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Wave propagation of acoustic waves in porous media is considered. The medium is assumed to have

a rigid frame, so that the propagation takes place in the air which fills the material.

The Euler

equation and the constitutive relation are generalized to take into account the dispersive nature of
these media. We show that the connection between the fractional calculus and the behavior of materials
with memory allows to work out time domain wave equations, the coefficients of which are no longer

frequency dependent.

These equations are suited for direct and inverse scattering problems, and lead to the complete

determination of the porous medium parameters.

1 Introduction

During the last two decades, there has been
a reborn interest in sound propagation in
porous materials.
only the necessity of noise control in archi-

The main reason is not

tectural acoustics or in transport vehicles,
but also a better theoretical understanding
of wave propagation in complex media. Spe-
cial attention has been paid to wave propaga-
tion in porous media having a rigid frame and
nowadays, the monochromatic wave propaga-
tion in these media is well understood. Some
of the recent progress in this area are re-
viewed in Allard ! and Lafarge 2.
applications like medical imaging or inverse
scattering problems 2 require the study of the
behavior of pulses traveling in porous me-
dia, it is only recently that the response of
these media to such excitations has been ad-
dressed %. To efficiently cope with the specific
problems appearing in the transient acoustic

If many

field propagation, suited methods not related
to fixed frequency formulation must be ap-
plied. Among them, one can cite the hered-
itary mechanics °
proaches.
material is described by an instantaneous re-
sponse and a ”susceptibility” kernel respon-
sible of the memory effects. Evidently, the

or the time domain ap-
The time-domain response of a

Fourier transformation translates the fixed
frequency results into the time domain. How-
ever in the analysis of the transient behaviour
of the fields, especially the short time be-
haviour near the wave front, the investiga-
tions of the problem as a time domain prob-
lem is more appropriate. A time-domain ap-
proach differs from the frequency analysis in
that the susceptibility functions of the prob-
lem are convolution operators acting on the
velocity and the pressure fields and therefore
a different algebraic formalism has to be ap-
plied to resolve the wave equation. In the
past, many authors have used the fractional
calculus as an empirical method of describing
the properties of viscoelastic materials ¢ 7.
The observation that the asymptotic expres-
sions of stiffness and damping in porous ma-
terials are proportional to fractional pow-
ers of frequency suggests the fact that time
derivatives of fractional order might describe
the behavior of sound waves in this kind of
In addition to that, fractional-
order time derivatives simultaneously model

materials.

relaxation and frequency dependence.

The outline of the paper is as follows.
In section 2 the model of equivalent fluid is
presented and the basic equations in the fre-
quency domain are given. Section 3 is de-
voted to the connection between fractional
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derivative and wave propagation in rigid
porous media. Section 4 contains the asymp-
totic analyses for the low and high frequencies
and the generalized Euler equation and con-
stitutive reltaion and the time-domain wave
equations are worked out.

2 Model of the equivalent fluid

In the acoustics of porous materials, one
distinguishes two situations according to
whether the frame is moving or not. In
the first case, the dynamics of the waves
due to the coupling between the solid skele-
ton and the fluid is well described by the
Biot theory 8. In air-saturated porous media
the structure is generally motionless and the
waves popagate only in the fluid. This case
is described by the model of an equivalent
fluid in which the interactions between the
fluid and the structure are taken into account
in two frequency dependent response factors:
the dynamic tortuosity of the medium a(w)
given by Johnson '° and the dynamic com-
pressibility of the air included in the porous
material 3(w) given by Allard .

Let us consider a homogeneous isotropic
porous material with porosity ¢ saturated
with a compressible and viscous fluid of den-
sity py and viscosity 1. It is assumed that the
frame of this porous solid is not deformable
when it is subjected to an acoustic wave. It
is the case for example for a porous medium
which has a large skeleton density or very
large elastic modulus or weak fluid-structure
couplings. To apply the results of linear elas-
ticity it is required that the wavelength of
sound waves should be much larger than the
sizes of pores or grains in the medium. In
these porous materials acoustic waves prop-
agate only in the fluid. They can be seen as
an equivalent fluid, the density and the bulk
modulus of which are “renormalized” by the
fluid-structure interactions. The basic equa-
tions of this model are the Euler equation
(E) and the law of the mass conservation (M)
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associated with the behavior equation which
are referred as EM equations:

Jv; [(w) Op
pra@) B = —vip, BA%P

—V.v.

1)
In these relations, v and p are the parti-
cle velocity and the acoustic pressure, pg
and K, = vP, are respectively the density
and the compressibility modulus of the fluid,
a(w) and B(w) are the dynamic tortuosity of
the medium and the dynamic compressibil-
ity of the air included in the porous material.
These two response factors are complex func-
tions which heavily depend on the frequency
f = w/2w. Their theoretical expressions are
given by Allard ! and Lafarge ? :

ng |, 4o kipsw
w) = + 14+ )————7—(2
a(w) = aeo Gopske J A2 (2)

(7_1) /)

‘2
ne .4k prwPr
1+jwpfk6Pr V]'—'_J np2A"2

where j2 = —1, v represents the adiabatic
constant, Pr the Prandtl number, a., the
tortuosity, ko the static permeability, k| the
thermal permeability and A and A’ the vis-
cous and thermal characteristic lengths °.
This model was initially developped by John-
son, Koplik and Dashen ', and completed
by Allard and Champoux by adding the de-
scription of thermal effects ''. Later on, La-
farge has introduced the parameter kj which
describes the additional damping of sound
waves due to the thermal exchanges between
fluid and structure at the surface of the
pores 2.

The functions a(w) and B(w) express the
viscous and thermal exchanges between the
air and the structure which are responsible
of the sound damping in acoustic materials.
These exchanges are due on the one hand
to the fluid-structure relative motion and
on the other hand to the air compressions-
dilatations produced by the wave motion .
The parts of the fluid affected by these ex-
changes can be estimated by the ratio of a
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microscopic characteristic length of the me-
dia, as for example the sizes of the pores, to
the viscous and thermal skin depth thickness
5 = (2n/wpo)'/? and &' = (2n/wpoP,)'/?.
For the viscous effects this domain corre-
sponds to the region of the fluid in which the
velocity distribution is perturbed by the fric-
tional forces at the interface between the vis-
cous fluid and the motionless structure. For
the thermal effects, it is the fluid volume af-
fected by the heat exchanges between the two
phases of the porous medium.

In this model, the sound propagation is com-
pletely determined by the five following pa-
rameters: ¢, Qoo, 0 = N/ko, A and A'. In
the next section, we will show that the val-
ues of these parameters are given by the low
and high frequency wave equations.

The sound velocity in the porous material is
derived from equations (2) and (3) and yields
the usual equation :

K,
=\ rawae @

In this expression, the velocity is a complex
function of the frequency which is not very
convenient to investigate the propagation of
ultrasonic short pulses or to deduce the val-
ues of the parameters of the medium. This
is due to the fact that the EM equations (1)
are neither expressed in time-domain nor in
frequency-domain: they are correct only for
To restore their va-
lidity for transient signals, we need to write

monochromatic waves.

them in the time-domain.

3 Fractional derivative and
behavior of materials

The constitutive relation between the strain
€(t) at time ¢ and the driving stress o(t) is
at the heart of the conventional description
of the theory of elasticity. In the ”classical”
theory, the stresses and strains are related by
constants. Accordingly, the time-histories of
these values are similar and the deformation
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process is completely reversible. It was found
out, however, that most elastic materials ex-
hibit an explicit departure from this type of
behavior due to the fact that they partially
absorb energy. These deviations from pure
elasticity may be taken into account by re-
placing the elastic constants by integral or
differential time-operators.

3.1 Fractional derivative and
viscoelasticity

The fractional calculus model of viscoelastic
behavior employs derivatives of fractional or-
ders to relate stress fields to strain fields in
viscoelastic materials and it has been shown
that constitutive equations employing such
derivatives are linked to the microscopic the-
ories describing the macroscopic behavior of
the media. Bagley and Torvik 7 have ex-

plored the models of the form
o(t) + bDo(t)] = Goe(t) + G1 D" [e(t)],

where b, Go, GG1, A and v are five parame-
ters to be determined by least-squares fit to
experimental data. D¥[z(t)] is the fractional
derivative of order v defined by:

1 ! —v—1
F(_V)/O(t—u) z(u)du,
()

where v is a real number and I'(z) is the

D”[a(t)] ==

gamma function. A fractional derivative no
longer represents the local variations of the
function but on the contrary, it acts as a
convolution integral operator. More details
about the properties of fractional derivatives
and about fractional calculus are given in 3.

In view of the success obtained with these
models, one is inclined to ask if they can be
generalized to the case of wave motion in rigid
porous materials.

3.2 Fractional derivative relationship for
a porous medium

To write the basic equations in the time do-
main we use a quite different method that the
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one described in 7.

As seen above the complex susceptibili-
ties a(w) and B(w) have been worked out in
the framework of the equivalent fluid model.
They must be mapped into the time-domain.
For that, the trick is to expand these func-
tions into series of w:

aw) =Y a,(jw)’, Blw) =Y baiw),
v A
(6)

where v and A may be fractional numbers.
Then we use the rules of the fractional calcu-
lus and the Fourier transform

Pl = [ T gweta, ()

— 00

to write the useful relationship:

F[D"g(t)] = (jw)" Flg(t)]- (8)

At last, we substitute the fractional deriva-
tives for the powers of w

(jw)” = D¥[].

Unfortunatly, this method leads to very com-
plicated equations if valid expressions are re-
quired for all values of w and exact solutions
for general conditions are not easily obtained.
For exemple, in this framework the EM equa-
tions have the following general form:

81)2-
py Y a,D” [E} - Vo ()

1 »[op] _
E;bAD [E:| =-V.v.

We do not tackle the problem in this general
way, but we consider the asymptotic expres-
sions of a(w) and (w) when w tends to zero
or to infinity which are generally very sim-
ple functions of w and we map them in the
time-domain.

(10)

4 'Wave equations in the
time-domain

The fact that more than one time-domain
equation must be considered, one equation
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for each particular range of frequencies, ap-
pears to be the drawback of this approach.
Of course, it would be better to have only
one model to describe the sound propagation
in the whole time domain. However, we know
that the relative importance of the effects re-
sponsible of the behavior of fluid in a porous
media is significantly modified when the fre-
quency goes from zero to high values. In
this case it seems reasonable that the physics
laws which govern the wave propagation may
be quite different from one domain to the
other. We now consider the fractional wave
equations which govern the low- and high-
frequency responses of a porous medium.

4.1 Low frequency approzrimations:

The range of frequencies such that viscous
skin thickness 6 = (21/wpo)*/? is much larger
than the radius of the pores r

0
->1
r

(11)
is called the low frequency range. For these
frequencies, the viscous forces are impor-
tant everywhere in the fluid. At the same
time, the compression-dilatation cycle in the
porous material is slow enough to favour the
thermal exchanges between fluid and struc-
ture. The temperature of the frame is then
practically unchanged by the passage of the
sound wave because of the high value of its
specific heat: the frame acts as a thermostat,
and in this case the isothermal compressibil-
ity is directly applicable.

We consider the low frequency approx-
imations of the response factors a(w) and
f(w). When w — 0, the first terms of the
expansion of Egs. 2 and 3 lead to the follow-

ing expressions:
L) . (12)

alw)~ag |1+ -
(w) 0< Jwagpyrko
(13)

B(w) ~ 7.

ay is the the low frequency approximation of
the tortuosity given by Lafarge in 2 and also
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obtained by Norris 2 from homogenization
theory:

< v(r)2 >

< v(r) >2 (14)

Qg
where v(r) is the microscopic velocity due to
the sound wave in a viscous fluid and the an-
gle brackets represent the average of the ran-
dom variable over the sample of material.

The time-domain expression for a be-
comes:

a(w) -5 ag <I+ ne a—1>, (15)

aoprko |
where I is the unit operator and 8; *g(t) =
f(f g(t")dt'. For a wave traveling along the

direction Ox, the generalized forms of EM
equations in the time domain are now:

v ne Jp

Progy ¥ 1V = T (16)
v 9 O
K, ot oz (17)

In this approximation, the Euler equation ex-
presses the balance between the driving forces
of the wave, the drag forces n¢v/kq due to the
flow resistance of the material and the iner-
tial forces.

The wave equation is derived from theses
two relations by elementary manipulations:

oz~ “orr Yo
The first coefficient of this equation:

a= Preo”y
K, "’

—0. (18)

(19)

leads to the sound velocity ¢ = a~'/? in the
air filling the structure of the material. This
result shows that the viscous forces and the
shape of the pores increase the fluid density
by the factor ag > 1. The second coefficient:

g= v

koK,

is the damping-distorsion term due to viscous
and thermal effects which take place in the
porous material. From these equations it is

(20)
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possible to estimate «g and the flow resistiv-
ity o = n/ko.

At very low frequency, the asymptotic ex-
pressions for a(w) and f(w) are:

ne
w) & - ,
() Jwpyko

X

Bw) ~ 7. (21)
In this range of frequencies, EM equations
become:
ne op Y 9p dv
—v=—= d ——==——, (22
'T Tar M Ka T e B

where the Euler equation is reduced to the
Darcy’s law which defines the static flow re-
sistivity o = 1/ko. The fields which are vary-
ing in time, the pressure, the acoustic veloc-
ity, etc follow a diffusion equation with the
diffusion constant:

K, ko
ney

D =

4.2 High frequency approzimation

When the frequency increases, the skin thick-
ness becomes narrower and the viscous effects
are concentrated in a small volume near the
frame §/r < 1. In this case the viscous ef-
fects in the fluid can be neglected: the fluid
behaves almost like a perfect fluid (without
viscosity).

A symetric description than the one pro-
posed in the previous subsection can be given
for the thermal exchanges in this range of fre-
quencies. At high frequencies the compres-
sion/dilatation cycle is a much faster than the
heat transfer between the air and the struc-
ture and in this case, it is a good approxi-
mation to consider that the compression is
adiabatic.

The high frequency approximations of
the response factors a(w) et f(w) when w —
oo are given by the relations:

e (12 (2)).

20y 1) ( U )”2 (24)

~1
Aw) + A’ JwPrpy
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In the time-domain the expressions of the
responses a and 3 become :

a(w) 5 s (6(15) + %\/prJ %, (25)
pe) & (50 + 22 [ )

where * denotes the time convolution and 4(t)

is the Dirac function. The tortuosity a.. is
real-valued and defined as in Eq.14 but from
the field of the microscopic velocity v(r) in a
perfect fluid. Brown '* has shown that this
quantity is related to the electrical formation
factor F' by as, = F'¢. When the wave prop-
agates along the coordinate axis oz, the EM
equations are generalized as follows in the
time-domain:

8p 81)
!
2pfaoo / 81}/8:‘, e, (27)
\ mos
o0 _ 10
Or K ot
8p/3t' ,
K A’ \/ 7rPrpf Vi—t dt (28)

A consequence of this is a
the retarding force is no longer proportional
to the time derivative, it is found to be pro-
portional to a fractional derivative of order
1/2 of the acoustic velocity. This occurs be-
cause the volume of fluid participating to the
motion is not the same for all motion, as
it is for a fully developed steady flow. The
generalized mass conservation equation is in-
terpreted in the same way. In these equa-
tions, the convolutions express the disper-
They
take into account the memory effects due to

surprising result:

sive nature of the porous material.

the fact that the response of the medium to
the wave excitation is not instantaneous but
needs some time to take place. The wave
equation is derived from these two relations

by elementary calculation and can be written

For Publisher’s use

Trigg.

Figure 1. Experimental set-up. P. G : pulse gen-
erator, H. F. F-P. A : high frequency filtering-pre-
amlifier, D. O : digital oscilloscope, C : computer, T

: tranducers, S : sample.
as
Pv_ P _p [0 PO, 00
ox? ot? w VE—1 ot
(29)
where the coefficients are given by:
Pfloco
A==
K, ’
200 [pfn (1 v—1 >
B = —— | =+ ,
K, ™ A vV PrA’
_ das(y —1)n
Kq.psAN' Pr

The first one gives the velocity ¢ = A~1/2 of
the wave in the air included in the porous
material. In this case the fluid density is
modified by the factor a. The other coeffi-
cients are essentially dependent of the char-
acteristic lengths A and A’ and express the
viscous and thermal interactions between the
fluid and the structure. The knowledge of
these three coefficients allows the determi-
nation of the three parameters as, A and
A’. This can be achieved from the measure-
ments of the damping and broadening of ul-
trasonic pulses during the propagation in the
porous medium. With this model, one can
hope to get an easier estimation of the char-
. On an
other hand, the equation (29) is well suited
for analytical solutions and numerical appli-

acteristic lengths than for example 15

cations: the response of the porous medium
to an input signal is given by the convolution
of that signal with the Green’s function of
Eq.29 6. To test whether the approximation
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Figure 2. Incident signal given out by the transducer

is a reasonable model, we compare numer-
ical and experimental results. Experiments
are done in air with two broadband Pana-
metrics V389 piezoelectric transducers hav-
ing a 200 kHz central frequency in air and a
bandwidth at 6 dB extending from 60 kHz to
420 kHz. Pulses of 900 V are provided by a
5058PR Panametrics pulser/receiver (Fig.1).
Received signals are amplified up to 90 dB
and filtred above 1 MHz to avoid high fre-
quency noise. Fig.2 shows the incident signal
given out by the transducer. Numerical simu-
lation and experimental results (transmitted
signal) are presented in Fig.3.
ical results are obtained from convolution of
the Green’s function of Eq.29 with the signal
shown in Fig.2 which is used in the experi-
mental set-up. Accordingly, it seems possible
to get the specific contribution of viscous and
thermal effects to the spreading and attenua-
tion of ultrasonic pulses by standard inverse
scattering methods. For exemple the values
of parameters a,, A and A’ can be estimated
by the fitting problem in which the experi-
mental result s(t) is approximated as closely

The numer-

For Publisher’s use
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Figure 3. simulated (dashed line) and experimental
(solid line) signals. The medium parameters are
Qoo = 1.055, ¢ = 0.97, A = 234um, A’ = 702um,
thikness of the sample = 5 cm, o = 9000. Nm~*

as possible by an ”actual” signal §(c, t), ¢ be-
ing the set of parameters that can be adjusted
to obtain the best approximation (e.g; in the
least-squares sense).

5 CONCLUSION

In this paper the time-domain equations for
the transient wave propagation in a porous
medium have been derived in the low- and
high-frequency ranges. In each range, the co-
efficients of the wave equation are no more
frequency dependent, and viscous and ther-
mal effects can be distinguished. At very low
frequency, the viscous forces and the ther-
mal exchanges are strong enough to prevent
the waves for propagating in these materi-
als: the fields evolution follows a diffusion
equation. At low frequency the damping is
weaker and the fields can propagate. In the
high frequency range, the wave propagation
is described by hereditary mechanics. As a
consequence of the relaxation phenomenon,

depollier: submitted to World Scientific on April 8, 2002 @



[ ] For Publisher’s use [ ]

the fluid density and the bulk modulus are
no longer constant numbers but they are sig-
nal dependent.

The results of preliminary numerical sim-
ulations tend to indicate that studies of the
propagation of transient waves may yield use-
ful data. Ultrasonic impulses seem to be
an efficient tool to probe the properties of
sound materials. Lastly, the time-domain
wave equations have a well adapted form to
the analysis of the direct and inverse scatter-
ing problems.
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