r ∈ I -tree.n | uBGM M n < (13) max ∀n ′ (lGM M n ′)}}
Running Example: Let us assume k = 3 and the first two records of S are arbitrarily chosen as r 1 and r 3 . Initially, S = {r 1 , r 3 }. From Figure 1, r 1 and r 3 are inside node 1 and node 2 , respectively. Hence, Z = {node 1 , node 2 }. Node-Node diversity Div(node, node ′) can be calculated using Div = 1 -Sim. Div(node 3 , node 1) = (0.884, 0.908) and Div(node 3 , node 2) = (0.937, 0.9530). By using Equations (11) and (12), lBGM M node3 = 0.884 (as min of min div) and uBGM M node3 = 0.908 (as min of max div). Similarly, lBGM M node1 , uBGM M node1 , lBGM M node2 , and uBGM M node2 are 0, 0.031, 0, and 0.018. lBGM M node3 (0.884) is greater than uBGM M node1 (0.031) and uBGM M node2 (0.018). Using Equation 13, node 1 and node 2 can be discarded. Obtaining records from node 3 , candR = {r 5 , r 6 , r 7 } is returned from DivGetBatch(). Finally, GMM(r 5 , r 6 , r 7) = r 5 is called and the result set S = {r 1 , r 3 , r 5 } is achieved.

Aug-GMM algorithm proofs

Claim 3 Aug-GMM returns identical top-k results as that of original GM M .

Proof Akin to MMR proof, this proof is also constructed using one helper lemma and one observation: Lemma 3 proves that DivGetBatch() never prunes a record that is part of the original top-k; Observation 2 shows that in each iteration, once the control comes back from DivGetBatch(), Aug-GMM works exactly as the original GM M . Combining these lemma and observation, Aug-GMM returns identical top-k results as that of the original GM M . Lemma 3 DivGetBatch() never prunes a record that is part of the original top-k.

Proof As part of this proof, we first prove that Skip-Nodes never discards the record which has the highest GMM score in that iteration. We use helper Lemma 4 to prove that the actual GM M score of any record in a node node is bounded between uBGM M node and lBGM M node . The rest of the proof is identical to Lemma 1 of Aug-MMR. Lemma 4 GMM score of any record r ∈ node (say GM M r) is bounded by upper and lower bound uBGM M node and lBGM M node , respectively. That is,

lBGM M node ≤ GM M r∈node ≤ uBGM M node .
Proof Let us first consider uBGM M node , by assuming F (node, r j) = max ri∈node Div(r i , r j), it can be re-written as:

uBGM M node ← min node ′ ∈Z [max rj ∈node ′ F (node, r j)], (14)
Let us assume, maximum GMM value produced by any record in node is maxGM M node . According to Equation 10, maxGM M node is expressed as follows:

maxGM M node = max ri∈node [min rj ∈S Div(r i , r j)], = min rj ∈S [max ri∈node Div(r i , r j)], = min rj ∈S F (node, r j), ≤ min node ′ ∈Z [max rj ∈node ′ F (node, r j)], = uBGM M node , [using equation 14].
Hence, maxGM M node ≤ uBGM M node . similarly, it can be proved that, minGM M node ≥ lBGM M node .

Observation 2 Once the control comes back from Di-vGetBatch(), Aug-GMM works exactly as the original GM M in each iteration.

Aug-GMM does exactly same calculation as the original GM M does on a set of records as a result it will produce the same record as GM M does in a single iteration.

T Aug-GMM = O(C * k + k i=1 |CandR i |).
The expected case analysis basically delves deeper into the analysis of Part 2 and studies the expected running time considering different size of CandR i and its corresponding probability. By performing similar calculation as that of Aug-MMR as shown before, the expected cost of Aug-GMM is:

E Aug-GMM = O((N/C + C) * k).
Worst-case Aug-GMM . In the worst-case, all N records are returned by DivGetBatch() in each iteration, which makes

SW AP Query Processing with DivGetBatch()

The last algorithm we study is SW AP [START_REF] Yu | It takes variety to make a world: diversification in recommender systems[END_REF]. We describe the original version and our proposed augmented version. Similar to the previous sections, we provide theoretical analysis. 15. Indeed, in each iteration, it attempts to swap one record from R \ S with the candidate record. It starts scanning the remaining sorted relevance list from the top. In every iteration, it attempts to swap one record from the current top-k set with another from sorted R if the latter record has a higher contribution to diversity while ensuring the threshold of relevance drop. The algorithm terminates when the relevance drop is below the threshold, or R is fully scanned.

Divcont(r i , S) = rj ∈S Div(r i , r j). (15
where max Div(node, node ′) and min Div(node, node ′) are the max and the min diversity between node and node ′ . Naturally, the maximum (minimum) diversity is the maximum (minimum) of node diversities between node and the nodes in Z. Skip-Nodes: This function will then check if uBSW AP node is less than the diversity contribution of the candidate record [START_REF] Drosou | Disc diversity: result diversification based on dissimilarity and coverage[END_REF]; If the condition is true, it will prune the node and the entire subtree under it. In such a case, none of the records inside this node are eligible for swap because they will not increase the overall diversity of S. DivGetBatch() returns the records for all nonpruned nodes:

CandR ← {N -{r ∈ I -tree.n | uBSW AP n < (18) min ri∈S rj ∈S Div(r i , r j)}}
Running Example: Lets say, k = 2, U B = 0.9, sorted R = {r 8 , r 7 , r 2 , r 1 , r 4 , r 9 , r 3 , r 6 , r 10 }, and initial top-2 records selected as S={r 8 , r 7 }. Using Equation 15, Divcont(r 7 , S) = 0.953 and the candidate is r 7 . From Figure 1, Z = {node 2 , node 3 }. Using Equations (16), [START_REF] Drosou | Diversity over continuous data[END_REF], and Figure 1, if Div = 1 -sim, we have: uBSW AP node1 = maxDiv(node 1 , node 2) = 0.935, lBSW AP node1 = minDiv(node 1 , node 2) = 0.925. Then, Equation 18 is applied and node 1 is discarded, node 2 , node 3 are returned by DivGetBatch(), and CandR = {r 3 , r 9 , r 5 , r 6 }. Next record in the sorted list is r 2 , which is not in CandR. As a result, r 2 will be skipped.

Aug-SWAP algorithm proofs

Claim 5 Aug-SWAP returns identical top-k results as that of original SWAP.

Proof This proof is constructed using one helper lemma and one observation. Lemma 5 proves that DivGet-Batch() does not skip a record that has a higher diversity contribution than that of the candidate record. Observation 3 shows that once all records returned in CandR, Aug-SWAP is identical to SW AP . Combining these lemma and observation, Aug-SWAP returns identical top-k results as that of the original SW AP .

Lemma 5 DivGetBatch() never prunes a record that is part of the original top-k.

Proof As part of this proof, we first prove that in each iteration Skip-Nodes never discards a record which has the higher diversity contribution than that of the candidate record. Let us assume, r cand ∈ S has lowest diversity contribution in S. Divcont(r cand , S) = min ri∈S rj ∈S Div(r i , r j)} = min ri∈S Divcont(r i , S).

We use helper Lemma 6 to prove that the actual DivCont score of any record in a node node is bounded between uBSW AP node and lBSW AP node . Let us assume, r d ∈ node d is a record inside node, therefore,

uBSW AP node d ≥ Divcont(r d , S) ≥ Divcont(r cand , S) = min ri∈S rj ∈S Div(r i , r j), as a result, uBSW AP node d ≥ min ri∈S rj ∈S Div(r i , r j). (19
)
From Equation 18and 19, it is evident that node d containing r d will not be skipped by Skip-Nodes. This logic extends to all the iterations Skip-Nodes calls. Hence the proof.

Lemma 6 Divcont score of any record r ∈ node is bounded by upper and lower bound uBSW AP node and lBSW AP node respectively. That is,

lBSW AP node ≤ Divcont(r, S) r∈node ≤ uBSW AP node . (20
)
Proof By replacing the value of max Div(node, node ′), the upper bound can be written as:

uBSW AP node ← node ′ ∈Z max ri∈node,rj ∈node ′ Div(r i , r j). (21
)
For any record r ∈ node and r j ∈ S, r j ∈ node d and node j ∈ Z, Div(r, r j) ≤ max ri∈node Div(r i , r j), Or,

rj ∈S Div(r, r j) ≤ node ′ ∈Z max ri∈node,rj ∈node ′ Div(r i , r j),
As a result, Divcont(r, S) ≤ uBSW AP node . similarly, we can prove: Divcont(r, S) ≥ lBSW AP node .

Observation 3 Once the control comes back from Di-vGetBatch(), Aug-SWAP works exactly as the original SW AP does in each iteration.

Aug-SWAP performs identical calculation of SW AP on the records that are not pruned by DivGetBatch(). Part 1. Running time of the API: A single iteration of DivGetBatch() needs to go over all the nodes in I-tree. DivGetBatch() has to compute two subroutines: Calculate-Bound and Skip-Nodes. By updating only the most recent swapped records and using dynamic programming, the two subroutines' overall running time is O(C), where C is the total number of nodes. However, how many times the API gets called depends on the number of times the swap condition gets satisfied (recall lines 8-10 in Aug-SWAP algorithm).

Part 2. Running time of the rest of computation: The other major computation of this algorithm is the running time of a record be swapped, which is O(k * log k) and Divcont running time in the Algorithm 5 line 8, which is O(k). How many times Divcont gets executed depends on Line 7 in the Aug-SWAP algorithm is satisfied. The number of times SW AP gets executed depends on swap condition, which is Line 8 in the Aug-SWAP algorithm. Finally, the entire R needs to be exhausted (as long as the bound drop threshold is satisfied), which takes O(N) time. As a result, we have:

T Aug-SWAP = O(N
E Aug-SWAP = N i=1 [1/2 * N i=1 |CandRi| N N * (C + k * log k) + N i=1 |CandRi| N N * k] + N = 1/2 * N i=1 |CandR i | N * (C + k * log k) + N i=1 |CandR i | N * k + N = O(N i=1 |CandR i | N * (C + k * log k) + N) First,
is: = (1/C) i * (1 -1/C) C-i * [(v 1 /N + v 2 /N + • • • + v i /N) + (v 1 /N + v 3 /N + • • • + v i /N) + . . . + (v C-i /N + • • • + v C /N)] = (1/C) i * (1 -1/C) C-i * C -1 i -1 * (v 1 + v 2 + • • • + v c N). = (1/C) i * (1 -1/C) C-i * C -1 i -1 .
Therefore, the expected running time (cost) of SW AP is,

E SW AP = 1/2 * N * k * log k * C i=1 (1/C) i * (1 -1/C) C-i * C -1 i -1 = 1/2 * N/C * k * log k.
Expected running cost of Divcont is C x * probability of x nodes getting selected * probability of (C-x) nodes not getting selected * probability of R[pos] is in CandR i * cost of Divcont. Therefore, the expected running time (cost) of Divcont is:

E Divcont = N * k * C i=1 (1/C) i * (1 -1/C) C-i * C -1 i -1 = N/C * k.
The expected cost of Part 2 becomes:

E P art2 = 1/2 * N/C * k * log k + N/C * k.
The expected running time (cost) of Part 1 is = C

x * probability of x nodes getting selected * probability of (C -x) nodes not getting selected * probability of R[pos] is in CandR i * probability of swap * cost of DivGetBatch(). Using similar calculation as above, expected cost of part 1 is:

E part1 = 1/2 * N * C i=1 (1/C) i * (1 -1/C) C-i * C -1 i -1 * C = N/2.
Expected running time of Aug-SWAP algorithm considering both Part 1 and Part 2 computation is:

E Aug-SWAP = 1/2 * N/C * k * log k + N/C * k + N/2 +N = O(N/C * k * log k + N)
Now consider the case when l > 1 for Aug-SWAP. Probability of selecting a node in first level is 1/m, given m is the arity of I-tree. Probability of selecting a node in second level = probability of selecting that node out of m node in that branch * probability of selecting it's parent = 1/m 2 . Similarly, Probability of selecting a node at leaf node is 1/m l = 1/C. As the records are only returned from leaf nodes, the expected probability that R[pos] is in CandR i does not change for l > 1. The running time of DivGetBatch() = O(m l) = O(C) also stays same . The rest of the computation does not directly depend on l. As a result, expected running time of Aug-SWAP for l > 1 is same as before.

Worst-case Aug-SWAP. In the worst-case, none of the records are skipped, so the number of swap is O(N). Therefore, the worst-case running time is:

O(N * C * k * log k).
Our technical results are summarized in Tables 1 and2.

I-tree

The index is a hierarchical complete tree-like structure [START_REF] Knuth | The Art of Computer Programming[END_REF] that partitions D into multiple groups of records. Each node in I-tree consists of a group of similar records. The index structure maintains a higher level aggregate similarity between nodes3 . I-tree is applicable not only to the studied three algorithms, but also to any contentbased algorithm that is either based on replacing items in the top-k or building the top-k in an incremental fashion.

Algorithm 5 Indexing Algorithm BuildTree(node)

Inputs: database D of N records, m: arity of the tree, l: number of levels, Outputs: I-tree, simMatrixNode: node-node similarity matrix, recordMap: a mapping of all records and their belonging node id for each level. y ← y + 1; 14: end while

Index Construction

The input to the indexing step is a N ×N matrix, named simMatrixRecord. It represents the similarity scores between every pair of records, r i and r j , in the database and two additional parameters, l and m, which are the number of levels and arity of the tree, respectively. The output is a complete m-ary tree with l levels, referred to as I-tree.

The indexing algorithm BuildTree (Algorithm 5) partitions (refer to the Subroutine Partition) the records. It also maintains additional data structures that contain similarity scores between nodes for efficient query processing. An example of a two-level index tree is shown in Fig. 2. At the first level, BuildTree creates a root node containing all N records and m children of the root node. From the point of abstraction, it is not important at this stage to describe how the data is partitioned. Basically, the goal is to keep similar records together while separating non-similar ones. There are multiple off-the-shelf techniques such as clustering and graph partitioning to carry out this task. In our implementation, we use the popular k-means algorithm [START_REF] Han | Data mining concepts and techniques third edition[END_REF] for partitioning. The algorithm repeats the partitioning procedure until it reaches l levels. Therefore, I-tree contains a total of C nodes such that:

C = l i=0 m i = m l+1 -1 m -1 = O(m l) (22
)
Inside I-tree, additional data structures are maintained: a. A recordMap of size N × l that maps the id of a record with the id of its node in each level from 1 . . . l. b. MinsimMatrixNode and MaxsimMatrixNode that con-tain inter-node minimum and maximum similarities between any two nodes in the same level, respectively. Particularly, for two nodes n and n ′ in level y, Minsim-MatrixNode and MaxsimMatrixNode contain:

M insimM atrixN ode[i, j] = M in r∈i,r ′ ∈j sim(r, r ′), (23
) M axsimM atrixN ode[i, j] = M ax r∈i,r ′ ∈j sim(r, r ′), (24)
where, r ∈ n, r ′ ∈ n ′ . Figure 1 contains these scores for 3 nodes of our running example. Fig. 2: I-tree

Index Maintenance

Even for a single insertion or deletion, I-tree requires the following two activities: a. insertion/deletion of that record from/into I-tree; b. updating MinsimMatrixNode and MaxsimMatrixNode, if these insertion/deletion require updating the minimum and maximum similarity scores between nodes. One can easily see that (a) could be achieved in a constant time when l =1 and O(l) when l greater than 1. However, a single insertion/deletion may require as many as 2 × (C -1) updates in these two matrices.

Batch Update

We study how to maintain I-tree considering both insertions and deletions. Batch Deletion. Let us assume a batch of R records are to be deleted from I-tree. The process deletes these R records one by one and then checks how many entries in MinsimMatrixNode and MaxsimMatrixNode need update (if the deleted records contribute to these aggregate values, then that require updates in those two matrices, else not). The overall process takes O(|Y | × C × N) time.

Batch Insertion. This problem is more complicated. If the records are inserted arbitrarily inside Itree, then, each insertion may potentially cause a total M axsim ij , i.e., the total number of updates in these two matrices.

Algorithms. We present an integer programming-based solution OPTMn for solving the batch insert problem. While OPTMn indeed produces the optimal solution, due to its exponential nature, it does not scale to a very large dataset considering a large number of insertions. As an alternative, we present GrMn a greedy heuristic algorithm which makes greedy choices and indirectly attempts to minimize the number of updates in MinsimMatrixNode and MaxsimMatrixNode matrices. The idea is to make a greedy decision by inserting each of the incoming records to that node which it is closest to (based on the underlying similarity measure) and then check if that insertion requires any updates in MinsimMatrixNode and MaxsimMatrixNode matrices.

The running time of this algorithm is O(|Y | × N).

Experimental Evaluation

Our experimental evaluations have three primary goals. First, we analyze if the augmented algorithms return identical results to their original counterparts using multiple large-scale datasets. Second, we examine the efficiency and scalability of the augmented algorithms and R u n n i n g t i m e (s) Diversity and Similarity. We use normalized Euclidean distance (dist) as diversity to validate our designed solutions in the geometric space, Cosine similarity [START_REF] Han | Data mining concepts and techniques third edition[END_REF] in general metric space, and an arbitrary function that does not satisfy triangular inequality as a non-metric diversity function. For the last one, diversity values between every pair of records is provided as inputs and these values do not satisfy triangle inequality. Thus, diversity values are atomic here, and are not 4 The code and data could be found at https://anonymous.4open.science/r/divGetBatch-15AC/README.md derived from the feature vectors. For all these cases, sim = 1 -dist.

λ A u g -M M R M M R (
Query selection. In our experiments, queries are chosen randomly.

Performance Measures. We measure precision@k [START_REF] Han | Data mining concepts and techniques third edition[END_REF] for qualitative analysis. Efficiency of the proposed method is demonstrated with |CandR|/N × 100, pruning = 1 -|CandR|/N × 100, as well as by presenting the running times of the algorithms in seconds and computing speedup as follows:

speedup = T original-algorithm T augmented-algorithm (25)
where T denotes running time in seconds. Finally, we present time to build I-tree and the space required for that.

Datasets. Experiments are conducted on three datasets, two real and one publicly available synthetic data. For real datasets, we use Yelp5 and MovieLens 1M records. 6For synthetic data, we use MakeBlobs from the sklearn package. 7 An overview of the datasets is given in Table 6.

5 k 1 0 k 2 0 k 5 0 k 1 0 0 k 0 1 2 3
D a t a s e t s i z e R u n n i n g t i m e (s)

A u g -G M M G M M (a) Yelp 5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M 0 5 1 0 1 5 2 0
D a t a s e t s i z e R u n n i n g t i m e (s)

A u g -G M M G M M (b) MakeBlobs 5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M 0 5 1 0 1 5 2 0 A u g -G M M G M M
D a t a s e t s i z e R u n n i n g t i m e (s) (c) MovieLens Fig. 5: Aug-GMM vs GMM scalability In this section, we introduce diversity-based algorithms and index structure baselines that we compare to our proposed solutions.

Diversity Baselines

For diversity-based methods, three representative algorithms are implemented. MMR [START_REF] Carbonell | The use of mmr, diversity-based reranking for reordering documents and producing summaries[END_REF]: computes an objective score based on two parameters: relevance to the query and diversity with other records. As shown in Equation 1, they are combined in a linear expression with a λ coefficient. The algorithm repeats this computation k times to produce top-k.

GMM [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF]: finds the k most diverse records by selecting the maximum of minimum distances between undiscovered records and previously selected ones at each iteration (Equation 10). Like M M R, it also iteratively builds the top-k set.

SWAP [START_REF] Yu | It takes variety to make a world: diversification in recommender systems[END_REF]: This greedy algorithm first finds the initial top-k records, then greedily interchanges records that are part of the current top-k with the ones that are remaining, if the swap improves diversity contribution (Equation 15).

SPP [START_REF] Fraternali | Top-k bounded diversification[END_REF]: Space Partitioning and Probing (SPP in short) is an algorithm that minimizes the number of accessed objects while finding exactly the same result as M M R. SP P belongs to a family of algorithms that rely only on score-based and distance-based access methods, and does not require retrieving all the relevant objects. SPP is designed only for the geometric space.

Index Structure Baselines

We implement three additional baselines to compare against I-tree. These indexing techniques are limited to metric space, and can not be applied on arbitrary diversity function not satisfying triangular inequality. KD-tree [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF]:KD-tree is a multidimensional Binary Search Tree. The tree is created by bisecting each dimension and finding the median. KD-tree can perform searches in multidimensional space for efficient nearest neighbor search.

Ball-tree [START_REF] Kumar | What is a good nearest neighbors algorithm for finding similar patches in images?[END_REF]: Ball-tree is a binary tree in which every node defines a D-dimensional hypersphere or ball, containing a subset of the points to be searched. Each node in the tree defines the smallest ball that contains all data points in its subtree. This gives rise to the useful property that for a given test point t outside the ball, the distance to any point in a ball B in the tree is greater than or equal to the distance from t to the surface of the ball. Ball-tree only supports binary splits.

The arity of the tree in both KD-tree and Ball-tree is fixed to 2.

M-Tree [START_REF] Ciaccia | M-tree: An efficient access method for similarity search in metric spaces[END_REF]: M -tree is similar to Ball-tree, but supports multiple splits. Every node n and leaf lf residing in a particular node N is at most distance r from N , and every node n and leaf lf with node parent N keeps the distance from it. It also has the similar property of Ball-tree, which is for a given test point t outside the node, the distance to any point in a node in the tree is greater than or equal to the distance from t to the surface of the node. We are incorporating Node-Node distance matrix to these baseline tree index structures so that they can be used for I-tree API.

Cover-Tree [START_REF] Beygelzimer | Cover trees for nearest neighbor[END_REF]: Another popular indexing structure is cover tree which is used to enable efficient nearest neighbor search in metric space. To be able to work with DivGetBatch() , the indexing technique must work in a fashion that the parent nodes of the index structure (in this case a tree) covers the records that are present in their sub-tree. This allows us to effectively maintain the inter-diversity bounds across the nodes and when a node gets pruned, all its children also does. Contrarily, in a cover tree, only the leaf nodes together contain and cover all the records and no other intermediate/ higher level nodes does. Therefore, it is not obvious how to adapt this indexing technique and integrate it inside our proposed access primitive.

Index Maintenance Baselines

OPTMn and GrMn are compared with two baselines.

NonIncrMn Algorithm: In NonIncrMn, I-tree is built from scratch after every |Y | insertions. NonOlMn Algorithm: This algorithm makes a local decision to insert each record based on Problem 2, without accounting for overlapping updates inside the same node in I-tree.

Summary of Results

Our first set of experiments (Section 7.3) verify that our results from all three augmented algorithms are identical to their original counterparts. We measure precision@k [START_REF] Han | Data mining concepts and techniques third edition[END_REF] for different k, and our empirical results obtain 100% precision score.

Our next set of experimental results demonstrate (Section 7.4) that the running time of the augmented algorithms are consistent with our theoretical analyses. We achieve a 19× and 24× speedup for Aug-MMR and Aug-GMM, on Makeblobs 10M and Movie-Lens 1M data, respectively. We achieve a 3× speedup for Aug-SWAP on MakeBlobs 1M dataset. These results corroborate that our proposed framework is suitable to scale on large datasets. We also show that Itree works on any arbitrary distance functions while other baselines are designed for only metric distance functions.

Figures 11 demonstrate the index construction and the query processing time trade-off of I-tree and we compare that with our implemented baseline indexes, KD-tree, Ball-Tree, M-Tree. These results convincingly demonstrate that I-tree enables the fastest query processing time, while requiring comparable index construction time. The results demonstrate that I-tree is always more than 18× faster in query processing and as much as 170× faster for certain configurations. For preprocessing, it is always more than 1.5× faster and at times it is more than 20× faster. We also present |CandR| percentage and pruning percentage of I-tree compared 9 and10 which shows that I-tree outperforms all baselines with having 90% pruning.

The results in (Section 7.4.3) convincingly demonstrate that I-tree is lightweight to compute and space efficient (for the largest dataset, it takes 109 minutes to build the index, which is acceptable because it is done offline and only once). Finally, in section 7.4.3, we demonstrate that our proposed solution OPTMn is an ideal choice for incremental index maintenance, while the greedy heuristic GrMn is highly scalable while being not too inferior from the optimal solution OPTMn qualitatively. GrMn takes 22 minutes to insert 100k data into 1M dataset, while building I-tree from scratch is unrealistic as NonIncrMn takes 2 hours.

Quality Analysis

The goal of these experiments is to empirically validate if the augmented algorithms produce the same results as their original counterparts. Additionally, we present how effective DivGetBatch() is in pruning records by presenting the size of CandR. We have calculated precision@k while varying k from 10 to 50, considering the original and augmented algorithms. We obtain the precision@k equal to 100% always.

Scalability Analysis

We run two types of scalability experiments. (i) demonstrate the efficacy of the augmented diversification algo- Additionally, we also present the memory requirements of I-tree. We analyze these effects by increasing dataset size and other pertinent parameters.

Augmented Diversification Algorithms

We first vary dataset size, then additional parameters that impact the query processing time. To demonstrate efficacy, we present two things. [START_REF] Abbar | Real-time recommendation of diverse related articles[END_REF] The percentage of remaining records returned by DivGetBatch(), which is which is |CandR|/N ×100 and pruning (1-|CandR|/N × 100. (II) Query processing time in seconds.

Effectiveness in Pruning.

In Table 8, we present the number of remaining records returned by DivGet-Batch(), which is |CandR| using MovieLens dataset. We can observe that there is a remarkable reduction compared to the original dataset. For example, Aug-MMR returns only 814 records. The biggest number is for Aug-SWAP with 66513 records, but still returning only 6% of the records. Table 9 and Table 10 show |CandR| and pruning percentage returned by DivGetBatch() for Aug-MMR algorithm using different index structures and Make-Blobs dataset. We can see that by fixing C = 32, KDtree, Ball-tree, and M -tree pruning are below 5%, while I-tree pruning considerably outperforms all baseline which is 90%. Varying Dataset. Figures 3,5, and 7 compare the running times of our three augmented algorithms and their baselines using our three datasets. As N increases, the running times of each algorithm and its baseline increase, but we observe that our algorithms are consistently faster and they scale significantly better. Figure 3 shows Aug-MMR's scalability on all three datasets. We fix m to 1000, k = 20 and l = 1 for all dataset sizes while N is increased from 5000 up to 1M. We can see that on MovieLens, varying N from 5000 to 1M, Aug-MMR is 5× faster than MMR. Figure 5 shows Aug-GMM 's scalability. On MovieLens, varying N from 5000 to 10M, Aug-GMM is 24× faster than GMM.

Consistent with the theoretical analysis, Aug-GMM is faster than Aug-MMR for the same settings because Aug-MMR has an additional k term in the expected cost equation. Figure 7 shows Aug-SWAP 's scalability on all three datasets. For the 1M data of MakeBlobs we obtain a 3× speedup over SWAP. We obtain a 1.33× speedup for Movielens because the total number of swaps in MovieLens are higher. We also measure the scalability of Aug-MMR compared to M M R using large scale data sizes of 2M, 5M, and 10M using makeBlobs dataset. The results are shown in Figure 3(c) in which with m = 1000 and l = 1, we have up to 19× speedup.

Moreover, we run Aug-MMR on high-dimensional euclidean distance considering more number of features using 1M and 2M makeBlobs dataset. for 1M data, 1M and 20 features, M M R takes 12492.64 (s), and Aug-MMR takes 2817.14 (s). For 2M data and 20 features, M M R takes 25812.43 9 (s), Aug-MMR takes 6317.20 (s) which in both case show 4× speedup.

In addition, we run Aug-MMR on l more than 1 to show the efficiency of our proposed algorithm using multi-level I-tree. Table 7 shows that for l=2, Aug-MMR speedup is almost 4× for all dataset sizes.

Varying Parameters. We study the effect of different parameters on running time. Some parameters belong to the offline indexing algorithm, such as the num-

Index

Metric Functions Non metric Functions 90% Pruning I-tree ✓ ✓ ✓ KD-tree [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF] ✓ × × Ball-tree [START_REF] Kumar | What is a good nearest neighbors algorithm for finding similar patches in images?[END_REF] ✓ × × M-tree [START_REF] Ciaccia | M-tree: An efficient access method for similarity search in metric spaces[END_REF] ✓ × × While varying m, we fix other parameters: k = 20, l = 1. The choice of m depends on the distribution of the dataset. As we increase m, the bounds for augmented algorithms become tighter while time for Di-vGetBatch() increases. We can see that there is a drop in running time and which indicates the optimum value for m for these three algorithms. For example, in Aug-MMR and Aug-GMM, the ideal value is m = 500 and for Aug-SWAP, it is m = 100.

Varying l.

Varying diversity Functions

Table 13 shows the results for Aug-MMR compared to M M R using different distance measures: euclidean distance measure, cosine similarity as general metric, and a non-metric distance function. Using 100k data from MakeBlobs dataset and m= 1000, l = 1 and number of features = 2, we can see that Aug-MMR performs 4× better than M M R using both euclidean and cosine similarity metrics. For non-metric arbitrary distance function, the distance between records do not satisfy triangular inequality. Using this method, we see 15% improvement, since the relevance and diversity scores are created arbitrarily and the result depends on the data distribution.

Table 12 shows overall comparison for I-tree and other baselines. SP P uses KD-tree as its index so we

Index Construction & Maintenance

Comparison with Baselines -Index Construction vs. Query Processing. In these set of experiments, we compare the index construction and query processing time trade-off of I-tree and compare that with of KD-tree, Ball-tree, and M -tree considering Aug-MMR. We adapt k-means and k-medoids [START_REF] Han | Data mining concepts and techniques third edition[END_REF] for building I-tree with number of iterations set to 300. The dataset that is used in this experiments is Make-Blobs. Figure 11 presents the I-tree speedup compared to other baselines for index preprocessing and query processing time. The results demonstrate that I-tree is always more than 18× faster in query processing and as much as 170× faster for certain configurations. For preprocessing, it is always more than 1.5× faster and at times it is more than 20× faster. Index Construction. Now that it is obvious that Itree outperforms the other indexing baselines, we further profile its efficacy. In Figures 9(a 9(c), by varying l, we fix dataset size to 50000, and m to 2 (since C = m l , by increasing l, the total number of nodes will increase). Finally, in Figure 9(d), we vary m, while fixing dataset size to 50000 and l = 1. These figures demonstrate that the preprocessing time increases linearly with varying parameters. I-tree takes 253 MB of space for 1M data with m = 1000 and l = 1. Index Maintenance. For analyzing the index maintenance, we use two datasets, MakeBlobs and Movie-Lens. We compare OPTMn and its efficient counterpart GrMn with the baselines NonOlMn, and Non-IncrMn. As expected, OPTMn has the least number of updates, but due to its inherent exponential nature, it does not scale beyond 10k dataset size with more than |Y | = 1000 records. Table 14 presents these results. We also see GrMn, even though not the optimal one, but stays consistently close to OPTMn. This table also shows that GrMn is better than the baselines in both running time and number of updates.Figures 10(a) and (b) present running time comparisons on very large datasets. GrMn is highly scalable, and the other two baselines take more time than GrMn. These results corroborate that GrMn is a suitable alternative to solve the index maintenance problem.

Incremental Index Maintenance vs Maintenance from Scratch. Table 15 shows comparison between GrMn and NonIncrMn index update algorithms. We present index preprocessing time in the offline phase, and query processing time in the online phase for the Aug-MMR algorithm. Clearly, GrMn requires smaller preprocessing time and higher query processing time compared to NonIncrMn. As it could be seen from Table 15, with 10,000 updates, the query processing time of GrMn becomes almost 5× slower than that of Non-IncrMn. Contrarily, the preprocessing time of GrMn is about 4.5× faster than that of NonIncrMn at that setting. Since query processing time is more important and must be optimized, it seems, for 10,000 updates, it is better to build the index from scratch instead of maintaining it incrementally.

8 Related Work

Results Diversification

Result diversification remains to be an active research topic with extensive applications in recommendation and search [START_REF] Abbar | Real-time recommendation of diverse related articles[END_REF][START_REF] Abbar | Diverse near neighbor problem[END_REF][START_REF] Agarwal | Efficient indexes for diverse top-k range queries[END_REF][START_REF] Cai | Diversified spatial keyword search on rdf data[END_REF][START_REF] Esfandiari | Multi-session diversity to improve user satisfaction in web applications[END_REF][START_REF] Mafrur | Dive: diversifying view recommendation for visual data exploration[END_REF][START_REF] Parambath | A coverage-based approach to recommendation diversity on similarity graph[END_REF][START_REF] Qin | Diversifying top-k results[END_REF][START_REF] Tsai | Beyond the ranked list: User-driven exploration and diversification of social recommendation[END_REF][START_REF] Vargas | Rank and relevance in novelty and diversity metrics for recommender systems[END_REF][START_REF] Vargas | Coverage, redundancy and size-awareness in genre diversity for recommender systems[END_REF][START_REF] Wang | Sequence-based context-aware music recommendation[END_REF][START_REF] Wang | Diversified and scalable service recommendation with accuracy guarantee[END_REF], including very recent works that study diversity for fairness and popularity [START_REF] Maropaki | Diversifying top-k point-of-interest queries via collective social reach[END_REF][START_REF] Singh | Fairness of exposure in rankings[END_REF][START_REF] Zehlike | Fa* ir: A fair top-k ranking algorithm[END_REF].

Content based algorithms

Content-based algorithms, which are our primary focus here, are of two kinds: Interchange algorithms first select k relevant records and then exchange selected records with remaining records to increase the overall diversity (SWAP [START_REF] Yu | It takes variety to make a world: diversification in recommender systems[END_REF] is an example). Incremental greedy algorithms iteratively build the top-k set by selecting the best record at each round. Notable examples of this latter kind are Maximal Marginal Relevance (MMR) method [START_REF] Carbonell | The use of mmr, diversity-based reranking for reordering documents and producing summaries[END_REF], Greedy Max-Min (GMM) [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF], Max-Sum [START_REF] Gollapudi | An axiomatic approach for result diversification[END_REF], IA-SELECT [START_REF] Agrawal | Diversifying search results[END_REF], and dLSH [START_REF] Abbar | Real-time recommendation of diverse related articles[END_REF]. SP P [START_REF] Fraternali | Top-k bounded diversification[END_REF] is a bounded diversification algorithm that produces same result as M M R while minimizing the number of accessed records. In [START_REF] Drosou | Diversity over continuous data[END_REF], Drosou et al. introduce both greedy and interchange algorithms for the diversity over continuous data. In [START_REF] Drosou | Diverse set selection over dynamic data[END_REF], the authors propose greedy algorithms for considering diversity over dynamic data by presenting Insert and Delete operations over the cover tree indexing structure. They also exploit the GMM algorithm for returning diversified top-k results. In [START_REF] Drosou | Disc diversity: result diversification based on dissimilarity and coverage[END_REF], the authors propose greedy algorithms for diversity over a representative subset of objects, DisC, which is a mapping of the original data. They also present a degree of diversification, radius r, instead of k size results. Their proposed algorithms exploit the M -tree [START_REF] Ciaccia | M-tree: An efficient access method for similarity search in metric spaces[END_REF] indexing structure. From a different perspective, one can categorize diversification algorithms into three groups: record-level, feature-level, and category-level. In recordlevel algorithms (MMR, GMM, and SWAP), the input is the distance value between records regardless of which record feature is more important. The score value is calculated based on an objective function that calculates distances/diversity. The inputs of feature-level algorithms are record features. Examples are DivGen and GenFilt [START_REF] Angel | Efficient diversity-aware search[END_REF]. The feature with the highest score is obtained from all records based on a ranking, and the goal is to skip some features and prune records having low scoring features. In the category-level algorithms, records are grouped into multiple categories. Such algorithms apply some constraints that will return no more than one or two records from the same category [START_REF] Abbassi | Diversity maximization under matroid constraints[END_REF][START_REF] Zanitti | A usercentric diversity by design recommender system for the movie application domain[END_REF].

Comparison with existing indexes

Compared to our proposed I-tree, existing indexing techniques are vector space based methods where coordinate information of the records are used to create data structures to answer a large spectrum of distance queries, where distance may be based on Euclidean, cosine similarity, general L p norms, and so on. Popular solutions in low to moderate dimensional space include K-B-D-tree [START_REF] Robinson | The kdb-tree: a search structure for large multidimensional dynamic indexes[END_REF], kd-tree [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF], R-tree [START_REF] Guttman | R-trees: A dynamic index structure for spatial searching[END_REF], R * -tree [START_REF] Beckmann | The r*-tree: An efficient and robust access method for points and rectangles[END_REF], SS-tree [START_REF] White | Similarity indexing with the ss-tree[END_REF] or more recent X-tree [START_REF] Berchtold | The x-tree: An efficient and robust access method for points and rectangles[END_REF], UB-tree [START_REF] Bayer | The universal b-tree for multidimensional indexing: General concepts[END_REF], SRtree [START_REF] Katayama | The sr-tree: An index structure for high-dimensional nearest neighbor queries[END_REF]. All these methods use the domain object feature vectors to measure the distance between objects and create a similarity index. As opposed to that, we consider the records to be atomic (and not a collection of vectors), and the diversity function could be metric or not. Therefore, these methods do not extend to solve our problem. There exists other popular tree data structures like Cover-tree [START_REF] Beygelzimer | Cover trees for nearest neighbor[END_REF], Ball-tree [START_REF] Kumar | What is a good nearest neighbors algorithm for finding similar patches in images?[END_REF] and Mtree [START_REF] Ciaccia | M-tree: An efficient access method for similarity search in metric spaces[END_REF] that are used for nearest neighbor search. Unlike our I-tree, these trees can only be used for metric distance functions.

In summary, we present an access primitive Di-vGetBatch() that leverages a precomputed data structure I-tree to integrate MMR, GMM, and SWAP to expedite their processing time. The design of our primitive is independent of features and categories and is applicable with any distance measure, making it generic and useful. We study MMR, GMM, and SWAP, since we believe these are notable choices in the existing diversity literature space, and many more recent works adapt these algorithms [1, 7, 17-19, 26, 33, 36, 45-47].

Conclusion

We propose an access primitive DivGetBatch() to expedite diversification algorithms while returning their exact top-k results. We present a computational framework to develop DivGetBatch() that contains a precomputed index structure I-tree and describe how to rewire popular diversification algorithms using DivGet-Batch(). Unlike existing indexes that primarily work on vector spaces (assuming the records have co-ordinates), we consider the records to be atomic as opposed to a collection of vectors. We make rigorous theoretical analysis of the exactness and running times of the augmented algorithms. We present principled solutions to maintain I-tree under batch updates. Our experiments on large real-world datasets corroborate our theoretical analysis, and show that our solution yields a 24× speedup on large datasets.

In the future, we are interested to study how to enable approximate top-k result diversification with guarantees leading to even faster running times. We also intend to explore how to adapt our proposed framework if diversity is assumed to satisfy metric property, in particular, the triangle inequality.

 Set of nodes that contain S R Remaining records in the dataset Q Query k Number of records in resulting set m, l Arity & Total number of levels in the I-tree C Number of nodes in the I-tree CandR Candidate record set returned by API Y A batch of new records to be updated in I-tree

Algorithm 2

 2 Aug-MMR Inputs: I-tree, D, M M R, Q, k Outputs: S: final top-k result set. 1: R ← D, S = ϕ 2: for t = 1 to k do 3:

Claim 2

 2 Aug-MMR requires O((N/C + C) * k 2 + N) time in expectation. Proof In the original M M R algorithm, each iteration for finding one record takes O(N * k) times. For k iterations, the overall running time is therefore O(N * k 2

Claim 4

 4 Aug-GMM requires O(N/C + C) * k) time in expectation. Proof In the GM M algorithm, each iteration for finding one record takes O(N) times. For k iteration, the overall running time is O(N * k). Similar to Aug-MMR, Aug-GMM does not need to go over all N records in each iteration, instead relies on DivGetBatch() to obtain a smaller set CandR records. Part 1. Running time of the API: A single iteration of DivGetBatch() needs to go over all the nodes in I-tree and takes O(C) time. DivGetBatch() has to compute two subroutines: Calculate-Bound() and Skip-Nodes(). To compute these two functions, it takes O(C) time. Therefore, the overall running time is O(C * k), where C is the total number of nodes. Part 2. Running time of the rest of computation: Similar to Aug-MMR, The rest of the computation depends on the size of CandR. Let us assume, DivGet-Batch() returns |CandR i | records in the i-th iteration. Hence, we have:

 = N * k. Then the worst-case running time is: O((N + C) * k).

Algorithm 3

 3 Aug-GMMInputs: I-tree, D, GM M , k Output: S: final top-k result set 1: S ← two records selected by an oracle 2: R ← {D -S} 3: for t = 1 to k -2 do 4:CandR ← DivGetBatch(I-tree, R, S, GM M) 5:S = {S GM M (r) r∈CandR } 6: end for 7: return S5.1 SW AP algorithmSWAP[START_REF] Yu | It takes variety to make a world: diversification in recommender systems[END_REF] is a greedy algorithm that produces top-k results based on a given query Q and a tunable parameter that controls how much relevance could at most drop between any two records in the top-k results. The algorithm starts by sorting the records w.r.t. relevance and initializing the top-k result set S with the k-records with the highest relevance score with Q. It finds a candidate record from the current top-k set that has the smallest diversity contribution based on Equation

Claim 6

 6 Aug-SWAP requires O(N/C * k * log k + N) time in expectation. Proof In the original SW AP algorithm, each iteration to select a new record to be swapped with the candidate record takes O(k * log k) time. Therefore, for going over all records in R, it takes O(N * k * log k). Aug-SWAP does not need to perform O(N * k * log k), instead relies on DivGetBatch() to obtain a smaller set CandR records.

.N.

 umber of times swap is satisf ied * DivGetBatch() runtime+ N umber of times swap is satisf ied * SW AP runtime+ number of times line 7 is satisf ied * Divcont runtime + N). By considering running time of single Divcont, SW AP , and DivGetBatch() call, overall running time of Aug-SWAP becomes: T Aug-SWAP = O(N umber of times swap is satisf ied * C + N umber of times swap is satisf ied * k * log k + number of times line 7 is satisf ied * k + N). = O(N i=1 [probability of swap satisf ied * C + probability of swap satisf ied * k * log k + probability of number of times line 7 is satisf ied * k] + N) Expected size of CandR is N i=1 |CandRi| N . Probability of line 7 satisfied = probability that R[pos] is in CandR = Without further information, the probability of a record getting swapped is 1/2 (same as not getting swapped). Probability of SW AP = 1/2 * line 7 is satisfied = 1/2 * N i=1 |CandR i | N Expected running time (cost) of Aug-SWAP is:

Fig. 3 :

 3 Fig. 3: Aug-MMR vs MMR scalability

4

 4

Fig. 6 :

 6 Fig. 6: Aug-GMM vs GMM performance varying parameters

 a s e t s i z e R u n n i n g t i m e (s) A u g -S W A P S W A P (c) MovieLens

Fig. 7 :Fig. 8 :

 78 Fig. 7: Aug-SWAP vs SWAP scalability

Fig. 9 :

 9 Fig. 9: I-tree construction time

Fig. 10 :

 10 Fig. 10: I-tree maintenance time varying |Y |

 . t . K D -t r e e w . r . t B a l l -t r e e w . r . t . M -t r e e I -t r e e P r e p r o c e s s i n g S p e e d u p D a t a s e t S i z e (a) I-tree Index Preprocessing speedup w.r.t baselines r e e q u e r y p r o c e s s i n g S p e e d u p

), 6(a), and 8(a) present how running time changes as we vary k from 5 to 50 for different baselines while fixing l, m, and λ to 1, 500, and 0.8, respectively. The running time increases quadratically for M M R and Aug-MMR, linearly for GM M and Aug-GMM, and in O(k * log k) fashion for SW AP and Aug-SWAP. These results are as consistent with our theoretical analysis, because of the presence of k 2 term in the M M R and Aug-MMR's expected cost, k in GM M and Aug-GMM's expected cost, and k * log k of that of SW AP and Aug-SWAP. Varying m. Figures 4(c), 6(c), and 8(c) show the impact of varying m on the running time of the three algorithms.

 Figures 4(b), 6(b), and 8(b) show the impact of varying l on the running time of the three algorithms. We fix other parameters: k = 20, and setting m to 2. C, the total number of nodes in I-tree becomes 2, 7, 15, 31, 63, respectively for l = 1, 2, 3, 4, 5. In general, by fixing m and increasing l, C increases, and overall running time decreases. This is consistent with our theoretical analysis, as the expected running time contains a 1/C term. Varying λ. Figures 4(d), 6(d), and 8(d) show that varying λ in MMR and Aug-MMR does not significantly change the running time. We have fixed k = 20, l = 1, and m = 500. The result is evident by observing the expected cost equations of MMR and Aug-MMR algorithms which do not contain a λ term. Though MR scores changes with λ, it has very little effect on the overall running time of MMR and Aug-MMR algorithms.

) and (b), we vary dataset size and fix other parameters, m = 1000, l = 1. As we can observe in Figure9(a), on the 100K Yelp dataset, indexing time is 172.69 seconds. In Figure9(b), indexing time is 105 minutes on the 1M MakeBlobs dataset, and 109 minutes on the 1M MovieLens. Figures 9(c) and (d) show that the running time increases linearly when parameters m and l are systematically increased. In Figure

Table 1 :

 1 Technical results for running time analysis w.r.t. |CandR|

	Algorithm	Variant	Expected time w.r.t C	Expected time w.r.t m and l

Table 2 :

 2

Technical results for running time analysis w.r.t. C, m, l

Table 3 :

 3

	The output is CandR, a set of candidate records that
	cannot be eliminated and require further processing
	by the original algorithm. DivGetBatch() explores I-
	tree level by level during query time and exploits two
	of its higher-level constructs: a. Calculate-Bounds: it
	computes similarity bounds 2 between Q and the nodes
	in I-tree based on a specific algorithm and objective
	function f . In particular, it computes an upper and a
	lower bound of diversity scores of the node. The goal
	is to decide if it is beneficial to go inside the node and

Notations & interpretations

2.2.1 Generic Online Algorithm using DivGetBatch()

The inputs to DivGetBatch() is I-tree, query Q, current candidate set of answers S, remaining records R, as well as the algorithm specific objective function f .

Table 5 :

 5 , node 3 are skipped. CandR= {r 1 , r 2 , r 4 , r 10 }. M M R(r 1 , r 2 , r 4 , r 10) ← r 10 Number of records discarded is 6 , node 3 are skipped. CandR = {r 3 , r 8 , r 9 } M M R(r 3 , r 8 , r 9) ← r 8 top-2 set = {r 10 , r 8 } First Two Iterations of DivGetBatch() in Aug-MMR on DivGetBatch() to obtain a smaller set CandR records. Part 1. Running time of the API: A single iteration of DivGetBatch() needs to go over all the nodes in I-tree and takes O(C * k) time. DivGetBatch() has to compute two subroutines: Calculate-Bound and Skip-Nodes. To compute these two functions, it takes O(N) time. Therefore, the overall running time is O(C * k 2 + N), where C is the total number of nodes. Part 2. Running time of the rest of computation: The rest of the computation depends on the size of CandR. Let us assume, DivGetBatch() returns |CandR i | records in the i-th iteration. Accordingly, we have:

	Functions	Nodes Bounds	Iteration 1	Iteration 2
		node 1	lBM R uBM R	0.8 * 0.180 -(1 -0.8) * 0 = 0.144 0.8 * 0.191 -(1 -0.8) * 0 = 0.153	-0.050 -0.047
	Calculate-Bounds	node 2	lBM R uBM R	0.8 * 0.0191 -(1 -0.8) * 0 = 0.0152 0.8 * 0.054 -(1 -0.8) * 0 = 0.044	0.028 0.029
		node 3	lBM R uBM R	0.8 * 0.036 -(1 -0.8) * 0 = 0.029 0.8 * 0.041 -(1 -0.8) * 0 = 0.033	0.010 0.009
	Skip-Nodes			lBM R array: 0.144, 0.041, 0.029 uBM R array: 0.153, 0.044, 0.033 node 2 lBM R array: -0.050, 0.028, 0.010 uBM R Array: -0.047, 0.029 , 0.009 node 1

). The running time of Aug-MMR does not need to go over all N records in each iteration. Instead, it relies

 It calls the DivGetBatch() API to retrieve a smaller set of candidate records CandR. These CandR records are eligible to be considered during the next swap. If a record in R is not in CandR, then it is skipped. The rest of the process is identical to the original SWAP algorithm. Algorithm 4 contains the pseudo-code.Calculate-Bounds: Once the records are sorted w.r.t. relevance score, the diversity computation becomes query independent, and only between the records. This function calculates the upper and lower bounds of diversity contribution of nodes by leveraging M insimM atrixN ode and M axsimM atrixN ode considering the set of nodes Z that contains S, as below: uBSW AP node ← Algorithm 4 Aug-SWAP Inputs: I-tree, D, U B, k, SWAP Output: S: final top-k result set. 1: R ← Sort D on score; 2: S ←topkItems(R, k) 3: candidate ← argmin r i ∈S Equation 15 4: CandR ← R 5: pos ← k + 1 6: while candidate.score -R[pos].score < U B do

	7:	if R[pos] in CandR then
	8:	if Divcont(R[pos], S) > Divcont(candidate, S)
		then
	9:	S ← {S -candidate R[pos]}
	10:	CandR ← DivGetBatch(I-tree, R, S, Q,
		SWAP)
	11:	candidate ← argmin r i ∈S Equation 15
	12:	end if
	13:	end if
	14:	pos++
	15: end while
	16: return S
	lBSW AP node ←

)

5.2 Aug-SWAP algorithm

Aug-SWAP is identical to the SWAP, i.e., it scans the sorted relevance list R, after initializing the top-k set S.

node ′ ∈Z max Div(node, node ′),

[START_REF] Cormen | Introduction to algorithms[END_REF]

node ′ ∈Z min Div(node, node ′),

 we study the Part 2 computation having two costs associated with it, cost of Divcont and cost that of SW AP . Based on Line 7 of Algorithm 5, if CandR is large, it is likely to have R[pos] inside it. In fact, if CandR contains all R records, R[pos] will always be there. For the purpose of illustration, let us assume, in the i-th iteration, |CandR i | records touch x number of nodes in I-tree and node n i contains v i records. Therefore, the probability that R[pos] is in CandR i = -x) nodes not getting selected * probability of R[pos] is in CandR i * probability of swap * cost of swap. The probability of x = i and R[pos] is in CandR i

	x q=1 vq N	.
	The expected running time of SW AP in terms of C
	is: C x * probability of x nodes getting selected * proba-
	bility of (C

Table 6 :

 6 Dataset statistics of 2 × (C -1) updates in the MinsimMatrixNode and MaxsimMatrixNode data structures. This is the leading computational cost of batch insertion. Moreover, when a batch of records are inserted, it is possible to have multiple records to get inserted inside the same node, and that should not be double-counted in the process. Finally, one needs to insert the records to those nodes, such that the aggregates stored in MinsimMatrixNode and MaxsimMatrixNode remain "tight" to enable effective pruning. These nuances are explored in formalizing the batch insertion problem.

	Dataset	Size	#Total features	#Features used	Dataset type
	Yelp	112,686	12	3	Real
	MovieLens	1,000,209	3	2	Real
	MakeBlobs 10,000,000	varied	20	Synthetic

Problem Definition 2 (Batch Insert.) Let M insim M atrixN ode[i, j] (similarly M axsimM atrixN ode[i, j]) denote the value after |Y | insertions at the [i, j]-th entry at the MinsimMatrixNode (similarly M axsimM atrix N ode matrix). Let M insim ij and M axsim ij be two binary variables, such that which M insim ij = 1 (similarly M axsim ij) , if it requires an update after insertions, 0 otherwise. Our goal is to insert a batch of records Y such that, it minimizes i,j M insim ij + i,j

Table 7 :

 7 Aug-MMR vs M M R running time (s) on

	Dataset Size 5000 10000 50000 100000
	Aug-MMR	4.33	8.69	43.57	306.11
	MMR	19.77	40.16	197.28	1206.90
	MakeBlobs with l = 2, m = 6		
	compare them with multiple baselines. Finally, we em-
	pirically study the cost of building and maintaining I-
	tree. For brevity, we present a subset of results that
	are representative.			
	Experimental setup. All algorithms are imple-
	mented in Python 3.8. All experiments are conducted
	on a cluster server OSL machine with 32GB RAM mem-
	ory, OS: Scientific Linux release 7.8 (Nitrogen), CPU:
	Intel(R) Xeon(R) CPU E3-1245 v6 @ 3.70GHz. Ob-
	tained results are the average of three separate runs.

d) Varying λ Fig. 4: Aug-MMR vs MMR varying parameters

Table 8 :

 8 |CandR| percentage returned by DivGet-Batch() on MovieLens rithms and compare them appropriately with the baselines; (ii) demonstrate the efficacy of the indexing technique -present index construction and maintenance time, and compare them appropriately with the baselines.

Table 9 :

 9 |CandR| percentage returned by DivGet-Batch() using different index structures for Aug-MMR on MakeBlobs

	Dataset Size 5000 10000 50000 100000
	I-tree	90%	90%	90%	90%
	KD-tree	3.3%	3.3%	3.1%	2.6%
	Ball-tree	3.3%	4.3%	3.4%	3.4%
	M-tree	2%	2.8%	1.6%	1.9%

Table 10 :

 10 pruning percentage by DivGetBatch() using different index structures for Aug-MMR on MakeBlobs

	Dataset Size	5000	10000	50000	100000
	I-tree	10%	10%	5.2%	2.79%
	SPP	20.44%	9.57%	27.31%	26.52%

Table 11 :

 11 number of access percentage for Aug-MMR and SP P on MakeBlobs Effectiveness in Number of Accesses. In order to perform a fair comparison between our augmented algorithms and SP P , we compare the number of I/O accesses SP P does and present that number for Aug-MMR (SP P is designed to optimize that access). We calculate the number of accesses in DivGetBatch() by counting the distinct records present in CandR in k rounds. The results are presented in Table11. We can see that Aug-MMR has less number of access. For example on 100k data, I-tree has 2799 number of access while SP P has 26521 number of access.

Table 12 :

 12 Index Comparisons

	Distance Function Euclidean Cosine Non-metric
	Aug-MMR	3.08	4.64	13.06
	MMR	13.12	15.36	15.27

Table 13 :

 13 Aug-MMR vs M M R running time on MakeBlobs 100k records using differenct distance functions

	|Y |	Algorithm	# updates running time (s)
		OPTMn	14	3.59
	10	GrMn NonOlMn	76 14	0.007 0.29
		NonIncrMn	2446	1.30
		OPTMn	59	512.42
	100	GrMn NonOlMn	76 142	0.05 2.97
		NonIncrMn	2447	1.44
		OPTMn	59	18768.68
	1000	GrMn NonOlMn	76 1068	0.43 34.58
		NonIncrMn	2449	1.45

Table 14 :

 14 I-tree maintenance on MakeBlobs 10k records

	ber of levels (l) and arity of I-tree (m) and the total
	number of nodes (C). Other parameters are part of the
	online augmented algorithms. For example, k for the
	number of returned records and λ coefficient for Aug-
	MMR . In Figures 4, 6, 8, we vary parameters using
	Yelp dataset with a fixed size of 50000 records. In our
	experiment, optimum parameter settings for offline in-
	dexing are obtained by performing multiple runs and
	selecting the best. The index created using those pa-
	rameter settings can be used in multiple runs of the
	online phase.
	Varying k. Figures 4(a

Table 15 :

 15 I-tree maintenance GrMn vs construction from scratch NonIncrMn running time on MakeBlobs 10k records did not add it to the table. We can see that, unlike other baselines, I-tree can be used in non-metric functions and outperforms with 90% pruning of the original dataset.

Diversity between a pair of records is simply 1-similarity between them.

Please note diversity could be easily calculated from similarity bounds.

Diversity between a pair of records is simply 1-similarity between them.

https://www.yelp.com/dataset/documentation/main

https://grouplens.org/datasets/movielens/

https://scikit-learn.org/stable/modules/ generated/sklearn.datasets.make_blobs.html