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Incremental Density-based Clustering on Multicore
Processors

Blind review

ABSTRACT
The density-based clustering algorithm is a fundamental data
clustering technique with many real-world applications. How-
ever, when the database is frequently changed, how to ef-
fectively update clustering results rather than reclustering
from scratch remains a challenging task. In this work, we
introduce IncAnyDBC, a unique parallel incremental data
clustering approach to deal with this problem. First, In-
cAnyDBC can process update in bulks rather than batches
like state-of-the-art methods for reducing update overheads.
Second, it keeps an underlying cluster structure called object
node graph during the clustering process and use it as a basis
for incrementally update clusters wrt. changes in databases
by propagating changes around affected nodes only. In ad-
ditional, IncAnyDBC actively and iteratively examine the
graph and choose only a small set of most meaningful ob-
jects to produce exact clustering results of DBSCAN at the
end as well as approximate results under arbitrary time
constraints. And thus it is more efficient than other ex-
isting methods. Third, by processing objects in blocks, In-
cAnyDBC can be efficient parallelized on multicore CPUs,
thus creating a work-efficient method. It runs much faster
than existing techniques using one thread while still scal-
ing well with multiple threads. Experiments are conducted
on various large real datasets for demonstrating the perfor-
mance of IncAnyDBC.

Keywords
Density-based clustering, anytime clustering, incremental
clustering, active clustering

1. INTRODUCTION
Data clustering is a fundamental problem in exploratory

data analysis and has many applications in different fields,
e.g., data cleaning, data compression, machine learning, and
pattern recognition [2, 25]. Given a dataset O, a clustering
algorithm separates it into groups of similar objects. How-
ever, when objects are inserted into or deleted from O, how
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to efficiently update the results rather than reclustering from
the scratch is an important research focus [5,16,45]. In many
clustering methods, the cluster label of an object highly de-
pends on many other ones, making an efficient cluster up-
date process a challenging task [20]. One example is the
density-based clustering algorithm DBSCAN [17], one of the
most widely used data clustering methods with many real-
world applications [30,31,38,42].

In DBSCAN, a cluster is determined by a set of connected
dense objects, and separated from other clusters by sparse
areas. An object p is in a dense area if it has more than µ
neighbors within a specific distance threshold ε. If it is, p is
a core and its label will be propagated to all neighbors. This
label propagation scheme of DBSCAN can be exploited for
efficiently updating clusters due to the locality of changes as
in IncDBSCAN [16]. For example, an inserted object may
merge some existing clusters within its neighborhood. On
the other hand, a deleted objects may break clusters into
smaller pieces. In this case, these clusters need to be re-
grouped due to the label dependency of objects. Thus, in
the worst case, the whole dataset will be affected, which is
obviously as expensive as re-clustering from scratch. When
the dataset and the number of inserted or deleted objects
are large, this leads to significant computation effort and
thus limits the applicability of the algorithm.

Contribution. In this work, we focus on an efficient ap-
proach for incremental updating clusters following the no-
tion of DBSCAN. Our algorithms, called IncAnyDBC, have
some uniques properties as follows.

First, before updating, existing techniques like Inc-DBSCAN
[16] relies on the original DBSCAN algorithm [17] to group
objects and determine their core properties. However, DB-
SCAN requires all neighborhood queries to be performed,
which degrade its performance. It also does not keep enough
information on the cluster structure to serve as a basis for ef-
ficiently update the clustering results when changes occur in
the database. Our algorithm IncAnyDBC first summarizes
objects into small density-connected groups called object
nodes. These nodes and their connections are served as an
underlying structure to predict the final clusters. Based on
this information, IncAnyDBC repeatedly chooses a subset
of objects to perform the neighborhood queries and connect
nodes to build clusters until it finishes or is terminated by
users. This active clustering scheme brings up some benefits:
(1) IncAnyDBC can produce the same result as DBSCAN
with fewer number of queries, thus enhancing performance;
(2) it can be suppressed and resumed at any time to pro-
vide good approximate results (or exact results of DBSCAN

sihemameryahia
AUTHORS’ COPY

sihemameryahia
Son T. Mai, Jon Jacobsen, Sihem Amer-Yahia, Ivor T. A. Spence, Nhat-Phuong Tran, 
Ira Assent, Quoc Viet Hung Nguyen



at the end), while most existing techniques can only pro-
duce a single approximate or exact result, e.g., [19,21]. This
anytime property makes IncAnyDBC useful to system with
limited time constraints or to cope with very large datasets;
(3) since IncAnyDBC only builds clusters based on neighbor-
hood queries, it can be used with arbitrary distance metrics
instead of only Euclidean distance like state-of-the-art grid-
based techniques such as [19,21,23]; and (4) the underlying
node structure is preserved after the clustering and can be
exploited to efficiently update the clusters after object in-
sertions or deletions instead of reclustering from scratch.

Second, when there are changes in the data, existing tech-
niques such as [16,20] update clusters in a batch mode (i.e.,
processing changes one-by-one). This scheme incurs many
redundant overhead, especially when the number of changes
is large. Our algorithm, in contrast, update clusters in a
bulk mode (i.e., all changes at the same time). Hence, it
reduces update overhead and thus is more efficient. Dur-
ing the updating process, the final cluster structure of In-
cAnyDBC is exploited to identify affected areas and to serve
as a basis for building the final clustering results. Similar
to the clustering process, clusters are rebuilt in an iterative
way by letting the algorithm actively choose a subset of ob-
jects to query at each iteration. Thus, at the end, the clus-
ters are updated with fewer number of queries compared to
Inc-DBSCAN [16], thus making IncAnyDBC much efficient.
Moreover, the anytime property is still guaranteed. Users
can suspend and resume the updating process at any time
for examining current results or looking for better ones. To
the best of our knowledge, none existing incremental tech-
niques for DBSCAN has this useful property. IncAnyDBC
is also not restricted in low dimension Euclidean distance
like other state-of-the-art techniques such as [20].

Third, by processing neighborhood queries in a block at
each iteration to build clusters, IncAnyDBC can be effi-
ciently parallelized on shared memory structures such as
multicore CPUs. This makes it a work-efficient parallel
method. It runs much faster than state-of-the-art sequen-
tial techniques such as DBSCAN [17] and IncDBSCAN [16]
using one thread, while scaling very well with the total num-
ber of threads. Moreover, the anytime property still retains
in the parallel mode, uniquely making IncAnyDBC both a
parallel and an anytime method at the same time. To the
best of our knowledge, IncAnyDBC is the first shared mem-
ory parallel approach for incrementally updating clusters in
DBSCAN.

Summarization. To summarize, our major contributions
are as follows:

• We introduce an efficient clustering algorithm for ini-
tializing cluster structures before updating. It uses
much fewer number of queries to build the same clus-
tering result as DBSCAN and thus is more efficient.
Moreover, it can work under arbitrary time constraints
due to its anytime property.

• We introduce an incremental scheme to update clus-
ters wrt. changes in the data in a bulk mode rather
than a sequential batch mode. Similar to the clus-
tering phase, it has an efficient query pruning scheme
and thus it is more efficient than existing techniques
like IncDBSCAN. Moreover, the anytime property is
also supported while updating clusters.
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Figure 1: Incremental clustering: (1) the inserted
object a merges two clusters C1 and C2 into a single
cluster and (2) the deleted object b breaks cluster
C3 into two small clusters

• We propose a way to efficiently parallelizing IncAnyDBC
on shared memory architectures such as multicore CPUs
for further accelerating the performance.

To the best of our knowledge, IncAnyDBC is the first work-
efficient and anytime parallel approach on multicore CPUs
for incrementally update clusters in DBSCAN. Experiments
are conducted on very large real and synthetic datasets for
demonstrating the performance of our algorithms.

2. PRELIMINARY
Density-based clustering. The density-based clustering
algorithm DBSCAN [17] separates each object into clusters
based on the cardinality of its neighbors w.r.t. two given
parameters µ ∈ N+, ε ∈ R+, and a distance function d.

Definition 1. (Neighborhood) The neighborhood of an ob-
ject p, denoted as Np, is the set of objects q where d(p, q) ≤ ε.

Definition 2. (Core property) An object p is called a
core object if |Np| ≥ µ. Otherwise, if one of its neighbors is
a core, p is called a border. If none of its neighbors are core,
it is a noise.

Definition 3. (Reachability) Given a core object p and
an object q ∈ Np, we say that q is density-reached from p,
denoted as p . q.

Definition 4. (Connectivity) Two object p and q are con-
nected if there exists a sequence of core objects x1 to xn such
that p / x1 / x2 · · · . xn . q, denoted as p ./ q.

Definition 5. (Cluster) A cluster is a maximal set of
density-connected objects.

DBSCAN builds clusters by performing neighborhood queries
on all objects to determine their core properties and chains of
density-connected objects (or clusters). Thus, it has O(n2)
complexity, where n is the number of objects. Note that,
each core object belong to only one cluster, while a border
object might be shared by some clusters.

Incremental DBSCAN. When there is a change (inser-
tion or deletion), instead of re-building clusters from scratch,
Ester et al. [16] introduce IncDBSCAN for incrementally up-
date clusters by exploiting the locality of cluster structures
as illustrated in Figure 1. Overall, there are two cases:

• Insertion. An inserted object may change a border
or a noise object into a core one or may act as a core
object to connect two density-connected sets. Thus,
clusters may be merged or new clusters are raised from
noise objects. E.g., the inserted object a merges clus-
ters C1 and C2 into a cluster.
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Figure 2: The general idea of IncAnyDBC

• Deletion. A deleted object may be a core or may
change other core objects into a non-core ones. This
causes clusters to be splited or vanished. E.g., the
deleted object b breaks cluster C3 into two smaller
clusters C31 and C32.

IncDBSCAN processes changes in a batch mode. For each
inserted or deleted object, IncDBSCAN determines a set of
objects that change their core property and uses them as
seeds for update clusters locally, e.g., merge clusters. How-
ever, if a cluster may split, it needs to be fully reclustered
from scratch. Each update takes O(n2) time complexity.

3. OUR PROPOSED ALGORITHM
We assume a database O of n arbitrary objects, grouped

into arbitrarily shaped clusters by DBSCAN. Let B be a set
of m changes on O including (1) insert an object into O, and
(2) delete an object from O.

3.1 General idea
Our approach includes: (1) an efficient clustering algo-

rithm that not only cluster the data effectively but can keep
track off necessary information for updating the results later,
(2) we want to incrementally update the cluster labels for all
objects following the changes made in B rather than reclus-
tering from scratch which is time consuming, (3) the algo-
rithm can process data (clustering and updating) in an any-
time fashion, and (4) an efficient parallel processing scheme
for further improving the performance on multicore CPUs.

Figure 2 illustrates general ideas of IncAnyDBC. They
include: summarization, active clustering, block processing,
bulk processing, and parallel processing.

Summarization. IncAnyDBC first summarizes all objects
into (possible overlapped) subgroups (called object nodes)
using neighborhood queries. Each contains a neighborhood
of an object (c.f. Definition 6), e.g., nodes vp and vq . If
two nodes are close enough, they may belong to the same
cluster and thus will be connected by an edge, e.g., the edge
(vp, vq). These nodes and their connectivity will be served
as an underlying structure to build clusters by connecting
them into separated components since each node already is
a part of a cluster (c.f. Lemma 1). This scheme brings up
many different benefits: (1) it allows the algorithm to build
clusters without having to perform all neighborhood queries,
thus significantly improving performance; (2) it keeps track
off necessary cluster structure to efficiently rebuild clusters
after data changes.

Active clustering. Instead of performing all queries like
DBSCAN, IncAnyDBC iteratively examines the current node
structure and choose most meaningful objects to execute
queries and to build clusters. E.g., if we choose h, it will
connect two nodes vp and vq into a cluster if it is a core (c.f.

Lemma 2). However, if we choose g, it will not help to clar-
ify clusters regardless its core property and thus g can be
safely ignored. Consequently, IncAnyDBC can produce the
same clustering result as DBSCAN with fewer neighborhood
queries and thus it is much efficient than DBSCAN.

Block processing. At each iteration, IncAnyDBC chooses
a set of objects to perform queries instead of a single ob-
ject. This scheme trades off between the cost of repeatedly
examine and choose objects in the active clustering scheme
above and the number of used queries, thus bringing up bet-
ter performance. Moreover, it can be exploited to create an
efficient parallel algorithm as discussed below.

Incremental processing. The node structure can be ex-
ploited to effectively update clusters. When there are changes,
the first step is to update the current node structure by
adding new objects or removing deleted objects from cur-
rent object nodes. Then, we need to update the connec-
tivity among affected nodes before updating clusters. E.g.,
the new inserted object a will be absorbed into the existing
node vp since d(p, a) ≤ ε. Since node vp has a new object,
its connections to other nodes may be changed (c.f. Lemma
2). However, other connections will not be affected and thus
can be ignored. Thus, we can limit the updated area by vp
and its surrounding nodes only (denoted by red edges) for
reducing computation cost.

Bulk processing. Instead of updating clusters with each
object change, we propose to process in a bulk scheme. By
this way, all possible changes in the node structure will be
captured and will be updated at the same time, which is
much efficient. This scheme fits well with the summarization
approach of IncAnyDBC.

Parallel processing. The underlying node structure and
block processing scheme allows us to design an efficient par-
allel technique. The general idea is processing each queries
in a block independently with each other. The results can be
stored in a buffer (for saving memory) and then be used for
construct clusters. This scheme reduces the synchronization
costs and the sequential costs while propagating cluster la-
bels among nodes since the number of nodes is much smaller
than the number of objects.

3.2 The algorithm IncAnyDBC
Generally, the algorithm IncAnyDBC consisting of several

steps. In Step 1, objects are summarized into small (perhaps
overlapped) object nodes representing subclusters of density
connected objects. In Step 2, we built a graph G = (V,E)
where each vertex is a node and each edge represent the
connectivity statuses of these nodes. Step 3 checks if the al-
gorithm must continue. In Step 4, some objects are selected
to perform neighborhood queries. In Step 5, IncAnyDBC
updates the graph G according to the new changes. Step
3 to 5 is repeated until a termination condition is reached.
Then, the final Step 6 looks for the remaining border ob-
jects. The pseudocode for IncAnyDBC is summarized in
Figure 3.

Step 1: Summarization. In the beginning, all objects are
assigned an untouched initial state indicating that they have
not been processed in any ways. Since we only use a subset
of objects to build clusters iteratively, the state of each ob-
ject p changes accordingly and is summarized in Figure 4.
E.g., an object p has processed-core (denoted as pcore) state
indicating that we already performed a neighborhood query
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function C = IncAnyDBC (O, d, µ, ε, α, β) 
input:  dataset O, distance function d, parameters µ, ε of  

   DBSCAN, the query block sizes α, β 

output: the final clustering result C 

begin 

 /* Step 1: Summarization */ 

 while there are untouched objects do 

  select a set B of α untouched objects to query 
  for each object p in B do 

   perform query and mark st(p) 

   mark st(q) and increase nei(q) where q ϵ Np 

   put p into V or L based on its core property 
 build a list Vp of nodes for each object p 

 /* Step 2: Build connectivity graph */ 

 connect pairs of nodes (vp, vq) if d(p, q) ≤ 3ɛ 
 for each object p in O do 

  if p is a core then set the yes states for edges in Vp 

  else set the weak state for edges in Vp 
 /* Iteratively update clustering results */ 

 while true do 

  /* Step 3: Check stopping condition */ 

  label nodes via their yes connected components 
  for each cross-edge (vp, vq) do  

   if st(vp, vq) is unknown, weak, or link then cont = true 

   if cont = false then break 
  /* Step 4: Select objects for querying */ 

  calculate node degrees for all nodes  

  calculate object scores for all unprocessed objects 
  chose a set B of β top scores objects 

  /* Step 5: Update graphs */ 

  perform queries for all objects in B, mark the state, and 

    increase the neighborhood counts for objects 
  for each new core object p do 

   set the yes state for edges in Vp 

  for each core object p in B do 
   for each object q in Np do 

    if q is a core then st(Vp[1], Vq[1]) = yes 

    else st(Vp[1], Vq[1]) = link 

  for each cross-edge (vp, vq) do 
   if st(vp, vq) = weak or unknown then  

    if usize(vp) = 0 ˅ usize(vq) = 0 then st(vp, vq) = no 

   else if st(vp, vq) = link then 
    if usize(vp) = 0 ˄ usize(vq) = 0 then st(vp, vq) = no 

 /* Step 6: Check the noise list */ 

 for each object p in L do 
  check if p is a border object 

end 

Figure 3: Pseudocode for IncAnyDBC

on p and it is a core. If we have not performed a query on
p but we knew it is a core, p is assigned an unprocessed-core
(denoted as ucore) state. Each arrow shows the state transi-
tion of an object p during the clustering process. E.g., if we
perform a query on an untouched state and it is not a core,
we mark it as processed-noise (pnoise). However, in the next
iterations, if one of its neighbors is a core, p is a border and
it state will be changed to processed-border (pborder).

We also store the number of known neighbors for each ob-
ject p, denoted as nei(p), for determining the core property
of p. Beside that, we assign for p a special number called
the database level, denoted as lev(p), which is specially used
to guarantee the consistence of the neighborhood counts in
the insertion and deletion modes presented in Section 3.3.

At each iteration, IncAnyDBC randomly chooses a set S
of α untouched objects and queries their neighbors. If p ∈ S
is a core, we create a node vp ∈ V consisting of Np and
represented by p (cf. Definition 6). In additional, we set
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Figure 4: The state transitions of objects

the current state of p (st(p)) as a processed core (pcore).
Otherwise, we set p as a processed noise (pnoise) and stores
p and Np into a special list called the noise list L for the post
processing step in Step ???. Moreover, we set lev(p) = n
stating that p is processed when the database has n objects.

Definition 6. (Object node). An object node vp ∈ V
consists of the object p as a representative and all of its
neighbors in Np.

Lemma 1. ( [37]) All objects inside vp are density-connected,
i.e., belong to the same cluster.

For each object q ∈ Np, we set its state following the
transition scheme for objects summarized in Figure 4 and
Lemma 1. Concretely, if q is untouched, it will be changed to
uborder if nei(q) < µ or ucore if nei(q) ≥ µ. If q is pnoise,
it becomes pborder. Otherwise, st(q) remains unchanged.
Moreover, if q is not processed, we increase it neighbor count
nei(q) by 1, since q has p as its neighbor.

Step 1 end when there is no untouched objects left. At
the end of Step 1, we build for each object p a list of nodes
containing it, denoted as Vp. Since each core object belongs
to only one cluster in DBSCAN, each node also belongs to
one cluster following its representative (though its non-core
members may be shared among different clusters). Thus,
instead of labeling each object as in DBSCAN, we only need
to label each node in V . The label of an object will be
acquired from the node containing it following Lemma 1.

In the next Steps, IncAnyDBC performs additional queries
on unprocessed objects to connect nodes to form clusters.

Definition 7. (Directly-connected). Two nodes vp and
vq are directly connected, denoted as vp ⇔ vq, if there exists
a set of objects xi ∈ Np ∪Nq so that p / x1 · · ·xm . q.

Following Definition 4 and 5, if vp ⇔ vq, they belong
to the same cluster. There are two connect (merge) cases
in IncAnyDBC, either via a shared core objects or a link
between their two core objects as described in Lemma 2.

Lemma 2. Two nodes vp and vq are directly connected if:

• Case A: they share an object a where st(a) = ucore or
st(a) = pcore (or core for simplicity).

• Case B: there exist two core objects a ∈ Np and b ∈ Nq
such that d(a, b) ≤ ε.

Proof. Case A: We have p / a and a / q (Definition 3).
Thus, p / a . q. Case B: We have p / a and b . q (Definition
3). Since a and b are core and d(a, b) ≤ ε, we have a ./ b.
Thus, p / a . b . q. Thus, p⇔ q (Definition 7).
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Figure 5: The state transitions of edges

Step 2: Build the connectivity graph. In this step, we
create a graph G that captures all possible merges among
nodes w.r.t. additional queries.

Lemma 3. Given two nodes vp and vq, if d(p, q) > 3ε, vp
and vq will never be directly connected.

Proof. Let a and b be two arbitrary objects in Np and
Nq, respectively. Due to the triangle inequality, we have
d(p, q) ≤ d(p, a) + d(q, b) + d(a, b). Since d(p, a) ≤ ε and
d(q, a) ≤ ε (Definition 6), we have d(a, b) > ε. Thus, vp and
vq will not be directly-connected (Definition 7).

Following Lemma 3, we initialize the graph G by creating
an edge (vp, vq) between vp and vq in V if d(p, q) ≤ 3ε. The
graph G roughly captures the cluster structure of the data
following Lemma 4 described below.

Lemma 4. If two core objects a and b are density-connected
in DBSCAN, there exists a path of nodes in G that connects
vp and vq, where a ∈ vp and b ∈ vq.

Proof. Let a = x1 / x2 · · · . xn = b be a chain of core
objects connecting a and b (Definition 4). After Step 1, if
xi is core, it must be covered inside a node vj of V . Since
d(xi, xi+1) ≤ ε, their nodes will be connected in G.

Each edge represents a pair of nodes that may be directly-
connected wrt. additional queries. For each edge (vp, vq) of
G, we assign a state reflexing the connectivity status of two
nodes vp and vq.

Definition 8. (Edge state). The state of an edge (vp, vq),
denoted as st(vp, vq), captures the connectivity status of vp
and vq. If st(vp, vq) = unknown, we do not know if vp
and vq are directly-connected or not. If vp and vq share
an object, st(vp, vq) = weak meaning that they are more
likely to be directly-connected. If st(vp, vq) = yes, vp and
vq are directly-connected and are in the same cluster. If
st(vp, vq) = no, vp and vq will never be directly-connected.

During the operation of IncAnyDBC, the states of edges
change as summarized in Figure 5. The link state is a special
trick of IncAnyDBC and will be explained in Step 5. Note
that, the no state does not mean that vp and vq are not
in the same cluster. They may be connected via a chain of
directly-connected nodes.

At the end of Step 2, we update the states of edges. Fol-
lowing Lemma 2, if p is a core (either ucore or pcore), all
nodes in Vp will belong to the same cluster. For each edge
(Vp[i], Vp[i − 1]) where Vp[i] is the node at position i of Vp,
we set its state to yes, meaning that they will be in the same
cluster. If p is not a core, we do not know that all nodes in
Vp are in the same clusters or not. But, since they overlap,
they have higher chances to be. Thus, we assign for each
edge (Vp[i], Vp[i − 1]) the weak state. Note that we do not

need to change all edges among nodes in Vp for avoiding
computational overheads.

Step 3: Check stopping condition. At the beginning of
Step 3, we label all nodes of G by finding connected compo-
nents of yes edges of G. If two nodes vp and vq belong to
the same connected component, they are in the same cluster
following Definition 7. Let label(vp) be the current cluster
label of a node vp.

Definition 9. (Cross-edge). If an edge (vp, vq) ∈ E has
label(p) 6= label(q), it is called a cross-edge since it connects
two different clusters.

Lemma 5. If there is a cross-edge (vp, vq) where st(vp, vq) ∈
{weak,unknown, link}, the cluster structure may change.

Proof. Since vp and vq have different labels, st(vp, vq) 6=
yes. If st(vp, vq) = no, they will never be directly-connected.
Thus, the cluster structure may only change if st(vp, vq) is
weak, unknown, or link, since it may be changed to yes wrt.
new queries, leading to the merge of two clusters.

Following Lemma 5, we scan through all edges of G look-
ing for weak, unknown, or link cross-edges. If they exist, the
algorithm should continue. Otherwise, IncAnyDBC can be
stopped since the clustering result will not change regardless
of any other queries.

Step 4: Select objects for querying. The general pur-
pose of this step is too select unprocessed objects for pro-
cessing so that the clusters are formed quickly, i.e., more
nodes to be connected at each iteration. At the same time,
we want the algorithm to be terminated as quick as possible
to ensure the final performance. To do so, the graph G is
used as a basis for ranking objects based on their impact on
the changes of the current cluster structure.

Definition 10. (Node degree). The degree of a node vp,
denoted as deg(vp), is defined as follows:

deg(vp) =
∑

vq∈adj(vp)

ω(vp, vq)stat(vq)

where adj(vp) is the set of adjacent nodes vq of vp where
label(vq) 6= label(vp) (i.e., (vp, vq) is a cross-edge); w(vp, vq)
is the predefined weight for each edge based on its state (1
if st(vp, vq) = unknown, 2 if st(vp, vq) = link, and 4 if
st(vp, vq) = weak); stat(vp) is the current processing score
of vp and is defined as:

stat(vp) = (1− |Np|
n

) +
usize(vp)

|Np|
+ ψ(vp)

where usize(vp) is the number of unprocessed objects of Np
and ψ(vp) = 1 if vp consists of an pborder object and ψ(vp) =
0 otherwise.

The degree of a node vp (deg(vp)) measure the uncertainty
of vp wrt. the current structure. If vp is lying closer to bor-
ders of many different clusters (it has larger |adj(vp)| or con-
tains a processed border object), its label is more uncertain
than one lying deep inside a cluster. Thus, if we perform
a query on q ∈ vp, it will connect more nodes following
Lemma 2 or will break some undetermined edges faster fol-
lowing Lemma 6. Besides that, if st(vp, vq) = weak, p and
q have stronger influence to each other than unknown state.
Thus, we assign a higher weight for weak edges. Moreover,



for each node p, we assign higher stat score for p if |Np| is
small since it is more likely to be a border node. We also
prefer nodes that contains fewer unprocessed objects since
fully processing them will break undetermined edges, mak-
ing IncAnyDBC converge faster following Lemma 5.

Definition 11. (Object score). The score of an object p,
denoted as score(p), is defined as follows:

score(p) =
∑
vq∈Vp

deg(vq)

Similar to the node degree, higher score(p) means that p
is in a highly uncertain area (covered by uncertain nodes).
Thus, processing it first may bring bigger changes to the
cluster structure. Moreover, we prefer object with lower
number of neighbors since its core property is more uncertain
than the higher one.

At the end of Step 4, we choose a set B of β objects with
highest scores for processing in Step 5.

Step 5: Update graphs. In the beginning of this step,
we performing queries on all β selected objects. For each
object p, we mark its core properties as pcore if it a core
or pborder otherwise, and set lev(p) = n. We also increase
the number of neighbors nei(q) for each unprocessed object
q ∈ Np. We also set new states for all objects q ∈ Np
following the transition states of objects in Figure 4.

Following Lemma 2 Case A, for each new ucore or pcore
object p ∈ O, all nodes in Vp will be directly-connected.
Thus, for each edge (Vp[i], Vp[i+ 1]), we set its state to yes.

For each core object p ∈ B, we need to check if p connect
its node to other nodes via its neighbors following Lemma
2 Case B. To do so, we scan through each object q ∈ Np.
If q is pcore or ucore, all nodes in Vp and Vq are directly
connected. However, we only need to set edge (Vp[1], Vq[1])
as yes (since Vp and Vq are processed in Case A above). If q
is uborder, the connection may be available if future queries
reveal that q is a core. Thus, we set for edge (Vp[1], Vq[1]) a
special state called link, indicating that they are more likely
to be connected via a pair of core objects.

Lemma 6. Given a cross-edge (vp, vq) where st(vp, vq) ∈
{weak, unknown, link}, if usize(vp) = 0 ∧ usize(vq) = 0, vp
and vq will never be directly-connected, i.e., st(vp, vq) = no,
where usize(vp) is the number of unprocessed objects of vp.

Proof. Assume that their exists a chain of objects xi ∈
vp ∪ vq so that p / x1 · · ·xm . q. Since all xi are pcore, vp
and vq will belong to the same cluster following Lemma 2.
It leads to contradiction since label(p) 6= label(q).

Optimization. Following Lemma 6, we need to perform all
queries on their objects to break a cross-edge (vp, vq) into no
state if vp and vq finally belong to different clusters. When
there are many of such cross-edge between two clusters, re-
dundant queries may occur, making IncAnyDBC converge
slower following Lemma 5. Thus, IncAnyDBC uses a special
trick to reduce the number of required queries.

For each weak or unknown cross-edge (vp, vq), if usize(vp) =
0 or usize(vq) = 0, we set st(vp, vq) = no (even though vp
and vq may be directly-connected if more queries are per-
formed). However, if st(vp, vq) = link, we only change it to
no if both nodes are fully processed. We need to prove that
this scheme still guarantees a correct clustering result.
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Figure 6: Illustration of Lemma 7

Lemma 7. Assume that (va, vc) is a cross-edge at the
current iteration of IncAnyDBC (but a and c belong to the
same cluster in DBSCAN). We prove that when IncAnyDBC
stops, va and vc will be put in the same cluster.

Proof. (Sketch) Wlog., we assume that usize(va) = 0
and hence st(va, vc) = no. There must exist a pair of object
x ∈ Na and y ∈ Nc so that d(x, y) ≤ ε and st(x) = pcore ∧
st(y) 6= pborder (y is actually a core in DBSCAN).

If st(y) is core, va and vc are put into the same connected
component. Thus, label(va) = label(vc).

If st(y) = uborder, a link state is set to a pair of nodes con-
taining x and y. Assume that st(va, vc) is link, IncAnyDBC
cannot stop until (va, vc) is not a cross-edge or they are
fully processed. In both ways, va and vc are finally in
the same cluster. Assume that the link state is assigned
to (vb, vd) as illustrated in Figure 6, where x ∈ vb and
y ∈ vd. If label(b) = label(d), va, vb, and vd are in the
same cluster (since x is core). Thus, if label(c) = label(d),
we have label(va) = label(vc). Otherwise, (vc, vd) is a cross-
edge. In the worst case, vc and vd are fully processed, re-
vealing that y is core. Hence, va, vb, vc, vd will be in the
same connected component, making label(va) = label(vc).
If label(b) 6= label(d), (vb, vd) is a cross-edge. Thus, in the
worst case, vb and vd are fully processed. Processing y will
connect va and vc together as the above case. The other
cases are proven similarly.

According to Lemma 7, if two nodes vp and vq belong
to the same cluster, it will be detected correctly by In-
cAnyDBC, though (va, vc) may be assigned as no due to
the optimization process described above.

At the end of Step 5, IncAnyDBC goes back to Step 3
to check if it should stop. If not, it chooses another set of
objects to process until the termination condition is reached.

Step 6: Check the noise list. This post-processing step
of IncAnyDBC checks the noise list L to find remaining bor-
der objects. For each object p ∈ L with pnoise state, if there
is a core object q ∈ Np, p will be a border object and is as-
signed the same label as q. Otherwise, we need to perform
a query on each uborder object q ∈ Np and set level(q) to n
until we find a core to assign p to. If there is no core found,
p is surely a noise.

Correctness. When it reaches its final stage, IncAnyDBC
produces the identical results as DBSCAN, except for shared
border objects. They may be labeled differently in both DB-
SCAN and IncAnyDBC according to the examining order of
objects.

Lemma 8. IncAnyDBC produces the identical final clus-
tering results as DBSCAN.

Proof. (Sketch) If two core objects a ./ b in DBSCAN,
there exists a path of nodes v1 · · · vm in G such that a ∈ v1
and b ∈ vm (Lemma 4). Due to Lemma 7, all nodes vi be-
long to the same clusters in IncAnyDBC. Hence, label(a) =
label(b) (Lemma 1). Moreover, if a 6./ b in DBSCAN, for



each chain of core objects a = x1 · · ·xm = b, there ex-
ists a pair xi and xi+1 where d(xi, xi+1) > ε. Moreover,
xi ∈ vp and xi+1 ∈ vq where p 6= q (otherwise a ./ b). Thus,
vp and vq will never be directly-connected. Consequently,
label(a) 6= label(b) in IncAnyDBC. Step 6 of IncAnyDBC
ensures that we do not miss any border objects. Thus, the
results of IncAnyDBC and DBSCAN are identical.

Monotonicity. Since IncAnyDBC merges nodes with new
queries, the number of clusters will decrease at each iter-
ation. This is useful when we want to track the progress
of IncAnyDBC. E.g., if the number of clusters remains sta-
ble at some iterations, we can stop IncAnyDBC for saving
runtime, while having almost the same clustering result as
DBSCAN.

Complexity. Let v = |V |, e = |E|, and l = |L|. Step 1
needs O((v + l)n) for neighborhood queries and O(vn+ lµ)
for marking object states. Step 2 consumes O(v2) for build-
ing G and O(vn) for updating edges. Step 3 uses O(v2) for
connected component finding and O(e) for checking termi-
nation condition. Step 4 requires O(e) for node degree calcu-
lations, O(vn) for calculating object scores, and O(n logn)
for sorting objects. Step 5 spends O(βn) time for queries,
O(vn+ βn) for updating yes edges, and O(e) for no edges.
Step 6 needs O(lµn) time for querying neighbors. Overall,
IncAnyDBC has O(vn+ ln+ v2 + n

β
(v2 + e+ vn+n logn+

βn) + lµn) time complexity. In the worst case, v and l are
O(n) and e = v2 (roughly speaking). And let β = O(n).
The time complexity of IncAnyDBC is O(n2), which is sim-
ilar to that of DBSCAN.

IncAnyDBC needs to store all nodes, the graph G and the
noise list L. Thus, its space complexity is O(vn+ v2 + lµ).

3.3 Dynamic cluster update
Reverse query. In IncAnyDBC, we have two different
kinds of neighborhood queries. The first one is the normal
query where we find the neighbors for an object p on the
whole database O. The second one is called reverse-query,
where we only perform neighborhood queries on the set B
of inserted or deleted objects. Since m � n, the reverse-
query is much faster than the normal query. Let Mp be the
neighbors of p under a reverse-query.

3.3.1 Insertion
In the insertion case, the clusters will be merged into big-

ger ones or new clusters are raised as described above 2.
IncAnyDBC first updates the current noise list L and the
node list V in Step 1 and 2. Then it creates new nodes for
new objects if it is necessary in Step 3. The graph G is up-
dated for reflexing changes in Step 4. And the clusters are
updated in Step 5. Figure ?? shows the pseudocode of the
insertion case.

Step I0: Preparation. Before updating clusters, we mark
the state of each new object as untouched. Each object o is
assigned a flag called ptou indicating that it is in processed
state but may change to unprocessed due to inserted objects.

Step I1: Update the noise list. Some noise objects
may become core ones if new objects come into its their
neighborhoods. Thus, for each object p ∈ L, we perform a
reverse-query on p, looking for new objects in its neighbor-
hood. If nei(p) + |Mp| ≥ µ, p becomes a pcore. We also
mark st(q) = uborder for q ∈ Np ∪Mp if q is a new object
and pborder if q is an old object. In both cases, we update

the neighborhood for p as Np ∪ Mp, increase the number
of neighbors nei(q) by 1 for new object q ∈ Mp, set the
database level level(p) = m + n (since the database has m
objects more), and set ptou(p) = 0 (since p is surely a pro-
cessed objects after insertions ). At the end, we remove p
and put it into the set V of nodes if it is a core.

Step I2: Update the node list. Similar to the noise list,
some existing nodes in G may change wrt. new inserted
objects and thus need to be updated. Hence, for each node
vp ∈ V , if Mp 6= ∅, we add Mp into the neighbor set Np of p
and update nei(q) for q ∈Mp. We also set level(p) = m+n
and ptou(p) = 0 like Step I1.

Step I3: Create new nodes. After Step I2, some new
objects have been covered in new nodes or existing nodes.
Some remain outside with the untouched state. We need to
cover these objects inside nodes.

Similar to Step 1 of IncAnyDBC (Section 3.2), we repeat-
edly choose a set A of α untouched new objects. For each ob-
ject p in A, we perform a range query on p, if Np ≥ µ, we set
st(p) = pcore and put vp to V . Otherwise, st(p) = pnoise.
Now, we increase the number of neighbors nei(q) for q ∈ Np
only if level(q) < n + m. Here, the database level ensures
that nei(q) is correctly recorded since some currently pro-
cessed objects have been checked without new inserted ob-
jects by IncAnyDBC during its clustering phase.

Step I4: Connect new nodes into G. Let V N be the set
of new nodes created in Step 1 and 3. We need to determine
their relationships with other nodes. Following Lemma 3,
for each node vp ∈ V N , if d(p, q) ≤ 3ε, where vq ∈ V , we
add an edge (vp, vq) into the edge set E of G, indicating
that they can be directly-connected. We also temporarily
set st(vp, vq) = no (it will be fixed later).

Step I5: Identify change core nodes. At the end of
Step I3, all new objects are either inside nodes or in the
noise list. Let V 1 be the set of nodes that contain new
objects and L1 be the set of new objects in L. Let OA be
the set of objects in ∪vp∈V 1adj(vp) and ∪p∈L1Np, i.e., all
objects inside nodes with new objects and its adjacency and
inside the new none-core nodes.

Lemma 9. All processed objects o /∈ OA will not change
their core properties after the insertion by new objects.

Lemma 9 is directly referred from the triangular inequal-
ity in Lemma 3. All processed non-core objects in O1 may
change to core ones due to the new inserted objects. Thus,
for each pnoise or pborder object o ∈ OA (that has not been
processed in Step I1, i.e., ptou(o) = 1), if nei(o) ≥ µ, we
mark it as a changed object. Otherwise, we perform a re-
verse query on o to check if o is a core (if nei(o)+ |Mo| ≥ µ),
set ptou(o) = 0, and level(o) = n + m. For each object
p ∈Mo, we update nei(p) if nei(p) < n+m.

For each change core objects, we add their nodes to the
list of change core nodes V 2 together with all newly created
nodes in Step I1 (since they contain change core objects).

Step I6: Fix the core property of objects. Due to
additional range queries in Step I1, I2, I3 and I5, the core
properties of objects may change and need to be updated.
For each old object o ∈ OA, if ptou(o) = 1, o may change
from processed to unprocessed states. If st(p) 6= pcore and
nei(p) ≥ µ, we change it to ucore. Otherwise, it state re-
mains unchanged. If st(p) = pcore, we change it to ucore.



If o is not processed before insertions or has been updated
(ptou(o) = 0), st(o) = uborder, and nei(o) ≥ µ, we set
st(o) = ucore.

If o /∈ OA, st(o) will not change (Lemma 9). Thus, we set
level(o) = n+m and ptou(o) = 0 if p is in processed states.

Step I7: Update cluster structures. For each affected
object o ∈ OA, we update the graph G by setting a yes
connection among pairs of nodes in Vo as in Step 5 of In-
cAnyDBC. Then, we update the labels of nodes following
their connected components of yes edges like Step 3 of In-
cAnyDBC.

Due to the merge of clusters, some existing cross-edgeswith
the no state will be changed. Let V A = V 1 ∪V 2 be the sets
of nodes with new objects and change cores objects.

Lemma 10. For each cross-edge (vp, vq), if vp /∈ V A ∧
vq /∈ V A, st(vp, vq) will not be affected by new objects.

Proof. (Sketch) Since (vp, vq) are a cross-edge before in-
sertion, st(vp, vq) must be no. And, there is no pair of core
objects that will connect them as described in Lemma 2.
Thus, edge st(vp, vq) only changes if there is a new object
coming into them or a processed border object inside vp or
vq becomes a core object. These objects possibly become
shared core objects or create a core-core link between them,
causing the state changes. Note that an uborder object in
vp or vq does not contributed to the connectivity. Thus if it
becomes a core, it will not cause any change.

Following Lemma 10, for updating clusters, an obvious
way is reseting all possible edges related to V A back into
the unknown state and taking all objects inside nodes of V A

and its adjacency nodes to rebuild the connections among
them. However, this still incurs redundant queries as shown
in Figure 2. Since vv and vp already belong to the same
clusters, examining (vv, vp) will not lead to any changes in
the result. Thus, we follow a more efficient way as following.
The general idea is reducing the total number of nodes and
links that need to be examined. Consequently, this saves
unnecessary queries, thus improving the performance.

Step I8: Fix the links in G following new objects.
Let V 1A be the set of nodes vq where (vp, vq) is a cross-edge
and vp ∈ V 1.

Lemma 11. Given a new object a ∈ vp, if d(a, q) > 2ε, a
does not change the state of (vp, vq).

For finding exactly nodes will be affected by new objects,
for each node vq ∈ V 1A, we perform a reverse-query on q
with threshold 2ε (as demonstrated in Figure ??). If M2ε

q

does not contain a core or or uborder new object, st(vp, vq)
will obviously not be affected and can be excluded from V 1A.
Similarly, we remove a node from V 1 if it has no cross-edge
counter parts in V 1A.

Let O1A be the set of objects in V 1A (exclude pnoise and
pborder due to no contribution and change core objects (will
be processed later)). For each object o ∈ O1A , we perform a
reverse query on o to get new neighborsMo. These neighbors
will be used to limit the involved nodes.

Before further processing, we need to update the core
properties of objects due to new queries. For each object
o ∈ O1A, if level(o) = n, we update the numbers of neigh-
bors for o by increasing nei(o) and nei(p) for each p ∈ Mo

with level(p) < n + m. If nei(p) ≥ µ and st(p) = uborder,

we change st(p) to ucore. Similarly, if nei(o) ≥ µ, we as-
sign st(o) = ucore. And set level(o) = n + m to update its
query information. For each new core objects, we set the
yes connections among its nodes following Lemma 2.

For each o ∈ O1A and for each object p ∈ Mo, if o and p
are core, we set a yes connection between two nodes in Vo[1]
and Vp[1] following Lemma 2. Otherwise, if p is not pborder
or pnoise, o and p may link these nodes together. Thus,
we keep all nodes of Vo and Vp inside the sets V 1 and V 1A

respectively. At the end, V 1 and V 1A contains only nodes
that can cause the changes in cluster structures.

If there are new yes edges, we re-update the cluster labels
to reduce the number of cross-edges. Then, for each cross-
edges (vp, vq) where vp ∈ V 1 and vq ∈ V 1A, if st(vp, vq) =
no, we set st(vp, vq) = unknown. This makes the algorithm
to reupdate clusters following Lemma 5.

Step I9: Fix the links in G following change core
objects. Similar to new objects, change core ones cause
clusters to be merged as in Lemma ??. Let V 2A be the set
of nodes vq where (vp, vq) is a cross-edge and vp ∈ V 2. Let
O2 be the set of change core objects in V 2.

Lemma 12. For each object o ∈ O2 and node vp ∈ V 2A,
if d(o, p) > 2ε, o does not change the state of (vp, vq).

Following Lemma 12, for each object o ∈ O2 and vp ∈
V 2A, if d(o, p) ≤ 2ε, we do not remove vp from V 2A and o
from O2 since they may cause the cluster changes.

For each remaining object o ∈ O2 and p ∈ No, if p is a
core object, we set st(Vo[1], Vp[1]) = yes following Lemma 2.
If p is uborder, p and o may form a link later if p is truly a
core. Thus, we do not remove nodes of Vo and Vp from V 2

and V 2A, respectively.
Similar to Step I8, we update the labels of nodes if a yes

edge occurs above before changing each cross-edge (vp, vq)
where vp ∈ V 2 and vq ∈ V 2A to the unknown state if it is
in the no state.

Step I10: Choose objects to be examined. Let V E =
V 1∪V 1A∪V 2∪V 2A be the set of nodes that may be merged
and are detected in Steps I8 and I9. Let OE be the set of
objects in vp ∈ V E (exclude node center, pborder and pnoise
objects).

Proposition 1. We only need to examine objects in OE

to fully update clusters after the insertions.

Proposition 1 can be seen directly from Lemma 10 and
the Steps I8 and I9 described above. In these steps, edges
that do not affected by new inserted objects will be excluded
from the cluster update by keeping their states as no. Thus,
V E contains all nodes belong to changing edges. Following
Lemma 2 and Lemma 6, we need to examine all objects in
OE to clarify these edges as yes or no ones.

Following Proposition 1, we remove the processed mark
for each object o ∈ OE from pcore to ucore. This allows the
algorithm to re-perform the query to connect nodes.

Step I11: Update the clusters. In this step, we update
cluster structures by examining all unprocessed objects in
OE to connect nodes in the similar ways to Step 3 to 6 of
IncAnyDBC in Section 3.2.

Concretely, at each iteration, we choose a set of β objects
in OE to perform queries by assessing their roles on the
changes of cluster structures as in Step 4 of IncAnyDBC.



However, we calculate usize(vp) for each node vp by objects
inside OE only. Then, for each selected object p, we perform
the range queries on it and update the state and current
number of neighbors for each unprocessed object q ∈ Np
as in Step 5 of IncAnyDBC. Since there are new objects
inserted into the database at different times, we only update
nei(q) if q ≥ level(p)∧p ≥ level(q) for ensuring consistency.
After that, we update the states of edges of G following the
changes of objects as in Step 5 of IncAnyDBC. The process
stops when the termination condition in Lemma 5 in Step 3
of IncAnyDBC is reached with new usize values of objects.
Finally, a post processing step as in Step 6 of IncAnyDBC
is performed to identify the remainder border objects.

Correctness. We prove that IncAnyDBC produces identi-
cal results to those of DBSCAN after insertions.

Lemma 13. IncAnyDBC produces identical results to those
of DBSCAN after insertions.

Proof. (Sketch) Steps I1 to I3 guarantee that if a new
object a is a core, it will be covered inside a node. Moreover,
Steps I8 to I9 ensures that all possible changes in G wrt.
new objects can be captured. And the result can be fully
updated by following the set OE as in Proposition 1. Thus,
similar to Lemma 8, if two core object a ∈ vx and b ∈ vx are
density-connected, vx and vy will be assigned the same label
at the end and vice versa. And the post-processing process
will assign the labels for border objects accordingly.

Complexity. Steps I0 to I10 take O(lm), O(vm), O(mn),
O(v2), O(v2+vn+lµ+nm), O(n+m), O(v2+vn), O(mv2+
vn + vm + mn + m2), O(v2 + vn + vm + mn + n2), and
O(v2 +vn+vm), respectively. Step I11 has the similar time
complexity as in Steps 3 to 5 of IncAnyDBC since OE =
n+m in the worst cases. Thus, the overall time complexity of
IncAnyDBC will be O(mn2) (roughly speaking) for inserting
m objects. And it is similar to IncDBSCAN. IncAnyDBC
consumes O(vn+ v2 + lµ+ nm) overall space complexity.

3.3.2 Deletion
In the deletion case, some objects may loose their core

property, thus leading to the split of clusters [16].

Step D0: Preparation. Before updating clusters, each
object o is assigned a flag called ptou indicating that it is
in processed state but may change to unprocessed due to
deleted objects.

Step D1: Update the non-core list. Objects in L will
not change to core ones due to deleted objects. However,
we need to clean their deleted neighbors. To do so, we scan
through each object p ∈ L and remove the deleted objects
from its neighbors (or p itself). And we mark p as an up-
dated object by setting ptou(p) = 1.

Step D2: Update the node list. In contrast to the non-
core one, objects inside the node list V may loose their core
property due to deleted objects. For each node vp ∈ V , we
remove deleted objects from its neighbors or vp itself if p is
deleted. If Np < µ, p is not a core anymore. We remove vp
from V and put it into the non-core list L. All edges related
to vp also need to be removed from the graph G. We mark
p as updated objects (ptou(p) = 0). Let V 1 be the set of
nodes that contains deleted objects.

Step D3: Fix orphan objects. Due to deleted nodes in
step D2, some objects may become orphans since they are

not covered inside any nodes or in the non-core list. And
they need to be fixed. To do so, we first assign the untouched
state for all those objects. And then, we repeat the below
procedure until there is no untouched one.

At each iteration, we choose a set A of α untouched objects
to perform queries. For each object p ∈ A, if Np < µ, we
set st(p) = pnoise if st(p) = untouched or st(p) = pborder if
st(p) = uborder and put p into L. Otherwise, we set st(p) =
pcore and put it into V . For each object q ∈ Np, we assign
st(q) = uborder if p is a core and st(q) = untouched. We
also increase the neighbor count nei(q) by 1 if q ≥ level(p)
and p ≥ level(q) and q has not been updated (ptou(q) = 1).

Step D4: Update the graph. Let V 3 be the set of new
nodes created in step D3. For each node vp ∈ V 3, we add
an edge to other node vq if d(p, q) ≤ 3ε following Lemma 3.
Initially, we set st(vp, vq) = no.

Step D5: Fix the numbers of neighbors. Since deleted
objects may be covered inside the neighborhoods of pro-
cessed ones, we need to update the neighborhood count for
some related objects. For each deleted object p ∈ B, we
perform a range query on p. For each q ∈ Np, we decrease
nei(q) by 1 if q may contribute to the neighborhood count of
p before. This happens if q is a processed object and has not
been updated or if q is an unprocessed one, and q < level(p)
or level(q) > p.

Step D6: Identify change core objects. Let OA =
∪p∈BNp where p is a deleted object. Obviously, all objects
in OA may change their core properties. Thus, for each
object o ∈ OA, we mark o as a change core one if st(o) =
pcore ∨ ucore and nei(p) < µ, and we put all nodes Vo of o
into the set of change core nodes V 2.

Step D7: Fix the core properties. Since the numbers
of neighbors change in steps D3 and D5, the core properties
of objects must be fixed. We first extend OA by adding
objects in the adjacent nodes of the degenerated ones in step
D2. Following Lemma 3, additional queries in step D3 only
affects the neighbor counts for objects in OA. Thus, for each
object o ∈ OA if o is not updated, we fix its core property. If
st(o) = pcore and nei(o) < µ, we change st(o) to pborder if o
is inside a node or pnoise otherwise. If st(o) = uborder and
nei(o) ≥ µ, st(o) = ucore. If st(o) = ucore and nei(o) < µ,
st(o) = uborder.

Given a yes edge (vp, vq), if vp or vq is deleted in Step
D2, the edge (vp, vq) will be deleted from G. Otherwise,
(vp, vq) still remains but their yes state may loose if a core
object is deleted from their neighbors following Lemma 2.
This might cause the connected components of nodes to be
broken, thus causing the splits of clusters. Let V A = V 1 ∪
V 2 ∪ V 3 be the set of involved nodes. A simple approach
would reset all their yes edges to the unknown states and re-
run the clustering algorithm to re-build clusters. However,
this still incurs redundant calculations. Thus, we follow a
more efficient scheme as follows.

Step D8: Fix the links in G by deleted objects. Let
V 1A be the set of nodes vq where st(vp, vq) = yes and vp ∈
V 1.

Lemma 14. Given a deleted object a ∈ vp, if d(a, q) > 2ε,
a does not break the yes state of (vp, vq).

Following Lemma 14, we perform a reverse query on deleted
objects for each vq ∈ V 1A with a threshold of 2ε. If M2ε

q



does not contain a deleted core object, the yes connection
between vp and vq will not be affected by deleted objects.
Thus, we remove vq and its partner vp from V 1A and V 1, re-
spectively. At the end, for each edge (vp, vq) where vp ∈ V 1

and vq ∈ V 1A, we reset st(vp, vq) to unknown state since it
may be affected by the deletions.

Step D9: Fix the links in G by change core objects.
If an object looses its core status, it may break the yes con-
nection between its nodes and their adjacency. Let V 2A be
the set of nodes vq where st(vp, vq) = yes and vp ∈ V 2. We
remove nodes that do not have its yes counter parts in V 2A

from V 2. Let O2 be the set of change core objects in V 2.

Lemma 15. For each object o ∈ O2 ∧ o ∈ vp and node
vq ∈ V 2A, if d(o, q) > 2ε, o do not break the yes state of
(vp, vq).

Following Lemma 15, we do not remove node vq from V 2A

if there exist an object o ∈ O2 such that d(o, q) ≤ 2ε since
st(vp, vq) may be changed by the deletions. Then, for each
edge (vp, vq) where vp ∈ V 2 and vq ∈ V 2A, if st(vp, vq) =
yes, we change st(vp, vq) = unknown, waiting for this edge
to be re-updated.

Step D10: Update cluster structures. For each object
o ∈ O \ B, if o is a pcore or ucore, we set the yes connec-
tions for edges (Vo[i], Vo[i− 1]) where Vo is the set of nodes
containing o and 1 ≤ i ≤ |Vo|. After that, we re-update the
labels of nodes following the connected components of yes
edges as in Step 3 of IncAnyDBC. This step helps to reduce
the possible split causing by the delegation of yes edges in
Step D8 and D9.

Step D11: Detect possible splits. Given two arbi-
trary nodes vp and vq that belong to the same cluster c.
If label(vp) 6= label(vq) after Step D10, c is affected by the
deletions (indicated by the changes of yes edges) and need to
be re-checked if it really splits. Let CA be the set of affected
clusters (including all nodes in V 3, which are assigned the
same special cluster labels initially).

Lemma 16. Any cluster c /∈ CA will not be affected by
the deletions.

Proof. (Sketch) Steps D2, D8, and D9 guarantee that all
possible broken yes edges are changed to unknown, waiting
for the cluster updates. Thus, c will not be changed.

For each cluster c ∈ CA, we need to re-cluster it to check if
c is really be spitted. To do so, all we need is to change all no
edges in c back into unknown states and rerun the clustering
algorithm to look for clusters again. Let V A be the set of
nodes inside CA. For each node vp ∈ V A and vq ∈ adj(vp), if
vp and vq currently belong to a splited cluster, we put them
into the set of nodes V E to be examined later. Moreover,
if st(vp, vq) = no, we change it to unknown as discussed
before.

Step D12: Choose objects to be examined. Let OE

be the set of objects inside vp ∈ V E (exclude node centers,
pborder and pnoise ones).

Proposition 2. We only need to examine objects in OE

to fully update clusters after the deletions.

Proposition 2 is straightforwardly drawn from Lemma 16
and Steps D8 to D11 of IncAnyDBC. All edges that are not

  

 

 

Block 1 

Block 2 

Syn 

Syn 

t1 t2 t3 t1 t2 t1 

Buffer 

MB 

a 

b 

c 

d 

a b c d 
ti ti 

ti ti 

e 

f 

e f 

Syn 

Syn 

Labeling nodes 

Object selection 

Figure 7: The parallel processing model of In-
cAnyDBC on multicore CPUs

affected by deleted objects are excluded in steps D8 and
D9. Steps D10 and D11 guarantee that if a cluster may be
broken, it will be re-examined by placing all of its nodes
into the examined node set V E . Following Lemma 2 and
Lemma 6, we need to examine all objects in OE to clarify
these edges as yes or no ones.

Following Proposition 2, for each object o ∈ OE , if st(o) =
pcore and ptou(o) = 1, we change st(o) to ucore, indicating
that a neighborhood query may need to be repeated on o to
build clusters.

Step D13: Update clusters. The cluster update process
in the deletion case is also build upon the Step 3 to 6 of In-
cAnyDBC in Section 3.1, but is limited on the set of objects
OE only like the Step I11 of IncAnyDBC in the insertion
case.

Correctness. At the end, IncAnyDBC produces the same
clustering results as DBSCAN after the deletions.

Lemma 17. IncAnyDBC produces identical results to those
of DBSCAN after the deletions.

Proof. (Sketch) Steps D1 to D3 ensure that a core object
will be covered in a node after the deletions. Steps D8 and
D9 ensure that all possible affected yes edges are reversed
back to unknown states to be re-checked. Step D11 detects
any possible broken cluster. All changes can be captured by
examining OE in Step D13 following Proposition 2. Thus,
if two core objects a ∈ vp and b ∈ vq are density-connected
in DBSCAN, they will be placed into the same connected
component in IncAnyDBC and vice versa. Consequently,
IncAnyDBC produces identical results as DBSCAN after the
deletions, except for the shared border objects.

Complexity. Steps I0 to I12 take O(n), O(lµ), O(vn+v2),
O(n2), O(v2), O(mn), O(nv), O(n), O(v2 + vm + mv2),
O(v2 + nv), O(nv), O(v2), O(v2), and O(vn). Step D13
has the similar time complexity as in Steps 3 to 5 of In-
cAnyDBC. Thus, the overall time complexity is O(mn2) like
IncDBSCAN. IncAnyDBC requires O(vn + v2 + lµ + nm)
space complexity.

3.4 Parallel processing
As discussed before, the general idea is processing queries

in block and using the results for building clusters by chang-
ing the connections among object nodes. Figure 7 illustrates
the parallel processing model of IncAnyDBC.

At each iteration, a block of unprocessed objects are se-
lected from the database to processing queries using multi-
ple threads, e.g., objects a to f . We propose to execute each



query independently of each other using a single thread, e.g.,
thread t1, t2, and t3 processes object a, b, and c, respectively.
This is more effective than executing each queries in paral-
lel, especially with index structures since not all of them can
be executed in parallel efficiently. Since the neighborhood
query times may vary, dynamic scheduling would be em-
ployed for better balancing the overall workload of threads.
However, since the neighborhoods of objects may overlap,
we need to wait for all queries to be completed before being
able to update the information of objects and connectiv-
ity among nodes. Thus, we use a memory buffer (MB) to
temporarily store the neighbors of selected objects. And a
barrier is placed for synchronizing all threads after query
processing. After that, each thread will grab a stored neigh-
borhood from the buffer MB to update the core information
and to connect object nodes into clusters until all of them
are processed. Since the neighborhood sizes of objects vary
significantly, we propose to use dynamic scheduling for bal-
ancing threads’ workload. IncAnyDBC then synchronizes
all threads and do some necessary sequential tasks before
starting the object selection process until it reaches to the
final stages or it is terminated by users.

Instead of propagating labels from objects to objects like
DBSCAN, IncAnyDBC assigns labels for nodes by following
connected components of the yes connections. Due to the
monotonicity of the cluster structures as described in Section
3.2, connected components change incrementally wrt. new
yes edges. Thus, we use a Disjoint Set (DJS) data structure
to efficiently update the components rather than relooking
them from scratch. Each object node will be placed into the
DJS. The DJS supports two operations: (1) FindSet(vp)
looks for the label of a node vp and (2) Union(vp, vq) merges
two nodes vp and vq into the same component. The Union
operation is not thread-safe. Thus, it is placed in a critical
section for synchronization.

For object selections, we use multiple threads to calculate
object’s scores. Since each node may have different number
of adjacent nodes, we use dynamic scheduling to balance the
workload. And top score objects are selected sequentially to
be processed in the next block.

IncAnyDBC needs to hold a list of nodes Vp for each object
p. Building it is expensive and strongly affect the scalability
of IncAnyDBC over multiple threads, especially when we
have high numbers of nodes. To do so, each node is first
assigned to a fixed thread t. Then each thread t will build
its own node list V tp for each object p independently to each
others. Finally, for each object p, we build Vp by merging
all node lists of threads in parallel.

4. EXPERIMENTS
Datasets. We perform experiments on various real datasets
acquired from different sources including:

• Farm: contains 3,627,086 objects. Each has 5 VZ-
features of a satellite farm image in Saudi Arabia1 [19].

• Household: consists of 2,049,280 objects with 7 dimen-
sions US census data for electricity and mortgage ex-
penses acquired from the UCI archives [18].

• Sdss2Mass: contains 1,258,127 8-dimension objects de-
scribing locations and gravities of different galaxies
taken from a cosmological database [15].

1http://www.satimagingcorp.com/gallery/ikonos/ikonos-
tadco-farms-saudiarabia

• GasSensor: records values of 16 different sensors ex-
posed to Ethylene and CO with 4,178,504 objects ac-
quired from the UCI archives [18].

• PAMAP2: describes the physical activities using iner-
tial measurement units acquired from the UCI archives
[18] with 974,479 objects in 39 dimensions.

• Precipitation: contains data of mean monthly surface
climate such as precipitations and temperatures over
global land areas2 with 566,268 12-d objects.

• OSFP: acquired from the French national registry of
sleep apnea3. It describes sets of syndromes for 39,252
patients with Obstructive Sleep Apnea (OSA) such as
snoring and stroke.

Systems. Experiments are conducted on Linux server with
2.6 GHz CPUs and 128GB RAM using g++ 4.9.2.

Outline. In Section 4.1 and 4.2, we will first demonstrate
the performance of IncAnyDBC during the clustering phase
using single and multiple threads. Then we study the cluster
update phase in Section 4.3 using single thread and Section
4.4 using multiple threads.

4.1 Clustering performance
Unless otherwise stated, we use default parameters µ =

50, α = 512, and β = 4096.
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Figure 8: The numbers of object nodes and queries
for the dataset GasSensor (ε = 4000)

The pruning power of IncAnyDBC. Figure 8 shows the
numbers of queries and object nodes of IncAnyDBC for the
dataset GasSensor with different parameters µ and ε. In-
cAnyDBC requires much fewer queries to build cluster than
DBSCAN (from 4.0 to 74.3 times). Moreover, the number
of object nodes is also much smaller than the number of
objects (from 76.5 to 1866.1 times). Thus, the query pro-
cessing time and label propagation time of DBSCAN are
significantly reduced (since we only label the nodes). Con-
sequently, IncAnyDBC is much faster than DBSCAN as we
shall see in Figure 9.

Performance comparisons. Figure 9 shows the perfor-
mance of IncAnyDBC compared to DBSCAN [17] and its
fastest variants including ρ-DBSCANv2 [21] (a significant
improved version of ρ-DBSCAN [19]4) and an improved ver-
sion of AnyDBC [36, 37] (where we slightly optimize some
steps for saving runtimes) using different parameters ε and
µ. As suggested from [29,44], we vary the parameter ε from
very small to very large to study the performance of these

2http://www.cru.uea.ac.uk/
3http://www.osfp.fr
4Binary file provided by authors
(https://sites.google.com/view/approxdbscan)
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algorithms. For example, when ε = 100, 79% objects are
noise for the Sdss2Mass. For the Household data, there is
only one cluster containing 99.99% objects when ε = 20000.
For database indexing, we use kd-tree [4]5

Compared to DBSCAN, IncAnyDBC is much faster in
most cases. E.g., the speedup factor ranges from 7.0 to 238.5
times for the Sdss2Mass dataset and from 0.57 to 853.5 times
for the Household dataset. This is due to the pruning power
of IncAnyDBC as discussed in Figure 8 above. However,
when the number of used queries is too large (e.g., when ε =
2000 to 3000 for the Household dataset), IncAnyDBC will
run slightly slower than DBSCAN due to its active clustering
overheads such as object selections in Step 4. We will discuss
more on the performance of IncAnyDBC in the next parts.

When ε is large, AnyDBC and IncAnyDBC acquires com-
parable performance on all the datasets. However, when ε is
very small, both IncAnyDBC and AnyDBC needs to spend
more queries to go to the terminate stage as demonstrated in
Figure 8. Thus, the overhead increases. However, since In-
cAnyDBC does not need to merge clusters and queries like
AnyDBC, its overhead is much smaller than that of Any-
DBC and thus is much faster. E.g., for the Farm dataset
with ε = 4000, IncAnyDBC needs only 59.1 seconds (244.2
times faster than AnyDBC with 14,454.5 seconds).

When the dimension d of the data is low (e.g., the Farm
and Household datasets), the performances of IncAnyDBC
and ρ-DBSCANv2 are comparable. However, when d is
larger, IncAnyDBC runs much faster since it does not rely
on the grid structure like ρ-DBSCANv2, where the number
of cells increases exponentially wrt. to the dimension d and
causes significant overheads. E.g., IncAnyDBC is from 1.6
to 8.3 times, from 3.7 to 11.6 times, and from 0.53 to 52.8
times faster than ρ-DBSCANv2 on the datasets Sdss2Mass,
GasSensor, and PAMAP2, respectively.

Roles of indexing techniques. Since IncAnyDBC re-
lies on neighborhood queries, using different indexing meth-
ods will affect the performance difference between it and
ρ-DBSCAN as demonstrated in Figure 10 using kd-tree6 [4]

5Source from PDSDBSCAN [40]:
http://cucis.ece.northwestern.edu/projects/Clustering/.
6Source: https://github.com/jmhodges/kdtree2/
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cAnyDBC

and r− tree 7 [24]. Depending on ε, the overall runtimes of
IncAnyDBC vary several times while rho-DBSCAN is not
affected since it does not need to index data.

Effects of parameters µ and ε. As shown in Figures 8
and 9, ε has a very strong effect on performances of all meth-
ods. However, when ε increases, the runtime of IncAnyDBC
fluctuates instead of increasing like DBSCAN. The main rea-
son is its query pruning scheme. The performance of In-
cAnyDBC depends on the number of queries its use, which
is affected by the final cluster structure. If clusters are well
separated, i.e., less cross-edges among them, fewer queries
need to be used to break these edges following Lemma 6.
Thus, the algorithm runs faster and vice versa. In our real
datasets, when ε is too small, we have many small clusters
that stay close to each others and thus are harder to clarify.
Thus, IncAnyDBC uses more queries than larger values of ε.
Moreover, the number of object nodes decreases since more
objects will be covered inside a node if ε increases as shown
in Figure 8 (left). Thus, the performance gap between In-
cAnyDBC and DBSCAN typically becomes larger when ε
increases as we can see from Figure 9 (top).

Larger values of µ means it is harder to detect the core
properties of objects without doing neighborhood queries on
them. Thus, the number of used queries increase slightly as
show in Figure 8 (right). This makes the runtime of In-
cAnyDBC increases in most cases as seen in Figure 9 (bot-
tom) (if the cluster structure does not change much).

Effects of parameter α and β. Figure 11 shows the ro-
bustness of IncAnyDBC to the two parameters α and β.

7Source: https://www.boost.org/
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Figure 11: The effects of parameters α and β on the
dataset GasSensor (ε = 2000)

Generally, when α increases, there will be more nodes due
to the block processing scheme in Step 1. Thus, more core
objects will be revealed at an early stage, making the algo-
rithm to finish earlier. Hence, the number of used queries
goes down. However, when the number of nodes increases,
there are chances that two nodes from different clusters are
placed close enough to each other, thus creating a cross-
edge between them following Lemma 3. Following Lemma
6, clarifying these cross-edges requires more queries to be
performed. This lead to the increase of the number of used
queries. As a result, the runtime of IncAnyDBC slightly
decreases and increases again as seen in Figure 12 (top).
However, when α changes from 200 to 1000, the runtime
only changes between 197.0 to 236.5 seconds.

The parameter β is used for balancing the overheads of
IncAnyDBC and its pruning power. Smaller β means that
objects are frequently evaluated and selected to build clus-
ters (Steps 3 to 5). Thus, better objects are selected and
fewer queries are required compared to bigger values of β.
On the other hand, the overheads of the active clustering
scheme are bigger due to more iterations. These facts affect
the runtime of IncAnyDBC as shown in Figure 12 (bottom).
When β = 2000, it takes IncAnyDBC 253.9 seconds. How-
ever, when β = 4000, the runtime reduces to 191.6 seconds
(though the number of used queries increases from 542,299
to 570,681) since the overheads are reduced. However, when
β = 10000, the runtime goes up again to 205.0 seconds since
the number of increased queries overwhelms the overhead
reduction. The performance changes, however, are small,
ranging from 187.3 to 253.9 seconds.

In our datasets, we suggest to set α from 400 to 800 and
β from 4000 to 8000 to acquire good performance overall.
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Figure 12: Anytime properties of IncAnyDBC on
the Household and GasSensor datasets

Anytime properties. One major advantage of IncAnyDBC

is that it can be interrupted at any time to provide approx-
imate results, while other methods like [17, 19, 21] can only
provide either an exact result or an approximate result.

Figure 12 shows the anytime property of IncAnyDBC. Due
to the monotonicity property (c.f. Section 3.2), the number
of clusters reduce very quickly at each iteration to the final
number of clusters of DBSCAN at the end. AnyDBC is the
only existing algorithm that has the same property. How-
ever, it usually has larger initial overheads due to its cluster
intersection and merge strategies. ρ-DBSCANv2 can pro-
duce exact or approximate results of DBSCAN. However,
it is a batch algorithm. We need to set the approximate
value ρ and wait for the algorithm to finish to have the re-
sult. It cannot work under arbitrary time constraints like
IncAnyDBC and AnyDBC.
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Figure 13: Performance of IncAnyDBC on the
dataset Precipitation (Manhattan distance) and
OSFP (Jaccard distance)

Other distance functions. While other grid-based meth-
ods like [19,21,23] can only work under Euclidean distance,
IncAnyDBC can work under arbitrary distance metrics.

Figure 13 shows the performance of IncAnyDBC and Any-
DBC on the datasets Precipitation and OSFP using Man-
hattan and Jaccard distance metrics [47] (α = 128 and
β = 1024). IncAnyDBC is comparable to AnyDBC on both
datasets and is from 1.4 to 135.5 times faster than DBSCAN
on both datasets.

4.2 Parallel clustering
Scalability over multiple threads. Figure 14 illustrates
the performance of IncAnyDBC, AnyDBC [36], HPDBSCAN
[22], and PDSDBSCAN [40] on different datasets using 16
threads. Due to its grid-based scheme, HPDBSCAN can
only work on low dimensional datasets Farm and Household
with large values of ε. PDSDBSCAN, on the other hand,
consumes too much memory due to its object storing scheme
when the neighborhoods of objects overlap. Thus, when ε
is large enough, it runs out of memory. Since both HPDB-
SCAN and PDSDBSCAN do not focus on workload reduc-
tion like IncAnyDBC, their performance is significantly over-
whelmed by IncAnyDBC. E.g., HPDBSCAN is from 90.9
to 679.6 times slower than IncAnyDBC on the Household
dataset and PDSDBSCAN is from 3.4 to 49.8 times slower
than on the GasSensor dataset. The bigger the value of ε,
the larger the performance gap. Compared to AnyDBC, In-
cAnyDBC is faster in most cases8, especially when ε is small,
e.g., 55.4 times when ε = 2000 (GasSensor) and 212.4 times
when ε = 5000 (Household). In terms of scalability, In-
cAnyDBC also performs better than AnyDBC in most cases

8We slightly modified AnyDBC to make it faster. However,
its scalability becomes worse than the original version [36].
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Figure 14: Runtimes (top) and speedup factors (bottom) of different algorithms using 16 threads. HPDB-
SCAN only works for the dataset Farm and Household when ε is large. PDSDBSCAN runs out of memory
when ε is large enough. AnyDBC runs out of memory when ε = 1000 and 2000 (Farm) and ε = 1000 (GasSensor)

and much better than HPDBSCAN and PDSDBSCAN. It
reaches speedup factors of 9.5, 10.3, 7.5, 7.7, and 14.2 over
16 threads on the datasets Farm, Household, Sdss2Mass,
GasSensor, and PAMAP2, respectively. Note that, exper-
iments are ran on two 8-core CPUs, and thus they suffers
from the NUMA effects. Without it, the speedup factors of
IncAnyDBC would be even better. Currently, IncAnyDBC
is not designed as a NUMA aware method.
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Figure 15: Scalability of IncAnyDBC on the dataset
Precipitation (Manhattan distance) and OSFP (Jac-
card distance) using 16 threads

Other distance functions. Figure 15 shows the scalabil-
ity of IncAnyDBC using 16 threads on two datasets Pre-
cipitation (L1) and OSFP (Jaccard distance). It has very
good performance on both datasets. The speedup factors
are from 9.1 to 10.9 (Precipitation) and from 8.1 to 11.5
(OSFP) over 16 threads. HPDBSCAN [22] and PDSDB-
SCAN [40] can only work on Euclidean distance and thus
are excluded, while AnyDBC acquires a comparable perfor-
mance to IncAnyDBC.

Which steps of IncAnyDBC scale worse? Figure 16
shows the scalability of IncAnyDBC using 16 threads on
three bad cases of PAMAP2, Household, and GasSensor
(with lowest scalabilities). Steps 1, 2, 4, and 5 typically takes
up most runtimes of IncAnyDBC. However, the scalability of
IncAnyDBC typically is very bad on Step 2. There is not a
surprise since it has to perform many sequential tasks. When
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Figure 16: Scalability of each step of IncAnyDBC
using 16 threads (for three bad cases). The red hor-
izontal lines show the overall speedup factors

ε decreases, the number of nodes increases. This causes more
works on Step 2 and thus the scalability of IncAnyDBC is
affected more. For GasSensor, since the neigborhood sizes
of objects vary significantly, they strongly affect the work-
load balance for threads, thus the overall speedup factors for
Step 1 and 5 (two most expensive steps) decreases, causing
the performance degeneration.

0 100 200 300 400

Runtime (s)

0

1000

2000

3000

#
 C

lu
s
te

rs

PAMAP2 (  = 4000)

#Threads = 1

#Threads = 16

10 20 30 40 50 60

Iterations

9

9.5

10

S
p

e
e

d
u

p
 f

a
c
to

r 
(t

im
e

s
)

PAMAP2 (  = 4000)

#Threads = 16

Figure 17: Performance at each step of IncAnyDBC
for the PAMAP2 (ε = 4000) using 16 threads



Parallel anytime properties. One interesting property of
IncAnyDBC is that each step can be parallelized, making it
a unique anytime parallel algorithm. As shown in Figure 17
(left), using 16 threads, we can acquire the same clustering
result at each iteration of IncAnyDBC much faster (from
9.5 to 10.1 times). Figure 17 (right) shows the speedup
factors at each iteration. The more iterations, the better
the speedup factors. It is due to the fact that Step 5 usually
scales better than other steps as illustrated in Figure 16.

200 400 600 800 1000

Parameter  (  = 4096)

2

4

6

8

10

12

S
p
e
e
d
u
p
 f
a
c
to

r 
(t

im
e
s
)

PAMAP2

Household

2000 4000 6000 8000 10000

Parameter  (  = 512)

2

4

6

8

10

PAMAP2

Household

Figure 18: Effects of parameters α and β on the scal-
ability of IncAnyDBC using 16 threads for PAMAP2
(ε = 2000) and Household (ε = 12000)

Effects of parameters α and β. Figure 18 shows the
effects of parameters α and β on the performance of In-
cAnyDBC. Increasing β makes the overall workload at each
iteration larger. This helps to balance threads better. And
thus, the scalability of IncAnyDBC typically increases as we
can see from Figure 11 (right). The role of α, however, is
unclear. On different datasets, it shows different behaviours.
E.g., when ε increases from 200 to 1000, the speedup factor
increases from 8.1 to 8.7 times on the PAMAP2 dataset but
decreases significantly from 12.2 to 4.3 times on the House-
hold dataset. Unfortunately, there is no way to predict such
behaviors. Thus, in our experiments, we choose α around
500 to bring up average performances for all our datasets.

4.3 Dynamic clustering
We study the performance of IncAnyDBC for both inser-

tion and deletion cases. For each dataset D, we randomly
remove a set D′ of 100,000 objects from it and use the re-
mainder n objects for clustering. Then we randomly delete
m objects from D and randomly insert m objects from D′

into D. This process mimics the real behaviors of dynamic
data. Unless otherwise stated, we use default parameters
µ = 20, α = 512, β = 4096, and m = 2000.
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Figure 19: Numbers of queries and reverse queries
of IncAnyDBC and IncDBSCAN for Sdss2Mass

The query pruning scheme of IncAnyDBC. Figure 19
(left) shows the number of queries and reverse queries of
IncAnyDBC and IncDBSCAN over 2000 insertions. Since

IncDBSCAN needs to determine all change core objects be-
fore further processing, it requires at least 2,000 queries re-
gardless the parameter ε. However, the total number of
used queries does not vary much (from 2,003 to 2,428 over
1,158,127 points), meaning that IncDBSCAN works quite
stable and very efficient compared to the re-clustering choice.
By using reverse queries to detect potential changes and up-
dating clusters under the active scheme, IncAnyDBC uses
much less queries than IncDBSCAN (from 0 to 1,485). Since
reverse queries are significantly faster than full queries, In-
cAnyDBC is faster than IncDBSCAN as show in Figure 20.
Moreover, when ε grows bigger, the cluster structure tends
to be more stable and there are fewers border objects (that
may change to cores). Thus, the number of queries is typ-
ically reduced. Note that, since the query processing time
typically increases with ε, it does not mean that the runtime
of IncAnyDBC will reduces.

The deletion case is much expensive than the insertion
case shown in Figure 19 since clusters may be broken and
need to be re-clustered. Thus, the total number of queries
IncDBSCAN used is much higher, ranging from 1.6 to 10.1
millions (from 676.8 to 5,064.6 times higher than the in-
sertion case). Compared to the data size, it is better to
recluster from scratch rather than updating results in this
batch mode. Since IncAnyDBC processes deleted objects
in a bulk, it does not need to repeatedly re-verify a cluster
many times. Together with its active clustering scheme, it
needs only from 0 to 5,965 full queries to update clusters.
This dramatically improves the performance compared to
IncDBSCAN as we will see in Figure 20 below. Similar to
the insertion case, the bigger the parameter ε, the fewer
queries it uses typically.

Performance comparisons. Figure 20 (top) shows the
runtimes of IncAnyDBC and cumulative runtimes IncDB-
SCAN [16] over 2,000 insertions. When ε become biggers,
the runtimes of IncAnyDBC fluctuates rather than increas-
ing like IncDBSCAN due to its query pruning scheme as
discussed above. Due to its active bulk processing scheme,
IncAnyDBC significantly outperforms IncDBSCAN in most
case, e.g., from 2.3 to 41.0 times faster on Sdss2Mass. The
bigger ε, the larger the performance gaps. However, in some
cases, e.g., Household (ε = 1, 000) or PAMAP2 (ε = 10, 000),
IncAnyDBC runs slower than IncDBSCAN. The reason is
that we must update some no edges to unknown states in
Step I8 and I9 to let the algorithm re-update clusters for
capturing all possible cluster merges. In the worst cases, if
the changed edges are cross-edges, it will be hard to break
them as discussed in Section 4.1. Thus, IncAnyDBC con-
sumes more queries than IncDBSCAN and is slower.

The major difference between IncAnyDBC and IncDB-
SCAN is on the deletion case (c.f. Figure 20 (bottom)),
where IncAnyDBC completely outperforms IncDBSCAN in
all cases, e.g., from 35.8 to 10,755.9 times on Sdss2Mass.
Since the deletion case is much expensive than the insertion
case, the overall performance of IncAnyDBC fully dominates
IncDBSCAN. With m = 2, 000 changes, updating clusters
using IncAnyDBC is also more efficient than re-clustering
the whole database using IncAnyDBC or DBSCAN.

Other distance metrics. Figure 21 shows the perfor-
mance of IncAnyDBC for OSFP and Precipitation using
Jaccard and Manhattan distances (α = 128, β = 1, 024,
and m = 1, 000). The same results are observed.
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Figure 20: Performance of IncAnyDBC and IncDBSCAN for various real datasets

0.1 0.2 0.3 0.4 0.5 0.6

Parameter 

10
0

10
1

10
2

R
u

n
ti
m

e
 (

s
)

OSFP

IncDBSCAN-Clustering IncDBSCAN-Insertion IncAnyDBC-Clustering IncAnyDBC-Insertion

0.1 0.2 0.3 0.4 0.5

Parameter 

10
0

10
1

10
2

10
3

10
4

R
u

n
ti
m

e
 (

s
)

Precipitation

0.1 0.2 0.3 0.4 0.5 0.6

Parameter 

10
0

10
1

10
2

10
3

R
u

n
ti
m

e
 (

s
)

OSFP

IncDBSCAN-Clustering IncDBSCAN-Deletion IncAnyDBC-Clustering IncAnyDBC-Deletion

0.1 0.2 0.3 0.4 0.5

Parameter 

10
1

10
2

10
3

10
4

R
u

n
ti
m

e
 (

s
)

Precipitation

Figure 21: Performance of IncAnyDBC and IncDB-
SCAN for datasets Precipitation and OSFP

Scalability wrt. the numbers of object changes? Fig-
ure 22 shows how IncAnyDBC and IncDBSCAN scale when
the numbers of inserted and deleted objects vary from 1,000
to 100,000 for GasSensor (ε = 1, 000). The performance
gap between IncAnyDBC and IncDBSCAN increases with
ε, especially for the deletion case. E.g., the speedup fac-
tors of IncAnyDBC over IncDBSCAN changes from 10.4
times to 20.5 times when m increases from 1,000 to 5,000.
With 5, 000 changes, updating clusters using IncAnyDBC is
10.3 times and 47.1 times faster than fully reclustering us-
ing IncAnyDBC and DBSCAN, respectively. With 100, 000
changes, updating clusters still 2.0 and 9.1 times faster than
re-doing whole results using IncAnyDBC and DBSCAN.

Effect of parameters µ and ε. Figure 20 and Figure 23
show the effects of parameters µ and ε on the performance of
IncAnyDBC. As discussed in Section 4.1, the performance of
IncAnyDBC depends strongly on the cluster structure of the
data that changes wrt. different input parameters. Thus,
the actual runtimes of IncAnyDBC fluctuates considerably.
However, when the cluster structure remains stable, we can
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Figure 22: Performance of IncAnyDBC wrt. the
numbers of data changes for GasSensor (ε = 1, 000)
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Figure 23: Effects of the parameter µ

theoretically expect the number of queries decreases with ε
and increases with µ as seen in Figures 8 and 19.

Effect of parameters α and β. Figure 24 shows the ro-
bustness of IncAnyDBC over two parameters β and espe-
cially α. When α varies from 100 to 900 and β varies from
1,000 to 9,000, the runtimes of IncAnyDBC changes negli-
gible. Compared to the clustering phases in Section 4.1, the
changes are harder to see since IncAnyDBC updates clusters
very efficiently. But we can see the runtime increases with β
due to redundant queries during the re-clustering phases I11
and D13 of IncAnyDBC. Changes caused by α could not be
clearly observed since the number of newly created nodes in
Steps I3 and D3 are typically too small to have any visible
effects on the overall performance of IncAnyDBC.

Anytime cluster update. Similar to the clustering phase,
IncAnyDBC can update clusters in an anytime fashion as
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Figure 24: Effects of the parameter α and β for
Sdss2Mass (ε = 500 and m = 10, 000)

seen in Figure 29. The number of clusters gradually re-
duces during its execution until it comes to the final result
of DBSCAN following the monotonicity property presented
in Section 3.2. The deletion case typically starts with high
numbers of clusters (due to the removal of yes edges in Step
D8 and D9). But the numbers of clusters reduce very quickly
at each iteration. On the other hand, the insertion case usu-
ally starts with closer numbers of clusters to the final ones
since the number of newly created objects in Step I3 is usu-
ally small. These mean we can stop the algorithm at early
iterations while still having a very close result to the final
one of DBSCAN. None of existing methods for dynamic clus-
tering has this anytime property.

4.4 Parallel dynamic clustering
Scalability wrt. the number of threads. Figure 25
shows the scalability of clustering, deletion, and insertion
phases of IncAnyDBC over different datasets using 16 threads.
Though the results fluctuate with different values of ε, large
values of ε typically bring up higher speedup factors due
to the increasing of the parallel-able workload compared to
the non-parallel one (Amdahl’s law). Overall, IncAnyDBC
scales very well on 16 threads. The speedup factors are up
to 11.3 (9.1), 9.7 (9.2), 8.4 (9.2), 9.1 (7.4), and 15.2 (15.3)
times for the insertion (deletion) case on Farm, Household,
Sdss2Mass, GasSensor, and PAMAP2, respectively. With-
out the NUMA effect due to the use of 2 CPUs, the speedup
factors would be even better.

Scalability for other data. On OSFP and Precipitation,
IncAnyDBC still has very good scalability as seen in Figure
21. However, the speedup factor decreases with ε. The
reason is that we do not use indexing technique. Thus, the
query processing time is well-balanced for threads regardless
of ε. In this case, bigger ε means bigger object nodes and
overheads. This drags the overall scalability goes down in
many cases, especially when the dataset is small like OSFP.

Scalability wrt. the numbers of object changes?
When the number of changes increases from 1,000 to 100,000
as illustrated in Figure 22, the overall workload of IncAnyDBC
increases. Thus, it leads to the improvement of the scalabil-
ity of IncAnyDBC. E.g., for Household, the speedup factor
is 6.6, 10.4, and 12.6 times over 16 threads when m changes
from 1,000 to 10,000 and 100,000, respectively.

Effect of parameters α and β. When α and β increases
as demonstrated in Figure 28, the scalability of IncAnyDBC
over 16 threads remains quite stable, especially for the dele-
tion case. Theoretically, increasing β will balance workload
of threads better, thus leading to better speedup factor as
we have seen in Figure 18. However, since the overall update
times are too small, the effect is thus not visible clearly.

Anytime cluster update. Since IncAnyDBC is an paral-
lel anytime method, multiple threads can be used to have
intermediate results faster as shown in Figure 29. During
the execution time, the intermediate speedup factor changes
slightly at each iteration like the clustering phase shown in
Figure 17. However, it does not show clear increasing or
decreasing trend due to small update times.

5. RELATED WORKS AND DISCUSSION
Incremental density-based clustering. Finding clus-
ters in dynamic databases is an important research focus for
many years [1,5,12,16,20,33,35]. Most of them focus on in-
crementally updating existing clusters when changes occur
in the databases instead of reclustering from scratch. As a
fundamental clustering algorithm with many real-life appli-
cations [38], DBSCAN [17] is an attractive target for this
incremental clustering approach, e.g., [16,20].

In [16], the locality natur of DBSCAN is exploited to limit
the update areas, thus saving computation costs. An in-
serted object may merge existing clusters. And a deleted
object may break a cluster into smaller parts and needs to
be rebuilt, which is very expensive. Gan and Tao [20] in-
troduces a grid-based approach for updating clusters very
efficiently. However, their algorithm can only approximate
the result of DBSCAN when the data dimension d > 2. Its
grid-based scheme also limits it to low-dimensional data un-
der Euclidean distance only, thus reducing its applicability.
Both IncDBSCAN [16] and ρ-DBSCAN [20] work in a batch
scheme. They update clusters with each change. In contrast,
IncAnyDBC can update clusters in a bulk mode to reduce
overheads. Thus, it is much faster than IncDBSCAN. More-
over, IncAnyDBC has other attractive properties. First, its
can work under arbitrary time constraints and can provide
both exact and approximate results of DBSCAN. To the best
of our knowledge, IncAnyDBC is the first anytime algorithm
for incrementally update DBSCAN’s clusters. Second, it is
not limited to Euclidean distance like ρ-DBSCAN and can
work with arbitrary distance metrics like IncDBSCAN.

Density-based methods for streaming data such as Den-
Stream [11] and [48] has an incremental natur like IncAnyDBC.
However, they produce different clustering results to DB-
SCAN and thus are out of scopes of this work.

Parallel incremental clustering. To the best of our
knowledge, IncAnyDBC is the first parallel method for incre-
mentally updating DBSCAN’s clusters on multicore CPUs.
It not only tries to increase the computation throughput like
other traditional parallel algorithms but also tries to reduce
the overall workload. Combined with the anytime property,
IncAnyDBC is a unique anytime work-efficient technique for
finding clusters in dynamic databases.

Density-based clustering. Reclustering the whole database
from scratch is a potential approach when the number of
changes are too large as discussed in Section 3.3. To do
that, many different methods for enhancing performance of
DBSCAN such as [19,21,23,37] can be employed.

Gunawan [23] introduces a grid-based method for clus-
tering 2-d data in O(nlogn) time complexity rather than
O(n2) of DBSCAN. The result is further strengthened by
Gan and Tao in [21] using the concepts of Voronoi dia-
gram and Delaunay triangulation. ρ-DBSCAN [19] is an-
other grid-based method built upon the Bichromatic Closest
Pair (BCP) problem for connecting grid cells into density-
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Figure 25: Scalability of IncAnyDBC over 16 threads for various real datasets
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Figure 26: Scalability over 16 threads of In-
cAnyDBC for datasets Precipitation and OSFP
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Figure 27: Scalability of IncAnyDBC using 16
threads for Household and Sdss2Mass

connected clusters. It works very well on low-dimensional
data. However, since the number of cells grows exponential
with the data dimension, it suffers from performance degra-
dation on high dimensional data. Moreover, it can only work
with Euclidean distance. There exists several extensions of
ρ-DBSCAN, e.g., [32,43]. In [21], the authors present an op-
timized version of ρ-DBSCAN (denoted as ρ-DBSCANv2),
which is 10-20 times faster than ρ-DBSCAN when dealing
with small values of ε. Other methods such as [6, 10, 39]
exploit lower-bounding distances to reduce the clustering
time of DBSCAN under filter-refinement schema. However,
they are more suitable for small datasets with very expen-
sive distance functions. AnyDBC [37] is the closest work to
IncAnyDBC. Both of them are based on the general idea of
summarization objects into sub-groups using a few neigh-
borhood queries and iteratively merge them with additional
queries to form clusters. However, IncAnyDBC and Any-
DBC follows two completely different algorithmic schema.
AnyDBC merges connected sub-groups into a single one at
each iteration. Thus, it suffers from higher overheads than
IncAnyDBC which only changes the connectivity statuses
of subgroups. On the other hand, IncAnyDBC needs a spe-
cial trick to reduce the required queries to build clusters as
presented in Step 5 of IncAnyDBC in Section 3.2. More-
over, AnyDBC looses important information on local sub-
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Figure 28: Effects of the parameter α and β on
the scalability of IncAnyDBC using 16 threads for
Sdss2Mass (ε = 500 and m = 10000)
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Figure 29: Runtime, number of clusters, and scala-
bility at each iteration of IncAnyDBC for PAMAP2
(ε = 2000, m = 100, 000)

group connections that can be exploited to efficiently update
clusters as presented in IncAnyDBC. Compared to existing
methods described above, both IncAnyDBC and AnyDBC
can work on arbitrary distance metrics. They are anytime
algorithms and can work under arbitrary time constraints
to provide exact or approximate results of DBSCAN.

There are many other methods aiming at improving DB-
SCAN’s performance such as BRIDGE [14], DBR [49], SDB-
SCAN [52], and IDBSCAN [8]. However, they can only pro-
duce (coarse) approximate results instead of exact results of
DBSCAN like IncAnyDBC.

Parallel density-based clustering. Parallelizing DBSCAN
is one of the most active research topics for enhancing DB-
SCAN with many proposed techniques such as [?, 3, 7, 9, 13,
22, 26, 27, 34, 40, 41, 46, 50, 51]. Most of them focus on par-
allelizing DBSCAN on distributed systems including MPI-
based master-slave schema [9, 28, 51], MapReduce [13, 26],
Spark [34, 46], and Parameter Server [27]. Patwary et al.
[40] point out that these algorithms do not scale well when
ported to shared memory systems such as multicore CPUs.
Some other algorithms aim at extending DBSCAN on Graphic
Processing Units (GPUs) such as [3, 7, 50]. There are some
methods that are designed to work with multicore CPUs
including [22,40,41].

PDSDBSCAN [40] employs a Disjoint Set data structure



to merge two points if they belong to the same cluster in a
bottom-up clustering scheme. However, it must perform all
queries, thus suffering from very high workload compared
to IncAnyDBC. Consequently, it is much slower than In-
cAnyDBC as studied in Section 4.2. Pardicle [41] is more
efficient than PDSDBSCAN but it can only produce approx-
imate results of DBSCAN. HPDBSCAN [22] exploits the
data grid structures to build clusters in parallel. However,
it suffers from performance degradation on high dimensional
data due to the exponential number of cells. None of these
methods has an anytime property like IncAnyDBC. More-
over, since they do not focus on workload reduction, they
are not work-efficient and thus run much slower than In-
cAnyDBC using single or multiple threads. AnyDBC-MC [?]
is the closest work of IncAnyDBC. However, it differs sig-
nificantly with IncAnyDBC in its algorithmic operation as
discussed above. Moreover, since it uses bit vectors to find
cluster intersections and to merge them, it consumes much
memory than IncAnyDBC.

6. CONCLUSION
In this paper, we introduce the first and unique anytime

work-efficient parallel algorithm, called IncAnyDBC, to ef-
ficient update density-based clusters for very large complex
data on multicore CPUs. For data clustering, IncAnyDBC
actively chooses a subset of objects to build clusters in an
iterative manner. As a result, it consumes only few queries
to build the same clustering results as DBSCAN. Thus, it
is orders of magnitudes faster than DBSCAN and its vari-
ant. IncAnyDBC reserves local cluster structures of data
and exploits them to actively update clusters when there
are changes in the databases such as inserted or deleted ob-
jects. Thus, it needs much less queries than the state-of-the-
art method IncDBSCAN for updating results. Moreover,
changes are update in bulks rather than batches like exist-
ing techniques for reducing overheads. Hence, it is much
efficient than IncDBSCAN, especially for the deletion case.
IncAnyDBC, due to its anytime property, can work under
arbitrary time constraints and provides exact or approxi-
mate results of DBSCAN on demands. Its block processing
scheme allows it to be parallelized efficiently on multicore
CPUs. Experiments on our systems with 16 CPU cores show
that IncAnyDBC scales very well with the number of threads
(up to ≈ 15 times over 16 threads).
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[22] M. Götz, C. Bodenstein, and M. Riedel. HPDBSCAN:
highly parallel DBSCAN. In MLHPC, pages 2:1–2:10,
2015.

[23] A. Gunawan. A Faster Algorithm for DBSCAN. Msc
thesis, TU Eindhoven, 2013.

[24] A. Guttman. R-Trees: A Dynamic Index Structure for



Spatial Searching. In International Conference on
Management of Data (SIGMOD), pages 47–57, 1984.

[25] J. Han, M. Kamber, and J. Pei. Data Mining:
Concepts and Techniques, Third Edition. Morgan
Kaufmann Publishers, 2012.

[26] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and
J. Fan. MR-DBSCAN: An Efficient Parallel
Density-Based Clustering Algorithm Using
MapReduce. In ICPADS, pages 473–480, 2011.

[27] X. Hu, J. Huang, and M. Qiu. A Communication
Efficient Parallel DBSCAN Algorithm based on
Parameter Server. In CIKM, pages 2107–2110, 2017.

[28] E. Januzaj, H.-P. Kriegel, and M. Pfeifle. Scalable
Density-Based Distributed Clustering. In PKDD,
pages 231–244, 2004.

[29] H. Kriegel, E. Schubert, and A. Zimek. The (black)
art of runtime evaluation: Are we comparing
algorithms or implementations? Knowl. Inf. Syst.,
52(2):341–378, 2017.

[30] J. Lee, J. Han, and K. Whang. Trajectory clustering:
a partition-and-group framework. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14,
2007, pages 593–604, 2007.

[31] C. Li, A. Datta, and A. Sun. Mining latent relations in
peer-production environments: a case study with
wikipedia article similarity and controversy. Social
Netw. Analys. Mining, 2(3):265–278, 2012.

[32] T. Li, T. Heinis, and W. Luk. Hashing-Based
Approximate DBSCAN. In ADBIS, pages 31–45, 2016.

[33] J. Lin, M. Vlachos, E. J. Keogh, and D. Gunopulos.
Iterative Incremental Clustering of Time Series. In
EDBT, pages 106–122, 2004.

[34] A. Lulli, M. Dell’Amico, P. Michiardi, and L. Ricci.
NG-DBSCAN: Scalable Density-Based Clustering for
Arbitrary Data. PVLDB, 10(3):157–168, 2016.

[35] S. T. Mai, S. Amer-Yahia, I. Assent, M. S. Birk, M. S.
Dieu, J. Jacobsen, and J. Kristensen. Scalable
Interactive Dynamic Graph Clustering on Multicore
CPUs. IEEE Trans. Knowl. Data Eng.,
31(7):1239–1252, 2019.

[36] S. T. Mai, I. Assent, J. Jacobsen, and M. S. Dieu.
Anytime parallel density-based clustering. Data Min.
Knowl. Discov., 32(4):1121–1176, 2018.

[37] S. T. Mai, I. Assent, and M. Storgaard. AnyDBC: An
Efficient Anytime Density-based Clustering Algorithm
for Very Large Complex Datasets. In KDD, pages
1025–1034, 2016.

[38] S. T. Mai, S. Goebl, and C. Plant. A Similarity Model
and Segmentation Algorithm for White Matter Fiber
Tracts. In ICDM, pages 1014–1019, 2012.

[39] S. T. Mai, X. He, J. Feng, C. Plant, and C. Böhm.
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