Son T Mai

Jon Jacobsen

Sihem Amer-Yahia

Ivor T A Spence

Nhat-Phuong Tran

Ira Assent

Quoc Viet

Hung Nguyen

Incremental Density-based Clustering on Multicore Processors Blind review

Keywords: Density-based clustering, anytime clustering, incremental clustering, active clustering

The density-based clustering algorithm is a fundamental data clustering technique with many real-world applications. However, when the database is frequently changed, how to effectively update clustering results rather than reclustering from scratch remains a challenging task. In this work, we introduce IncAnyDBC, a unique parallel incremental data clustering approach to deal with this problem. First, In-cAnyDBC can process update in bulks rather than batches like state-of-the-art methods for reducing update overheads. Second, it keeps an underlying cluster structure called object node graph during the clustering process and use it as a basis for incrementally update clusters wrt. changes in databases by propagating changes around affected nodes only. In additional, IncAnyDBC actively and iteratively examine the graph and choose only a small set of most meaningful objects to produce exact clustering results of DBSCAN at the end as well as approximate results under arbitrary time constraints. And thus it is more efficient than other existing methods. Third, by processing objects in blocks, In-cAnyDBC can be efficient parallelized on multicore CPUs, thus creating a work-efficient method. It runs much faster than existing techniques using one thread while still scaling well with multiple threads. Experiments are conducted on various large real datasets for demonstrating the performance of IncAnyDBC.

INTRODUCTION

Data clustering is a fundamental problem in exploratory data analysis and has many applications in different fields, e.g., data cleaning, data compression, machine learning, and pattern recognition [START_REF] Aggarwal | Data Clustering: Algorithms and Applications[END_REF][START_REF] Han | Data Mining: Concepts and Techniques[END_REF]. Given a dataset O, a clustering algorithm separates it into groups of similar objects. However, when objects are inserted into or deleted from O, how to efficiently update the results rather than reclustering from the scratch is an important research focus [START_REF] Bhattacharjee | Batch Incremental Shared Nearest Neighbor Density Based Clustering Algorithm for Dynamic Datasets[END_REF][START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF][START_REF] Singh | Incremental shared nearest neighbor density-based clustering[END_REF]. In many clustering methods, the cluster label of an object highly depends on many other ones, making an efficient cluster update process a challenging task [START_REF] Gan | Dynamic Density Based Clustering[END_REF]. One example is the density-based clustering algorithm DBSCAN [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF], one of the most widely used data clustering methods with many realworld applications [START_REF] Lee | Trajectory clustering: a partition-and-group framework[END_REF][START_REF] Li | Mining latent relations in peer-production environments: a case study with wikipedia article similarity and controversy[END_REF][START_REF] Mai | A Similarity Model and Segmentation Algorithm for White Matter Fiber Tracts[END_REF][START_REF] Phung | Unsupervised context detection using wireless signals[END_REF].

In DBSCAN, a cluster is determined by a set of connected dense objects, and separated from other clusters by sparse areas. An object p is in a dense area if it has more than µ neighbors within a specific distance threshold . If it is, p is a core and its label will be propagated to all neighbors. This label propagation scheme of DBSCAN can be exploited for efficiently updating clusters due to the locality of changes as in IncDBSCAN [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF]. For example, an inserted object may merge some existing clusters within its neighborhood. On the other hand, a deleted objects may break clusters into smaller pieces. In this case, these clusters need to be regrouped due to the label dependency of objects. Thus, in the worst case, the whole dataset will be affected, which is obviously as expensive as re-clustering from scratch. When the dataset and the number of inserted or deleted objects are large, this leads to significant computation effort and thus limits the applicability of the algorithm. Contribution. In this work, we focus on an efficient approach for incremental updating clusters following the notion of DBSCAN. Our algorithms, called IncAnyDBC, have some uniques properties as follows.

First, before updating, existing techniques like Inc-DBSCAN [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF] relies on the original DBSCAN algorithm [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] to group objects and determine their core properties. However, DB-SCAN requires all neighborhood queries to be performed, which degrade its performance. It also does not keep enough information on the cluster structure to serve as a basis for efficiently update the clustering results when changes occur in the database. Our algorithm IncAnyDBC first summarizes objects into small density-connected groups called object nodes. These nodes and their connections are served as an underlying structure to predict the final clusters. Based on this information, IncAnyDBC repeatedly chooses a subset of objects to perform the neighborhood queries and connect nodes to build clusters until it finishes or is terminated by users. This active clustering scheme brings up some benefits: [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF] IncAnyDBC can produce the same result as DBSCAN with fewer number of queries, thus enhancing performance;

(2) it can be suppressed and resumed at any time to provide good approximate results (or exact results of DBSCAN at the end), while most existing techniques can only produce a single approximate or exact result, e.g., [START_REF] Gan | DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation[END_REF][START_REF] Gan | On the Hardness and Approximation of Euclidean DBSCAN[END_REF]. This anytime property makes IncAnyDBC useful to system with limited time constraints or to cope with very large datasets;

(3) since IncAnyDBC only builds clusters based on neighborhood queries, it can be used with arbitrary distance metrics instead of only Euclidean distance like state-of-the-art gridbased techniques such as [START_REF] Gan | DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation[END_REF][START_REF] Gan | On the Hardness and Approximation of Euclidean DBSCAN[END_REF][START_REF] Gunawan | A Faster Algorithm for DBSCAN[END_REF]; and (4) the underlying node structure is preserved after the clustering and can be exploited to efficiently update the clusters after object insertions or deletions instead of reclustering from scratch.

Second, when there are changes in the data, existing techniques such as [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF][START_REF] Gan | Dynamic Density Based Clustering[END_REF] update clusters in a batch mode (i.e., processing changes one-by-one). This scheme incurs many redundant overhead, especially when the number of changes is large. Our algorithm, in contrast, update clusters in a bulk mode (i.e., all changes at the same time). Hence, it reduces update overhead and thus is more efficient. During the updating process, the final cluster structure of In-cAnyDBC is exploited to identify affected areas and to serve as a basis for building the final clustering results. Similar to the clustering process, clusters are rebuilt in an iterative way by letting the algorithm actively choose a subset of objects to query at each iteration. Thus, at the end, the clusters are updated with fewer number of queries compared to Inc-DBSCAN [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF], thus making IncAnyDBC much efficient. Moreover, the anytime property is still guaranteed. Users can suspend and resume the updating process at any time for examining current results or looking for better ones. To the best of our knowledge, none existing incremental techniques for DBSCAN has this useful property. IncAnyDBC is also not restricted in low dimension Euclidean distance like other state-of-the-art techniques such as [START_REF] Gan | Dynamic Density Based Clustering[END_REF].

Third, by processing neighborhood queries in a block at each iteration to build clusters, IncAnyDBC can be efficiently parallelized on shared memory structures such as multicore CPUs. This makes it a work-efficient parallel method. It runs much faster than state-of-the-art sequential techniques such as DBSCAN [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] and IncDBSCAN [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF] using one thread, while scaling very well with the total number of threads. Moreover, the anytime property still retains in the parallel mode, uniquely making IncAnyDBC both a parallel and an anytime method at the same time. To the best of our knowledge, IncAnyDBC is the first shared memory parallel approach for incrementally updating clusters in DBSCAN. Summarization. To summarize, our major contributions are as follows:

• We introduce an efficient clustering algorithm for initializing cluster structures before updating. It uses much fewer number of queries to build the same clustering result as DBSCAN and thus is more efficient. Moreover, it can work under arbitrary time constraints due to its anytime property.

• We introduce an incremental scheme to update clusters wrt. changes in the data in a bulk mode rather than a sequential batch mode. Similar to the clustering phase, it has an efficient query pruning scheme and thus it is more efficient than existing techniques like IncDBSCAN. Moreover, the anytime property is also supported while updating clusters. • We propose a way to efficiently parallelizing IncAnyDBC on shared memory architectures such as multicore CPUs for further accelerating the performance.

To the best of our knowledge, IncAnyDBC is the first workefficient and anytime parallel approach on multicore CPUs for incrementally update clusters in DBSCAN. Experiments are conducted on very large real and synthetic datasets for demonstrating the performance of our algorithms.

PRELIMINARY

Density-based clustering. The density-based clustering algorithm DBSCAN [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] separates each object into clusters based on the cardinality of its neighbors w.r.t. two given parameters µ ∈ N + , ∈ R + , and a distance function d.

Definition 1. (Neighborhood) The neighborhood of an object p, denoted as Np, is the set of objects q where d(p, q) ≤ . Definition 2. (Core property) An object p is called a core object if |Np| ≥ µ. Otherwise, if one of its neighbors is a core, p is called a border. If none of its neighbors are core, it is a noise. Definition 3. (Reachability) Given a core object p and an object q ∈ Np, we say that q is density-reached from p, denoted as p q. Definition 4. (Connectivity) Two object p and q are connected if there exists a sequence of core objects x1 to xn such that p x1 x2 • • • xn q, denoted as p q. Definition 5. (Cluster) A cluster is a maximal set of density-connected objects.

DBSCAN builds clusters by performing neighborhood queries on all objects to determine their core properties and chains of density-connected objects (or clusters). Thus, it has O(n 2) complexity, where n is the number of objects. Note that, each core object belong to only one cluster, while a border object might be shared by some clusters. Incremental DBSCAN. When there is a change (insertion or deletion), instead of re-building clusters from scratch, Ester et al. [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF] introduce IncDBSCAN for incrementally update clusters by exploiting the locality of cluster structures as illustrated in Figure 1. Overall, there are two cases:

• Insertion. An inserted object may change a border or a noise object into a core one or may act as a core object to connect two density-connected sets. Thus, clusters may be merged or new clusters are raised from noise objects. E.g., the inserted object a merges clusters C1 and C2 into a cluster. IncDBSCAN processes changes in a batch mode. For each inserted or deleted object, IncDBSCAN determines a set of objects that change their core property and uses them as seeds for update clusters locally, e.g., merge clusters. However, if a cluster may split, it needs to be fully reclustered from scratch. Each update takes O(n 2) time complexity.

OUR PROPOSED ALGORITHM

We assume a database O of n arbitrary objects, grouped into arbitrarily shaped clusters by DBSCAN. Let B be a set of m changes on O including (1) insert an object into O, and (2) delete an object from O.

General idea

Our approach includes: (1) an efficient clustering algorithm that not only cluster the data effectively but can keep track off necessary information for updating the results later, (2) we want to incrementally update the cluster labels for all objects following the changes made in B rather than reclustering from scratch which is time consuming, (3) the algorithm can process data (clustering and updating) in an anytime fashion, and (4) an efficient parallel processing scheme for further improving the performance on multicore CPUs.

Figure 2 illustrates general ideas of IncAnyDBC. They include: summarization, active clustering, block processing, bulk processing, and parallel processing. Summarization. IncAnyDBC first summarizes all objects into (possible overlapped) subgroups (called object nodes) using neighborhood queries. Each contains a neighborhood of an object (c.f. Definition 6), e.g., nodes vp and vq . If two nodes are close enough, they may belong to the same cluster and thus will be connected by an edge, e.g., the edge (vp, vq). These nodes and their connectivity will be served as an underlying structure to build clusters by connecting them into separated components since each node already is a part of a cluster (c.f. Lemma 1). This scheme brings up many different benefits: (1) it allows the algorithm to build clusters without having to perform all neighborhood queries, thus significantly improving performance; (2) it keeps track off necessary cluster structure to efficiently rebuild clusters after data changes. Active clustering. Instead of performing all queries like DBSCAN, IncAnyDBC iteratively examines the current node structure and choose most meaningful objects to execute queries and to build clusters. E.g., if we choose h, it will connect two nodes vp and vq into a cluster if it is a core (c.f. Lemma 2). However, if we choose g, it will not help to clarify clusters regardless its core property and thus g can be safely ignored. Consequently, IncAnyDBC can produce the same clustering result as DBSCAN with fewer neighborhood queries and thus it is much efficient than DBSCAN. Block processing. At each iteration, IncAnyDBC chooses a set of objects to perform queries instead of a single object. This scheme trades off between the cost of repeatedly examine and choose objects in the active clustering scheme above and the number of used queries, thus bringing up better performance. Moreover, it can be exploited to create an efficient parallel algorithm as discussed below. Incremental processing. The node structure can be exploited to effectively update clusters. When there are changes, the first step is to update the current node structure by adding new objects or removing deleted objects from current object nodes. Then, we need to update the connectivity among affected nodes before updating clusters. E.g., the new inserted object a will be absorbed into the existing node vp since d(p, a) ≤ . Since node vp has a new object, its connections to other nodes may be changed (c.f. Lemma 2). However, other connections will not be affected and thus can be ignored. Thus, we can limit the updated area by vp and its surrounding nodes only (denoted by red edges) for reducing computation cost. Bulk processing. Instead of updating clusters with each object change, we propose to process in a bulk scheme. By this way, all possible changes in the node structure will be captured and will be updated at the same time, which is much efficient. This scheme fits well with the summarization approach of IncAnyDBC. Parallel processing. The underlying node structure and block processing scheme allows us to design an efficient parallel technique. The general idea is processing each queries in a block independently with each other. The results can be stored in a buffer (for saving memory) and then be used for construct clusters. This scheme reduces the synchronization costs and the sequential costs while propagating cluster labels among nodes since the number of nodes is much smaller than the number of objects.

The algorithm IncAnyDBC

Generally, the algorithm IncAnyDBC consisting of several steps. In Step 1, objects are summarized into small (perhaps overlapped) object nodes representing subclusters of density connected objects. In Step 2, we built a graph G = (V, E) where each vertex is a node and each edge represent the connectivity statuses of these nodes. Step 3 checks if the algorithm must continue. In Step 4, some objects are selected to perform neighborhood queries. In Step 5, IncAnyDBC updates the graph G according to the new changes. Step 3 to 5 is repeated until a termination condition is reached. Then, the final Step 6 looks for the remaining border objects. The pseudocode for IncAnyDBC is summarized in Figure 3.

Step 1: Summarization. In the beginning, all objects are assigned an untouched initial state indicating that they have not been processed in any ways. Since we only use a subset of objects to build clusters iteratively, the state of each object p changes accordingly and is summarized in Figure 4. E.g., an object p has processed-core (denoted as pcore) state indicating that we already performed a neighborhood query for each object q in Np do if q is a core then st(Vp [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF], Vq [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF]) = yes else st(Vp [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF], Vq [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF] on p and it is a core. If we have not performed a query on p but we knew it is a core, p is assigned an unprocessed-core (denoted as ucore) state. Each arrow shows the state transition of an object p during the clustering process. E.g., if we perform a query on an untouched state and it is not a core, we mark it as processed-noise (pnoise). However, in the next iterations, if one of its neighbors is a core, p is a border and it state will be changed to processed-border (pborder).

We also store the number of known neighbors for each object p, denoted as nei(p), for determining the core property of p. Beside that, we assign for p a special number called the database level, denoted as lev(p), which is specially used to guarantee the consistence of the neighborhood counts in the insertion and deletion modes presented in Section 3.3.

At each iteration, IncAnyDBC randomly chooses a set S of α untouched objects and queries their neighbors. If p ∈ S is a core, we create a node vp ∈ V consisting of Np and represented by p (cf. Definition 6). In additional, we set Otherwise, we set p as a processed noise (pnoise) and stores p and Np into a special list called the noise list L for the post processing step in Step ???. Moreover, we set lev(p) = n stating that p is processed when the database has n objects. Definition 6. (Object node). An object node vp ∈ V consists of the object p as a representative and all of its neighbors in Np.

Lemma 1. ([START_REF] Mai | AnyDBC: An Efficient Anytime Density-based Clustering Algorithm for Very Large Complex Datasets[END_REF]) All objects inside vp are density-connected, i.e., belong to the same cluster.

For each object q ∈ Np, we set its state following the transition scheme for objects summarized in Figure 4 and Lemma 1. Concretely, if q is untouched, it will be changed to uborder if nei(q) < µ or ucore if nei(q) ≥ µ. If q is pnoise, it becomes pborder. Otherwise, st(q) remains unchanged. Moreover, if q is not processed, we increase it neighbor count nei(q) by 1, since q has p as its neighbor.

Step 1 end when there is no untouched objects left. At the end of Step 1, we build for each object p a list of nodes containing it, denoted as Vp. Since each core object belongs to only one cluster in DBSCAN, each node also belongs to one cluster following its representative (though its non-core members may be shared among different clusters). Thus, instead of labeling each object as in DBSCAN, we only need to label each node in V . The label of an object will be acquired from the node containing it following Lemma 1.

In the next Steps, IncAnyDBC performs additional queries on unprocessed objects to connect nodes to form clusters. Definition 7. (Directly-connected). Two nodes vp and vq are directly connected, denoted as vp ⇔ vq, if there exists a set of objects xi ∈ Np ∪ Nq so that p x1 • • • xm q.

Following Definition 4 and 5, if vp ⇔ vq, they belong to the same cluster. There are two connect (merge) cases in IncAnyDBC, either via a shared core objects or a link between their two core objects as described in Lemma 2.

Lemma 2. Two nodes vp and vq are directly connected if:

• Case A: they share an object a where st(a) = ucore or st(a) = pcore (or core for simplicity).

• Case B: there exist two core objects a ∈ Np and b ∈ Nq such that d(a, b) ≤ .

Proof. Case A: We have p a and a q (Definition 3). Thus, p a q. Case B: We have p a and b q (Definition 3). Since a and b are core and d(a, b) ≤ , we have a b. Thus, p a b q. Thus, p ⇔ q (Definition 7). Step 2: Build the connectivity graph. In this step, we create a graph G that captures all possible merges among nodes w.r.t. additional queries. Lemma 3. Given two nodes vp and vq, if d(p, q) > 3 , vp and vq will never be directly connected. Following Lemma 3, we initialize the graph G by creating an edge (vp, vq) between vp and vq in V if d(p, q) ≤ 3 . The graph G roughly captures the cluster structure of the data following Lemma 4 described below. Each edge represents a pair of nodes that may be directlyconnected wrt. additional queries. For each edge (vp, vq) of G, we assign a state reflexing the connectivity status of two nodes vp and vq. Definition 8. (Edge state). The state of an edge (vp, vq), denoted as st(vp, vq), captures the connectivity status of vp and vq. If st(vp, vq) = unknown, we do not know if vp and vq are directly-connected or not. If vp and vq share an object, st(vp, vq) = weak meaning that they are more likely to be directly-connected. If st(vp, vq) = yes, vp and vq are directly-connected and are in the same cluster. If st(vp, vq) = no, vp and vq will never be directly-connected.

During the operation of IncAnyDBC, the states of edges change as summarized in Figure 5. The link state is a special trick of IncAnyDBC and will be explained in Step 5. Note that, the no state does not mean that vp and vq are not in the same cluster. They may be connected via a chain of directly-connected nodes.

At the end of Step 2, we update the states of edges. Following Lemma 2, if p is a core (either ucore or pcore), all nodes in Vp will belong to the same cluster. For each edge (Vp[i], Vp[i -1]) where Vp[i] is the node at position i of Vp, we set its state to yes, meaning that they will be in the same cluster. If p is not a core, we do not know that all nodes in Vp are in the same clusters or not. But, since they overlap, they have higher chances to be. Thus, we assign for each edge (Vp[i], Vp[i -1]) the weak state. Note that we do not need to change all edges among nodes in Vp for avoiding computational overheads.

Step 3: Check stopping condition. At the beginning of Step 3, we label all nodes of G by finding connected components of yes edges of G. If two nodes vp and vq belong to the same connected component, they are in the same cluster following Definition 7. Let label(vp) be the current cluster label of a node vp. Definition 9. (Cross-edge). If an edge (vp, vq) ∈ E has label(p) = label(q), it is called a cross-edge since it connects two different clusters. Lemma 5. If there is a cross-edge (vp, vq) where st(vp, vq) ∈ {weak, unknown, link}, the cluster structure may change.

Proof. Since vp and vq have different labels, st(vp, vq) = yes. If st(vp, vq) = no, they will never be directly-connected. Thus, the cluster structure may only change if st(vp, vq) is weak, unknown, or link, since it may be changed to yes wrt. new queries, leading to the merge of two clusters.

Following Lemma 5, we scan through all edges of G looking for weak, unknown, or link cross-edges. If they exist, the algorithm should continue. Otherwise, IncAnyDBC can be stopped since the clustering result will not change regardless of any other queries.

Step 4: Select objects for querying. The general purpose of this step is too select unprocessed objects for processing so that the clusters are formed quickly, i.e., more nodes to be connected at each iteration. At the same time, we want the algorithm to be terminated as quick as possible to ensure the final performance. To do so, the graph G is used as a basis for ranking objects based on their impact on the changes of the current cluster structure. where adj(vp) is the set of adjacent nodes vq of vp where label(vq) = label(vp) (i.e., (vp, vq) is a cross-edge); w(vp, vq) is the predefined weight for each edge based on its state (1 if st(vp, vq) = unknown, 2 if st(vp, vq) = link, and 4 if st(vp, vq) = weak); stat(vp) is the current processing score of vp and is defined as:

stat(vp) = (1 - |Np| n) + usize(vp) |Np| + ψ(vp)
where usize(vp) is the number of unprocessed objects of Np and ψ(vp) = 1 if vp consists of an pborder object and ψ(vp) = 0 otherwise.

The degree of a node vp (deg(vp)) measure the uncertainty of vp wrt. the current structure. If vp is lying closer to borders of many different clusters (it has larger |adj(vp)| or contains a processed border object), its label is more uncertain than one lying deep inside a cluster. Thus, if we perform a query on q ∈ vp, it will connect more nodes following Lemma 2 or will break some undetermined edges faster following Lemma 6. Besides that, if st(vp, vq) = weak, p and q have stronger influence to each other than unknown state. Thus, we assign a higher weight for weak edges. Moreover, for each node p, we assign higher stat score for p if |Np| is small since it is more likely to be a border node. We also prefer nodes that contains fewer unprocessed objects since fully processing them will break undetermined edges, making IncAnyDBC converge faster following Lemma 5.

Definition 11. (Object score). The score of an object p, denoted as score(p), is defined as follows:

score(p) = vq ∈Vp deg(vq)
Similar to the node degree, higher score(p) means that p is in a highly uncertain area (covered by uncertain nodes). Thus, processing it first may bring bigger changes to the cluster structure. Moreover, we prefer object with lower number of neighbors since its core property is more uncertain than the higher one.

At the end of Step 4, we choose a set B of β objects with highest scores for processing in Step 5.

Step 5: Update graphs. In the beginning of this step, we performing queries on all β selected objects. For each object p, we mark its core properties as pcore if it a core or pborder otherwise, and set lev(p) = n. We also increase the number of neighbors nei(q) for each unprocessed object q ∈ Np. We also set new states for all objects q ∈ Np following the transition states of objects in Figure 4.

Following Lemma 2 Case A, for each new ucore or pcore object p ∈ O, all nodes in Vp will be directly-connected. Thus, for each edge (Vp[i], Vp[i + 1]), we set its state to yes.

For each core object p ∈ B, we need to check if p connect its node to other nodes via its neighbors following Lemma 2 Case B. To do so, we scan through each object q ∈ Np. If q is pcore or ucore, all nodes in Vp and Vq are directly connected. However, we only need to set edge (Vp [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF], Vq [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF]) as yes (since Vp and Vq are processed in Case A above). If q is uborder, the connection may be available if future queries reveal that q is a core. Thus, we set for edge (Vp [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF], Vq [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF]) a special state called link, indicating that they are more likely to be connected via a pair of core objects. Lemma 6. Given a cross-edge (vp, vq) where st(vp, vq) ∈ {weak, unknown, link}, if usize(vp) = 0 ∧ usize(vq) = 0, vp and vq will never be directly-connected, i.e., st(vp, vq) = no, where usize(vp) is the number of unprocessed objects of vp.

Proof. Assume that their exists a chain of objects xi ∈ vp ∪ vq so that p x1 • • • xm q. Since all xi are pcore, vp and vq will belong to the same cluster following Lemma 2. It leads to contradiction since label(p) = label(q). Optimization. Following Lemma 6, we need to perform all queries on their objects to break a cross-edge (vp, vq) into no state if vp and vq finally belong to different clusters. When there are many of such cross-edge between two clusters, redundant queries may occur, making IncAnyDBC converge slower following Lemma 5. Thus, IncAnyDBC uses a special trick to reduce the number of required queries.

For each weak or unknown cross-edge (vp, vq), if usize(vp) = 0 or usize(vq) = 0, we set st(vp, vq) = no (even though vp and vq may be directly-connected if more queries are performed). However, if st(vp, vq) = link, we only change it to no if both nodes are fully processed. We need to prove that this scheme still guarantees a correct clustering result. Lemma 7. Assume that (va, vc) is a cross-edge at the current iteration of IncAnyDBC (but a and c belong to the same cluster in DBSCAN). We prove that when IncAnyDBC stops, va and vc will be put in the same cluster.

Proof. (Sketch) Wlog., we assume that usize(va) = 0 and hence st(va, vc) = no. There must exist a pair of object x ∈ Na and y ∈ Nc so that d(x, y) ≤ and st(x) = pcore ∧ st(y) = pborder (y is actually a core in DBSCAN).

If st(y) is core, va and vc are put into the same connected component. Thus, label(va) = label(vc).

If st(y) = uborder, a link state is set to a pair of nodes containing x and y. Assume that st(va, vc) is link, IncAnyDBC cannot stop until (va, vc) is not a cross-edge or they are fully processed. In both ways, va and vc are finally in the same cluster. Assume that the link state is assigned to (v b , v d) as illustrated in Figure 6, where x ∈ v b and y ∈ v d . If label(b) = label(d), va, v b , and v d are in the same cluster (since x is core). Thus, if label(c) = label(d), we have label(va) = label(vc). Otherwise, (vc, v d) is a crossedge. In the worst case, vc and v d are fully processed, revealing that y is core. Hence, va, v b , vc, v d will be in the same connected component, making label(va

) = label(vc). If label(b) = label(d), (v b , v d) is a cross-edge.
Thus, in the worst case, v b and v d are fully processed. Processing y will connect va and vc together as the above case. The other cases are proven similarly.

According to Lemma 7, if two nodes vp and vq belong to the same cluster, it will be detected correctly by In-cAnyDBC, though (va, vc) may be assigned as no due to the optimization process described above.

At the end of Step 5, IncAnyDBC goes back to Step 3 to check if it should stop. If not, it chooses another set of objects to process until the termination condition is reached.

Step 6: Check the noise list. This post-processing step of IncAnyDBC checks the noise list L to find remaining border objects. For each object p ∈ L with pnoise state, if there is a core object q ∈ Np, p will be a border object and is assigned the same label as q. Otherwise, we need to perform a query on each uborder object q ∈ Np and set level(q) to n until we find a core to assign p to. If there is no core found, p is surely a noise. Correctness. When it reaches its final stage, IncAnyDBC produces the identical results as DBSCAN, except for shared border objects. They may be labeled differently in both DB-SCAN and IncAnyDBC according to the examining order of objects. IncAnyDBC needs to store all nodes, the graph G and the noise list L. Thus, its space complexity is O(vn + v 2 + lµ).

Dynamic cluster update

Reverse query. In IncAnyDBC, we have two different kinds of neighborhood queries. The first one is the normal query where we find the neighbors for an object p on the whole database O. The second one is called reverse-query, where we only perform neighborhood queries on the set B of inserted or deleted objects. Since m n, the reversequery is much faster than the normal query. Let Mp be the neighbors of p under a reverse-query.

Insertion

In the insertion case, the clusters will be merged into bigger ones or new clusters are raised as described above 2. IncAnyDBC first updates the current noise list L and the node list V in Step 1 and 2. Then it creates new nodes for new objects if it is necessary in Step 3. The graph G is updated for reflexing changes in Step 4. And the clusters are updated in Step 5. Figure ?? shows the pseudocode of the insertion case.

Step I0: Preparation. Before updating clusters, we mark the state of each new object as untouched. Each object o is assigned a flag called ptou indicating that it is in processed state but may change to unprocessed due to inserted objects.

Step I1: Update the noise list. Some noise objects may become core ones if new objects come into its their neighborhoods. Thus, for each object p ∈ L, we perform a reverse-query on p, looking for new objects in its neighborhood. If nei(p) + |Mp| ≥ µ, p becomes a pcore. We also mark st(q) = uborder for q ∈ Np ∪ Mp if q is a new object and pborder if q is an old object. In both cases, we update the neighborhood for p as Np ∪ Mp, increase the number of neighbors nei(q) by 1 for new object q ∈ Mp, set the database level level(p) = m + n (since the database has m objects more), and set ptou(p) = 0 (since p is surely a processed objects after insertions). At the end, we remove p and put it into the set V of nodes if it is a core.

Step I2: Update the node list. Similar to the noise list, some existing nodes in G may change wrt. new inserted objects and thus need to be updated. Hence, for each node vp ∈ V , if Mp = ∅, we add Mp into the neighbor set Np of p and update nei(q) for q ∈ Mp. We also set level(p) = m + n and ptou(p) = 0 like Step I1.

Step I3: Create new nodes. After Step I2, some new objects have been covered in new nodes or existing nodes. Some remain outside with the untouched state. We need to cover these objects inside nodes.

Similar to Step 1 of IncAnyDBC (Section 3.2), we repeatedly choose a set A of α untouched new objects. For each object p in A, we perform a range query on p, if Np ≥ µ, we set st(p) = pcore and put vp to V . Otherwise, st(p) = pnoise. Now, we increase the number of neighbors nei(q) for q ∈ Np only if level(q) < n + m. Here, the database level ensures that nei(q) is correctly recorded since some currently processed objects have been checked without new inserted objects by IncAnyDBC during its clustering phase.

Step I4: Connect new nodes into G. Let V N be the set of new nodes created in Step 1 and 3. We need to determine their relationships with other nodes. Following Lemma 3, for each node vp ∈ V N , if d(p, q) ≤ 3 , where vq ∈ V , we add an edge (vp, vq) into the edge set E of G, indicating that they can be directly-connected. We also temporarily set st(vp, vq) = no (it will be fixed later).

Step I5: Identify change core nodes. At the end of Step I3, all new objects are either inside nodes or in the noise list. Let V 1 be the set of nodes that contain new objects and L 1 be the set of new objects in L. Let O A be the set of objects in ∪ vp∈V 1 adj(vp) and ∪p∈L 1 Np, i.e., all objects inside nodes with new objects and its adjacency and inside the new none-core nodes.

Lemma 9. All processed objects o /

∈ O A will not change their core properties after the insertion by new objects.

Lemma 9 is directly referred from the triangular inequality in Lemma 3. All processed non-core objects in O 1 may change to core ones due to the new inserted objects. Thus, for each pnoise or pborder object o ∈ O A (that has not been processed in Step I1, i.e., ptou(o) = 1), if nei(o) ≥ µ, we mark it as a changed object. Otherwise, we perform a reverse query on

o to check if o is a core (if nei(o) + |Mo| ≥ µ), set ptou(o) = 0, and level(o) = n + m. For each object p ∈ Mo, we update nei(p) if nei(p) < n + m.
For each change core objects, we add their nodes to the list of change core nodes V 2 together with all newly created nodes in Step I1 (since they contain change core objects).

Step I6: Fix the core property of objects. Due to additional range queries in Step I1, I2, I3 and I5, the core properties of objects may change and need to be updated. If o / ∈ O A , st(o) will not change (Lemma 9). Thus, we set level(o) = n + m and ptou(o) = 0 if p is in processed states.

Step I7: Update cluster structures. For each affected object o ∈ O A , we update the graph G by setting a yes connection among pairs of nodes in Vo as in Step 5 of In-cAnyDBC. Then, we update the labels of nodes following their connected components of yes edges like Step 3 of In-cAnyDBC.

Due to the merge of clusters, some existing cross-edgeswith the no state will be changed. Let V A = V 1 ∪ V 2 be the sets of nodes with new objects and change cores objects.

Lemma 10. For each cross-edge (vp, vq), if vp / ∈ V A ∧ vq / ∈ V A , st(vp, vq) will not be affected by new objects.

Proof. (Sketch) Since (vp, vq) are a cross-edge before insertion, st(vp, vq) must be no. And, there is no pair of core objects that will connect them as described in Lemma 2. Thus, edge st(vp, vq) only changes if there is a new object coming into them or a processed border object inside vp or vq becomes a core object. These objects possibly become shared core objects or create a core-core link between them, causing the state changes. Note that an uborder object in vp or vq does not contributed to the connectivity. Thus if it becomes a core, it will not cause any change.

Following Lemma 10, for updating clusters, an obvious way is reseting all possible edges related to V A back into the unknown state and taking all objects inside nodes of V A and its adjacency nodes to rebuild the connections among them. However, this still incurs redundant queries as shown in Figure 2. Since vv and vp already belong to the same clusters, examining (vv, vp) will not lead to any changes in the result. Thus, we follow a more efficient way as following. The general idea is reducing the total number of nodes and links that need to be examined. Consequently, this saves unnecessary queries, thus improving the performance.

Step I8: Fix the links in G following new objects. Let V 1A be the set of nodes vq where (vp, vq) is a cross-edge and vp ∈ V 1 .

Lemma 11. Given a new object a ∈ vp, if d(a, q) > 2 , a does not change the state of (vp, vq).

For finding exactly nodes will be affected by new objects, for each node vq ∈ V 1A , we perform a reverse-query on q with threshold 2 (as demonstrated in Figure ??). If M 2 q does not contain a core or or uborder new object, st(vp, vq) will obviously not be affected and can be excluded from V 1A . Similarly, we remove a node from V 1 if it has no cross-edge counter parts in V 1A .

Let O 1A be the set of objects in V 1A (exclude pnoise and pborder due to no contribution and change core objects (will be processed later)). For each object o ∈ O 1A , we perform a reverse query on o to get new neighbors Mo. These neighbors will be used to limit the involved nodes.

Before further processing, we need to update the core properties of objects due to new queries. For each object For each o ∈ O 1A and for each object p ∈ Mo, if o and p are core, we set a yes connection between two nodes in Vo [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF] and Vp [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF] following Lemma 2. Otherwise, if p is not pborder or pnoise, o and p may link these nodes together. Thus, we keep all nodes of Vo and Vp inside the sets V 1 and V 1A respectively. At the end, V 1 and V 1A contains only nodes that can cause the changes in cluster structures.

o ∈ O 1A , if level(o) = n,
If there are new yes edges, we re-update the cluster labels to reduce the number of cross-edges. Then, for each crossedges (vp, vq) where vp ∈ V 1 and vq ∈ V 1A , if st(vp, vq) = no, we set st(vp, vq) = unknown. This makes the algorithm to reupdate clusters following Lemma 5.

Step I9: Fix the links in G following change core objects. Similar to new objects, change core ones cause clusters to be merged as in Lemma ??. Let V 2A be the set of nodes vq where (vp, vq) is a cross-edge and vp ∈ V 2 . Let O 2 be the set of change core objects in V For each remaining object o ∈ O 2 and p ∈ No, if p is a core object, we set st(Vo [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF], Vp [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF]) = yes following Lemma 2. If p is uborder, p and o may form a link later if p is truly a core. Thus, we do not remove nodes of Vo and Vp from V 2 and V 2A , respectively.

Similar to Step I8, we update the labels of nodes if a yes edge occurs above before changing each cross-edge (vp, vq) where vp ∈ V 2 and vq ∈ V 2A to the unknown state if it is in the no state.

Step I10: Choose objects to be examined. Let V E = V 1 ∪V 1A ∪V 2 ∪V 2A be the set of nodes that may be merged and are detected in Steps I8 and I9. Let O E be the set of objects in vp ∈ V E (exclude node center, pborder and pnoise objects).

Proposition 1. We only need to examine objects in O E to fully update clusters after the insertions.

Proposition 1 can be seen directly from Lemma 10 and the Steps I8 and I9 described above. In these steps, edges that do not affected by new inserted objects will be excluded from the cluster update by keeping their states as no. Thus, V E contains all nodes belong to changing edges. Following Lemma 2 and Lemma 6, we need to examine all objects in O E to clarify these edges as yes or no ones.

Following Proposition 1, we remove the processed mark for each object o ∈ O E from pcore to ucore. This allows the algorithm to re-perform the query to connect nodes.

Step I11: Update the clusters. In this step, we update cluster structures by examining all unprocessed objects in O E to connect nodes in the similar ways to Step 3 to 6 of IncAnyDBC in Section 3.2.

Concretely, at each iteration, we choose a set of β objects in O E to perform queries by assessing their roles on the changes of cluster structures as in Step 4 of IncAnyDBC.

However, we calculate usize(vp) for each node vp by objects inside O E only. Then, for each selected object p, we perform the range queries on it and update the state and current number of neighbors for each unprocessed object q ∈ Np as in Step 5 of IncAnyDBC. Since there are new objects inserted into the database at different times, we only update nei(q) if q ≥ level(p) ∧ p ≥ level(q) for ensuring consistency. After that, we update the states of edges of G following the changes of objects as in Step 5 of IncAnyDBC. The process stops when the termination condition in Lemma 5 in Step 3 of IncAnyDBC is reached with new usize values of objects. Finally, a post processing step as in Step 6 of IncAnyDBC is performed to identify the remainder border objects. Correctness. We prove that IncAnyDBC produces identical results to those of DBSCAN after insertions.

Lemma 13. IncAnyDBC produces identical results to those of DBSCAN after insertions.

Proof. (Sketch) Steps I1 to I3 guarantee that if a new object a is a core, it will be covered inside a node. Moreover, Steps I8 to I9 ensures that all possible changes in G wrt. new objects can be captured. And the result can be fully updated by following the set O E as in Proposition 1. Thus, similar to Lemma 8, if two core object a ∈ vx and b ∈ vx are density-connected, vx and vy will be assigned the same label at the end and vice versa. And the post-processing process will assign the labels for border objects accordingly.

Complexity. Steps I0 to I10 take O(lm), O(vm), O(mn), O(v 2), O(v 2 +vn+lµ+nm), O(n+m), O(v 2 +vn), O(mv 2 + vn + vm + mn + m 2), O(v 2 + vn + vm + mn + n 2

Deletion

In the deletion case, some objects may loose their core property, thus leading to the split of clusters [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF].

Step D0: Preparation. Before updating clusters, each object o is assigned a flag called ptou indicating that it is in processed state but may change to unprocessed due to deleted objects.

Step D1: Update the non-core list. Objects in L will not change to core ones due to deleted objects. However, we need to clean their deleted neighbors. To do so, we scan through each object p ∈ L and remove the deleted objects from its neighbors (or p itself). And we mark p as an updated object by setting ptou(p) = 1.

Step D2: Update the node list. In contrast to the noncore one, objects inside the node list V may loose their core property due to deleted objects. For each node vp ∈ V , we remove deleted objects from its neighbors or vp itself if p is deleted. If Np < µ, p is not a core anymore. We remove vp from V and put it into the non-core list L. All edges related to vp also need to be removed from the graph G. We mark p as updated objects (ptou(p) = 0). Let V 1 be the set of nodes that contains deleted objects.

Step D3: Fix orphan objects. Due to deleted nodes in step D2, some objects may become orphans since they are not covered inside any nodes or in the non-core list. And they need to be fixed. To do so, we first assign the untouched state for all those objects. And then, we repeat the below procedure until there is no untouched one.

At each iteration, we choose a set A of α untouched objects to perform queries. For each object p ∈ A, if Np < µ, we set st(p) = pnoise if st(p) = untouched or st(p) = pborder if st(p) = uborder and put p into L. Otherwise, we set st(p) = pcore and put it into V . For each object q ∈ Np, we assign st(q) = uborder if p is a core and st(q) = untouched. We also increase the neighbor count nei(q) by 1 if q ≥ level(p) and p ≥ level(q) and q has not been updated (ptou(q) = 1).

Step D4: Update the graph. Let V 3 be the set of new nodes created in step D3. For each node vp ∈ V 3 , we add an edge to other node vq if d(p, q) ≤ 3 following Lemma 3. Initially, we set st(vp, vq) = no.

Step D5: Fix the numbers of neighbors. Since deleted objects may be covered inside the neighborhoods of processed ones, we need to update the neighborhood count for some related objects. For each deleted object p ∈ B, we perform a range query on p. For each q ∈ Np, we decrease nei(q) by 1 if q may contribute to the neighborhood count of p before. This happens if q is a processed object and has not been updated or if q is an unprocessed one, and q < level(p) or level(q) > p.

Step D6: Identify change core objects. Let O A = ∪p∈BNp where p is a deleted object. Obviously, all objects in O A may change their core properties. Thus, for each object o ∈ O A , we mark o as a change core one if st(o) = pcore ∨ ucore and nei(p) < µ, and we put all nodes Vo of o into the set of change core nodes V 2 .

Step D7: Fix the core properties. Since the numbers of neighbors change in steps D3 and D5, the core properties of objects must be fixed. We first extend O A by adding objects in the adjacent nodes of the degenerated ones in step D2. Following Lemma 3,additional Given a yes edge (vp, vq), if vp or vq is deleted in Step D2, the edge (vp, vq) will be deleted from G. Otherwise, (vp, vq) still remains but their yes state may loose if a core object is deleted from their neighbors following Lemma 2. This might cause the connected components of nodes to be broken, thus causing the splits of clusters. Let

V A = V 1 ∪ V 2 ∪ V 3 be
the set of involved nodes. A simple approach would reset all their yes edges to the unknown states and rerun the clustering algorithm to re-build clusters. However, this still incurs redundant calculations. Thus, we follow a more efficient scheme as follows.

Step D8: Fix the links in G by deleted objects. Let V 1A be the set of nodes vq where st(vp, vq) = yes and vp ∈

V 1 .
Lemma 14. Given a deleted object a ∈ vp, if d(a, q) > 2 , a does not break the yes state of (vp, vq).

Following Lemma 14, we perform a reverse query on deleted objects for each vq ∈ V 1A with a threshold of 2 . If M 2 q does not contain a deleted core object, the yes connection between vp and vq will not be affected by deleted objects. Thus, we remove vq and its partner vp from V 1A and V 1 , respectively. At the end, for each edge (vp, vq) where vp ∈ V 1 and vq ∈ V 1A , we reset st(vp, vq) to unknown state since it may be affected by the deletions.

Step D9: Fix the links in G by change core objects. If an object looses its core status, it may break the yes connection between its nodes and their adjacency. Let V 2A be the set of nodes vq where st(vp, vq) = yes and vp ∈ V 2 . We remove nodes that do not have its yes counter parts in V 2A from V 2 . Let O 2 be the set of change core objects in V 2 . Lemma 15. For each object o ∈ O 2 ∧ o ∈ vp and node vq ∈ V 2A , if d(o, q) > 2 , o do not break the yes state of (vp, vq).

Following Lemma 15, we do not remove node vq from V 2A if there exist an object o ∈ O 2 such that d(o, q) ≤ 2 since st(vp, vq) may be changed by the deletions. Then, for each edge (vp, vq) where vp ∈ V 2 and vq ∈ V 2A , if st(vp, vq) = yes, we change st(vp, vq) = unknown, waiting for this edge to be re-updated.

Step D10: Update cluster structures. For each object o ∈ O \ B, if o is a pcore or ucore, we set the yes connections for edges (Vo[i], Vo[i -1]) where Vo is the set of nodes containing o and 1 ≤ i ≤ |Vo|. After that, we re-update the labels of nodes following the connected components of yes edges as in Step 3 of IncAnyDBC. This step helps to reduce the possible split causing by the delegation of yes edges in Step D8 and D9.

Step D11: Detect possible splits. Given two arbitrary nodes vp and vq that belong to the same cluster c. If label(vp) = label(vq) after Step D10, c is affected by the deletions (indicated by the changes of yes edges) and need to be re-checked if it really splits. Let C A be the set of affected clusters (including all nodes in V 3 , which are assigned the same special cluster labels initially).

Lemma 16. Any cluster c / ∈ C A will not be affected by the deletions.

Proof. (Sketch) Steps D2, D8, and D9 guarantee that all possible broken yes edges are changed to unknown, waiting for the cluster updates. Thus, c will not be changed.

For each cluster c ∈ C A , we need to re-cluster it to check if c is really be spitted. To do so, all we need is to change all no edges in c back into unknown states and rerun the clustering algorithm to look for clusters again. Let V A be the set of nodes inside C A . For each node vp ∈ V A and vq ∈ adj(vp), if vp and vq currently belong to a splited cluster, we put them into the set of nodes V E to be examined later. Moreover, if st(vp, vq) = no, we change it to unknown as discussed before.

Step D12: Choose objects to be examined. Let O E be the set of objects inside vp ∈ V E (exclude node centers, pborder and pnoise ones).

Proposition 2. We only need to examine objects in O E to fully update clusters after the deletions.

Proposition 2 is straightforwardly drawn from Lemma 16 and Steps D8 to D11 of IncAnyDBC. All edges that are not Proof. (Sketch) Steps D1 to D3 ensure that a core object will be covered in a node after the deletions. Steps D8 and D9 ensure that all possible affected yes edges are reversed back to unknown states to be re-checked. Step D11 detects any possible broken cluster. All changes can be captured by examining O E in Step D13 following Proposition 2. Thus, if two core objects a ∈ vp and b ∈ vq are density-connected in DBSCAN, they will be placed into the same connected component in IncAnyDBC and vice versa. Consequently, IncAnyDBC produces identical results as DBSCAN after the deletions, except for the shared border objects.

Complexity. Steps I0 to I12 take O(n), O(lµ), O(vn

+ v 2), O(n 2), O(v 2), O(mn), O(nv), O(n), O(v 2 + vm + mv 2), O(v 2 + nv), O(nv), O(v 2), O(v 2),

and O(vn).

Step D13 has the similar time complexity as in Steps 3 to 5 of In-cAnyDBC. Thus, the overall time complexity is O(mn 2) like IncDBSCAN. IncAnyDBC requires O(vn + v 2 + lµ + nm) space complexity.

Parallel processing

As discussed before, the general idea is processing queries in block and using the results for building clusters by changing the connections among object nodes. Figure 7 illustrates the parallel processing model of IncAnyDBC.

At each iteration, a block of unprocessed objects are selected from the database to processing queries using multiple threads, e.g., objects a to f . We propose to execute each query independently of each other using a single thread, e.g., thread t1, t2, and t3 processes object a, b, and c, respectively. This is more effective than executing each queries in parallel, especially with index structures since not all of them can be executed in parallel efficiently. Since the neighborhood query times may vary, dynamic scheduling would be employed for better balancing the overall workload of threads. However, since the neighborhoods of objects may overlap, we need to wait for all queries to be completed before being able to update the information of objects and connectivity among nodes. Thus, we use a memory buffer (M B) to temporarily store the neighbors of selected objects. And a barrier is placed for synchronizing all threads after query processing. After that, each thread will grab a stored neighborhood from the buffer M B to update the core information and to connect object nodes into clusters until all of them are processed. Since the neighborhood sizes of objects vary significantly, we propose to use dynamic scheduling for balancing threads' workload. IncAnyDBC then synchronizes all threads and do some necessary sequential tasks before starting the object selection process until it reaches to the final stages or it is terminated by users.

Instead of propagating labels from objects to objects like DBSCAN, IncAnyDBC assigns labels for nodes by following connected components of the yes connections. Due to the monotonicity of the cluster structures as described in Section 3.2, connected components change incrementally wrt. new yes edges. Thus, we use a Disjoint Set (DJS) data structure to efficiently update the components rather than relooking them from scratch. Each object node will be placed into the DJS. The DJS supports two operations: (1) F indSet(vp) looks for the label of a node vp and (2) U nion(vp, vq) merges two nodes vp and vq into the same component. The Union operation is not thread-safe. Thus, it is placed in a critical section for synchronization.

For object selections, we use multiple threads to calculate object's scores. Since each node may have different number of adjacent nodes, we use dynamic scheduling to balance the workload. And top score objects are selected sequentially to be processed in the next block.

IncAnyDBC needs to hold a list of nodes Vp for each object p. Building it is expensive and strongly affect the scalability of IncAnyDBC over multiple threads, especially when we have high numbers of nodes. To do so, each node is first assigned to a fixed thread t. Then each thread t will build its own node list V t p for each object p independently to each others. Finally, for each object p, we build Vp by merging all node lists of threads in parallel.

EXPERIMENTS

Datasets. We perform experiments on various real datasets acquired from different sources including:

• Farm: contains 3,627,086 objects. Each has 5 VZfeatures of a satellite farm image in Saudi Arabia 1 [START_REF] Gan | DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation[END_REF]. • Household: consists of 2,049,280 objects with 7 dimensions US census data for electricity and mortgage expenses acquired from the UCI archives [START_REF] Frank | UCI machine learning repository[END_REF].

• Sdss2Mass: contains 1,258,127 8-dimension objects describing locations and gravities of different galaxies taken from a cosmological database [START_REF] De Lucia | The hierarchical formation of the brightest cluster galaxies[END_REF]. 1 http://www.satimagingcorp.com/gallery/ikonos/ikonostadco-farms-saudiarabia

• GasSensor: records values of 16 different sensors exposed to Ethylene and CO with 4,178,504 objects acquired from the UCI archives [START_REF] Frank | UCI machine learning repository[END_REF].

• PAMAP2: describes the physical activities using inertial measurement units acquired from the UCI archives [START_REF] Frank | UCI machine learning repository[END_REF] with 974,479 objects in 39 dimensions.

• Precipitation: contains data of mean monthly surface climate such as precipitations and temperatures over global land areas2 with 566,268 12-d objects.

• OSFP: acquired from the French national registry of sleep apnea3 . It describes sets of syndromes for 39,252 patients with Obstructive Sleep Apnea (OSA) such as snoring and stroke.

Systems. Experiments are conducted on Linux server with 2.6 GHz CPUs and 128GB RAM using g++ 4.9.2.

Outline. In Section 4.1 and 4.2, we will first demonstrate the performance of IncAnyDBC during the clustering phase using single and multiple threads. Then we study the cluster update phase in Section 4.3 using single thread and Section 4.4 using multiple threads.

Clustering performance

Unless otherwise stated, we use default parameters µ = 50, α = 512, and β = 4096. The pruning power of IncAnyDBC. Figure 8 shows the numbers of queries and object nodes of IncAnyDBC for the dataset GasSensor with different parameters µ and . In-cAnyDBC requires much fewer queries to build cluster than DBSCAN (from 4.0 to 74.3 times). Moreover, the number of object nodes is also much smaller than the number of objects (from 76.5 to 1866.1 times). Thus, the query processing time and label propagation time of DBSCAN are significantly reduced (since we only label the nodes). Consequently, IncAnyDBC is much faster than DBSCAN as we shall see in Figure 9. Performance comparisons. Figure 9 shows the performance of IncAnyDBC compared to DBSCAN [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] and its fastest variants including ρ-DBSCANv2 [START_REF] Gan | On the Hardness and Approximation of Euclidean DBSCAN[END_REF] (a significant improved version of ρ-DBSCAN [19] 4) and an improved version of AnyDBC [START_REF] Mai | Anytime parallel density-based clustering[END_REF][START_REF] Mai | AnyDBC: An Efficient Anytime Density-based Clustering Algorithm for Very Large Complex Datasets[END_REF] (where we slightly optimize some steps for saving runtimes) using different parameters and µ. As suggested from [START_REF] Kriegel | The (black) art of runtime evaluation: Are we comparing algorithms or implementations?[END_REF][START_REF] Schubert | DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN[END_REF], we vary the parameter from very small to very large to study the performance of these algorithms. For example, when = 100, 79% objects are noise for the Sdss2Mass. For the Household data, there is only one cluster containing 99.99% objects when = 20000.

For database indexing, we use kd-tree [4] 5 Compared to DBSCAN, IncAnyDBC is much faster in most cases. E.g., the speedup factor ranges from 7.0 to 238.5 times for the Sdss2Mass dataset and from 0.57 to 853.5 times for the Household dataset. This is due to the pruning power of IncAnyDBC as discussed in Figure 8 above. However, when the number of used queries is too large (e.g., when = 2000 to 3000 for the Household dataset), IncAnyDBC will run slightly slower than DBSCAN due to its active clustering overheads such as object selections in Step 4. We will discuss more on the performance of IncAnyDBC in the next parts.

When is large, AnyDBC and IncAnyDBC acquires comparable performance on all the datasets. However, when is very small, both IncAnyDBC and AnyDBC needs to spend more queries to go to the terminate stage as demonstrated in Figure 8. Thus, the overhead increases. However, since In-cAnyDBC does not need to merge clusters and queries like AnyDBC, its overhead is much smaller than that of Any-DBC and thus is much faster. E.g., for the Farm dataset with = 4000, IncAnyDBC needs only 59.1 seconds (244.2 times faster than AnyDBC with 14,454.5 seconds).

When the dimension d of the data is low (e.g., the Farm and Household datasets), the performances of IncAnyDBC and ρ-DBSCANv2 are comparable. However, when d is larger, IncAnyDBC runs much faster since it does not rely on the grid structure like ρ-DBSCANv2, where the number of cells increases exponentially wrt. to the dimension d and causes significant overheads. E.g., IncAnyDBC is from 1.6 to 8.3 times, from 3.7 to 11.6 times, and from 0.53 to 52.8 times faster than ρ-DBSCANv2 on the datasets Sdss2Mass, GasSensor, and PAMAP2, respectively. Roles of indexing techniques. Since IncAnyDBC relies on neighborhood queries, using different indexing methods will affect the performance difference between it and ρ-DBSCAN as demonstrated in Figure 10

Sdss2Mass

Figure 10: The effects of indexing techniques on In-cAnyDBC and r -tree 7 [START_REF] Guttman | R-Trees: A Dynamic Index Structure for Spatial Searching[END_REF]. Depending on , the overall runtimes of IncAnyDBC vary several times while rho-DBSCAN is not affected since it does not need to index data. Effects of parameters µ and . As shown in Figures 8 and9, has a very strong effect on performances of all methods. However, when increases, the runtime of IncAnyDBC fluctuates instead of increasing like DBSCAN. The main reason is its query pruning scheme. The performance of In-cAnyDBC depends on the number of queries its use, which is affected by the final cluster structure. If clusters are well separated, i.e., less cross-edges among them, fewer queries need to be used to break these edges following Lemma 6. Thus, the algorithm runs faster and vice versa. In our real datasets, when is too small, we have many small clusters that stay close to each others and thus are harder to clarify. Thus, IncAnyDBC uses more queries than larger values of . Moreover, the number of object nodes decreases since more objects will be covered inside a node if increases as shown in Figure 8 (left). Thus, the performance gap between In-cAnyDBC and DBSCAN typically becomes larger when increases as we can see from Figure 9 (top). Larger values of µ means it is harder to detect the core properties of objects without doing neighborhood queries on them. Thus, the number of used queries increase slightly as show in Figure 8 (right). This makes the runtime of In-cAnyDBC increases in most cases as seen in Figure 9 (bottom) (if the cluster structure does not change much). Effects of parameter α and β. Figure 11 shows the robustness of IncAnyDBC to the two parameters α and β. Generally, when α increases, there will be more nodes due to the block processing scheme in Step 1. Thus, more core objects will be revealed at an early stage, making the algorithm to finish earlier. Hence, the number of used queries goes down. However, when the number of nodes increases, there are chances that two nodes from different clusters are placed close enough to each other, thus creating a crossedge between them following Lemma 3. Following Lemma 6, clarifying these cross-edges requires more queries to be performed. This lead to the increase of the number of used queries. As a result, the runtime of IncAnyDBC slightly decreases and increases again as seen in Figure 12 (top). However, when α changes from 200 to 1000, the runtime only changes between 197.0 to 236.5 seconds.

The parameter β is used for balancing the overheads of IncAnyDBC and its pruning power. Smaller β means that objects are frequently evaluated and selected to build clusters (Steps 3 to 5). Thus, better objects are selected and fewer queries are required compared to bigger values of β. On the other hand, the overheads of the active clustering scheme are bigger due to more iterations. These facts affect the runtime of IncAnyDBC as shown in Figure 12 (bottom). When β = 2000, it takes IncAnyDBC 253.9 seconds. However, when β = 4000, the runtime reduces to 191.6 seconds (though the number of used queries increases from 542,299 to 570,681) since the overheads are reduced. However, when β = 10000, the runtime goes up again to 205.0 seconds since the number of increased queries overwhelms the overhead reduction. The performance changes, however, are small, ranging from 187.3 to 253.9 seconds.

In our datasets, we suggest to set α from 400 to 800 and β from 4000 to 8000 to acquire good performance overall. is that it can be interrupted at any time to provide approximate results, while other methods like [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF][START_REF] Gan | DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation[END_REF][START_REF] Gan | On the Hardness and Approximation of Euclidean DBSCAN[END_REF] can only provide either an exact result or an approximate result.

Figure 12 shows the anytime property of IncAnyDBC. Due to the monotonicity property (c.f. Section 3.2), the number of clusters reduce very quickly at each iteration to the final number of clusters of DBSCAN at the end. AnyDBC is the only existing algorithm that has the same property. However, it usually has larger initial overheads due to its cluster intersection and merge strategies. ρ-DBSCANv2 can produce exact or approximate results of DBSCAN. However, it is a batch algorithm. We need to set the approximate value ρ and wait for the algorithm to finish to have the result. It cannot work under arbitrary time constraints like IncAnyDBC and AnyDBC. Figure 13 shows the performance of IncAnyDBC and Any-DBC on the datasets Precipitation and OSFP using Manhattan and Jaccard distance metrics [START_REF] Tan | Introduction to Data Mining[END_REF] (α = 128 and β = 1024). IncAnyDBC is comparable to AnyDBC on both datasets and is from 1.4 to 135.5 times faster than DBSCAN on both datasets.

Parallel clustering

Scalability over multiple threads. Figure 14 illustrates the performance of IncAnyDBC, AnyDBC [START_REF] Mai | Anytime parallel density-based clustering[END_REF], HPDBSCAN [START_REF] Götz | HPDBSCAN: highly parallel DBSCAN[END_REF], and PDSDBSCAN [START_REF] Patwary | A new scalable parallel DBSCAN algorithm using the disjoint-set data structure[END_REF] on different datasets using 16 threads. Due to its grid-based scheme, HPDBSCAN can only work on low dimensional datasets Farm and Household with large values of . PDSDBSCAN, on the other hand, consumes too much memory due to its object storing scheme when the neighborhoods of objects overlap. Thus, when is large enough, it runs out of memory. Since both HPDB-SCAN and PDSDBSCAN do not focus on workload reduction like IncAnyDBC, their performance is significantly overwhelmed by IncAnyDBC. E.g., HPDBSCAN is from 90.9 to 679.6 times slower than IncAnyDBC on the Household dataset and PDSDBSCAN is from 3.4 to 49.8 times slower than on the GasSensor dataset. The bigger the value of , the larger the performance gap. Compared to AnyDBC, In-cAnyDBC is faster in most cases 8 , especially when is small, e.g., 55.4 times when = 2000 (GasSensor) and 212.4 times when = 5000 (Household). In terms of scalability, In-cAnyDBC also performs better than AnyDBC in most cases 8 We slightly modified AnyDBC to make it faster. However, its scalability becomes worse than the original version [START_REF] Mai | Anytime parallel density-based clustering[END_REF]. and much better than HPDBSCAN and PDSDBSCAN. It reaches speedup factors of 9.5, 10.3, 7.5, 7.7, and 14.2 over 16 threads on the datasets Farm, Household, Sdss2Mass, GasSensor, and PAMAP2, respectively. Note that, experiments are ran on two 8-core CPUs, and thus they suffers from the NUMA effects. Without it, the speedup factors of IncAnyDBC would be even better. Currently, IncAnyDBC is not designed as a NUMA aware method. Other distance functions. Figure 15 shows the scalability of IncAnyDBC using 16 threads on two datasets Precipitation (L1) and OSFP (Jaccard distance). It has very good performance on both datasets. The speedup factors are from 9.1 to 10.9 (Precipitation) and from 8.1 to 11.5 (OSFP) over 16 threads. HPDBSCAN [START_REF] Götz | HPDBSCAN: highly parallel DBSCAN[END_REF] and PDSDB-SCAN [START_REF] Patwary | A new scalable parallel DBSCAN algorithm using the disjoint-set data structure[END_REF] can only work on Euclidean distance and thus are excluded, while AnyDBC acquires a comparable performance to IncAnyDBC. Which steps of IncAnyDBC scale worse? Figure 16 shows the scalability of IncAnyDBC using 16 threads on three bad cases of PAMAP2, Household, and GasSensor (with lowest scalabilities). Steps 1, 2, 4, and 5 typically takes up most runtimes of IncAnyDBC. However, the scalability of IncAnyDBC typically is very bad on Step 2. There is not a surprise since it has to perform many sequential tasks. When Parallel anytime properties. One interesting property of IncAnyDBC is that each step can be parallelized, making it a unique anytime parallel algorithm. As shown in Figure 17 (left), using 16 threads, we can acquire the same clustering result at each iteration of IncAnyDBC much faster (from 9.5 to 10.1 times). Figure 17 (right) shows the speedup factors at each iteration. The more iterations, the better the speedup factors. It is due to the fact that Step 5 usually scales better than other steps as illustrated in Figure 16. Effects of parameters α and β. Figure 18 shows the effects of parameters α and β on the performance of In-cAnyDBC. Increasing β makes the overall workload at each iteration larger. This helps to balance threads better. And thus, the scalability of IncAnyDBC typically increases as we can see from Figure 11 (right). The role of α, however, is unclear. On different datasets, it shows different behaviours. E.g., when increases from 200 to 1000, the speedup factor increases from 8.1 to 8.7 times on the PAMAP2 dataset but decreases significantly from 12.2 to 4.3 times on the Household dataset. Unfortunately, there is no way to predict such behaviors. Thus, in our experiments, we choose α around 500 to bring up average performances for all our datasets.

Dynamic clustering

We study the performance of IncAnyDBC for both insertion and deletion cases. The query pruning scheme of IncAnyDBC. IncDBSCAN needs to determine all change core objects before further processing, it requires at least 2,000 queries regardless the parameter . However, the total number of used queries does not vary much (from 2,003 to 2,428 over 1,158,127 points), meaning that IncDBSCAN works quite stable and very efficient compared to the re-clustering choice. By using reverse queries to detect potential changes and updating clusters under the active scheme, IncAnyDBC uses much less queries than IncDBSCAN (from 0 to 1,485). Since reverse queries are significantly faster than full queries, In-cAnyDBC is faster than IncDBSCAN as show in Figure 20. Moreover, when grows bigger, the cluster structure tends to be more stable and there are fewers border objects (that may change to cores). Thus, the number of queries is typically reduced. Note that, since the query processing time typically increases with , it does not mean that the runtime of IncAnyDBC will reduces. The deletion case is much expensive than the insertion case shown in Figure 19 since clusters may be broken and need to be re-clustered. Thus, the total number of queries IncDBSCAN used is much higher, ranging from 1.6 to 10.1 millions (from 676.8 to 5,064.6 times higher than the insertion case). Compared to the data size, it is better to recluster from scratch rather than updating results in this batch mode. Since IncAnyDBC processes deleted objects in a bulk, it does not need to repeatedly re-verify a cluster many times. Together with its active clustering scheme, it needs only from 0 to 5,965 full queries to update clusters. This dramatically improves the performance compared to IncDBSCAN as we will see in Figure 20 below. Similar to the insertion case, the bigger the parameter , the fewer queries it uses typically. Performance comparisons. Figure 20 (top) shows the runtimes of IncAnyDBC and cumulative runtimes IncDB-SCAN [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF] over 2,000 insertions. When become biggers, the runtimes of IncAnyDBC fluctuates rather than increasing like IncDBSCAN due to its query pruning scheme as discussed above. Due to its active bulk processing scheme, IncAnyDBC significantly outperforms IncDBSCAN in most case, e.g., from 2.3 to 41.0 times faster on Sdss2Mass. The bigger , the larger the performance gaps. However, in some cases, e.g., Household (= 1, 000) or PAMAP2 (= 10, 000), IncAnyDBC runs slower than IncDBSCAN. The reason is that we must update some no edges to unknown states in Step I8 and I9 to let the algorithm re-update clusters for capturing all possible cluster merges. In the worst cases, if the changed edges are cross-edges, it will be hard to break them as discussed in Section 4.1. Thus, IncAnyDBC consumes more queries than IncDBSCAN and is slower.

The major difference between IncAnyDBC and IncDB-SCAN is on the deletion case (c.f. Figure 20 (bottom)), where IncAnyDBC completely outperforms IncDBSCAN in all cases, e.g., from 35.8 to 10,755.9 times on Sdss2Mass. Since the deletion case is much expensive than the insertion case, the overall performance of IncAnyDBC fully dominates IncDBSCAN. With m = 2, 000 changes, updating clusters using IncAnyDBC is also more efficient than re-clustering the whole database using IncAnyDBC or DBSCAN. Other distance metrics. Figure 21 shows the performance of IncAnyDBC for OSFP and Precipitation using Jaccard and Manhattan distances (α = 128, β = 1, 024, and m = 1, 000). The same results are observed. 21. However, the speedup factor decreases with . The reason is that we do not use indexing technique. Thus, the query processing time is well-balanced for threads regardless of . In this case, bigger means bigger object nodes and overheads. This drags the overall scalability goes down in many cases, especially when the dataset is small like OSFP. Scalability wrt. the numbers of object changes? When the number of changes increases from 1,000 to 100,000 as illustrated in Figure 22, the overall workload of IncAnyDBC increases. Thus, it leads to the improvement of the scalability of IncAnyDBC. E.g., for Household, the speedup factor is 6.6, 10.4, and 12.6 times over 16 threads when m changes from 1,000 to 10,000 and 100,000, respectively. Effect of parameters α and β. When α and β increases as demonstrated in Figure 28, the scalability of IncAnyDBC over 16 threads remains quite stable, especially for the deletion case. Theoretically, increasing β will balance workload of threads better, thus leading to better speedup factor as we have seen in Figure 18. However, since the overall update times are too small, the effect is thus not visible clearly.

Anytime cluster update. Since IncAnyDBC is an parallel anytime method, multiple threads can be used to have intermediate results faster as shown in Figure 29. During the execution time, the intermediate speedup factor changes slightly at each iteration like the clustering phase shown in Figure 17. However, it does not show clear increasing or decreasing trend due to small update times.

RELATED WORKS AND DISCUSSION

Incremental density-based clustering. Finding clusters in dynamic databases is an important research focus for many years [START_REF] Ackerman | Incremental Clustering: The Case for Extra Clusters[END_REF][START_REF] Bhattacharjee | Batch Incremental Shared Nearest Neighbor Density Based Clustering Algorithm for Dynamic Datasets[END_REF][START_REF] Charikar | Incremental Clustering and Dynamic Information Retrieval[END_REF][START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF][START_REF] Gan | Dynamic Density Based Clustering[END_REF][START_REF] Lin | Iterative Incremental Clustering of Time Series[END_REF][START_REF] Mai | Scalable Interactive Dynamic Graph Clustering on Multicore CPUs[END_REF]. Most of them focus on incrementally updating existing clusters when changes occur in the databases instead of reclustering from scratch. As a fundamental clustering algorithm with many real-life applications [START_REF] Mai | A Similarity Model and Segmentation Algorithm for White Matter Fiber Tracts[END_REF], DBSCAN [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] is an attractive target for this incremental clustering approach, e.g., [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF][START_REF] Gan | Dynamic Density Based Clustering[END_REF].

In [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF], the locality natur of DBSCAN is exploited to limit the update areas, thus saving computation costs. An inserted object may merge existing clusters. And a deleted object may break a cluster into smaller parts and needs to be rebuilt, which is very expensive. Gan and Tao [START_REF] Gan | Dynamic Density Based Clustering[END_REF] introduces a grid-based approach for updating clusters very efficiently. However, their algorithm can only approximate the result of DBSCAN when the data dimension d > 2. Its grid-based scheme also limits it to low-dimensional data under Euclidean distance only, thus reducing its applicability. Both IncDBSCAN [START_REF] Ester | Incremental Clustering for Mining in a Data Warehousing Environment[END_REF] and ρ-DBSCAN [START_REF] Gan | Dynamic Density Based Clustering[END_REF] work in a batch scheme. They update clusters with each change. In contrast, IncAnyDBC can update clusters in a bulk mode to reduce overheads. Thus, it is much faster than IncDBSCAN. Moreover, IncAnyDBC has other attractive properties. First, its can work under arbitrary time constraints and can provide both exact and approximate results of DBSCAN. To the best of our knowledge, IncAnyDBC is the first anytime algorithm for incrementally update DBSCAN's clusters. Second, it is not limited to Euclidean distance like ρ-DBSCAN and can work with arbitrary distance metrics like IncDBSCAN.

Density-based methods for streaming data such as Den-Stream [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF] and [START_REF] Wan | Density-based clustering of data streams at multiple resolutions[END_REF] has an incremental natur like IncAnyDBC. However, they produce different clustering results to DB-SCAN and thus are out of scopes of this work. Parallel incremental clustering. To the best of our knowledge, IncAnyDBC is the first parallel method for incrementally updating DBSCAN's clusters on multicore CPUs. It not only tries to increase the computation throughput like other traditional parallel algorithms but also tries to reduce the overall workload. Combined with the anytime property, IncAnyDBC is a unique anytime work-efficient technique for finding clusters in dynamic databases. Density-based clustering. Reclustering the whole database from scratch is a potential approach when the number of changes are too large as discussed in Section 3.3. To do that, many different methods for enhancing performance of DBSCAN such as [START_REF] Gan | DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation[END_REF][START_REF] Gan | On the Hardness and Approximation of Euclidean DBSCAN[END_REF][START_REF] Gunawan | A Faster Algorithm for DBSCAN[END_REF][START_REF] Mai | AnyDBC: An Efficient Anytime Density-based Clustering Algorithm for Very Large Complex Datasets[END_REF] can be employed.

Gunawan [START_REF] Gunawan | A Faster Algorithm for DBSCAN[END_REF] introduces a grid-based method for clustering 2-d data in O(nlogn) time complexity rather than O(n 2) of DBSCAN. The result is further strengthened by Gan and Tao in [START_REF] Gan | On the Hardness and Approximation of Euclidean DBSCAN[END_REF] using the concepts of Voronoi diagram and Delaunay triangulation. ρ-DBSCAN [START_REF] Gan | DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation[END_REF] is another grid-based method built upon the Bichromatic Closest Pair (BCP) problem for connecting grid cells into density- connected clusters. It works very well on low-dimensional data. However, since the number of cells grows exponential with the data dimension, it suffers from performance degradation on high dimensional data. Moreover, it can only work with Euclidean distance. There exists several extensions of ρ-DBSCAN, e.g., [START_REF] Li | Hashing-Based Approximate DBSCAN[END_REF][START_REF] Sakai | Cell-Based DBSCAN Algorithm Using Minimum Bounding Rectangle Criteria[END_REF]. In [START_REF] Gan | On the Hardness and Approximation of Euclidean DBSCAN[END_REF], the authors present an optimized version of ρ-DBSCAN (denoted as ρ-DBSCANv2), which is 10-20 times faster than ρ-DBSCAN when dealing with small values of . Other methods such as [START_REF] Böhm | Efficient Anytime Density-based Clustering[END_REF][START_REF] Brecheisen | Efficient Density-Based Clustering of Complex Objects[END_REF][START_REF] Mai | Anytime density-based clustering of complex data[END_REF] exploit lower-bounding distances to reduce the clustering time of DBSCAN under filter-refinement schema. However, they are more suitable for small datasets with very expensive distance functions. AnyDBC [START_REF] Mai | AnyDBC: An Efficient Anytime Density-based Clustering Algorithm for Very Large Complex Datasets[END_REF] is the closest work to IncAnyDBC. Both of them are based on the general idea of summarization objects into sub-groups using a few neighborhood queries and iteratively merge them with additional queries to form clusters. However, IncAnyDBC and Any-DBC follows two completely different algorithmic schema. AnyDBC merges connected sub-groups into a single one at each iteration. Thus, it suffers from higher overheads than IncAnyDBC which only changes the connectivity statuses of subgroups. On the other hand, IncAnyDBC needs a special trick to reduce the required queries to build clusters as presented in Step 5 of IncAnyDBC in Section 3.2. Moreover, AnyDBC looses important information on local sub- There are many other methods aiming at improving DB-SCAN's performance such as BRIDGE [START_REF] Dash | 1 + 1 > 2': Merging Distance and Density Based Clustering[END_REF], DBR [START_REF] Wang | DBRS: A Density-Based Spatial Clustering Method with Random Sampling[END_REF], SDB-SCAN [START_REF] Zhou | Combining Sampling Technique with DBSCAN Algorithm for Clustering Large Spatial Databases[END_REF], and IDBSCAN [START_REF] Borah | An Improved Sampling-Based DBSCAN for Large Spatial Databases[END_REF]. However, they can only produce (coarse) approximate results instead of exact results of DBSCAN like IncAnyDBC. Parallel density-based clustering. Parallelizing DBSCAN is one of the most active research topics for enhancing DB-SCAN with many proposed techniques such as [?, [START_REF] Andrade | G-DBSCAN: A GPU Accelerated Algorithm for Density-based Clustering[END_REF][START_REF] Böhm | Density-based Clustering using Graphics Processors[END_REF][START_REF] Brecheisen | Parallel Density-Based Clustering of Complex Objects[END_REF][START_REF] Dai | Efficient Map/Reduce-Based DBSCAN Algorithm with Optimized Data Partition[END_REF][START_REF] Götz | HPDBSCAN: highly parallel DBSCAN[END_REF][START_REF] He | MR-DBSCAN: An Efficient Parallel Density-Based Clustering Algorithm Using MapReduce[END_REF][START_REF] Hu | A Communication Efficient Parallel DBSCAN Algorithm based on Parameter Server[END_REF][START_REF] Lulli | NG-DBSCAN: Scalable Density-Based Clustering for Arbitrary Data[END_REF][START_REF] Patwary | A new scalable parallel DBSCAN algorithm using the disjoint-set data structure[END_REF][START_REF] Patwary | Pardicle: Parallel Approximate Density-Based Clustering[END_REF][START_REF] Song | RP-DBSCAN: A Superfast Parallel DBSCAN Algorithm Based on Random Partitioning[END_REF][START_REF] Welton | scan: extreme scale density-based clustering using a tree-based network of gpgpu nodes[END_REF][START_REF] Xu | A Distribution-based Clustering Algorithm for Mining in Large Spatial Databases[END_REF]. Most of them focus on parallelizing DBSCAN on distributed systems including MPIbased master-slave schema [START_REF] Brecheisen | Parallel Density-Based Clustering of Complex Objects[END_REF][START_REF] Januzaj | Scalable Density-Based Distributed Clustering[END_REF][START_REF] Xu | A Distribution-based Clustering Algorithm for Mining in Large Spatial Databases[END_REF], MapReduce [START_REF] Dai | Efficient Map/Reduce-Based DBSCAN Algorithm with Optimized Data Partition[END_REF][START_REF] He | MR-DBSCAN: An Efficient Parallel Density-Based Clustering Algorithm Using MapReduce[END_REF], Spark [START_REF] Lulli | NG-DBSCAN: Scalable Density-Based Clustering for Arbitrary Data[END_REF][START_REF] Song | RP-DBSCAN: A Superfast Parallel DBSCAN Algorithm Based on Random Partitioning[END_REF], and Parameter Server [START_REF] Hu | A Communication Efficient Parallel DBSCAN Algorithm based on Parameter Server[END_REF]. Patwary et al. [START_REF] Patwary | A new scalable parallel DBSCAN algorithm using the disjoint-set data structure[END_REF] point out that these algorithms do not scale well when ported to shared memory systems such as multicore CPUs. Some other algorithms aim at extending DBSCAN on Graphic Processing Units (GPUs) such as [START_REF] Andrade | G-DBSCAN: A GPU Accelerated Algorithm for Density-based Clustering[END_REF][START_REF] Böhm | Density-based Clustering using Graphics Processors[END_REF][START_REF] Welton | scan: extreme scale density-based clustering using a tree-based network of gpgpu nodes[END_REF]. There are some methods that are designed to work with multicore CPUs including [START_REF] Götz | HPDBSCAN: highly parallel DBSCAN[END_REF][START_REF] Patwary | A new scalable parallel DBSCAN algorithm using the disjoint-set data structure[END_REF][START_REF] Patwary | Pardicle: Parallel Approximate Density-Based Clustering[END_REF].

PDSDBSCAN [START_REF] Patwary | A new scalable parallel DBSCAN algorithm using the disjoint-set data structure[END_REF] employs a Disjoint Set data structure to merge two points if they belong to the same cluster in a bottom-up clustering scheme. However, it must perform all queries, thus suffering from very high workload compared to IncAnyDBC. Consequently, it is much slower than In-cAnyDBC as studied in Section 4.2. Pardicle [START_REF] Patwary | Pardicle: Parallel Approximate Density-Based Clustering[END_REF] is more efficient than PDSDBSCAN but it can only produce approximate results of DBSCAN. HPDBSCAN [START_REF] Götz | HPDBSCAN: highly parallel DBSCAN[END_REF] exploits the data grid structures to build clusters in parallel. However, it suffers from performance degradation on high dimensional data due to the exponential number of cells. None of these methods has an anytime property like IncAnyDBC. Moreover, since they do not focus on workload reduction, they are not work-efficient and thus run much slower than In-cAnyDBC using single or multiple threads. AnyDBC-MC [?] is the closest work of IncAnyDBC. However, it differs significantly with IncAnyDBC in its algorithmic operation as discussed above. Moreover, since it uses bit vectors to find cluster intersections and to merge them, it consumes much memory than IncAnyDBC.

CONCLUSION

In this paper, we introduce the first and unique anytime work-efficient parallel algorithm, called IncAnyDBC, to efficient update density-based clusters for very large complex data on multicore CPUs. For data clustering, IncAnyDBC actively chooses a subset of objects to build clusters in an iterative manner. As a result, it consumes only few queries to build the same clustering results as DBSCAN. Thus, it is orders of magnitudes faster than DBSCAN and its variant. IncAnyDBC reserves local cluster structures of data and exploits them to actively update clusters when there are changes in the databases such as inserted or deleted objects. Thus, it needs much less queries than the state-of-theart method IncDBSCAN for updating results. Moreover, changes are update in bulks rather than batches like existing techniques for reducing overheads. Hence, it is much efficient than IncDBSCAN, especially for the deletion case. IncAnyDBC, due to its anytime property, can work under arbitrary time constraints and provides exact or approximate results of DBSCAN on demands. Its block processing scheme allows it to be parallelized efficiently on multicore CPUs. Experiments on our systems with 16 CPU cores show that IncAnyDBC scales very well with the number of threads (up to ≈ 15 times over 16 threads).

Figure 1 :

 1 Figure 1: Incremental clustering: (1) the inserted object a merges two clusters C1 and C2 into a single cluster and (2) the deleted object b breaks cluster C3 into two small clusters

Figure 2 :

 2 Figure 2: The general idea of IncAnyDBC • Deletion. A deleted object may be a core or may change other core objects into a non-core ones. This causes clusters to be splited or vanished. E.g., the deleted object b breaks cluster C3 into two smaller clusters C31 and C32.

Figure 3 :

 3 Figure 3: Pseudocode for IncAnyDBC

Figure 4 :

 4 Figure 4: The state transitions of objects

Figure 5 :

 5 Figure 5: The state transitions of edges

Proof.

 Let a and b be two arbitrary objects in Np and Nq, respectively. Due to the triangle inequality, we have d(p, q) ≤ d(p, a) + d(q, b) + d(a, b). Since d(p, a) ≤ and d(q, a) ≤ (Definition 6), we have d(a, b) > . Thus, vp and vq will not be directly-connected (Definition 7).

Lemma 4 .

 4 If two core objects a and b are density-connected in DBSCAN, there exists a path of nodes in G that connects vp and vq, where a ∈ vp and b ∈ vq. Proof. Let a = x1 x2 • • • xn = b be a chain of core objects connecting a and b (Definition 4). After Step 1, if xi is core, it must be covered inside a node vj of V . Since d(xi, xi+1) ≤ , their nodes will be connected in G.

Definition 10 .

 10 (Node degree). The degree of a node vp, denoted as deg(vp), is defined as follows: deg(vp) = vq ∈adj(vp) ω(vp, vq)stat(vq)

Figure 6 :

 6 Figure 6: Illustration of Lemma 7

Lemma 8 .

 8 IncAnyDBC produces the identical final clustering results as DBSCAN. Proof. (Sketch) If two core objects a b in DBSCAN, there exists a path of nodes v1 • • • vm in G such that a ∈ v1 and b ∈ vm (Lemma 4). Due to Lemma 7, all nodes vi belong to the same clusters in IncAnyDBC. Hence, label(a) = label(b) (Lemma 1). Moreover, if a b in DBSCAN, for each chain of core objects a = x1 • • • xm = b, there exists a pair xi and xi+1 where d(xi, xi+1) > . Moreover, xi ∈ vp and xi+1 ∈ vq where p = q (otherwise a b).

 For each old object o ∈ O A , if ptou(o) = 1, o may change from processed to unprocessed states. If st(p) = pcore and nei(p) ≥ µ, we change it to ucore. Otherwise, it state remains unchanged. If st(p) = pcore, we change it to ucore. If o is not processed before insertions or has been updated (ptou(o) = 0), st(o) = uborder, and nei(o) ≥ µ, we set st(o) = ucore.

 we update the numbers of neighbors for o by increasing nei(o) and nei(p) for each p ∈ Mo with level(p) < n + m. If nei(p) ≥ µ and st(p) = uborder, we change st(p) to ucore. Similarly, if nei(o) ≥ µ, we assign st(o) = ucore. And set level(o) = n + m to update its query information. For each new core objects, we set the yes connections among its nodes following Lemma 2.

), and O(v 2 + vn + vm), respectively. Step I11 has the similar time complexity as in Steps 3 to 5 of IncAnyDBC since O E = n+m in the worst cases. Thus, the overall time complexity of IncAnyDBC will be O(mn 2) (roughly speaking) for inserting m objects. And it is similar to IncDBSCAN. IncAnyDBC consumes O(vn + v 2 + lµ + nm) overall space complexity.

 queries in step D3 only affects the neighbor counts for objects in O A . Thus, for each object o ∈ O A if o is not updated, we fix its core property. If st(o) = pcore and nei(o) < µ, we change st(o) to pborder if o is inside a node or pnoise otherwise. If st(o) = uborder and nei(o) ≥ µ, st(o) = ucore. If st(o) = ucore and nei(o) < µ, st(o) = uborder.

Figure 7 :

 7 Figure 7: The parallel processing model of In-cAnyDBC on multicore CPUs

Figure 8 :

 8 Figure 8: The numbers of object nodes and queries for the dataset GasSensor (= 4000)

Figure 9 :

 9 Figure 9: Clustering performance of IncAnyDBC on real datasets (We only run DBSCAN with some parameters for saving times. AnyDBC ran out of memory when = 1000 for the datasets Farm and GasSensor)

 using kd-tree6 [4] /cucis.ece.northwestern.edu/projects/Clustering/.6 Source: https://github.com/jmhodges/kdtree2/

7Figure 11 :

 11 Figure 11: The effects of parameters α and β on the dataset GasSensor (= 2000)

Figure 12 :

 12 Figure 12: Anytime properties of IncAnyDBC on the Household and GasSensor datasets Anytime properties. One major advantage of IncAnyDBC

Figure 13 :

 13 Figure 13: Performance of IncAnyDBC on the dataset Precipitation (Manhattan distance) and OSFP (Jaccard distance) Other distance functions. While other grid-based methods like [19, 21, 23] can only work under Euclidean distance, IncAnyDBC can work under arbitrary distance metrics.Figure13shows the performance of IncAnyDBC and Any-DBC on the datasets Precipitation and OSFP using Manhattan and Jaccard distance metrics[START_REF] Tan | Introduction to Data Mining[END_REF] (α = 128 and β = 1024). IncAnyDBC is comparable to AnyDBC on both datasets and is from 1.4 to 135.5 times faster than DBSCAN on both datasets.

Figure 14 :

 14 Figure 14: Runtimes (top) and speedup factors (bottom) of different algorithms using 16 threads. HPDB-SCAN only works for the dataset Farm and Household when is large. PDSDBSCAN runs out of memory when is large enough. AnyDBC runs out of memory when = 1000 and 2000 (Farm) and = 1000 (GasSensor)

Figure 15 :

 15 Figure 15: Scalability of IncAnyDBC on the dataset Precipitation (Manhattan distance) and OSFP (Jaccard distance) using 16 threads

Figure 16 :

 16 Figure 16: Scalability of each step of IncAnyDBC using 16 threads (for three bad cases). The red horizontal lines show the overall speedup factors

Figure 17 :

 17 Figure 17: Performance at each step of IncAnyDBC for the PAMAP2 (= 4000) using 16 threads

Figure 18 :

 18 Figure 18: Effects of parameters α and β on the scalability of IncAnyDBC using 16 threads for PAMAP2 (= 2000) and Household (= 12000)

Figure 19 :

 19 Figure 19: Numbers of queries and reverse queries of IncAnyDBC and IncDBSCAN for Sdss2Mass

Figure 19 (

 19 left) shows the number of queries and reverse queries of IncAnyDBC and IncDBSCAN over 2000 insertions. Since

PAMAP2Figure 20 :Figure 21 :

 2021 Figure 20: Performance of IncAnyDBC and IncDBSCAN for various real datasets

Figure 22 :Figure 23 :Figure 24 :

 222324 Figure 22: Performance of IncAnyDBC wrt. the numbers of data changes for GasSensor (= 1, 000)

Figure 25 :

 25 Figure 25: Scalability of IncAnyDBC over 16 threads for various real datasets

Figure 26 :

 26 Figure 26: Scalability over 16 threads of In-cAnyDBC for datasets Precipitation and OSFP

Figure 27 :

 27 Figure 27: Scalability of IncAnyDBC using 16 threads for Household and Sdss2Mass

Figure 28 :

 28 Figure 28: Effects of the parameter α and β on the scalability of IncAnyDBC using 16 threads for Sdss2Mass (= 500 and m = 10000)

Figure 29 :

 29 Figure 29: Runtime, number of clusters, and scalability at each iteration of IncAnyDBC for PAMAP2 (= 2000, m = 100, 000)

 Thus, vp and vq will never be directly-connected. Consequently, label(a) = label(b) in IncAnyDBC. Step 6 of IncAnyDBC ensures that we do not miss any border objects. Thus, the results of IncAnyDBC and DBSCAN are identical. Monotonicity. Since IncAnyDBC merges nodes with new queries, the number of clusters will decrease at each iteration. This is useful when we want to track the progress of IncAnyDBC. E.g., if the number of clusters remains stable at some iterations, we can stop IncAnyDBC for saving runtime, while having almost the same clustering result as DBSCAN. The time complexity of IncAnyDBC is O(n 2), which is similar to that of DBSCAN.

Complexity. Let v = |V |, e = |E|, and l = |L|. Step 1 needs O((v + l)n) for neighborhood queries and O(vn + lµ) for marking object states. Step 2 consumes O(v 2) for building G and O(vn) for updating edges. Step 3 uses O(v 2) for connected component finding and O(e) for checking termination condition. Step 4 requires O(e) for node degree calculations, O(vn) for calculating object scores, and O(n log n) for sorting objects. Step 5 spends O(βn) time for queries, O(vn + βn) for updating yes edges, and O(e) for no edges. Step 6 needs O(lµn) time for querying neighbors. Overall, IncAnyDBC has O(vn + ln + v 2 + n β (v 2 + e + vn + n log n + βn) + lµn) time complexity. In the worst case, v and l are O(n) and e = v 2 (roughly speaking). And let β = O(n).

2 .

 2 Lemma 12. For each object o ∈ O 2 and node vp ∈ V 2A , if d(o, p) > 2 , o does not change the state of (vp, vq). Lemma 12, for each object o ∈ O 2 and vp ∈ V 2A , if d(o, p) ≤ 2 , we do not remove vp from V 2A and o from O 2 since they may cause the cluster changes.

	Following

). But the numbers of clusters reduce very quickly at each iteration. On the other hand, the insertion case usually starts with closer numbers of clusters to the final ones since the number of newly created objects in Step I3 is usually small. These mean we can stop the algorithm at early iterations while still having a very close result to the final one of DBSCAN. None of existing methods for dynamic clustering has this anytime property.

	4.4 Parallel dynamic clustering
	Scalability wrt. the number of threads. Figure 25
	shows the scalability of clustering, deletion, and insertion
	phases of IncAnyDBC over different datasets using 16 threads.
	Though the results fluctuate with different values of , large
	values of typically bring up higher speedup factors due
	to the increasing of the parallel-able workload compared to
	the non-parallel one (Amdahl's law). Overall, IncAnyDBC
	scales very well on 16 threads. The speedup factors are up
	to 11.3 (9.1), 9.7 (9.2), 8.4 (9.2), 9.1 (7.4), and 15.2 (15.3)
	times for the insertion (deletion) case on Farm, Household,
	Sdss2Mass, GasSensor, and PAMAP2, respectively. With-
	out the NUMA effect due to the use of 2 CPUs, the speedup
	factors would be even better.
	Scalability for other data. On OSFP and Precipitation,
	IncAnyDBC still has very good scalability as seen in Figure

http://www.cru.uea.ac.uk/

http://www.osfp.fr

AcknowledgmentThis work is supported by the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02) and a Villum postdoc fellowship.

Binary file provided by authors (https://sites.google.com/view/approxdbscan)