
HAL Id: hal-04239842
https://hal.science/hal-04239842v1

Submitted on 14 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generic framework for efficient computation of top-k
diverse results

Md Mouinul Islam, Mahsa Asadi, Sihem Amer-Yahia, Senjuti Basu Roy

To cite this version:
Md Mouinul Islam, Mahsa Asadi, Sihem Amer-Yahia, Senjuti Basu Roy. A generic framework
for efficient computation of top-k diverse results. The VLDB Journal, 2023, 32 (4), pp.737-761.
�10.1007/s00778-022-00770-0�. �hal-04239842�

https://hal.science/hal-04239842v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A Generic Framework for Efficient Computation of Top-k
Diverse Results

Md Mouinul Islam · Mahsa Asadi · Sihem Amer-Yahia · Senjuti Basu

Roy ·

the date of receipt and acceptance should be inserted later

Abstract Result diversification is extensively studied

in the context of search, recommendation, and data

exploration. There are numerous algorithms that re-

turn top-k results that are both diverse and relevant.

These algorithms typically have computational loops

that compare the pairwise diversity of records to decide

which ones to retain. We propose an access primitive

DivGetBatch() that replaces repeated pairwise com-

parisons of diversity scores of records by pairwise com-

parisons of “aggregate” diversity scores of a group of

records, thereby improving the running time of these

algorithms while preserving the same results. We inte-

grate the access primitive inside three representative di-

versity algorithms and prove that the augmented algo-

rithms leveraging the access primitive preserve original

results. We analyze the worst and expected case run-

ning times of these algorithms. We propose a compu-

tational framework to design this access primitive that

has a pre-computed index structure I-tree that is ag-

nostic to the specific details of diversity algorithms. We

develop principled solutions to construct and maintain

I-tree. Our experiments on multiple large real-world

datasets corroborate our theoretical findings, while en-

suring up to a 24× speedup.

Keywords Diversification · Top-k Algorithms · Query

processing

Md Mouinul Islam
New Jersey Institute of Technology E-mail: mi257@njit.edu

Mahsa Asadi
New Jersey Institute of Technology E-mail: ma2266@njit.edu

Sihem Amer-Yahia
CNRS, Univ. Grenoble Alpes E-mail: sihem.amer-
yahia@univ-grenoble-alpes.fr

Senjuti Basu Roy
New Jersey Institute of Technology E-mail: senjutib@njit.edu

1 Introduction

Diversity has a wide variety of applications in search,

recommendation [1, 2, 20, 34, 41, 42] and data explo-

ration. The goal of diversification algorithms is to re-

turn results that are relevant as well as cover user in-

tent. In the data management community, returning

top-k diverse results of a query has been extensively

studied, and there exists many seminal works [14, 23,

48] that propose objective functions and efficient al-

gorithms to achieve a trade-off between relevance and

diversity.

The original implementation of many representative

algorithms, such as, GMM [23], MMR [23], SWAP [48]

that do not make any assumptions on the nature of the
diversity functions are iterative in nature and make the

decision of updating the top-k set by making a greedy

choice based on the current top-k set and the remain-

ing records that are not yet in top-k. These represen-

tative algorithms go through the cumbersome step of

pairwise diversity computation of records between and

across these two sets even to make a single update in

the top-k set. Indeed, for a large database containing N

records, this repetitive computation is expensive O(N),

since typically k << N . We are also aware of a handful

of existing works [21, 32] that are specifically designed

on geometric space and avoid this repetitive computa-

tion. However, to the best of our knowledge, most of

the existing works assume this expensive computation

to be necessary, when diversity is designed for arbitrary

non-metric functions or even studied in general met-

ric space. Contrarily, our effort here is to reduce that

computation without making any explicit assumptions

about the diversity function, that is, considering diver-

sity functions to be fully arbitrary or even non-metric.

sihemameryahia
AUTHORS’ COPY

2 Md Mouinul Islam et al.

Our first contribution lies in identifying one ma-

jor computational bottleneck in existing popular diver-

sification algorithms and how to accelerate that process

(Section 2.1). In Section 2.2, we identify the ba-

sic ingredients of developing DivGetBatch() as

an access primitive such that it remains agnostic

to any specific underlying diversity or distance

computation function. This primitive is also guaran-

teed to produce identical top-k results as of the original

diversity algorithms. The fundamental idea is to make

the comparison go over a group of records, as opposed

to record pairs, thereby accelerating the computation.

In other words, the large number of N records are to

be grouped in a small number of C nodes and some

higher level diversity aggregates are to be maintained

between the nodes. Towards that, we develop a generic

computation framework that builds an index I-tree of-

fline and maintains two other auxiliary data-structures

(MinsimMatrixNode and MaxsimMatrixNode) that are

highly generic in nature and suitable to handle up-

dates. Indeed, the design of I-tree is rather simple and

may appear to share resemblance with existing index-

ing techniques (Section 7 contains detailed discussion

and empirical evaluation towards that). Our primary

contribution lies in proposing a simple enough indexing

technique that could be easily designed using off-the-

shelf popular record partitioning algorithms, such as,

K-Means [25], but study how to make it generic enough

to work on a variety of diversification algorithms over

arbitrary diversification functions. In fact, existing pop-

ular indexing techniques, such as K-B-D-tree [37], kd-

tree [10], M-Tree [15], Ball-Tree [29], R-tree [24] assume

that coordinate information of the records are avail-

able and used to create data structures to answer a

large spectrum of distance queries, where distance may

be based on Euclidean, cosine similarity, or general Lp

norms. However, I-tree assumes the records to be
atomic and the diversity function to be arbitrary
(refer to Section 8 for further comparison).

Our second contribution is to develop query pro-

cessing algorithms for MMR, GMM, and SWAP [14, 23,

48] using DivGetBatch() (Sections 3, 4, 5). Funda-

mentally, we have rewired the original algorithms to run

over pairs of groups of records as opposed to pairs of

records to save up processing time.We make nontriv-

ial theoretical claims and proofs on the exact-

ness and the running time of the augmented al-

gorithms in expectation and in the worst case. As

an example, we prove that augmented SWAP (Aug-

SWAP) takes O(N/C ∗ k ∗ log k+N) time in expecta-

tion compared to O(N ∗ k ∗ log k) time of the original

algorithm. It is easy to notice that augmented SWAP

is guaranteed to run faster than the original algorithm,

as Max(N/C ∗k∗ log k,N) (C is the number of groups)

is smaller than N ∗ k ∗ log k. The summary of the com-

plexity results are presented in Tables 1 and 2.

Our third contribution is developing principled

solutions for creating and maintaining I-tree (Sec-

tion 6). I-tree is a complete m-ary tree [16] with

height l. There exists many ways to build I-tree (e.g.,

hierarchical graph partitioning or clustering could be

used). We identify that the main computational bot-

tleneck of I-tree under batch updates lies in updating

MinsimMatrixNode andMaxsimMatrixNode. Therefore,

we formalize the index maintenance problem as an op-

timization problem, with the goal of minimizing the

number of updates in these data structures. We present

an integer programming-based exact solution OPTMn

for that, and a greedy heuristic GrMn that is highly

scalable in nature.

Our final contribution is experimental (Section

7). We use two large real-world datasets, one large

publicly available synthetic dataset to show that the

augmented algorithms return results identical to their

originals, while ensuring between a 3× to 24× speedup

on large datasets. We study the effects of different pa-

rameters empirically and provide guidance for appro-

priate design choice. We empirically present exhaus-

tive results to pre-process and maintain I-tree. Our

empirical results corroborate our theoretical analyses.

Moreover, we compare the proposed index I-tree with

a set of existing indexing structure, such as, M-Tree

[15], KD-Tree[10], and Ball-Tree[29]. These latter trees

are primarily designed for the Euclidean space. Our ex-

perimental results unanimously selects I-tree as the

winner. The augmented algorithms implemented using

I-tree is at least 18× faster in query processing and as

much as 170× faster for certain configuration. I-tree

achieves more than 1.5× speedup during the index con-

struction and at times it is more than 20× faster w.r.t.

the baselines.

To summarize, we make the following contributions:

– We develop DivGetBatch(), an access primitive

and show how to integrate it inside popular diversity

algorithms to save up running time (Sections 3, 4, 5).

We present in depth theoretical analyses of the aug-

mented algorithms.

– We propose a computational framework to support

DivGetBatch()(Section 6. The framework consists

of a pre-computed index I-tree and a query pro-

cessing step. We also present non-trivial solutions

to maintain I-tree under dynamic updates.

– We run an extensive experimentation that demon-

strates the effectiveness of building and maintaining

I-tree and DivGetBatch(), and corroborates our

theoretical claims (Section 7).

A Generic Framework for Efficient Computation of Top-k Diverse Results 3

2 Background and Approach

This section is organized in two parts. In Section 2.1,

we present the background of the studied problem and

define it. In Section 2.2, we present the fundamental

ideas of our approach.

2.1 Motivating Example & Problem Definition

The basic principle of existing diversification algorithms,

such as MMR, GMM, and SWAP is either to incremen-

tally build a top-k set of diverse results or to greedily

replace records in a top-k list to find the most diverse

ones. In both cases, the leading cost directly depends

on the number of pairwise record comparisons. Imagine

a toy database D containing N = 10 records. Since the

records are considered atomic, Table 4 shows a record-

record similarity matrix, simMatrixRecord, normal-

ized between [0-1] for our example. Diversity between

ri, rj is simply 1− sim(ri, rj). Given a query Q, in or-

der to produce k = 2 results, an algorithm such as

MMR [14] first assigns all 10 records in D to a potential

candidate set R. Then it iterates over all 10 records once

to find the best record in terms of MR score (based on

diversity and relevance), and adds that to the result set

S and discards that from R. It repeats the same process

once more to produce the resulting set S = {r10, r8}.
In particular, there is a repeated pairwise computation

of the following kind:

1 While k ≤ 2 :
2 rec← R[1]
3 For i = 2; i <= |R|; i++
4 if MR(Q ,R[i],S) ≥ MR(Q , rec,S)
5 rec← R[i]
6 EndFor

7 S ← S
⋃

rec,R← R− rec
8 k ← k + 1
9 EndWhile

Problem Definition 1 Develop an access primitive

DivGetBatch() and integrate it inside existing popu-

lar diversity algorithms. DivGetBatch() satisfies the

following three criteria.

– It guarantees identical top-k results as that of the

original algorithms.

– It is generic, i.e., it works for any diversity func-

tions - diversity being metric or not.

– When integrated inside existing algorithms, it accel-

erates the computation and returns the results faster.

The proposed primitive simplifies the aforementioned

implementation as follows - instead of iterating over the

entire R set (which is O(N)), it returns potentially a

much smaller set of records CandR, from which the

result set S would be updated.

1 CandR← DivGetBatch(R,Q,S)
2 While k ≤ 2 :
3 rec←Max(MR(CandR,Q, S))
4 S ← S

⋃
rec, CandR← CandR− rec

5 k ← k + 1
6 EndWhile

2.2 Approach

DivGetBatch() is designed by developing a computa-

tional framework, described in Figure 1. The basic idea

is to store “higher level aggregates”’, such as minimum

and maximum diversity scores of a group of records in-

stead of keeping individual pairwise diversity scores be-

tween the records. We formally define the minimum and

maximum diversity scores as bounds in later sections.

As an example, if the same set of records are grouped

in three nodes, as shown inside the indexing box of Fig-

ure 1 and the maximum and minimum diversity scores

are preserved between them, node2 and node3 can be

discarded in the first iteration of processing of MMR

pruning 6 out of the 10 records and returning only

{r1, r2, r4, r10} in R. This indeed leads to a significant

speedup.

Offline vs. Online. In this work, we do not make

any assumptions about the data distributions or query

distributions. Thus, our proposed approach is data and

query independent. A keen reader may notice that to

accelerate diversity computation using I-tree, one has

to “group” records and maintain some higher level ag-

gregates between them. Grouping a large database of

N records is time-consuming, as that would require
partitioning them based on pairwise diversity. Indeed,

this process of grouping must happen once and offline.

Precisely because of this, we resort to pre-process the

records to group them and develop index I-tree, and

use that later for processing diversity queries. This is

the offline computation of the proposed framework. Just

like DivGetBatch(), I-tree is a general purpose com-

plete tree like structure and could be designed in more

than one way. It needs to satisfy three properties.

– I-tree has m arity and l height or levels (user in-

puts).

– Two highly important auxiliary data structures main-

tain similarity bounds between the nodes in I-tree:

MinsimMatrixNode andMaxsimMatrixNode for main-

taining minimum and maximum similarity bounds
1.

1 Diversity between a pair of records is simply 1−similarity
between them.

4 Md Mouinul Islam et al.

Algorithm Variant Expected time w.r.t |CandR|

MMR
Original

Augmented

O(N ∗ k2)

O(C ∗ k2 +N +
k∑

i=1

|CandRi| ∗ k

GMM
Original

Augmented

O(N ∗ k)

O(C ∗ k +
k∑

i=1

|CandRi|)

SWAP
Original

Augmented

O(N ∗ k ∗ log k)
O(N +

∑N
i=1

|CandRi|
N

∗ (C + k ∗ log k))

Table 1: Technical results for running time analysis w.r.t. |CandR|

Algorithm Variant Expected time w.r.t C Expected time w.r.t m and l

MMR
Original

Augmented
O(N ∗ k2)

O((N/C + C) ∗ k2 +N)
O(N ∗ k2)

O((N/ml +ml) ∗ k2 +N)

GMM
Original

Augmented
O(N ∗ k)

O(N/C + C) ∗ k)
O(N ∗ k)

O(N/ml +ml) ∗ k)

SWAP
Original

Augmented
O(N ∗ k ∗ log k)

O(N/C ∗ k ∗ log k +N)
O(N ∗ k ∗ log k)

O(N/ml ∗ k ∗ log k +N)

Index Activity Time Space Time Space

I-tree
Construction
Maintenance

O(N ∗ C2 ∗ t+N2)
O(N ∗ |Y |)

O(C2)
O(C2)

O(N ∗m2l ∗ t+N2)
O(N ∗ |Y |)

O(m2l)
O(m2l)

Table 2: Technical results for running time analysis w.r.t. C, m, l

– For three nodes n, n′, and nj in I-tree, if n is

a parent of n′, and nj is part of a different sub-

tree and at the same level as n, the following rela-

tionship holds: Min sim(n, n′) ≥ Min sim(n, nj),

and Max sim(n, n′) ≥Max sim(n, nj), (basically

nodes that are part of the same subtree have higher

min and max similarity bounds compared to the

nodes that are not).

The indexing algorithm BuildTree (Algorithm 5) par-

titions (refer to the Subroutine Partition) the records.

It also maintains additional data structures that con-

tain similarity scores between nodes for efficient query

processing. An example of a two-level index tree is shown

in Fig. 2. At the first level, BuildTree creates a root

node containing all N records and m children of the

root node. From the point of abstraction, it is not im-

portant at this stage to describe how the data is par-

titioned. Basically, the goal is to keep similar records

together while separating non-similar ones. There are

multiple off-the-shelf techniques such as clustering and

graph partitioning to carry out this task. In our imple-

mentation, we use the popular k-means algorithm [25]

for partitioning. The algorithm repeats the partitioning

procedure until it reaches l levels. We refer to Section 6

for further details.

Next, we present the generic recipe of using Di-

vGetBatch() online or during the query processing

time.

Notations
D Database containing N records
S Result set
Z Set of nodes that contain S
R Remaining records in the dataset
Q Query
k Number of records in resulting set

m, l Arity & Total number of levels in the I-tree
C Number of nodes in the I-tree

CandR Candidate record set returned by API
Y A batch of new records to be updated in I-tree

Table 3: Notations & interpretations

2.2.1 Generic Online Algorithm using

DivGetBatch()

The inputs to DivGetBatch() is I-tree, query Q, cur-

rent candidate set of answers S, remaining records R,

as well as the algorithm specific objective function f .

The output is CandR, a set of candidate records that

cannot be eliminated and require further processing

by the original algorithm. DivGetBatch() explores I-

tree level by level during query time and exploits two

of its higher-level constructs: a. Calculate-Bounds: it

computes similarity bounds 2 between Q and the nodes

in I-tree based on a specific algorithm and objective

function f . In particular, it computes an upper and a

lower bound of diversity scores of the node. The goal

is to decide if it is beneficial to go inside the node and

2 Please note diversity could be easily calculated from sim-
ilarity bounds.

A Generic Framework for Efficient Computation of Top-k Diverse Results 5

Data

Indexing

Design

Augmented

Algorithms

+

DivGetBatch

API

Top-k

Results

Diversity

Algorithms

Offline Phase Online Phase

Node 2

{r3, r8,
r9}

Node 1

{r1, r2,
r4, r10}

Node 3

{r5, r6,
r7}

Min

sim:

0.065

Max

sim:

0.075

Min

sim:

0.047

Max

sim:

0.063
Min sim:

0.092
Max sim:

0.116

Fig. 1: Proposed computational framework.

Algorithm 1 Generic DivGetBatch() API

1: Inputs: I-tree, S, R, Q, f
2: Outputs: CandR: remaining eligible set of records for

next iteration
3: for y = 1 to l do
4: for n in I-tree [y].nodes do
5: uB, lB ← Calculate-Bounds(I-tree, n, y, f , S,

Q, R)
6: uBs ←

⋃
uB, lBs ←

⋃
lB

7: end for
8: M ← Skip-Nodes(I-tree, y, uBs, lBs)
9: V ← { I-tree [y].nodes−M}
10: end for
11: CandR = {r | r ∈ n, n ∈ V }
12: return CandR

explore the subtree under it. b. Skip-Nodes: based

on the previous decision, the algorithm either skips the

node and its entire subtree or explores the node. Algo-

rithm 1 shows the pseudo-code of the DivGetBatch()

API.

3 MMR Query Processing with DivGetBatch()

The first algorithm we study is MMR [14] algorithm.

We describe the original version of the algorithm and

our augmented version and provide theoretical analysis

on how our augmented version outperforms the original

one.

3.1 MMR algorithm

Maximal Marginal Relevance (MMR) algorithm is a

seminal work on result diversification [14]. MMR is

based on Marginal Relvance (MR) score (Equation 1)

that it maximizes in each iteration. Given a query, MR

introduces a λ coefficient to strike a balance between

the relevance score, computed between the records and

the query, and the diversity score, computed between

the records themselves.

MMR is greedy in nature that grows the size of the

top-k set by adding records one by one in the top-k set

by considering the relevance of the record and diversity

with the previously selected records, using the formula

below:

MMR(r)← argmaxr∈R\SMR(r),
MR(r)← λsim(r,Q)− (1− λ)maxrj∈Ssim(r, rj), (1)

where Q is the query, S is the previously selected items,

R is the remaining records in the dataset, r is a candi-

date record from R, and rj is another record from S.

λ is a tunable parameter. The time-consuming part of

the algorithm lies in computing the MR score for each

r ∈ {R\S} and returning the one with the highest MR

score.

The MMR algorithm takes O(|R| × |S|), when we

add one new record to set S, demonstrating that it has

an order of N × k. The algorithm repeats k times and

produces top-k results.

3.2 Aug-MMR algorithm

Aug-MMR algorithm is designed to circumvent this

aforementioned time consuming computation by lever-

aging DivGetBatch(). The general idea is to return

a small subset of records, as opposed to all |R| records
(which is O(N)) in each iteration, thereby saving com-

putation. The rest of the algorithm is identical to its

original version and is presented in Algorithm 2.

We now describe subroutine 2, howDivGetBatch()

exactly works inAug-MMR. Inputs toDivGetBatch()

6 Md Mouinul Islam et al.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 Q
r1 1.000 0.979 0.065 0.989 0.105 0.110 0.092 0.066 0.068 0.969 0.187
r2 0.979 1.000 0.070 0.992 0.107 0.112 0.092 0.071 0.074 0.999 0.190
r3 0.065 0.070 1.000 0.068 0.057 0.061 0.048 0.982 0.986 0.071 0.052
r4 0.989 0.992 0.068 1.000 0.111 0.116 0.096 0.069 0.072 0.986 0.180
r5 0.105 0.107 0.057 0.111 1.000 0.976 0.880 0.055 0.058 0.106 0.039
r6 0.110 0.112 0.061 0.116 0.976 1.000 0.783 0.059 0.063 0.112 0.041
r7 0.092 0.092 0.048 0.096 0.880 0.783 1.000 0.047 0.049 0.092 0.036
r8 0.066 0.071 0.982 0.069 0.055 0.059 0.047 1.000 0.986 0.072 0.054
r9 0.068 0.074 0.986 0.072 0.058 0.063 0.049 0.986 1.000 0.075 0.054
r10 0.969 0.999 0.071 0.986 0.106 0.112 0.092 0.072 0.075 1.000 0.191

Table 4: Similarity matrix for records

are I-tree, S, R, Q, and f (i.e., objective function of

MMR). The output is CandR, the candidate set of

records for which MR scores are to be computed to re-

tain the best record. Based on Algorithm 1, we now

describe the specifics of two higher-level constructs for

Aug-MMR.

Calculate-Bounds: This function leverages

MinsimMatrix-Node andMaxsimMatrixNode to cal-

culate lower (lBMR) and upper bounds (uBMR), re-

spectively. The bounds essentially represent the score

of a node based on f (Equation 1) and mathematically

can be expressed as follows:

lBMRnode ← λMin sim(node,Q)−
maxnode′∈Z(1− λ)Max sim(node, node′), (2)

uBMRnode ← λMax sim(node,Q)−
minnode′∈Z(1− λ)Min sim(node, node′), (3)

where Z is the set of nodes that contain S,

Min sim(node,Q) andMax sim(node,Q) are the min-

imum and the maximum similarity between any records

in node and Q, respectively, and Min sim(node, node′)

and Max sim(node, node′) are the minimum and the

maximum similarity between any two records in node

and node′, respectively. Since lBMR is the smallest

score of node, it is calculated by taking the minimum

of sim score in the first part of the equation and sub-

tracting that from the maximum of sim score in the

second part. Contrarily, uBMR refers to the maximum

MR score of node (Equation 3) and can be calculated

by reversing the min and max of the (Equation 2).

Skip-Nodes: The argument of node skipping is sim-

ple - if the uBMR score of a node is not larger than the

lBMR of another node, then the former node and its

entire subtree could be pruned. The records from the

remaining nodes form the CandR set.

CandR← {N − {r ∈ I− tree.n | uBMRn < (4)

max
∀n′

(lBMRn′)}}

Algorithm 2 Aug-MMR

Inputs: I-tree, D, MMR, Q, k
Outputs: S: final top-k result set.

1: R← D, S = ϕ
2: for t = 1 to k do
3: CandR ← DivGetBatch(I-tree, R, S, Q, MMR)
4: S = {S

⋃
MMR(r)r∈CandR}

5: end for
6: return S

this is done by finding the maximum value of lBMRn′

of all nodes and then discard ones with uBMR less than

it.

Running Example: A step by step calculation of

DivGetBatch() is shown in Table 5. The maximum

and minimum similarity between node1 and query Q

is 0.180 and 0.191. In first iteration of Calculate-

Bounds, lower bound of MR of node1 which is lBMRnode1

= 0.8 ∗ 0.180− (1− 0.8) ∗ 0 = 0.144, and upper bound

of MR of node1, uBMRnode1 = 0.8 ∗ 0.191 − (1 −
0.8) ∗ 0 = 0.153. Similarly, lBMRnode2 , uBMRnode2 ,

lBMRnode3 , and uBMRnode3 are −0.047, 0.044, 0.029,
and 0.033, respectively. In Skip-Nodes, the maximum

of all lBMRs is found 0.144 which is lBMRnode1 .

uBMRnode2 and uBMRnode3 are smaller than

lBMRnode1 . Therefore, node2 and node3 are discarded

from further calculation in iteration 1. Records of node1
{r1, r2, r4, r10} are returned byDivGetBatch() toAug-

MMR algorithm. Aug-MMR performs calculation

similar to original MMR on {r1, r2, r4, r10} which re-

sults in S = {r10}. Likewise, the maximum and mini-

mum similarity between node1 and node1 are 0.969 and

1.0. In the second iteration of Calculate-Bounds,

lBMRnode1 = 0.8 ∗ 0.180 − (1 − 0.8) ∗ 0.969 = −0.050
and uBMRnode1 = 0.8∗0.191−(1−0.8)∗1.0 = −0.047.
Similarity, lBMRnode2 , uBMRnode2 , lBMRnode3 , and

uBMRnode3 are 0.028, 0.029, 0.010, and 0.009, respec-

tively. In Skip-Nodes, the maximum of all lBMRs

is lBMRnode2 = 0.028. uBMRnode1 and uBMRnode3

are smaller than lBMRnode2 . Thus, node1 and node3
are discarded from further calculation in iteration 2.

A Generic Framework for Efficient Computation of Top-k Diverse Results 7

Records of node2 {r3, r8, r9} are returned by DivGet-

Batch() to Aug-MMR algorithm. Aug-MMR per-

forms calculation similar to originalMMR on {r3, r8, r9}
which results in S = {r10, r8}

3.2.1 Aug-MMR algorithm proofs

Claim 1 Aug-MMR returns identical top-k results

as that of original MMR.

Proof The proof is constructed using one helper lemma

and one observation: Lemma 1 proves that DivGet-

Batch() never prunes a record that is part of the orig-

inal top-k; Observation 1 shows that once the control

comes back from DivGetBatch(), Aug-MMR works

exactly as the originalMMR in each iteration. Combin-

ing these lemma and observation, Aug-MMR returns

identical top-k results as that of the original MMR.

Lemma 1 DivGetBatch() never prunes a record that

is part of the original top-k.

Proof As part of this proof, we first prove that Skip-

Nodes never discards the record which has the highest

MR score in that iteration.

Recall Property 1 and note that for every two nodes

n and n′ in the same subtree, if n is a parent of n′,

then n contains all records in n′, thereby having larger

uBMR and lBMR values. Therefore, if a node n is

skipped, any child of n is also safe to be skipped.

We use helper Lemma 2 to prove that the actual

MR score of any record in a node node is bounded

between uBMRnode and lBMRnode. Let us assume, the

next desired record rd ∈ noded produces maximum MR

value among all R \ S records. MRrd is greater than

minMRnode for ∀node. Using Equation 6:

MRrd ≥ maxnode∈I−tree[l].nodesminMRnode

≥ maxnode∈I−tree[l].nodes(lBMRnode),

Using Equation 6, MRrd = MaxMRnoded ≤
uBMRnoded . As a result,

uBMRnoded ≥MRrd

≥ maxnode∈I−tree[l].nodes(lBMRnode).

(5)

According to Equation 5 and Equation 4, noded will

not be discarded, and all records inside noded includ-

ing rd will be returned by DivGetBatch() or send to

the next level for further processing. This logic extends

for all the iterations. Therefore,DivGetBatch() never

prunes a record that is part of the original top-k.

Lemma 2 MR score of any record r ∈ node (say MRr)

is bounded by upper and lower bound uBMRnode and

lBMRnode, respectively. That is,

lBMRnode ≤MRr∈node ≤ uBMRnode. (6)

Proof We will first prove that maximum relevance value

(say MRrmax) of any record (say rmax ∈ node) is less

than equal to uBMRnode. Where, MRrmax can be ex-

pressed as:

MRrmax = λsim(rmax, Q)−(1−λ)maxrj∈Ssim(rmax, rj)].

(7)

First part of the equation 7 is always less than equals

to first part of the equation 3. That is:

λsim(rmax, Q) ≤ λmaxri∈nodesim(ri, Q)

= λMax sim(node,Q),
(8)

Next, we show that second part of the equation 7 is

always greater than second part of the equation 3.

Let us assume; rw ∈ S produces max value for the

second part of Equation 7. That second part can be

rewritten as (1 − λ)sim(rmaxnode
, rw). Let us assume,

rw ∈ nodew where nodew ∈ Z. For any node′ ∈ Z, we

can write:

(1− λ)sim(rmax, rw) ≥ (1− λ)minri∈node,rj∈node′

sim(ri, rj)

≥ minnode′∈Z(1− λ)Min sim(node, node′),

(9)

From these two inequalities 8 and 9, we can con-

cludeMRrmax ≤ uBMRnode or,MRr∈node ≤ uBMRnode.

Similarly, the lower bound lBMRnode can be shown

as follows: lBMRnode ≤ minMRnode. Thus, any record

in node is certain to have MR value in between uBMRnode

and lBMRnode.

Observation 1 Once the control comes back from Di-

vGetBatch(), Aug-MMR works exactly as the orig-

inal MMR in each iteration.

Aug-MMR has identicalMR score calculation and

MMR selection as that of the original MMR.

Claim 2 Aug-MMR requires O((N/C+C)∗k2+N)

time in expectation.

Proof In the original MMR algorithm, each iteration

for finding one record takes O(N ∗ k) times. For k iter-

ations, the overall running time is therefore O(N ∗ k2).
The running time of Aug-MMR does not need to go

over all N records in each iteration. Instead, it relies

8 Md Mouinul Islam et al.

Functions Nodes Bounds Iteration 1 Iteration 2

Calculate-Bounds

node1
lBMR 0.8 ∗ 0.180− (1− 0.8) ∗ 0 = 0.144 −0.050
uBMR 0.8 ∗ 0.191− (1− 0.8) ∗ 0 = 0.153 −0.047

node2
lBMR 0.8 ∗ 0.0191− (1− 0.8) ∗ 0 = 0.0152 0.028
uBMR 0.8 ∗ 0.054− (1− 0.8) ∗ 0 = 0.044 0.029

node3
lBMR 0.8 ∗ 0.036− (1− 0.8) ∗ 0 = 0.029 0.010
uBMR 0.8 ∗ 0.041− (1− 0.8) ∗ 0 = 0.033 0.009

Skip-Nodes

lBMR array: 0.144, 0.041, 0.029
uBMR array: 0.153, 0.044, 0.033
node2, node3 are skipped.
CandR= {r1, r2, r4, r10}.
MMR(r1, r2, r4, r10)← r10
Number of records discarded is 6

lBMR array:
-0.050, 0.028, 0.010
uBMR Array:
-0.047, 0.029 , 0.009
node1, node3 are skipped.
CandR = {r3, r8, r9}
MMR(r3, r8, r9)← r8
top-2 set = {r10, r8}

Table 5: First Two Iterations of DivGetBatch() in Aug-MMR

on DivGetBatch() to obtain a smaller set CandR

records.

Part 1. Running time of the API: A single iteration

of DivGetBatch() needs to go over all the nodes in

I-tree and takes O(C ∗ k) time. DivGetBatch() has

to compute two subroutines:

Calculate-Bound and Skip-Nodes. To compute these two

functions, it takes O(N) time. Therefore, the overall

running time is O(C ∗ k2 + N), where C is the total

number of nodes.

Part 2. Running time of the rest of computation:

The rest of the computation depends on the size of

CandR. Let us assume,DivGetBatch() returns |CandRi|
records in the i-th iteration. Accordingly, we have:

TAug−MMR = O(C ∗ k2 +N +

k∑
i=1

|CandRi| ∗ k).

The expected case analysis basically delves deeper

into the analysis of Part 2 and studies the expected

running time considering different size of CandRi and

its corresponding probability.

Let us assume, in iteration i, the |CandRi| records
touch x number of nodes in I-tree. Indeed, xi is the

number of nodes with |CandRi| records in I-tree, that

the augmented algorithms have to access during the

query processing. Let us also assume node ni contains

vi records. We start the proof assuming there is only

one level in I-tree (i.e., l = 1), and then generalize it

later on. If l = 1, the expected running time of Part 2

calculation of Aug-MMR in the i-th iteration is:

E = O(
C∑
i=1

prob(xi)× computation costAug−MMR(xi)).

Now, probability of returning x nodes =
(
C
x

)
* prob-

ability of x nodes getting selected * probability of (C−
x) nodes not getting selected. Without further assump-

tion on the data as well as query distribution, we as-

sume that each node has an equal probability of get-

ting selected. The probability of choosing a node is

1/C. Therefore, the probability of not getting selected

is (1− 1/C).

The size of the returned record set, i.e., |CandR|, if
x = i nodes are accessed:

|CandR|i = (1/C)i ∗ (1− 1/C)C−i ∗ [(v1 + v2 + ...+ vi)

+ (v1 + v3 + ...+ vi+1) + (v2 + v3 + ...+ vi+1)

+ (v3 + v4 + ...+ vi+2) + . . .]

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
∗ (v1 + v2 + . . .+ vC)

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
∗N.

Therefore, the overall expected cost of Part 2 is:

|CandR| = N ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)

= N ∗ (1/C)/(1− 1/C) ∗
C∑
i=1

(1/C)i−1∗

(1− 1/C)C−(i−1) ∗
(
C − 1

i− 1

)
.

Let j = i− 1 :

= N ∗ (1/C)/(1− 1/C) ∗
C−1∑
j=0

(1/C)j∗

(1− 1/C)C−j ∗
(
C − 1

j

)
= N ∗ (1/C)/(1− 1/C) ∗ (1− 1/C)∗
C−1∑
j=0

(1/C)j ∗ (1− 1/C)(C−1)−j ∗
(
C − 1

j

)
= N ∗ (1/C)/(1− 1/C)∗
(1− 1/C) ∗ (1/C + 1− 1/C)C−1 = N/C.

A Generic Framework for Efficient Computation of Top-k Diverse Results 9

Expected running time of Aug-MMR algorithm con-

sidering both Part 1 and Part 2 computation is:

EAug−MMR = O((N/C + C) ∗ k2 +N).

Now consider the case when l > 1. Probability of

selecting a node in first level is 1/m, given m is the

arity of I-tree. Probability of selecting a node in second

level = probability of selecting that node out of m node

in that branch * probability of selecting it’s parent =

1/m2. Similarly, Probability of selecting a node at leaf

node is 1/ml = 1/C. Thus, in the general case, when l >

1, expected running time of Aug-MMR is O((N/C +

C) ∗ k2 +N), which is same as before.

Worst-case Aug-MMR . In the worst-case, all N

records are returned by DivGetBatch() in each iter-

ation, which makes
k∑

i=1

|CandRi| = N ∗ k. Thus, the

worst-case running time is O((N + C) ∗ k2).

4 GMM Query Processing with DivGetBatch()

The second algorithm we study is GMM algorithm. We

describe the original version of the algorithm and our

augmented version and similar to the previous section.

We also provide proofs on how our augmented version

outperforms the original one.

4.1 GMM algorithm

The next algorithm we study is GMM [23] that tries to

find a subset of k most diverse records among N records

by maximizing the minimum pairwise distance. GMM

does not require any external query. Based on the orig-

inal design, the first two records in the result set S are

provided in constant time by an oracle. Then, the algo-

rithm iteratively goes through all records in R and finds

a record whose minimum diversity (maximum similar-

ity) with the previously selected records is the largest

(smallest). It continues until |S|=k. The objective func-

tion is:

GMM(r)← argmaxr∈R\Sminrj∈SDiv(r, rj), (10)

where Div(r, rj) is the diversity score between record

r and rj . A keen reader may notice that GMM uses

diversity (Div) in the objective function, whereas, in

our study, we store similarity between records. Unless

specified otherwise, Div = 1− sim. The two similarity

matrices, one that captures the similarity between ev-

ery pair of records, and the other that captures that of

between nodes, could be used to calculate Div.

4.2 Aug-GMM algorithm

Aug-GMM leverages the DivGetBatch() API to re-

duce the number of records to iterate on. Algorithm 3

describes the pseudo-code, where the DivGetBatch()

returns a small subset of records CandR which later

on is fed to the original GMM algorithm to get the

nextBest record.

Calculate-Bounds: This function keeps track of

the upper and lower bounds of scores between nodes

(uBGMM and lBGMM , respectively) using the same

principles as that of the original GMM objective func-

tion (Equation 10).

lBGMMnode ← minnode′∈Z minDiv(node, node′),

(11)

uBGMMnode ← minnode′∈Z maxDiv(node, node′),

(12)

where Z is the set of nodes containing S, minDiv(node,

node′) and maxDiv(node, node′) are the minimum and

the maximum diversity scores between any two records

in node and node′, respectively. In Equation 11, mini-

mum of the minimum diversity over all nodes in Z en-

sures the lower bound of GMM , such that all records in

node will have equal or greater value than lBGMMnode.

Conversely, in Equation 12, minimum of the maximum

diversity over all nodes in Z ensures the upper bounds,

such that all records in node will have equal or lower

GMM value than uBGMMnode.

Skip-Nodes : This function is identical to Skip-

Nodes of MMR in principle. The skip-rationale of

Aug-GMM is:

CandR← {N − {r ∈ I− tree.n | uBGMMn < (13)

max
∀n′

(lGMMn′)}}

Running Example: Let us assume k = 3 and the

first two records of S are arbitrarily chosen as r1 and

r3. Initially, S = {r1, r3}. From Figure 1, r1 and r3
are inside node1 and node2, respectively. Hence, Z =

{node1, node2}. Node-Node diversity Div(node, node′)

can be calculated usingDiv = 1 - Sim.Div(node3, node1)

= (0.884, 0.908) andDiv(node3, node2) = (0.937, 0.9530).

By using Equations (11) and (12), lBGMMnode3 =

0.884 (as min of min div) and uBGMMnode3 = 0.908

(as min of max div). Similarly, lBGMMnode1 , uBGMM

node1 , lBGMMnode2 , and uBGMMnode2 are 0, 0.031, 0,

and 0.018. lBGMMnode3 (0.884) is greater than uBGMM

node1 (0.031) and uBGMMnode2 (0.018). Using Equa-

tion 13, node1 and node2 can be discarded. Obtaining

records from node3 , candR = {r5, r6, r7} is returned

from DivGetBatch(). Finally, GMM(r5, r6, r7) = r5
is called and the result set S = {r1, r3, r5} is achieved.

10 Md Mouinul Islam et al.

4.2.1 Aug-GMM algorithm proofs

Claim 3 Aug-GMM returns identical top-k results

as that of original GMM .

Proof Akin to MMR proof, this proof is also constructed

using one helper lemma and one observation: Lemma 3

proves that DivGetBatch() never prunes a record

that is part of the original top-k; Observation 2 shows

that in each iteration, once the control comes back from

DivGetBatch(), Aug-GMM works exactly as the

original GMM . Combining these lemma and observa-

tion,Aug-GMM returns identical top-k results as that

of the original GMM .

Lemma 3 DivGetBatch() never prunes a record that

is part of the original top-k.

Proof As part of this proof, we first prove that Skip-

Nodes never discards the record which has the highest

GMM score in that iteration. We use helper Lemma 4

to prove that the actual GMM score of any record

in a node node is bounded between uBGMMnode and

lBGMMnode. The rest of the proof is identical to Lemma 1

of Aug-MMR.

Lemma 4 GMM score of any record r ∈ node (say

GMMr) is bounded by upper and lower bound

uBGMMnode and lBGMMnode, respectively. That is,

lBGMMnode ≤ GMMr∈node ≤ uBGMMnode.

Proof Let us first consider uBGMMnode, by assuming

F (node, rj) = maxri∈nodeDiv(ri, rj), it can be re-written

as:

uBGMMnode ← minnode′∈Z [maxrj∈node′F (node, rj)],

(14)

Let us assume, maximum GMM value produced by

any record in node ismaxGMMnode. According to Equa-

tion 10, maxGMMnode is expressed as follows:

maxGMMnode = maxri∈node[minrj∈SDiv(ri, rj)],

= minrj∈S [maxri∈nodeDiv(ri, rj)],

= minrj∈SF (node, rj),

≤ minnode′∈Z [maxrj∈node′F (node, rj)],

= uBGMMnode, [using equation 14].

Hence, maxGMMnode ≤ uBGMMnode.

similarly, it can be proved that, minGMMnode ≥
lBGMMnode.

Observation 2 Once the control comes back from Di-

vGetBatch(), Aug-GMM works exactly as the orig-

inal GMM in each iteration.

Aug-GMM does exactly same calculation as the

original GMM does on a set of records as a result it

will produce the same record as GMM does in a single

iteration.

Claim 4 Aug-GMM requires O(N/C +C) ∗ k) time

in expectation.
Proof In the GMM algorithm, each iteration for find-

ing one record takes O(N) times. For k iteration, the

overall running time isO(N∗k). Similar toAug-MMR,

Aug-GMM does not need to go over all N records in

each iteration, instead relies onDivGetBatch() to ob-

tain a smaller set CandR records.

Part 1. Running time of the API: A single iteration

of DivGetBatch() needs to go over all the nodes in

I-tree and takes O(C) time. DivGetBatch() has to

compute two subroutines:

Calculate-Bound() and Skip-Nodes(). To compute these

two functions, it takesO(C) time. Therefore, the overall

running time is O(C ∗ k), where C is the total number

of nodes.

Part 2. Running time of the rest of computation:

Similar to Aug-MMR, The rest of the computation

depends on the size of CandR. Let us assume,DivGet-

Batch() returns |CandRi| records in the i-th iteration.

Hence, we have:

TAug−GMM = O(C ∗ k +

k∑
i=1

|CandRi|).

The expected case analysis basically delves deeper

into the analysis of Part 2 and studies the expected

running time considering different size of CandRi and

its corresponding probability. By performing similar cal-

culation as that of Aug-MMR as shown before, the

expected cost of Aug-GMM is:

EAug−GMM = O((N/C + C) ∗ k).

Worst-case Aug-GMM . In the worst-case, all N

records are returned by DivGetBatch() in each it-

eration, which makes
k∑

i=1

|CandRi| = N ∗ k. Then the

worst-case running time is: O((N + C) ∗ k).

5 SWAP Query Processing with

DivGetBatch()

The last algorithm we study is SWAP [48]. We describe

the original version and our proposed augmented ver-

sion. Similar to the previous sections, we provide theo-

retical analysis.

A Generic Framework for Efficient Computation of Top-k Diverse Results 11

Algorithm 3 Aug-GMM

Inputs: I-tree, D, GMM , k
Output: S: final top-k result set

1: S ← two records selected by an oracle
2: R← {D − S}
3: for t = 1 to k − 2 do
4: CandR ← DivGetBatch(I-tree, R,S,GMM)
5: S = {S

⋃
GMM(r)r∈CandR}

6: end for
7: return S

5.1 SWAP algorithm

SWAP [48] is a greedy algorithm that produces top-k

results based on a given query Q and a tunable param-

eter that controls how much relevance could at most

drop between any two records in the top-k results. The

algorithm starts by sorting the records w.r.t. relevance

and initializing the top-k result set S with the k-records

with the highest relevance score with Q. It finds a can-

didate record from the current top-k set that has the

smallest diversity contribution based on Equation 15.

Indeed, in each iteration, it attempts to swap one record

from R \ S with the candidate record. It starts scan-

ning the remaining sorted relevance list from the top.

In every iteration, it attempts to swap one record from

the current top-k set with another from sorted R if

the latter record has a higher contribution to diversity

while ensuring the threshold of relevance drop. The al-

gorithm terminates when the relevance drop is below

the threshold, or R is fully scanned.

Divcont(ri, S) =
∑
rj∈S

Div(ri, rj). (15)

5.2 Aug-SWAP algorithm

Aug-SWAP is identical to the SWAP, i.e., it scans the

sorted relevance list R, after initializing the top-k set S.

It calls the DivGetBatch() API to retrieve a smaller

set of candidate records CandR. These CandR records

are eligible to be considered during the next swap. If a

record in R is not in CandR, then it is skipped. The

rest of the process is identical to the original SWAP

algorithm. Algorithm 4 contains the pseudo-code.

Calculate-Bounds: Once the records are sorted

w.r.t. relevance score, the diversity computation be-

comes query independent, and only between the records.

This function calculates the upper and lower bounds of

diversity contribution of nodes by leveraging

MinsimMatrixNode and MaxsimMatrixNode con-

sidering the set of nodes Z that contains S, as below:

uBSWAPnode ←
∑

node′∈Z

maxDiv(node, node′), (16)

Algorithm 4 Aug-SWAP

Inputs: I-tree, D, UB, k, SWAP
Output: S: final top-k result set.

1: R ← Sort D on score;
2: S ←topkItems(R, k)
3: candidate← argminri∈SEquation 15
4: CandR ← R
5: pos ← k + 1
6: while candidate.score - R[pos].score < UB do
7: if R[pos] in CandR then
8: if Divcont(R[pos], S) > Divcont(candidate, S)

then
9: S ← {S − candidate

⋃
R[pos]}

10: CandR ← DivGetBatch(I-tree, R, S, Q,
SWAP)

11: candidate← argminri∈SEquation 15
12: end if
13: end if
14: pos++
15: end while
16: return S

lBSWAPnode ←
∑

node′∈Z

minDiv(node, node′), (17)

where maxDiv(node, node′) and minDiv(node, node′)

are the max and the min diversity between node and

node′. Naturally, the maximum (minimum) diversity is

the maximum (minimum) of node diversities between

node and the nodes in Z.

Skip-Nodes: This function will then check if

uBSWAPnode is less than the diversity contribution of

the candidate record (18); If the condition is true, it will

prune the node and the entire subtree under it. In such a

case, none of the records inside this node are eligible for

swap because they will not increase the overall diversity

of S. DivGetBatch() returns the records for all non-

pruned nodes:

CandR← {N − {r ∈ I− tree.n | uBSWAPn < (18)

minri∈S

∑
rj∈S

Div(ri, rj)}}

Running Example: Lets say, k = 2, UB = 0.9,

sorted R = {r8, r7, r2, r1, r4, r9, r3, r6, r10}, and initial

top-2 records selected as S={r8, r7}. Using Equation 15,

Divcont(r7, S) = 0.953 and the candidate is r7. From

Figure 1, Z = {node2, node3}. Using Equations (16),

(17), and Figure 1, if Div = 1 - sim, we have:

uBSWAPnode1 = maxDiv(node1, node2) = 0.935,

lBSWAPnode1 = minDiv(node1, node2) = 0.925.

Then, Equation 18 is applied and node1 is discarded,

node2, node3 are returned by DivGetBatch(), and

CandR = {r3, r9, r5, r6}. Next record in the sorted list

is r2, which is not in CandR. As a result, r2 will be

skipped.

12 Md Mouinul Islam et al.

5.2.1 Aug-SWAP algorithm proofs

Claim 5 Aug-SWAP returns identical top-k results

as that of original SWAP.

Proof This proof is constructed using one helper lemma

and one observation. Lemma 5 proves that DivGet-

Batch() does not skip a record that has a higher di-

versity contribution than that of the candidate record.

Observation 3 shows that once all records returned in

CandR, Aug-SWAP is identical to SWAP . Combin-

ing these lemma and observation, Aug-SWAP returns

identical top-k results as that of the original SWAP .

Lemma 5 DivGetBatch() never prunes a record that

is part of the original top-k.

Proof As part of this proof, we first prove that in each

iteration Skip-Nodes never discards a record which has

the higher diversity contribution than that of the can-

didate record. Let us assume, rcand ∈ S has lowest di-

versity contribution in S.

Divcont(rcand, S) = minri∈S

∑
rj∈S

Div(ri, rj)}

= minri∈SDivcont(ri, S).

We use helper Lemma 6 to prove that the actual

DivCont score of any record in a node node is bounded

between uBSWAPnode and lBSWAPnode. Let us as-

sume, rd ∈ noded is a record inside node, therefore,

uBSWAPnoded ≥ Divcont(rd, S)

≥ Divcont(rcand, S)

= minri∈S

∑
rj∈S

Div(ri, rj),

as a result,

uBSWAPnoded ≥ minri∈S

∑
rj∈S

Div(ri, rj). (19)

From Equation 18 and 19, it is evident that noded
containing rd will not be skipped by Skip-Nodes. This

logic extends to all the iterations Skip-Nodes calls.

Hence the proof.

Lemma 6 Divcont score of any record r ∈ node is

bounded by upper and lower bound uBSWAPnode and

lBSWAPnode respectively. That is,

lBSWAPnode ≤ Divcont(r, S)r∈node ≤ uBSWAPnode.

(20)

Proof By replacing the value of maxDiv(node, node′),

the upper bound can be written as:

uBSWAPnode ←
∑

node′∈Z

maxri∈node,rj∈node′Div(ri, rj).

(21)

For any record r ∈ node and rj ∈ S, rj ∈ noded and

nodej ∈ Z,

Div(r, rj) ≤ maxri∈nodeDiv(ri, rj),

Or,∑
rj∈S

Div(r, rj) ≤
∑

node′∈Z

maxri∈node,rj∈node′Div(ri, rj),

As a result, Divcont(r, S) ≤ uBSWAPnode. similarly,

we can prove: Divcont(r, S) ≥ lBSWAPnode.

Observation 3 Once the control comes back from Di-

vGetBatch(), Aug-SWAP works exactly as the orig-

inal SWAP does in each iteration.

Aug-SWAP performs identical calculation of SWAP

on the records that are not pruned byDivGetBatch().

Claim 6 Aug-SWAP requires O(N/C ∗k∗ log k+N)

time in expectation.

Proof In the original SWAP algorithm, each iteration

to select a new record to be swapped with the candidate

record takes O(k ∗ log k) time. Therefore, for going over

all records in R, it takes O(N ∗ k ∗ log k). Aug-SWAP

does not need to perform O(N ∗ k ∗ log k), instead re-

lies on DivGetBatch() to obtain a smaller set CandR

records.

Part 1. Running time of the API: A single iteration

of DivGetBatch() needs to go over all the nodes in

I-tree. DivGetBatch() has to compute two subrou-

tines: Calculate-Bound and Skip-Nodes. By updating

only the most recent swapped records and using dy-

namic programming, the two subroutines’ overall run-

ning time is O(C), where C is the total number of

nodes. However, how many times the API gets called

depends on the number of times the swap condition gets

satisfied (recall lines 8-10 in Aug-SWAP algorithm).

Part 2. Running time of the rest of computation:

The other major computation of this algorithm is the

running time of a record be swapped, which is O(k ∗
log k) and Divcont running time in the Algorithm 5

line 8, which is O(k). How many times Divcont gets

executed depends on Line 7 in the Aug-SWAP algo-

rithm is satisfied. The number of times SWAP gets

executed depends on swap condition, which is Line 8 in

the Aug-SWAP algorithm. Finally, the entire R needs

A Generic Framework for Efficient Computation of Top-k Diverse Results 13

to be exhausted (as long as the bound drop threshold is

satisfied), which takes O(N) time. As a result, we have:

TAug−SWAP = O(Number of times swap is satisfied

∗DivGetBatch() runtime+

Number of times swap is

satisfied ∗ SWAP runtime+

number of times line 7 is satisfied∗
Divcont runtime+N).

By considering running time of single Divcont,

SWAP , andDivGetBatch() call, overall running time

of Aug-SWAP becomes:

TAug−SWAP = O(Number of times swap is satisfied

∗ C +Number of times swap is satisfied

∗ k ∗ log k + number of times line 7

is satisfied ∗ k +N).

= O(
N∑
i=1

[probability of swap satisfied

∗ C + probability of swap satisfied

∗ k ∗ log k + probability ofnumber of

times line 7 is satisfied ∗ k] +N)

Expected size of CandR is
∑N

i=1
|CandRi|

N . Probabil-

ity of line 7 satisfied = probability that R[pos] is in

CandR =
∑N

i=1
|CandRi|

N

N . Without further information,

the probability of a record getting swapped is 1/2 (same

as not getting swapped). Probability of SWAP = 1/2∗
line 7 is satisfied = 1/2 ∗

∑N
i=1

|CandRi|
N

N . Expected run-

ning time (cost) of Aug-SWAP is:

EAug−SWAP =

N∑
i=1

[1/2 ∗
∑N

i=1
|CandRi|

N

N
∗ (C + k ∗ log k)

+

∑N
i=1

|CandRi|
N

N
∗ k] +N

= 1/2 ∗
N∑
i=1

|CandRi|
N

∗ (C + k ∗ log k)

+

N∑
i=1

|CandRi|
N

∗ k +N

= O(
N∑
i=1

|CandRi|
N

∗ (C + k ∗ log k) +N)

First, we study the Part 2 computation having two costs

associated with it, cost of Divcont and cost that of

SWAP . Based on Line 7 of Algorithm 5, if CandR is

large, it is likely to have R[pos] inside it. In fact, if

CandR contains all R records, R[pos] will always be

there. For the purpose of illustration, let us assume,

in the i-th iteration, |CandRi| records touch x number

of nodes in I-tree and node ni contains vi records.

Therefore, the probability that R[pos] is in CandRi =∑x
q=1 vq

N .

The expected running time of SWAP in terms of C

is:
(
C
x

)
* probability of x nodes getting selected * proba-

bility of (C−x) nodes not getting selected * probability

of R[pos] is in CandRi * probability of swap * cost of

swap. The probability of x = i and R[pos] is in CandRi

is:

= (1/C)i ∗ (1− 1/C)C−i ∗ [(v1/N + v2/N + · · ·+ vi/N)

+ (v1/N + v3/N + · · ·+ vi/N) + . . .

+ (vC−i/N + · · ·+ vC/N)]

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
∗ (v1 + v2 + · · ·+ vc

N
).

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
.

Therefore, the expected running time (cost) of SWAP

is,

ESWAP = 1/2 ∗N ∗ k ∗ log k ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i∗(
C − 1

i− 1

)
= 1/2 ∗N/C ∗ k ∗ log k.

Expected running cost of Divcont is
(
C
x

)
* probability

of x nodes getting selected * probability of (C−x) nodes
not getting selected * probability of R[pos] is in CandRi

* cost ofDivcont. Therefore, the expected running time

(cost) of Divcont is:

EDivcont = N ∗ k ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
= N/C ∗ k.

The expected cost of Part 2 becomes:

EPart2 = 1/2 ∗N/C ∗ k ∗ log k +N/C ∗ k.

The expected running time (cost) of Part 1 is =
(
C
x

)
* probability of x nodes getting selected * probability

of (C − x) nodes not getting selected * probability of

R[pos] is in CandRi * probability of swap * cost of

DivGetBatch(). Using similar calculation as above,

14 Md Mouinul Islam et al.

expected cost of part 1 is:

Epart1 = 1/2 ∗N ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i∗(
C − 1

i− 1

)
∗ C = N/2.

Expected running time of Aug-SWAP algorithm con-

sidering both Part 1 and Part 2 computation is:

EAug−SWAP = 1/2 ∗N/C ∗ k ∗ log k +N/C ∗ k +N/2

+N = O(N/C ∗ k ∗ log k +N)

Now consider the case when l > 1 for Aug-SWAP.

Probability of selecting a node in first level is 1/m,

given m is the arity of I-tree. Probability of selecting a

node in second level = probability of selecting that node

out of m node in that branch * probability of selecting

it’s parent = 1/m2. Similarly, Probability of selecting

a node at leaf node is 1/ml = 1/C. As the records

are only returned from leaf nodes, the expected prob-

ability that R[pos] is in CandRi does not change for

l > 1. The running time of DivGetBatch() = O(ml)

= O(C) also stays same . The rest of the computation

does not directly depend on l. As a result, expected run-

ning time of Aug-SWAP for l > 1 is same as before.

Worst-case Aug-SWAP. In the worst-case, none of

the records are skipped, so the number of swap is O(N).

Therefore, the worst-case running time is: O(N ∗C ∗k ∗
log k).

Our technical results are summarized in Tables 1

and 2.

6 I-tree

The index is a hierarchical complete tree-like struc-

ture [28] that partitionsD into multiple groups of records.

Each node in I-tree consists of a group of similar records.

The index structure maintains a higher level aggregate

similarity between nodes 3. I-tree is applicable not only

to the studied three algorithms, but also to any content-

based algorithm that is either based on replacing items

in the top-k or building the top-k in an incremental

fashion.

3 Diversity between a pair of records is simply 1−similarity
between them.

Algorithm 5 Indexing Algorithm BuildTree(node)

Inputs: database D of N records, m: arity of the tree, l:
number of levels,
Outputs: I-tree, simMatrixNode: node-node similarity
matrix, recordMap: a mapping of all records and their
belonging node id for each level.

1: rootnode ← N records, y = 0
2: nodelist[y] ← rootnode
3: while y ≤ l do
4: for node in nodelist[y] do
5: cnodes ← Partition(node, m)
6: I-tree [y][node].addChild(cnodes)
7: w ←

⋃
cnodes

8: recordMap[y][r] ← node id containing record r in
y

9: end for
10: MinsimMatrixNode[y][i][j] ← Use Equation 23
11: MaxsimMatrixNode[y][i][j] ← Use Equation 24
12: nodelist[y] ← w
13: y ← y + 1;
14: end while

6.1 Index Construction

The input to the indexing step is aN×N matrix, named

simMatrixRecord. It represents the similarity scores be-

tween every pair of records, ri and rj , in the database

and two additional parameters, l and m, which are the

number of levels and arity of the tree, respectively. The

output is a complete m-ary tree with l levels, referred

to as I-tree.

The indexing algorithm BuildTree (Algorithm 5) par-

titions (refer to the Subroutine Partition) the records.

It also maintains additional data structures that con-

tain similarity scores between nodes for efficient query

processing. An example of a two-level index tree is shown

in Fig. 2. At the first level, BuildTree creates a root

node containing all N records and m children of the

root node. From the point of abstraction, it is not im-

portant at this stage to describe how the data is par-

titioned. Basically, the goal is to keep similar records

together while separating non-similar ones. There are

multiple off-the-shelf techniques such as clustering and

graph partitioning to carry out this task. In our imple-

mentation, we use the popular k-means algorithm [25]

for partitioning. The algorithm repeats the partition-

ing procedure until it reaches l levels. Therefore, I-tree

contains a total of C nodes such that:

C =

l∑
i=0

mi =
ml+1 − 1

m− 1
= O(ml) (22)

Inside I-tree, additional data structures are main-

tained:

a. A recordMap of size N × l that maps the id of a

record with the id of its node in each level from 1 . . . l. b.

MinsimMatrixNode and MaxsimMatrixNode that con-

A Generic Framework for Efficient Computation of Top-k Diverse Results 15

tain inter-node minimum and maximum similarities be-

tween any two nodes in the same level, respectively.

Particularly, for two nodes n and n′ in level y, Minsim-

MatrixNode and MaxsimMatrixNode contain:

MinsimMatrixNode[i, j] = Minr∈i,r′∈jsim(r, r′),

(23)
MaxsimMatrixNode[i, j] = Maxr∈i,r′∈jsim(r, r′),

(24)

where, r ∈ n, r′ ∈ n′. Figure 1 contains these scores for

3 nodes of our running example.

{r2, r10} {r1} {r3}{r4} {r5} {r6} {r7}{r8} {r9}

Node

2 1

Node

2 2

Node

2 3

Node

2 4

Node

2 5

Node

2 6

Node

2 7

Node

2 8

Node

2 9

Node 1 1 Node 1 2 Node 1 3

Root node

{r1, r2,
r3,…, r10}

{r1, r2,
r4, r10}

{r3, r8,
 r9}

{r5, r6,
 r7}

Level 0

Level 1

Level 2

Fig. 2: I-tree

6.2 Index Maintenance

Even for a single insertion or deletion, I-tree requires

the following two activities: a. insertion/deletion of that

record from/into I-tree; b. updating MinsimMatrixN-

ode and MaxsimMatrixNode, if these insertion/deletion

require updating the minimum and maximum similar-

ity scores between nodes. One can easily see that (a)

could be achieved in a constant time when l =1 and

O(l) when l greater than 1. However, a single inser-

tion/deletion may require as many as 2 × (C − 1) up-

dates in these two matrices.

6.2.1 Batch Update

We study how to maintain I-tree considering both in-

sertions and deletions.

Batch Deletion. Let us assume a batch ofR records

are to be deleted from I-tree. The process deletes these

R records one by one and then checks how many entries

inMinsimMatrixNode andMaxsimMatrixNode need up-

date (if the deleted records contribute to these aggre-

gate values, then that require updates in those two ma-

trices, else not). The overall process takes O(|Y | ×C ×
N) time.

Batch Insertion. This problem is more compli-

cated. If the records are inserted arbitrarily inside I-

tree, then, each insertion may potentially cause a total

Dataset Size
#Total
features

#Features
used

Dataset
type

Yelp 112,686 12 3 Real
MovieLens 1,000,209 3 2 Real
MakeBlobs 10,000,000 varied 20 Synthetic

Table 6: Dataset statistics

of 2 × (C − 1) updates in the MinsimMatrixNode and

MaxsimMatrixNode data structures. This is the leading

computational cost of batch insertion. Moreover, when

a batch of records are inserted, it is possible to have

multiple records to get inserted inside the same node,

and that should not be double-counted in the process.

Finally, one needs to insert the records to those nodes,

such that the aggregates stored in MinsimMatrixNode

and MaxsimMatrixNode remain “tight” to enable effec-

tive pruning. These nuances are explored in formalizing

the batch insertion problem.

Problem Definition 2 (Batch Insert.) Let Minsim

MatrixNode[i, j] (similarly MaxsimMatrixNode[i, j])

denote the value after |Y | insertions at the [i, j]-th entry

at the MinsimMatrixNode (similarly MaxsimMatrix

Node matrix). Let Minsimij and Maxsimij be two bi-

nary variables, such that which Minsimij = 1 (sim-

ilarly Maxsimij) , if it requires an update after in-

sertions, 0 otherwise. Our goal is to insert a batch of

records Y such that, it minimizes
∑

i,j Minsimij+
∑

i,j

Maxsimij, i.e., the total number of updates in these

two matrices.

Algorithms.We present an integer programming-based

solution OPTMn for solving the batch insert problem.

While OPTMn indeed produces the optimal solution,

due to its exponential nature, it does not scale to a
very large dataset considering a large number of inser-

tions. As an alternative, we present GrMn a greedy

heuristic algorithm which makes greedy choices and in-

directly attempts to minimize the number of updates

in MinsimMatrixNode and MaxsimMatrixNode matri-

ces. The idea is to make a greedy decision by inserting

each of the incoming records to that node which it is

closest to (based on the underlying similarity measure)

and then check if that insertion requires any updates in

MinsimMatrixNode and MaxsimMatrixNode matrices.

The running time of this algorithm is O(|Y | ×N).

7 Experimental Evaluation

Our experimental evaluations have three primary goals.

First, we analyze if the augmented algorithms return

identical results to their original counterparts using mul-

tiple large-scale datasets. Second, we examine the effi-

ciency and scalability of the augmented algorithms and

16 Md Mouinul Islam et al.

5 k 1 0 k 2 0 k 6 0 k 1 0 0 k
0

5

1 0

1 5

2 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - M M R

 M M R

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5 0

1 0 0

1 5 0

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s) A u g - M M R
 M M R

(b) MakeBlobs

1 M 2 M 5 M 1 0 M
0

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0 A u g - M M R

 M M R

D a t a s e t s i z e

Ru
nni

ng
tim

e (s
)

(c) MakeBlobs, large scale

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5 0

1 0 0

1 5 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - M M R

 M M R

(d) MovieLens

Fig. 3: Aug-MMR vs MMR scalability

0 1 0 2 0 3 0 4 0 5 0
0

1 0

2 0

3 0

4 0

5 0

Ru
nni

ng
tim

e (s
)

k

 A u g - M M R
 M M R

(a) Varying k

1 2 3 4 5
1 0

2 0

3 0

4 0

5 0

Ru
nni

ng
tim

e (
s)

l

 A u g - M M R

(b) Varying l

1 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 01 . 5

2 . 0

2 . 5

3 . 0

Ru
nni

ng
tim

e (
s)

m

 A u g - M M R

(c) Varying m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
2
4
6
8

1 0
1 2
1 4
1 6

Ru
nni

ng
tim

e (
s)

�

 A u g - M M R
 M M R

(d) Varying λ

Fig. 4: Aug-MMR vs MMR varying parameters

Dataset Size 5000 10000 50000 100000
Aug-MMR

MMR
4.33
19.77

8.69
40.16

43.57
197.28

306.11
1206.90

Table 7: Aug-MMR vs MMR running time (s) on

MakeBlobs with l = 2, m = 6

compare them with multiple baselines. Finally, we em-

pirically study the cost of building and maintaining I-

tree. For brevity, we present a subset of results that

are representative.

Experimental setup. All algorithms are imple-

mented in Python 3.8. All experiments are conducted

on a cluster server OSL machine with 32GB RAMmem-

ory, OS: Scientific Linux release 7.8 (Nitrogen), CPU:

Intel(R) Xeon(R) CPU E3-1245 v6 @ 3.70GHz. Ob-

tained results are the average of three separate runs.
4

Diversity and Similarity. We use normalized

Euclidean distance (dist) as diversity to validate our

designed solutions in the geometric space, Cosine sim-

ilarity [25] in general metric space, and an arbitrary

function that does not satisfy triangular inequality as

a non-metric diversity function. For the last one, diver-

sity values between every pair of records is provided as

inputs and these values do not satisfy triangle inequal-

ity. Thus, diversity values are atomic here, and are not

4 The code and data could be found at
https://anonymous.4open.science/r/divGetBatch-
15AC/README.md

derived from the feature vectors. For all these cases,

sim = 1− dist.

Query selection. In our experiments, queries are

chosen randomly.

Performance Measures.Wemeasure precision@k

[25] for qualitative analysis. Efficiency of the proposed

method is demonstrated with |CandR|/N
× 100, pruning = 1 − |CandR|/N × 100, as well as by

presenting the running times of the algorithms in sec-

onds and computing speedup as follows:

speedup =
Toriginal−algorithm

Taugmented−algorithm
(25)

where T denotes running time in seconds. Finally, we

present time to build I-tree and the space required for

that.

Datasets. Experiments are conducted on three datasets,

two real and one publicly available synthetic data. For

real datasets, we useYelp5 andMovieLens 1M records.6

For synthetic data, we useMakeBlobs from the sklearn

package.7 An overview of the datasets is given in Table

6.

5 https://www.yelp.com/dataset/documentation/main
6 https://grouplens.org/datasets/movielens/
7 https://scikit-learn.org/stable/modules/

generated/sklearn.datasets.make_blobs.html

A Generic Framework for Efficient Computation of Top-k Diverse Results 17

5 k 1 0 k 2 0 k 5 0 k 1 0 0 k
0

1

2

3

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - G M M

 G M M

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5

1 0

1 5

2 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - G M M

 G M M

(b) MakeBlobs

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5

1 0

1 5

2 0
 A u g - G M M
 G M M

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s)

(c) MovieLens

Fig. 5: Aug-GMM vs GMM scalability

5 1 0 1 5 2 0 3 0 4 0 5 0
0

1

2

3

Ru
nni

ng
tim

e (s
)

k

 A u g - G M M
 G M M

(a) Varying k

1 2 3 4 5
0

2

4

6

8
Ru

nni
ng

tim
e (

s)

l

 A u g - G M M

(b) Varying l

1 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2

Ru
nni

ng
tim

e (
s)

m

 A u g - G M M

(c) Varying m

Fig. 6: Aug-GMM vs GMM performance varying parameters

7.1 Baselines

In this section, we introduce diversity-based algorithms

and index structure baselines that we compare to our

proposed solutions.

7.1.1 Diversity Baselines

For diversity-based methods, three representative algo-

rithms are implemented.

MMR [14]: computes an objective score based on

two parameters: relevance to the query and diversity

with other records. As shown in Equation 1, they are

combined in a linear expression with a λ coefficient. The

algorithm repeats this computation k times to produce

top-k.

GMM [23]: finds the k most diverse records by se-

lecting the maximum of minimum distances between

undiscovered records and previously selected ones at

each iteration (Equation 10). Like MMR, it also itera-

tively builds the top-k set.

SWAP [48]: This greedy algorithm first finds the

initial top-k records, then greedily interchanges records

that are part of the current top-k with the ones that are

remaining, if the swap improves diversity contribution

(Equation 15).

SPP [21]: Space Partitioning and Probing (SPP in

short) is an algorithm that minimizes the number of

accessed objects while finding exactly the same result as

MMR. SPP belongs to a family of algorithms that rely

only on score-based and distance-based access methods,

and does not require retrieving all the relevant objects.

SPP is designed only for the geometric space.

7.1.2 Index Structure Baselines

We implement three additional baselines to compare

against I-tree. These indexing techniques are limited

to metric space, and can not be applied on arbitrary

diversity function not satisfying triangular inequality.

KD-tree [10]:KD-tree is a multidimensional Binary

Search Tree. The tree is created by bisecting each di-

mension and finding the median. KD-tree can perform

searches in multidimensional space for efficient nearest

neighbor search.

Ball-tree [29]: Ball-tree is a binary tree in which ev-

ery node defines a D-dimensional hypersphere or ball,

containing a subset of the points to be searched. Each

node in the tree defines the smallest ball that contains

all data points in its subtree. This gives rise to the use-

ful property that for a given test point t outside the

ball, the distance to any point in a ball B in the tree is

greater than or equal to the distance from t to the sur-

face of the ball. Ball-tree only supports binary splits.

The arity of the tree in both KD-tree and Ball-tree

is fixed to 2.

M-Tree [15]: M -tree is similar to Ball-tree, but sup-

ports multiple splits. Every node n and leaf lf residing

in a particular node N is at most distance r from N ,

and every node n and leaf lf with node parent N keeps

the distance from it. It also has the similar property of

18 Md Mouinul Islam et al.

1 0 k 2 0 k 4 0 k 6 0 k 1 0 0 k

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
 A u g - S W A P
 S W A P

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s)

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5

1 0

1 5

2 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - S W A P

 S W A P

(b) MakeBlobs

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0
5

1 0
1 5
2 0
2 5
3 0
3 5

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - S W A P

 S W A P

(c) MovieLens

Fig. 7: Aug-SWAP vs SWAP scalability

5 1 0 1 5 2 0 3 0 4 0 5 0
0
1
2
3
4
5

Ru
nni

ng
tim

e (s
)

k

 A u g - S W A P
 S W A P

(a) Varying k

1 2 3 4 50 . 0

0 . 5

1 . 0

1 . 5

2 . 0
Ru

nni
ng

tim
e (

s)

l

 A u g - S W A P

(b) Varying l

1 0 0 2 0 0 5 0 0 1 0 0 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

Ru
nni

ng
tim

e (
s)

m

 A u g - S W A P

(c) Varying m

Fig. 8: Aug-SWAP vs SWAP varying parameters

Ball-tree, which is for a given test point t outside the

node, the distance to any point in a node in the tree

is greater than or equal to the distance from t to the

surface of the node.

We are incorporating Node-Node distance matrix to

these baseline tree index structures so that they can be

used for I-tree API.

Cover-Tree [12]: Another popular indexing struc-

ture is cover tree which is used to enable efficient nearest

neighbor search in metric space. To be able to work with

DivGetBatch() , the indexing technique must work in

a fashion that the parent nodes of the index structure

(in this case a tree) covers the records that are present

in their sub-tree. This allows us to effectively maintain

the inter-diversity bounds across the nodes and when a

node gets pruned, all its children also does. Contrarily,

in a cover tree, only the leaf nodes together contain and

cover all the records and no other intermediate/ higher

level nodes does. Therefore, it is not obvious how to

adapt this indexing technique and integrate it inside

our proposed access primitive.

7.1.3 Index Maintenance Baselines

OPTMn andGrMn are compared with two baselines.

NonIncrMn Algorithm: InNonIncrMn, I-tree is

built from scratch after every |Y | insertions.NonOlMn

Algorithm: This algorithm makes a local decision to in-

sert each record based on Problem 2, without account-

ing for overlapping updates inside the same node in

I-tree.

7.2 Summary of Results

Our first set of experiments (Section 7.3) verify that our

results from all three augmented algorithms are iden-

tical to their original counterparts. We measure preci-

sion@k [25] for different k, and our empirical results

obtain 100% precision score.

Our next set of experimental results demonstrate

(Section 7.4) that the running time of the augmented

algorithms are consistent with our theoretical analyses.

We achieve a 19× and 24× speedup for Aug-MMR

and Aug-GMM, on Makeblobs 10M and Movie-

Lens 1M data, respectively. We achieve a 3× speedup

forAug-SWAP onMakeBlobs 1M dataset. These re-

sults corroborate that our proposed framework is suit-

able to scale on large datasets. We also show that I-

tree works on any arbitrary distance functions while

other baselines are designed for only metric distance

functions.

Figures 11 demonstrate the index construction and

the query processing time trade-off of I-tree and we

compare that with our implemented baseline indexes,

KD-tree, Ball-Tree, M-Tree. These results convincingly

demonstrate that I-tree enables the fastest query pro-

cessing time, while requiring comparable index construc-

tion time. The results demonstrate that I-tree is always

more than 18× faster in query processing and as much

as 170× faster for certain configurations. For prepro-

cessing, it is always more than 1.5× faster and at times

it is more than 20× faster. We also present |CandR|
percentage and pruning percentage of I-tree compared

A Generic Framework for Efficient Computation of Top-k Diverse Results 19

0 2 0 k 4 0 k 6 0 k 8 0 k 1 0 0 k0

5 0

1 0 0

1 5 0

2 0 0
 I - t r e e

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s)

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0 I - t r e e - M o v i e L e n s
 I - t r e e - M a k e B l o b s

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s)
(b) MovieLens, MakeBlobs

1 2 3 4 50

2 0

4 0

6 0

8 0

1 0 0
 Y e l p
 M o v i e L e n s

l

Ru
nni

ng
tim

e (
s)

(c) varying l

1 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

0

1 0 0

2 0 0

3 0 0

Ru
nni

ng
tim

e (
s)

m

 Y e l p
 M o v i e L e n s

(d) varying m

Fig. 9: I-tree construction time

1 0 1 0 0 1 k 1 0 k 1 0 0 k
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

| Y |

Ru
nni

ng
tim

e (
s) G r M n

 N o n O l M n
 N o n I n c r M n

(a) MakeBlobs

1 0 1 0 0 1 k 1 0 k 1 0 0 k
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

| Y |

Ru
nni

ng
tim

e (
s) G r M n

 N o n O l M n
 N o n I n c r M n

(b) MovieLens

Fig. 10: I-tree maintenance time varying |Y |

to other index baselines in Tables 9 and 10 which shows

that I-tree outperforms all baselines with having 90%

pruning.

The results in (Section 7.4.3) convincingly demon-

strate that I-tree is lightweight to compute and space

efficient (for the largest dataset, it takes 109 minutes

to build the index, which is acceptable because it is

done offline and only once). Finally, in section 7.4.3,

we demonstrate that our proposed solution OPTMn

is an ideal choice for incremental index maintenance,

while the greedy heuristic GrMn is highly scalable

while being not too inferior from the optimal solution

OPTMn qualitatively. GrMn takes 22 minutes to in-

sert 100k data into 1M dataset, while building I-tree

from scratch is unrealistic asNonIncrMn takes 2 hours.

7.3 Quality Analysis

The goal of these experiments is to empirically validate

if the augmented algorithms produce the same results

as their original counterparts. Additionally, we present

how effective DivGetBatch() is in pruning records

by presenting the size of CandR. We have calculated

precision@k while varying k from 10 to 50, considering

the original and augmented algorithms. We obtain the

precision@k equal to 100% always.

7.4 Scalability Analysis

We run two types of scalability experiments. (i) demon-

strate the efficacy of the augmented diversification algo-

Dataset Size 5k 10k 50k 100k 500k 1M

Aug-MMR 13% 5.21% 0.56% 0.09% 0.08% 0.08%

Aug-GMM 59.96% 15.48% 4.16% 2.67% 0.31% 0.4%

Aug-SWAP 14.96% 28.11% 10.07% 48.74% 9.27% 0.66%

Table 8: |CandR| percentage returned by DivGet-

Batch() on MovieLens

rithms and compare them appropriately with the base-

lines; (ii) demonstrate the efficacy of the indexing tech-

nique - present index construction and maintenance

time, and compare them appropriately with the base-

lines. Additionally, we also present the memory require-

ments of I-tree. We analyze these effects by increasing

dataset size and other pertinent parameters.

7.4.1 Augmented Diversification Algorithms

We first vary dataset size, then additional parameters

that impact the query processing time. To demonstrate

efficacy, we present two things. (1) The percentage of re-

maining records returned byDivGetBatch(), which is

which is |CandR|/N×100 and pruning (1−|CandR|/N×
100. (II) Query processing time in seconds.

Effectiveness in Pruning. In Table 8, we present

the number of remaining records returned by DivGet-

Batch(), which is |CandR| using MovieLens dataset.

We can observe that there is a remarkable reduction

compared to the original dataset. For example, Aug-

MMR returns only 814 records. The biggest number is

for Aug-SWAP with 66513 records, but still returning

only 6% of the records.

Table 9 and Table 10 show |CandR| and pruning

percentage returned byDivGetBatch() forAug-MMR

algorithm using different index structures and Make-

Blobs dataset. We can see that by fixing C = 32, KD-

tree,Ball-tree, andM -tree pruning are below 5%, while

I-tree pruning considerably outperforms all baseline

which is 90%.

20 Md Mouinul Islam et al.

5 k 1 0 k 5 0 k 1 0 0 k
0

5

1 0

1 5

2 0

2 5 w . r . t . K D - t r e e
 w . r . t B a l l - t r e e
 w . r . t . M - t r e e

I-tr
ee

Pre
pro

ces
sin

g S
pee

dup

D a t a s e t S i z e
(a) I-tree Index Preprocessing speedup w.r.t baselines

5 k 1 0 k 5 0 k 1 0 0 k
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

I-tr
ee

que
ry

pro
ces

sin
g S

pee
dup w . r . t . K D - t r e e

 w . r . t B a l l - t r e e
 w . r . t . M - t r e e

D a t a s e t S i z e
(b) I-tree Query Processing speedup w.r.t baselines

Fig. 11: Index Construction and Query Processing time for tree baselines and I-tree

Dataset Size 5000 10000 50000 100000
I-tree 10% 10% 10% 10%

KD-tree 96.72% 96.72% 96.87% 97.34%
Ball-tree 96.7% 95.62% 96.56% 96.56%
M-tree 97.92% 97.19% 98.32% 98.07%

Table 9: |CandR| percentage returned by DivGet-

Batch() using different index structures for Aug-

MMR on MakeBlobs

Dataset Size 5000 10000 50000 100000
I-tree 90% 90% 90% 90%

KD-tree 3.3% 3.3% 3.1% 2.6%
Ball-tree 3.3% 4.3% 3.4% 3.4%
M-tree 2% 2.8% 1.6% 1.9%

Table 10: pruning percentage by DivGetBatch()

using different index structures for Aug-MMR on

MakeBlobs

Dataset Size 5000 10000 50000 100000
I-tree 10% 10% 5.2% 2.79%
SPP 20.44% 9.57% 27.31% 26.52%

Table 11: number of access percentage for Aug-MMR

and SPP on MakeBlobs

Effectiveness in Number of Accesses. In order to

perform a fair comparison between our augmented al-

gorithms and SPP , we compare the number of I/O

accesses SPP does and present that number for Aug-

MMR (SPP is designed to optimize that access). We

calculate the number of accesses in DivGetBatch()

by counting the distinct records present in CandR in k

rounds. The results are presented in Table 11. We can

see that Aug-MMR has less number of access. For ex-

ample on 100k data, I-tree has 2799 number of access

while SPP has 26521 number of access.

Varying Dataset. Figures 3, 5, and 7 compare the

running times of our three augmented algorithms and

their baselines using our three datasets. As N increases,

the running times of each algorithm and its baseline in-

crease, but we observe that our algorithms are consis-

tently faster and they scale significantly better. Figure 3

shows Aug-MMR’s scalability on all three datasets.

We fix m to 1000, k = 20 and l = 1 for all dataset sizes

while N is increased from 5000 up to 1M. We can see

that onMovieLens, varyingN from 5000 to 1M,Aug-

MMR is 5× faster than MMR. Figure 5 shows Aug-

GMM ’s scalability. On MovieLens, varying N from

5000 to 10M, Aug-GMM is 24× faster than GMM.

Consistent with the theoretical analysis, Aug-GMM

is faster than Aug-MMR for the same settings be-

cause Aug-MMR has an additional k term in the ex-

pected cost equation. Figure 7 shows Aug-SWAP ’s

scalability on all three datasets. For the 1M data of

MakeBlobs we obtain a 3× speedup over SWAP. We

obtain a 1.33× speedup for Movielens because the to-

tal number of swaps in MovieLens are higher.

We also measure the scalability ofAug-MMR com-

pared to MMR using large scale data sizes of 2M,

5M, and 10M using makeBlobs dataset. The results are

shown in Figure 3(c) in which with m = 1000 and l =

1, we have up to 19× speedup.

Moreover, we run Aug-MMR on high-dimensional

euclidean distance considering more number of features

using 1M and 2M makeBlobs dataset. for 1M data, 1M

and 20 features, MMR takes 12492.64 (s), and Aug-

MMR takes 2817.14 (s). For 2M data and 20 features,

MMR takes 25812.43 9 (s), Aug-MMR takes 6317.20

(s) which in both case show 4× speedup.

In addition, we run Aug-MMR on l more than 1

to show the efficiency of our proposed algorithm using

multi-level I-tree. Table 7 shows that for l=2, Aug-

MMR speedup is almost 4× for all dataset sizes.

Varying Parameters. We study the effect of differ-

ent parameters on running time. Some parameters be-

long to the offline indexing algorithm, such as the num-

A Generic Framework for Efficient Computation of Top-k Diverse Results 21

Index Metric Functions Non metric Functions 90% Pruning
I-tree ✓ ✓ ✓

KD-tree [10] ✓ × ×
Ball-tree [29] ✓ × ×
M-tree [15] ✓ × ×

Table 12: Index Comparisons

Distance Function Euclidean Cosine Non-metric
Aug-MMR 3.08 4.64 13.06

MMR 13.12 15.36 15.27

Table 13: Aug-MMR vs MMR running time on

MakeBlobs 100k records using differenct distance

functions

|Y | Algorithm # updates running time (s)

10

OPTMn 14 3.59
GrMn 76 0.007

NonOlMn 14 0.29
NonIncrMn 2446 1.30

100

OPTMn 59 512.42
GrMn 76 0.05

NonOlMn 142 2.97
NonIncrMn 2447 1.44

1000

OPTMn 59 18768.68
GrMn 76 0.43

NonOlMn 1068 34.58
NonIncrMn 2449 1.45

Table 14: I-tree maintenance on MakeBlobs 10k

records

ber of levels (l) and arity of I-tree (m) and the total

number of nodes (C). Other parameters are part of the

online augmented algorithms. For example, k for the

number of returned records and λ coefficient for Aug-

MMR . In Figures 4, 6, 8, we vary parameters using

Yelp dataset with a fixed size of 50000 records. In our

experiment, optimum parameter settings for offline in-

dexing are obtained by performing multiple runs and

selecting the best. The index created using those pa-

rameter settings can be used in multiple runs of the

online phase.

Varying k. Figures 4(a), 6(a), and 8(a) present how

running time changes as we vary k from 5 to 50 for dif-

ferent baselines while fixing l, m, and λ to 1, 500, and

0.8, respectively. The running time increases quadrat-

ically for MMR and Aug-MMR, linearly for GMM

andAug-GMM, and in O(k∗log k) fashion for SWAP

and Aug-SWAP. These results are as consistent with

our theoretical analysis, because of the presence of k2

term in the MMR and Aug-MMR’s expected cost,

k in GMM and Aug-GMM’s expected cost, and k ∗
log k of that of SWAP and Aug-SWAP. Varying m.

Figures 4(c), 6(c), and 8(c) show the impact of vary-

ing m on the running time of the three algorithms.

While varying m, we fix other parameters: k = 20,

l = 1. The choice of m depends on the distribution

of the dataset. As we increase m, the bounds for aug-

mented algorithms become tighter while time for Di-

vGetBatch() increases. We can see that there is a

drop in running time and which indicates the optimum

value for m for these three algorithms. For example, in

Aug-MMR and Aug-GMM, the ideal value is m =

500 and for Aug-SWAP, it is m = 100.

Varying l. Figures 4(b), 6(b), and 8(b) show the

impact of varying l on the running time of the three

algorithms. We fix other parameters: k = 20, and set-

ting m to 2. C, the total number of nodes in I-tree

becomes 2, 7, 15, 31, 63, respectively for l = 1, 2, 3, 4, 5.

In general, by fixing m and increasing l, C increases,

and overall running time decreases. This is consistent

with our theoretical analysis, as the expected running

time contains a 1/C term.

Varying λ. Figures 4(d), 6(d), and 8(d) show that

varying λ in MMR and Aug-MMR does not signifi-

cantly change the running time. We have fixed k = 20,

l = 1, and m = 500. The result is evident by observing

the expected cost equations of MMR and Aug-MMR

algorithms which do not contain a λ term. Though MR

scores changes with λ, it has very little effect on the

overall running time of MMR and Aug-MMR algo-

rithms.

7.4.2 Varying diversity Functions

Table 13 shows the results forAug-MMR compared to

MMR using different distance measures: euclidean dis-

tance measure, cosine similarity as general metric, and

a non-metric distance function. Using 100k data from

MakeBlobs dataset and m= 1000, l = 1 and number

of features = 2, we can see that Aug-MMR performs

4× better than MMR using both euclidean and cosine

similarity metrics. For non-metric arbitrary distance

function, the distance between records do not satisfy

triangular inequality. Using this method, we see 15%

improvement, since the relevance and diversity scores

are created arbitrarily and the result depends on the

data distribution.

Table 12 shows overall comparison for I-tree and

other baselines. SPP uses KD-tree as its index so we

22 Md Mouinul Islam et al.

|Y | Insertion Algorithm Preprocessing time-offline (s) query processing time-online (s)

10
GrMn

NonIncrMn
0.007
1.30

1.25
0.55

100
GrMn

NonIncrMn
0.05
1.44

1.33
0.60

1000
GrMn

NonIncrMn
0.43
1.45

1.96
0.80

10000
GrMn

NonIncrMn
1.02
4.65

8.18
1.61

Table 15: I-tree maintenance GrMn vs construction from scratch NonIncrMn running time on MakeBlobs

10k records

did not add it to the table. We can see that, unlike

other baselines, I-tree can be used in non-metric func-

tions and outperforms with 90% pruning of the original

dataset.

7.4.3 Index Construction & Maintenance

Comparison with Baselines - Index Construc-
tion vs. Query Processing. In these set of experi-

ments, we compare the index construction and query

processing time trade-off of I-tree and compare that

with of KD-tree, Ball-tree, and M -tree considering

Aug-MMR. We adapt k-means and k-medoids [25] for

building I-tree with number of iterations set to 300.

The dataset that is used in this experiments is Make-

Blobs. Figure 11 presents the I-tree speedup compared

to other baselines for index preprocessing and query

processing time. The results demonstrate that I-tree

is always more than 18× faster in query processing and

as much as 170× faster for certain configurations. For

preprocessing, it is always more than 1.5× faster and

at times it is more than 20× faster.

Index Construction. Now that it is obvious that I-

tree outperforms the other indexing baselines, we fur-

ther profile its efficacy. In Figures 9(a) and (b), we vary

dataset size and fix other parameters, m = 1000, l = 1.

As we can observe in Figure 9(a), on the 100K Yelp

dataset, indexing time is 172.69 seconds. In Figure 9(b),

indexing time is 105 minutes on the 1M MakeBlobs

dataset, and 109 minutes on the 1M MovieLens. Fig-

ures 9(c) and (d) show that the running time increases

linearly when parameters m and l are systematically in-

creased. In Figure 9(c), by varying l, we fix dataset size

to 50000, and m to 2 (since C = ml, by increasing l, the

total number of nodes will increase). Finally, in Figure

9(d), we vary m, while fixing dataset size to 50000 and

l = 1. These figures demonstrate that the preprocessing

time increases linearly with varying parameters. I-tree

takes 253 MB of space for 1M data with m = 1000 and

l = 1.

Index Maintenance. For analyzing the index main-

tenance, we use two datasets,MakeBlobs andMovie-

Lens. We compare OPTMn and its efficient counter-

part GrMn with the baselines NonOlMn, and Non-

IncrMn. As expected, OPTMn has the least number

of updates, but due to its inherent exponential nature,

it does not scale beyond 10k dataset size with more

than |Y | = 1000 records. Table 14 presents these re-

sults. We also see GrMn, even though not the optimal

one, but stays consistently close to OPTMn. This ta-

ble also shows that GrMn is better than the baselines

in both running time and number of updates.Figures

10(a) and (b) present running time comparisons on very

large datasets. GrMn is highly scalable, and the other

two baselines take more time than GrMn. These re-

sults corroborate that GrMn is a suitable alternative

to solve the index maintenance problem.

Incremental Index Maintenance vs Maintenance
from Scratch. Table 15 shows comparison between

GrMn and NonIncrMn index update algorithms. We

present index preprocessing time in the offline phase,

and query processing time in the online phase for the

Aug-MMR algorithm. Clearly,GrMn requires smaller

preprocessing time and higher query processing time

compared toNonIncrMn. As it could be seen from Ta-

ble 15, with 10,000 updates, the query processing time

ofGrMn becomes almost 5× slower than that of Non-

IncrMn. Contrarily, the preprocessing time of GrMn

is about 4.5× faster than that of NonIncrMn at that

setting. Since query processing time is more important

and must be optimized, it seems, for 10,000 updates,

it is better to build the index from scratch instead of

maintaining it incrementally.

8 Related Work

8.1 Results Diversification

Result diversification remains to be an active research

topic with extensive applications in recommendation

A Generic Framework for Efficient Computation of Top-k Diverse Results 23

and search [1, 2, 4, 13, 20, 30, 34, 35, 39–43], including

very recent works that study diversity for fairness and

popularity [31, 38, 50].

8.2 Content based algorithms

Content-based algorithms, which are our primary fo-

cus here, are of two kinds: Interchange algorithms first

select k relevant records and then exchange selected

records with remaining records to increase the over-

all diversity (SWAP [48] is an example). Incremental

greedy algorithms iteratively build the top-k set by se-

lecting the best record at each round. Notable exam-

ples of this latter kind are Maximal Marginal Relevance

(MMR) method [14], Greedy Max-Min (GMM) [23],

Max-Sum [22], IA-SELECT [5], and dLSH [1]. SPP [21]

is a bounded diversification algorithm that produces

same result as MMR while minimizing the number of

accessed records. In [17], Drosou et al. introduce both

greedy and interchange algorithms for the diversity over

continuous data. In [19], the authors propose greedy al-

gorithms for considering diversity over dynamic data by

presenting Insert and Delete operations over the cover

tree indexing structure. They also exploit the GMM al-

gorithm for returning diversified top-k results. In [18],

the authors propose greedy algorithms for diversity over

a representative subset of objects, DisC, which is a

mapping of the original data. They also present a de-

gree of diversification, radius r, instead of k size results.

Their proposed algorithms exploit the M -tree [15] in-

dexing structure. From a different perspective, one can

categorize diversification algorithms into three groups:

record-level, feature-level, and category-level. In record-

level algorithms (MMR, GMM, and SWAP), the in-

put is the distance value between records regardless of

which record feature is more important. The score value

is calculated based on an objective function that cal-

culates distances/diversity. The inputs of feature-level

algorithms are record features. Examples are DivGen

and GenFilt [6]. The feature with the highest score is

obtained from all records based on a ranking, and the

goal is to skip some features and prune records having

low scoring features. In the category-level algorithms,

records are grouped into multiple categories. Such algo-

rithms apply some constraints that will return no more

than one or two records from the same category [3, 49].

8.3 Comparison with existing indexes

Compared to our proposed I-tree, existing indexing

techniques are vector space based methods where co-

ordinate information of the records are used to create

data structures to answer a large spectrum of distance

queries, where distance may be based on Euclidean, co-

sine similarity, general Lp norms, and so on. Popular

solutions in low to moderate dimensional space include

K-B-D-tree [37], kd-tree [10], R-tree [24], R∗-tree [9],

SS-tree[44] or more recent X-tree [11], UB-tree[8], SR-

tree [27]. All these methods use the domain object fea-

ture vectors to measure the distance between objects

and create a similarity index. As opposed to that, we

consider the records to be atomic (and not a collection

of vectors), and the diversity function could be met-

ric or not. Therefore, these methods do not extend to

solve our problem. There exists other popular tree data

structures like Cover-tree [12], Ball-tree [29] and M -

tree [15] that are used for nearest neighbor search. Un-

like our I-tree, these trees can only be used for metric

distance functions.

In summary, we present an access primitive Di-

vGetBatch() that leverages a precomputed data struc-

ture I-tree to integrate MMR, GMM, and SWAP to ex-

pedite their processing time. The design of our primitive

is independent of features and categories and is appli-

cable with any distance measure, making it generic and

useful. We study MMR, GMM, and SWAP, since we

believe these are notable choices in the existing diver-

sity literature space, and many more recent works adapt

these algorithms [1, 7, 17–19, 26, 33, 36, 45–47].

9 Conclusion

We propose an access primitive DivGetBatch() to ex-

pedite diversification algorithms while returning their

exact top-k results. We present a computational frame-

work to develop DivGetBatch() that contains a pre-

computed index structure I-tree and describe how to

rewire popular diversification algorithms usingDivGet-

Batch(). Unlike existing indexes that primarily work

on vector spaces (assuming the records have co-ordinates),

we consider the records to be atomic as opposed to a col-

lection of vectors. We make rigorous theoretical analysis

of the exactness and running times of the augmented

algorithms. We present principled solutions to maintain

I-tree under batch updates. Our experiments on large

real-world datasets corroborate our theoretical analy-

sis, and show that our solution yields a 24× speedup

on large datasets.

In the future, we are interested to study how to en-

able approximate top-k result diversification with guar-

antees leading to even faster running times. We also

intend to explore how to adapt our proposed frame-

work if diversity is assumed to satisfy metric property,

in particular, the triangle inequality.

24 Md Mouinul Islam et al.

References

1. Abbar S, Amer-Yahia S, Indyk P, Mahabadi S

(2013) Real-time recommendation of diverse re-

lated articles. In: Proceedings of the 22nd interna-

tional conference on World Wide Web, pp 1–12

2. Abbar S, Amer-Yahia S, Indyk P, Mahabadi S,

Varadarajan KR (2013) Diverse near neighbor

problem. In: Proceedings of the twenty-ninth an-

nual symposium on Computational geometry, pp

207–214

3. Abbassi Z, Mirrokni VS, Thakur M (2013) Diver-

sity maximization under matroid constraints. In:

Proceedings of the 19th ACM SIGKDD interna-

tional conference on Knowledge discovery and data

mining, pp 32–40

4. Agarwal PK, Sintos S, Steiger A (2020) Efficient in-

dexes for diverse top-k range queries. In: Proceed-

ings of the 39th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, pp

213–227

5. Agrawal R, Gollapudi S, Halverson A, Ieong S

(2009) Diversifying search results. In: Proceedings

of the second ACM international conference on web

search and data mining, pp 5–14

6. Angel A, Koudas N (2011) Efficient diversity-aware

search. In: Proceedings of the 2011 ACM SIGMOD

International Conference on Management of data,

pp 781–792

7. Balog K, Radlinski F, Arakelyan S (2019) Trans-

parent, scrutable and explainable user models for

personalized recommendation. In: Proceedings of

the 42nd International ACM SIGIR Conference

on Research and Development in Information Re-

trieval, pp 265–274

8. Bayer R (1997) The universal b-tree for multidi-

mensional indexing: General concepts. In: Interna-

tional Conference on Worldwide Computing and Its

Applications, Springer, pp 198–209

9. Beckmann N, Kriegel HP, Schneider R, Seeger B

(1990) The r*-tree: An efficient and robust access

method for points and rectangles. In: Proceedings

of the 1990 ACM SIGMOD international confer-

ence on Management of data, pp 322–331

10. Bentley JL (1975) Multidimensional binary search

trees used for associative searching. Communica-

tions of the ACM 18(9):509–517

11. Berchtold S, Keim D, Kriegel H (1996) The x-tree:

An efficient and robust access method for points

and rectangles. In: Proc. 1996 Int. Conf. Very Large

Data Bases, pp 28–39

12. Beygelzimer A, Kakade S, Langford J (2006) Cover

trees for nearest neighbor. In: Proceedings of the

23rd international conference on Machine learning,

pp 97–104

13. Cai Z, Kalamatianos G, Fakas GJ, Mamoulis N, Pa-

padias D (2020) Diversified spatial keyword search

on rdf data. The VLDB Journal pp 1–19

14. Carbonell J, Goldstein J (1998) The use of mmr,

diversity-based reranking for reordering documents

and producing summaries. In: Proceedings of the

21st annual international ACM SIGIR conference

on Research and development in information re-

trieval, pp 335–336

15. Ciaccia P, Patella M, Zezula P (1997) M-tree: An

efficient access method for similarity search in met-

ric spaces. In: Vldb, vol 97, pp 426–435

16. Cormen TH, Leiserson CE, Rivest RL, Stein C

(2009) Introduction to algorithms. MIT press

17. Drosou M, Pitoura E (2009) Diversity over contin-

uous data. IEEE Data Eng Bull 32(4):49–56

18. Drosou M, Pitoura E (2012) Disc diversity: result

diversification based on dissimilarity and coverage.

arXiv preprint arXiv:12083533

19. Drosou M, Pitoura E (2013) Diverse set selection

over dynamic data. IEEE Transactions on Knowl-

edge and Data Engineering 26(5):1102–1116

20. Esfandiari M, Borromeo RM, Nikookar S,

Sakharkar P, Amer-Yahia S, Basu Roy S (2021)

Multi-session diversity to improve user satisfaction

in web applications. In: Proceedings of the Web

Conference 2021, pp 1928–1936

21. Fraternali P, Martinenghi D, Tagliasacchi M (2012)

Top-k bounded diversification. In: Proceedings of

the 2012 ACM SIGMOD International Conference

on Management of Data, pp 421–432

22. Gollapudi S, Sharma A (2009) An axiomatic ap-

proach for result diversification. In: Proceedings of

the 18th international conference on World wide

web, pp 381–390

23. Gonzalez TF (1985) Clustering to minimize the

maximum intercluster distance. Theoretical com-

puter science 38:293–306

24. Guttman A (1984) R-trees: A dynamic index struc-

ture for spatial searching, vol 14. ACM

25. Han J, Kamber M, Pei J (2011) Data mining con-

cepts and techniques third edition. The Morgan

Kaufmann Series in Data Management Systems

5(4):83–124

26. Hope T, Chan J, Kittur A, Shahaf D (2017) Ac-

celerating innovation through analogy mining. In:

Proceedings of the 23rd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and

Data Mining, pp 235–243

27. Katayama N, Satoh S (1997) The sr-tree: An in-

dex structure for high-dimensional nearest neighbor

A Generic Framework for Efficient Computation of Top-k Diverse Results 25

queries. ACM Sigmod Record 26(2):369–380

28. Knuth DE (1998) The Art of Computer Program-

ming, Fundamental Algorithms, vol 1, 3rd edn. Ad-

dison Wesley Longman Publishing Co., Inc., (book)

29. Kumar N, Zhang L, Nayar S (2008) What is a

good nearest neighbors algorithm for finding simi-

lar patches in images? In: European conference on

computer vision, Springer, pp 364–378

30. Mafrur R, Sharaf MA, Khan HA (2018) Dive: di-

versifying view recommendation for visual data ex-

ploration. In: Proceedings of the 27th ACM Inter-

national Conference on Information and Knowledge

Management, pp 1123–1132

31. Maropaki S, Chester S, Doulkeridis C, Nørv̊ag K

(2020) Diversifying top-k point-of-interest queries

via collective social reach. In: Proceedings of the

29th ACM International Conference on Informa-

tion & Knowledge Management, pp 2149–2152

32. Mouratidis K (2016) Geometric aspects and aux-

iliary features to top-k processing. In: 2016 17th

IEEE International Conference on Mobile Data

Management (MDM), IEEE, vol 2, pp 1–3

33. Parreño F, Álvarez-Valdés R, Mart́ı R (2021) Mea-

suring diversity. a review and an empirical anal-

ysis. European Journal of Operational Research

289(2):515–532

34. Puthiya Parambath SA, Usunier N, Grandvalet Y

(2016) A coverage-based approach to recommenda-

tion diversity on similarity graph. In: Proceedings

of the 10th ACM Conference on Recommender Sys-

tems, pp 15–22

35. Qin L, Yu JX, Chang L (2012) Diversifying top-k

results. arXiv preprint arXiv:12080076

36. Ren P, Chen Z, Ren Z, Wei F, Ma J, de Rijke M

(2017) Leveraging contextual sentence relations for

extractive summarization using a neural attention

model. In: Proceedings of the 40th International

ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval, pp 95–104

37. Robinson JT (1981) The kdb-tree: a search struc-

ture for large multidimensional dynamic indexes.

In: Proceedings of the 1981 ACM SIGMOD inter-

national conference on Management of data, pp 10–

18

38. Singh A, Joachims T (2018) Fairness of exposure

in rankings. In: Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp 2219–2228

39. Tsai CH, Brusilovsky P (2018) Beyond the ranked

list: User-driven exploration and diversification of

social recommendation. In: 23rd international con-

ference on intelligent user interfaces, pp 239–250

40. Vargas S, Castells P (2011) Rank and relevance in

novelty and diversity metrics for recommender sys-

tems. In: Proceedings of the fifth ACM conference

on Recommender systems, pp 109–116

41. Vargas S, Baltrunas L, Karatzoglou A, Castells P

(2014) Coverage, redundancy and size-awareness in

genre diversity for recommender systems. In: Pro-

ceedings of the 8th ACM Conference on Recom-

mender systems, pp 209–216

42. Wang D, Deng S, Xu G (2018) Sequence-based

context-aware music recommendation. Information

Retrieval Journal 21(2-3):230–252

43. Wang L, Zhang X, Wang T, Wan S, Srivastava

G, Pang S, Qi L (2020) Diversified and scalable

service recommendation with accuracy guarantee.

IEEE Transactions on Computational Social Sys-

tems

44. White DA, Jain R (1996) Similarity indexing with

the ss-tree. In: Proceedings of the Twelfth Interna-

tional Conference on Data Engineering, IEEE, pp

516–523

45. Wu W, Chen L, Zhao Y (2018) Personalizing rec-

ommendation diversity based on user personal-

ity. User Modeling and User-Adapted Interaction

28(3):237–276

46. Wu Y, Liu Y, Chen F, Zhang M, Ma S (2018) Be-

yond greedy search: pruned exhaustive search for

diversified result ranking. In: Proceedings of the

2018 ACM SIGIR International Conference on The-

ory of Information Retrieval, pp 99–106

47. Yao Jg, Wan X, Xiao J (2017) Recent advances in

document summarization. Knowledge and Informa-

tion Systems 53(2):297–336

48. Yu C, Lakshmanan L, Amer-Yahia S (2009) It takes

variety to make a world: diversification in recom-

mender systems. In: Proceedings of the 12th inter-

national conference on extending database technol-

ogy: Advances in database technology, pp 368–378

49. Zanitti M, Kosta S, Sørensen J (2018) A user-

centric diversity by design recommender system for

the movie application domain. In: Companion Pro-

ceedings of the The Web Conference 2018, pp 1381–

1389

50. Zehlike M, Bonchi F, Castillo C, Hajian S, Megahed

M, Baeza-Yates R (2017) Fa* ir: A fair top-k rank-

ing algorithm. In: Proceedings of the 2017 ACM on

Conference on Information and Knowledge Man-

agement, pp 1569–1578

