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Chapter 19 

Integration of Multimodal Data 

Marco Lorenzi, Marie Deprez, Irene Balelli, Ana L. Aguila, 
and Andre Altmann 

Abstract 

This chapter focuses on the joint modeling of heterogeneous information, such as imaging, clinical, and 
biological data. This kind of problem requires to generalize classical uni- and multivariate association 
models to account for complex data structure and interactions, as well as high data dimensionality. 
Typical approaches are essentially based on the identification of latent modes of maximal statistical 

association between different sets of features and ultimately allow to identify joint patterns of variations 
between different data modalities, as well as to predict a target modality conditioned on the available ones. 
This rationale can be extended to account for several data modalities jointly, to define multi-view, or multi-
channel, representation of multiple modalities. This chapter covers both classical approaches such as partial 
least squares (PLS) and canonical correlation analysis (CCA), along with most recent advances based on 
multi-channel variational autoencoders. Specific attention is here devoted to the problem of interpretability 
and generalization of such high-dimensional models. These methods are illustrated in different medical 
imaging applications, and in the joint analysis of imaging and non-imaging information, such as -omics or 
clinical data. 

Key words Multivariate analysis, Latent variable models, Multimodal imaging, -Omics, Imaging-
genetics, Partial least squares, Canonical correlation analysis, Variational autoencoders, Sparsity, 
Interpretability 

1 Introduction 

The goal of multimodal data analysis is to reveal novel insights on 
complex biological conditions. Through the combined analysis of 
multiple type of data, and the complementary views on pathophysi-
ological processes they provide, we have the potential to improve 
our understanding of the underlying processes leading to complex 
and multifactorial disorders [1]. In medical imaging applications, 
multiple imaging modalities, such as structural magnetic resonance 
imaging (sMRI), functional MRI (fMRI), diffusion tensor imaging 
(DTI), or positron emission tomography (PET), can be jointly 
analyzed to better characterize pathological conditions affecting 
individuals [2]. Other typical multimodal analysis problems involve
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1.1 Challenges of

Multimodal Data

Assimilation

the joint analysis of heterogeneous data types, such as imaging and 
genetics data, where medical imaging is associated with the 
patient’s genotype information, represented by genetic variants 
such as single-nucleotide polymorphisms (SNPs) [3]. This kind of 
application, termed imaging-genetics, is of central importance for 
the identification of genetic risk factors underlying complex dis-
eases including age-related macular degeneration, obesity, schizo-
phrenia, and Alzheimer’s disease [4].
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Despite the great potential of multimodal data analysis, the 
complexity of multiple data types and clinical questions poses sev-
eral challenges to the researchers, involving scalability, interpret-
ability, and generalization of complex association models. 

Due to the complementary nature of multimodal information, 
there is great interest in combining different data types to better 
characterize the anatomy and physiology of patients and indivi-
duals. Multimodal data is generally acquired using heterogeneous 
protocols highlighting different anatomical, physiological, clinical, 
and biological information for a given individual [5].

•

Typical multimodal data integration challenges are: 

Non-commensurability. Since each data modality quantifies dif-
ferent physical and biological phenomena, multimodal data is 
represented by heterogeneous physical units associated to differ-
ent aspects of the studied biological process (e.g., brain struc-
ture, activity, clinical scores, gene expression levels).

• Spatial heterogeneity. Multimodal medical images are character-
ized by specific spatial resolution, which is independent from the 
spatial coordinate system on which they are standardized.

• Heterogeneous dimensions. The data type and dimensions of 
medical data can vary according to the modality, ranging from 
scalars and time series typical of fMRI and PET data to 
structured tensors of diffusion weighted imaging.

• Heterogeneous noise. Medical data modalities are characterized by 
specific and heterogeneous artifacts and measurement uncer-
tainty, resulting from heterogeneous acquisition and processing 
routines.

• Missing data. Multimodal medical datasets are often incomplete, 
since patients may not undergo the same protocol, and some 
modalities may be more expensive to acquire than others.

• Interpretability. A major challenge of multimodal data integra-
tion is the interpretability of the analysis results. This aspect is 
impacted by the complexity of the analysis methods and gener-
ally requires important expertise in data acquisition, processing, 
and analysis.
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Multimodal data analysis methods proposed in the literature 
have been focusing on different data complexity and integration, 
depending on the application of interest. Visual inspection is the 
typical initial step of multimodal studies, where single modalities 
are compared on a qualitative basis. For example, different medical 
imaging modalities can be jointly visualized for a given individual to 
identify common spatial patterns of signal changes. Data integra-
tion can be subsequently performed by jointly exploring unimodal 
features and unimodal analysis results. To this end, we may stratify 
the cohort of a clinical study based on some biomarkers extracted 
from different medical imaging modalities exceeding predefined 
thresholds. Finally, multivariate statistical and machine learning 
techniques can be applied for data-driven analysis of the joint 
relationship between information encoded in different modalities. 
Such approaches attempt to maximize the advantages of combining 
cross-modality information, dimensions, and resolution of the mul-
timodal signal. The ultimate goal of such analysis methods is to 
identify the “mechanisms” underlying the generation of the 
observed medical data, to provide a joint representation of the 
common variation of heterogeneous data types. 

The literature on multimodal analysis approaches is extensive, 
depending on the kind of applications and related data types. In this 
chapter we focus on general data integration methods, which can 
be classically related to the fields of multivariate statistical analysis 
and latent variable modeling. The importance of these approaches 
lies in the generality of their formulation, which makes them an 
ideal baseline for the analysis of heterogeneous data types. Further-
more, this chapter illustrates current extensions of these basic 
approaches to deep probabilistic models, which allow great model-
ing flexibility for current state-of-the-art applications. 

In Subheading 1.2 we provide an overview of typical multi-
modal analyses in neuroimaging applications, while in Subheading 
2 we introduce the statistical foundations of multivariate latent 
variable modeling, with emphasis on the standard approaches of 
partial least squares (PLS) and canonical correlation analysis 
(CCA). In Subheading 3, these classical methods are reformulated 
under the Bayesian lens, to define linear counterparts of latent 
variable models (Subheading 3.2) and their extension to multi-
channel and deep multivariate analysis (Subheadings 3.3 and 3.4). 
In Subheading 4 we finally address the problem of group-wise 
regularization to improve the interpretability of multivariate associ-
ation models, with specific focus in imaging-genetics applications.
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Box 1: Online Tutorial 
The material covered in this chapter is available at the follow-
ing online tutorial: 

https://bit.ly/3y4RaIO 

1.2 Motivation from 

Neuroimaging 

Applications 

Multimodal analysis methods have been explored for their potential 
in automatic patient diagnosis and stratification, as well as for their 
ability to identify interpretable data patterns characterizing clinical 
conditions. In this section, we summarize state-of-the-art contri-
butions to the field, along with the remaining challenges to 
improve our understanding and applications to complex brain 
disorders.

• Structural-structural combination. Methods combining sMRI 
and dMRI imaging modalities are predominant in the field. 
Such combined analysis has been proposed, for example, for 
the detection of brain lesions (e.g., strokes [6, 7]) and to study 
and improve the management of patients with brain 
disorders [8].

• Functional-functional combination. Due to the complementary 
nature of EEG and fMRI, research in brain connectivity analysis 
has focused in the fusion of these modalities, to optimally inte-
grate the high temporal resolution of EEG with the high spatial 
resolution of the fMRI signal. As a result, EEG-fMRI can pro-
vide simultaneous cortical and subcortical recording of brain 
activity with high spatiotemporal resolution. For example, this 
combination is increasingly used to provide clinical support for 
the diagnosis and treatment of epilepsy, to accurately localize 
seizure onset areas, as well as to map the surrounding functional 
cortex in order to avoid disability [9–11].

• Structural-functional combination. The combined analysis of 
sMRI, dMRI, and fMRI has been frequently proposed in neu-
ropsychiatric research due to the high clinical availability of these 
imaging modalities and due to their potential to link brain 
function, structure, and connectivity. A typical application is in 
the study of autism spectrum disorder and attention-deficit 
hyperactivity disorder (ADHD). The combined analysis of such 
modalities has been proposed, for example, for the identification 
of altered white matter connectivity patterns in children with 
ADHD [12], highlighting association patterns between regional 
brain structural and functional abnormalities [13].

• Imaging-genetics. The combination of imaging and genetics 
data has been increasingly studied to identify genetic risk factors 
(genetic variations) associated with functional or structural 
abnormalities (quantitative traits, QTs) in complex brain disor-
ders [3]. Such multimodal analyses are key to identify the

https://bit.ly/3y4RaIO


2.1 From

Multivariate

Regression to Latent

Variable Models
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underlying mechanisms (from genotype to phenotype) leading 
to neurodegenerative diseases, such as Alzheimer’s disease [14] 
or Parkinson’s disease [15]. This analysis paradigm paves the way 
to novel data integration scenarios, including imaging and tran-
scriptomics, or multi-omic data [16]. 

Overall, multimodal data integration in the study of brain 
disorders has shown promising results and is an actively evolving 
field. The potential of neuroimaging information is continuously 
improving, with increasing resolution and improved image con-
trast. Moreover, multiple imaging modalities are increasingly avail-
able in large collections of multimodal brain data, allowing for the 
application of complex modeling approaches on representative 
cohorts. 

2 Methodological Background 

The use of multivariate analysis methods for biomedical data analy-
sis is widespread, for example, in neuroscience [17], genetics [18], 
and imaging-genetics studies [19, 20]. These approaches come 
with the potential of explicitly highlighting the underlying relation-
ship between data modalities, by identifying sets of relevant features 
that are jointly associated to explain the observed data. 

In what follows, we represent the multimodal information 
available for a given subject k as a collection of arrays xk 

i , i=1, 
. . ., M, where M is the number of available modalities. Each array 
has dimension dimðxk 

i Þ=Di. A multimodal data matrix for 
N individuals is therefore represented by the collection of matrices 
Xi, with dim(Xi)=N×Di. For sake of simplicity, we assume that 

xk 
i∈Di . 

A first assumption that can be made for defining a multivariate 
analysis method is that a target modality, say Xj, is generated by the 
combination of a set of given modalities {Xi}i ≠ j. A typical example 
of this application concerns the prediction of certain clinical vari-
ables from the combination of imaging features. In this case, the 
underlying forward generative model for an observation xk 

j can be 
expressed as: 

xk 
j = gðfxk 

i gi ≠ j Þ þ  εk j , ð1Þ 
where we assume that there exists an ideal mapping g(�) that trans-
forms the ensemble of observed modalities for the individual k, to  
generate the target one xk 

j . Note that we generally assume that the 
observations are corrupted by a certain noise εk j , whose nature 
depends on the data type. The standard choice for the noise is 
Gaussian, εk j � N ð0, σ2 IdÞ. 

Within this setting, a multimodal model is represented by a 
function f ðfX igM 

i =1, θÞ, with parameters θ, taking as input the 
ensemble of modalities across subjects. The model f is optimized



with respect to θ to solve a specific task. In our case, the set of input 
modalities can be used to predict a target modality j, in this case we 
have f : i ≠ j

Di↦Dj . 
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Noise process 

Fig. 1 Illustration of a generative process for the modeling of imaging and 
genetics data 

In its basic form, this kind of formulation includes standard 
multivariate linear regression, where the relationship between two 
modalities X1 and X2 is modeled through a set a linear parameters 

θ=W∈D2 ×D1 and f(X2)= X2 �W. Under the Gaussian noise 
assumption, the typical optimization task is formulated as the 
least squares problem: 

W � = argmin 
W 

kX 1 -X 2 �W k2 : ð2Þ 

When modeling jointly multiple modalities, the forward gener-
ative model of Eq. 1 may be suboptimal, as it implies the explicit 
dependence of the target modality upon the other ones. This 
assumption may be too restrictive, as often an explicit assumption 
of dependency cannot be made, and we are rather interested in 
modeling the joint variation between data modalities. This is the 
rationale of latent variable models. 

In the latent variable setting, we assume that the multiple 
modalities are jointly dependent from a common latent representa-
tion z (Fig. 1) belonging to an ideal low-dimensional space of 
dimension D≤min{dim(Di), i=1, . . ., M}.1 In this case, Eq. 1 
can be extended to the generative process: 

xk 
i = giðzkÞ þ  εk i , i =1, . . .,M : ð3Þ 

1 Note that we could also consider overcomplete basis for the latent space such that D>min{dim(Di), i=1, . . ., 
M}. This choice may be motivated by the need of accounting for modalities with particularly low dimension. The 
study of overcomplete latent data representations is focus of active research [21–23].



2.2 Classical Latent

Variable Models: PLS

and CCA
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Equation 3 is the forward process governing the data genera-
tion. The goal of latent variable modeling is to make inference on 
the latent space and on the generative process from the observed 
data modalities, based on specific assumptions on the transforma-
tions from the latent to the data space, and on the kind of noise 
process affecting the observations (Box 2). In particular, the infer-
ence problem can be tackled by estimating inverse mappings, 

f j ðxk 
j Þ, from the data space of the observed modalities to the latent 

space. 
Based on this framework, in the following sections, we illustrate 

the standard approaches for solving the inference problem of Eq. 1. 

The forward model of Eq. 3 for multimodal data generation can be easily coded in 
Python to generate a synthetic multimodal dataset: 

Box 2: Online Tutorial—Generative Models 

# N subjects 
n = 500 
# here we define 2 Gaussian latents variables 
# z = (l_1, l_2) 
l1 = np.random.normal(size=n) 
l2 = np.random.normal(size=n) 

latents = np.array([l1, l2]).T 

# We define two random transformations from the latent 
# space to the 5D space of X1 and X2 respectively 
transform_x = \ 

np.random.randint(-8,8, size = 10).reshape([2,5]) 
transform_y = \ 

np.random.randint(-8,8, size = 10).reshape([2,5]) 

# We compute data X = z  w_x, and Y = z w_y 
X1 = latents.dot(transform_x) 
X2 = latents.dot(transform_y) 

# We add some random Gaussian noise 
X1 = X1 + 2*np.random.normal(size = n*5).reshape((n, 5)) 
X2 = X2 + 2*np.random.normal(size = n*5).reshape((n, 5)) 

Classical latent variable models extend the standard linear regres-
sion to analyze the joint variability of different modalities. Typical 
formulation of latent variable models include partial least squares 
(PLS) and canonical correlation analysis (CCA) [24], which have 
successfully been applied in biomedical research [25], along with 
multimodal [26, 27] and nonlinear [28, 29] variants.

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg
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Box 3: Online Tutorial—PLS and CCA with sklearn 

from sklearn.cross_decomposition import PLSCanonical, CCA 

####################################### 
# We fit PLS and CCA as provided by scikit-learn 

#Defining PLS object, no scaling of input X1 and X2 
plsca = PLSCanonical(n_components=2, scale = False) 
cca = CCA(n_components=2, scale = False) 

#Fitting on train data 
plsca.fit(X1, X2) 
cca.fit(X1, X2) 

#We project the training data in the latent dimension 
X1_pls_r, X2_pls_r = \ 

plsca.transform(X1, X2) 
X1_cca_r, X2_cca_r = \ 

cca.transform(X1, X2) 

The basic principle of these multivariate analysis techniques 
relies on the identification of linear transformations of modalities 
Xi and Xj into a lower dimensional subspace of dimension D≤min 
{dim(Di), dim(Dj)}, where the projected data exhibits the desired 
statistical properties of similarity. For example, PLS aims at max-
imizing the covariance between these combinations (or projections 
on the modes’ directions), while CCA maximizes their statistical 
correlation (Box 3). For simplicity, in what follows we focus on the 
joint analysis of two modalities X1 and X2, and the multimodal 
model can be written as 

f ðX 1,X 2, θÞ = ½f 1ðX 1,u1Þ, f 2ðX 2,u2Þ� ð4Þ 
= ½z1, z2�, ð5Þ 

where θ= {u1, u2} are linear projection operators for the modal-
ities, ui∈Di , while z i =X i � ui∈N are the latent projections for 
each modality i=1, 2. The optimization problem can thus be 
formulated as: 

u�
1,u

�
2 = argmax 

θ 
Simðz1, z2Þ ð6Þ 

= argmax 
u1,u2 

SimðX 1 � u1,X 2 � u2Þ, ð7Þ 

where Sim is a suitable measure of statistical similarity, depending 
on the envisaged methods (e.g., variance for PLS, or correlation for 
CCA) (Fig. 2).

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg
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Fig. 2 Illustration of latent variable modeling for an idealized application to the 
modeling of genetics and imaging data 

2.3 Latent Variable 

Models Through 

Eigen-Decomposition 

For PLS, the problem of Eq. 6 requires the estimation of projec-
tions u1 and u2 maximizing the covariance between the latent 
representation of the two modalities X1 and X2: 

u�
1,u

�
2 = argmax 

u1,u2 

CovðX 1 � u1,X 2 � u2Þ, ð8Þ2.3.1 Partial Least 

Squares 

where 

CovðX 1 � u1,X 2 � u2Þ= 
uT 
1 Su2 

uT 
1 u1 uT 

2 u2 

, ð9Þ 

and S =X T 
1 X 2 is the sample covariance between modalities. 

Without loss of generality, the maximization of Eq. 9 can be 
considered under the orthogonality constraint 

uT 
1 u1 = uT 

2 u2 =1. This constrained optimization problem 

can be expressed in the Lagrangian form: 

ℒðu1,u2, λx , λyÞ=uT 
1 Su2 - λxðuT 

1 u1 -1Þ- λyðuT 
2 u2 -1Þ, ð10Þ 

whose solution can be written as: 

0 S 

ST 0 

u1 

u2 

= λ 
u1 

u2 

: ð11Þ 

Equation 11 corresponds to the primal formulation of PLS and 
shows that the PLS projections maximizing the latent covariance 
are the left and right eigen-vectors of the sample covariance matrix 
across modalities. This solution is known as PLS-SVD and has been 
widely adopted in the field of neuroimaging [30, 31], for the study 
of common patterns of variability between multimodal imaging 
data, such as PET and fMRI.
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It is worth to notice that classical principal component analysis 
(PCA) is a special case of PLS when X1= X2. In this case the latent 
projections maximize the data variance and correspond to the 
eigen-modes of the sample covariance matrix S =X T 

1 X 1. 

2.3.2 Canonical 

Correlation Analysis 

In canonical correlation analysis (CCA), the problem of Eq. 6 is 
formulated by optimizing linear transformations such that X1u1 

and X2u2 are maximally correlated: 

u�
1,u

�
2 = argmax 

u1,u2 

Corr X 1u1,X 2u2ð Þ, ð12Þ 

where 

Corr ðX 1u1,X 2u2Þ = 
uT 
1 Su2 

uT 
1 S1u1 uT 

2 S2u2 

: ð13Þ 

where S1 =X T 
1 X 1 and S2 =X T 

2 X 2 are the sample covariances of 
modality 1 and 2, respectively. 

Proceeding in a similar way as for the derivation of PLS, it can 
be shown that CCA is associated to the generalized eigen-
decomposition problem [32]: 

0 S 

ST 0 

u1 

u2 

= λ 
S1 0 

0 S2 

u1 

u2 

, ð14Þ 

It is common practice to reformulate the CCA problem of 
Eq. 14 with a regularized version aimed to avoid numerical instabil-
ities due to the estimation of the sample covariances S1 and S2: 

0 S 

ST 0 

u1 

u2 

= λ 
S1 þ δI 0 

0 S2 þ δI 
u1 

u1 

: ð15Þ 

In this latter formulation, the right hand side of Eq. 14 is 
regularized by introducing a constant diagonal term δ, propor-
tional to the regularization strength (with δ=0 we obtain 
Eq. 14). Interestingly, for large value of δ, the diagonal term 
dominates the sample covariance matrices of the right-hand side, 
and we retrieve the standard eigen-value problem of Eq. 11. This 
shows that PLS can be interpreted as an infinitely regularized 
formulation of CCA. 

2.4 Kernel Methods 

for Latent Variable 

Models 

In order to capture nonlinear relationships, we may wish to project 
our input features into a high-dimensional space prior to 
performing CCA (or PLS): 

ϕ : X = ðx1 , . . ., xN Þ↦ ϕðx1Þ, . . . ,ϕðxNÞ ð16Þ 
where ϕ is a nonlinear feature map. As derived by Bach et al. [33], 
the data matrices X1 and X2 can be replaced by the Gram matrices 
K1 and K2 such that we can achieve a nonlinear feature mapping via 
the kernel trick [34]:



2.5 Optimization of

Latent Variable Models

1 1
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K1 x i 
1, x 

j 
1 = ϕ x i 

1 ,ϕ x 
j 
1 and K2 x i 

2, x 
j 
2 = ϕ x i 

2 ,ϕ x 
j 
2 

ð17Þ 

where K1 = ½K1 x i 
1, x 

j 
1 �

N ×N 
and K2 = ½K2 x i 

2, x 
j 
2 �

N ×N 
. In this 

case, kernel CCA canonical directions correspond to the solutions 
of the updated generalized eigen-value problem: 

0 K1K2 

K2K1 0 

α1 

α2 
= λ 

K2 
1 0 

0 K2 
2 

α1 

α2 
: ð18Þ 

Similarly to the primal formulation of CCA, we can apply an ℓ2-
norm regularization penalty on the weights α1 and α2 of Eq. 18, 
giving rise to regularized kernel CCA: 

0 K1K2 

K2K1 0 

u1 

u2 

= λ 
K2 

1 þ δI 0 

0 K2 
2 þ δI 

u1 

u2 

, ð19Þ 

The nonlinear iterative partial least squares (NIPALS) is a classical 
scheme proposed by H. Wold [35] for the optimization of latent 
variable models through the iterative computation of PLS and CCA 
projections. Within this method, the projections associated with 
the modalities X1 and X2 are obtained through the iterative solu-
tion of simple least squares problems. 

The principle of NIPALS is to identify projection vectors 
u1,u2∈ and corresponding latent representations z1 and z2 to 
minimize the functionals 

ℒi = kXi - z iuT 
i k2 , ð20Þ 

subject to the constraint of maximal similarity between representa-
tions z1 and z2 (Fig. 3). 

Following [37], the NIPALS method is optimized as follows 
(Algorithm 1). The latent projection for modality 1 is first initia-
lized as z

ð0Þ 
1 from randomly chosen columns of the data matrix X1. 

Subsequently, the linear regression function 

ℒð0Þ 
2 = kX 2 - z

ð0Þ 
1 u

T 
2 k2 

is optimized with respect to u2, to obtain the projection u
ð0Þ 
2 . After 

unit scaling of the projection coefficients, the new latent represen-
tation is computed for modality 2 as z

ð0Þ 
2 =X 2 � uð0Þ 

2 . At this point, 
the latent projection is used for a new optimization step of the 
linear regression problem 

ℒð0Þ 
1 = kX 1 - z

ð0Þ 
2 u

T 
1 k2 , 

this time with respect to u1, to obtain the projection parameters 

u
ð0Þ 
1 relative to modality 1. After unit scaling of the coefficients, the 

new latent representations is computed for modality 1 as 

z
ð1Þ =X 1 � uð0Þ

. The whole procedure is then iterated.
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Fig. 3 Schematic of NIPALS algorithm (Algorithm 1). This implementation can be 
found in standard machine learning packages such as scikit-learn [36] 

It can be shown that the NIPALS method of Algorithm 1 
converges to a stable solution for projections and latent parameters 
and the resulting projection vectors correspond to the first left and 
right eigen-modes associated to the covariance matrix S =X T 

1 �X 2. 

Algorithm 1 NIPALS iterative computation for PLS compo-
nents [37] 

Initialize z(0) 
1 , i = 0.  

Until not converged do: 
1. Estimate the projection u(i) 

2 by minimizing L(i) 
2 = ‖X2 − z

(i) 
1 u

T 
2 ‖2: 

u
(i) 
2 = XT 

2 z
(i) 
1

(
z
(i) 
1 

T 
z
(i) 
1

)−1 

2. Normalize u(i) 
2 ← u

(i) 
2

‖u(i) 
2 ‖ . 

3. Estimate the latent representation for modality 2: 
z
(i) 
2 = X2 · u(i) 

2 

4. Estimate the projection u(i) 
1 by minimizing L(i) 

1 = ‖X1 − z
(i) 
2 u

T 
1 ‖2: 

u
(i) 
1 = XT 

1 z
(i) 
2

(
z
(i) 
2 

T 
z
(i) 
2

)−1 

5. Normalize u(i) 
1 ← u

(i) 
1

‖u(i) 
1 ‖ . 

6. Update the latent representation for modality 1: 
z
(i+1) 
1 = X1 · u(i) 

1 . 

After the first eigen-modes are computed through Algorithm 
1, the higher-order components can be subsequently computed by 
deflating the data matrices X1 and X2. This can be done by regres-
sing out the current projections in the latent space: 

X i ←X i - z i 
zT i X i 

zT i z i 
ð21Þ



3.1 Multi-view PPCA
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NIPALS can be seamlessly used to optimize the CCA problem. 
Indeed, it can be shown that the CCA projections and latent 
representations can be obtained by estimating the linear projections 
u2 and u1 in steps 1 and 4 of Algorithm 1 via the linear regression 
problems 

ℒðiÞ 
2 = kX 2u2 - z

ðiÞ 
1 k2 ðstep 1 for CCAÞ, 

and 

ℒðiÞ 
1 = kX 1u1 - z

ðiÞ 
2 k2 ðstep 4 for CCAÞ: 

Box 4: Online Tutorial—NIPALS Implementation 
The online tutorial provides an implementation of the 
NIPALS algorithm for both CCA and PLS, corresponding 
to Algorithm 1. It can be verified that the numerical solution 
is equivalent to the one provided by sklearn and to the one 
obtained through the solution of the eigen-value problem. 

3 Bayesian Frameworks for Latent Variable Models 

Bayesian formulations for latent variable models have been devel-
oped in the past, including for PLS [38] and CCA [39]. The 
advantage of employing a Bayesian framework to solve the original 
inference problem is that it provides a natural setting to quantify the 
parameters’ variability in an interpretable manner, coming with 
their estimated distribution. In addition, these methods are partic-
ularly attractive for their ability of integrating prior knowledge on 
the model’s parameters. 

Recently, the seminal work of Tipping and Bishop on probabilistic 
PCA (PPCA) [40] has been extended to allow the joint integration 
of multimodal data [41] (multi-view PPCA), under the assumption 
of a common latent space able to explain and generate all 
modalities. 

Recalling the notation of Subheading 2.1, let x = fxk 
i g

M 

i =1 be an 
observation of M modalities for subject k, where each xk 

i is a vector 
of dimension Di. We denote by zk the D-dimensional latent variable 
commonly shared by each xk 

i . In this context, the forward process 
underlying the data generation of Eq. 1 is linear, and for each 
subject k and modality i, we write (see Fig. 4a): 

xk 
i =WiðzkÞ þ  μi þ εi, ð22Þ 

i =1, . . .,M ; k=1, . . .,N ; dimðzkÞ< minðDiÞ, ð23Þ

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg
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Fig. 4 (a) Graphical model of multi-view PPCA. The green node represents the 
latent variable able to jointly describe all observed data explaining the patient 
status. Gray nodes denote original multimodal data, and blue nodes the view-
specific parameters. (b) Hierarchical structure of multi-view PPCA: prior knowl-
edge on model’s parameters can be integrated in a natural way when the model 
is embedded in a Bayesian framework 

where Wi represents the linear mapping from the ith-modality to 
the latent space, while μi and εi denote the common intercept and 
error for modality i. Note that the modality index i does not appear 
in the latent variable zk , allowing a compact formulation of the 
generative model of the whole dataset (i.e., including all modalities) 
by simple concatenation: 

xk : = 

xk 
1 

⋮ 

xk 
M 

= 

W 1 

⋮ 

WM 

zk þ 
μ1 

⋮ 

μM 

þ 
ε1 

⋮ 

εM 

= : W zk þ μþ ε: 

ð24Þ 

Further hypotheses are needed to define the probability distri-
butions of each element appearing in Eq. 22, such as zk� p(zk ), the



standard Gaussian prior distribution for the latent variables, and 
εi� p(εi), a centered Gaussian distribution. From these assump-
tions, one can finally derive the likelihood of the data given latent 
variables and model parameters, pðxk 

i jzk , θiÞ, θi= {Wi, μi, εi} and, 
by using Bayes theorem, also the posterior distribution of the latent 
variables, pðzkjxk 

i Þ. 
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Box 5: Online Tutorial—Multi-view PPCA 

from Model.mvPPCA import MVPPCA 

### Data in mv-PPCA is specified by: 
# 1 - number of views, views' dimensions 
# and latent dimension 
n_views = 2  # X1 and X2 
n_components = n_components 
dim_views = [X.shape[1], Y.shape[1]] 
# 2 - a  dataframe containing all views 
data = pd.DataFrame(np.hstack((X, Y))) 

### Here we create an instance of the model 
#and a dataframe to store results during training 
n_iterations=200 
results = pd.DataFrame() 
# Multi-views PPCA 
mvPPCA = MVPPCA(data=data, norm=False, 

dim_views=dim_views, 
n_components=n_components, 
n_iterations=n_iterations) 

################### 
## Model Fitting ## 
################### 
results = results.append(mvPPCA.fit(), ignore_index=True) 
# Optimized parameters can be recovered as follows: 
muk, Wk, Sigma2k = mvPPCA.local_params 

3.1.1 Optimization In order to solve the inference problem and estimate the model’s 
parameters in θ, the classical expectation-maximization 
(EM) scheme can be deployed. EM optimization consists in an 
iterative process where each iteration is composed of two steps:

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg
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• Expectation step (E): Given the parameters previously opti-
mized, the expectation of the log-likelihood of the joint distri-
bution of xi and z

k with respect to the posterior distribution of 
the latent variables is evaluated.

• Maximization step (M): The functional of the E step is max-
imized with respect to the model’s parameters. 

It is worth noticing that prior knowledge on the model’s para-
meters distribution can be easily integrated in this Bayesian frame-
work (Fig. 4b), with minimal modification of the optimization 
scheme, consisting in a penalization of the functional to be maxi-
mized in theM-step forcing theoptimizedparameters to remain close 
to their priors. In this case we talk about maximum a posteriori 
(MAP) optimization. 

3.2 Bayesian Latent 

Variable Models via 

Autoencoding 

Autoencoders and variational autoencoders have become very pop-
ular approaches for the estimation of latent representation of com-
plex data, which allow powerful extensions of the Bayesian models 
presented in Subheading 3.1 to account for nonlinear and deep 
data representations. 

Autoencoders (AEs) extend classical latent variable models to 
account for complex, potentially highly nonlinear, projections from 
the data space to the latent space (encoding), along with recon-
struction functions (decoding) mapping the latent representation 
back to the data space. Since typical encoding ( fe) and decoding 
( fd) functions of AEs are parameterized by feedforward neural 
networks, inference can be efficiently performed by means of sto-
chastic gradient descent through backpropagation. In this sense, 
AEs can be seen as a powerful extension of classical PCA, where 
encoding into the latent representations and decoding are jointly 
optimized to minimize the reconstruction error of the data: 

ℒ= X - f dðf eðX ÞÞ 2 2 ð25Þ 
The variational autoencoder (VAE) [42, 43] introduces a Bayesian 
formulation of AEs, akin to PPCA, where the latent variables are 
inferred by estimating the associated posterior distributions. In this 
case, the optimization problem can be efficiently performed by 
stochastic variational inference [44], where the posterior moments 
of the variational posterior of the latent distribution are parameter-
ized by neural networks. 

In the same way PLS and CCA extend PCA for multimodal 
analysis, research has been devoted to define equivalent extensions 
for the VAEs to identify common latent representations of multiple 
data modalities, such as the multi-channel VAE [23], or deep CCA 
[29]. These approaches are based on a similar formulation, which is 
provided in the following section.



3.3.1 Optimization
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3.3 Multi-channel 

Variational 

Autoencoder 

The multi-channel variational autoencoder (mcVAE) assumes the 
following generative process for the observation set: 

zk � pðzkÞ 
xk 
i � pðxk 

i jzk , θiÞ i = 1, . . .,M , 
ð26Þ 

where p(zk ) is a prior distribution for the latent variable. In this 
case, pðxk 

i jz, θiÞ is the likelihood of the observed modality i for 
subject k, conditioned on the latent variable and on the generative 
parameters θi parameterizing the decoding from the latent space to 
the data space of modality i. 

Solving this inference problem requires the estimation of the 
posterior for the latent distribution p(z|X1, . . ., XM), which is 
generally an intractable problem. Following the VAE scheme, vari-
ational inference can be applied to compute an approximate 
posterior [45]. 

The inference problem of mcVAE is solved by identifying varia-
tional posterior distributions specific to each data modality 

qðzkjxk 
i ,φiÞ, by conditioning them on the observed modality xi 

and on the corresponding variational parameters φi parameterizing 
the encoding of the observed modality to the latent space. 

In this way, since each modality provides a different approxi-
mation, a similarity constraint is imposed in the latent space to 
enforce each modality-specific distribution qðzkjxk 

i ,φiÞ to be as 
close as possible to the common target posterior distribution. The 
measure of “proximity” between distributions is the Kullback-
Leibler (KL) divergence. This constraint defines the following 
functional: 

argmin 
q i 

DKL qðzkjxk 
i ,φiÞkpðzjxk 

1, . . ., x
k 
M Þ ð27Þ 

where the approximate posteriors q(z|xi, φi) represent the view on 
the latent space that can be inferred from the modality xi. In [23] it  
was shown that the optimization of Eq. 27 is equivalent to the 
optimization of the following evidence lower bound (ELBO): 

ℒ=D-R ð28Þ 
where R= iKL qðzkjxk 

i ,φiÞkpðzÞ , and D=∑iLi, with 

Li =  
qðzk jxk 

i 
,φiÞ 

M 

j =1 

ln p x j jz, θj 

is the expected log-likelihood of each data channel xj quantifying 
the reconstruction obtained by decoding from the latent represen-
tation of the remaining channels xi. Therefore, optimizing the term 
D in Eq. 28 with respect to encoding and decoding parameters 

fθi,φigM 
i =1 identifies the optimal representation of each modality in



the latent space which can, on average, jointly reconstruct all the 
other channels. This term thus enforces a coherent latent represen-
tation across different modalities and is balanced by the regulariza-
tion term R, which constrains the latent representation of each 
modality to the common prior p(z). As for standard VAEs, encod-
ing and decoding functions can be arbitrarily chosen to parameter-
ize respectively latent distributions and data likelihoods. Typical 
choices for such functions are neural networks, which can provide 
extremely flexible and powerful data representation (Box 6). For 
example, leveraging the modeling capabilities of deep convolu-
tional networks, mcVAE has been used in a recent cardiovascular 
study for the prediction of cardiac MRI data from retinal fundus 
images [46]. 
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Box 6 Online Tutorial—mcVAE with PyTorch 

import torch 
from mcvae.models import Mcvae 
from mcvae.models.utils import DEVICE, load_or_fit 

### Data in mcvae is specified by: 
#  1 - a  dictionary with the data characteristics 
init_dict = { 

'n_channels': 2, #  X1  and  X2  
'lat_dim': n_components, 
'n_feats': tuple([X1.shape[1], X2.shape[1]]), 

} 
#  2 - a  list with the different data channels 
data = [] 
data.append(torch.FloatTensor(X1)) 
data.append(torch.FloatTensor(X2)) 

# Here we create an instance of the model 
adam_lr = 1e-2 
n_epochs = 4000 
# Multi-Channel VAE 
torch.manual_seed(24) 
model = Mcvae(**init_dict) 
model.to(DEVICE) 
################### 
## Model Fitting ## 
################### 
model.optimizer = torch.optim.Adam(model.parameters(),\ 

lr=adam_lr) 
load_or_fit(model=model, data=data, epochs=n_epochs,\ 

ptfile='model.pt', force_fit=FORCE_REFIT)

https://colab.research.google.com/drive/1FNDpXdc_U_UCEabCeXUWjLKOZT8gutJg
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3.4 Deep CCA The mcVAE uses neural network layers to learn nonlinear repre-
sentations of multimodal data. Similarly, Deep CCA [29] provides 
an alternative to kernel CCA to learn nonlinear mappings of multi-
modal information. Deep CCA computes representations by pass-
ing two views through functions f1 and f2 with parameters θ1 and 
θ2, respectively, which can be learnt by multilayer neural networks. 
The parameters are optimized by maximizing the correlation 
between the learned representations f1(X1;θ1) and f2(X2;θ2): 

θ1opt , θ2opt = argmaxCorr f 1 X 1; θ1ð Þ, f 2 X 2; θ2ð Þð θ1, θ2ð Þ  ð29Þ 
In its classical formulation, the correlation objective given in Eq. 29 
is a function of the full training set, and as such, mini-batch opti-
mization can lead to suboptimal results. Therefore, optimization of 
classical deep CCA must be performed with full-batch optimiza-
tion, for example, through the L-BFGS (limited Broyden-Fletcher-
Goldfarb-Shanno) scheme [47]. For this reason, with this vanilla 
implementation, deep CCA is not computationally viable for large 
datasets. Furthermore, this approach does not provide a model for 
generating samples from the latent space. To address these issues, 
Wang et al. [48] introduced deep variational CCA (VCCA) which 
extends the probabilistic CCA framework introduced in Subhead-
ing 3 to a nonlinear generative model. In a similar approach to 
VAEs and mcVAE, deep VCCA uses variational inference to 
approximate the posterior distribution and derives the 
following ELBO: 

qϕðz j x1ÞkpðzÞ þ qϕðzjx1Þ log pθ1ðx1 j zÞþ log pθ2ðx2 j zÞ ð30Þ 

where the approximate posterior, qϕ(zjx1), and likelihood distribu-
tions, pθ1ðx1 j zÞ and pθ2ðx2 j zÞ, are parameterized by neural net-
works with parameters ϕ, θ1, and θ2. 

We note that, in contrast to mcVAE, deep VCCA is based on 
the estimation of a single latent posterior distribution. Therefore, 
the resulting representation is dependent on the reference modality 
from which the joint latent representation is encoded and may 
therefore bias the estimation of the latent representation. Finally 
Wang et al. [48] introduce a variant of deep VCCA, VCCA-private, 
which extracts the private, in addition to shared, latent information. 
Here, private latent variables hold view-specific information which 
is not shared across modalities.
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4 Biologically Inspired Data Integration Strategies 

Medical imaging and -omics data are characterized by nontrivial 
relationships across features, which represent specific mechanisms 
underlying the pathophysiological processes. 

For example, the pattern of brain atrophy and functional 
impairment may involve brain regions according to the brain con-
nectivity structure [49]. Similarly, biological processes such as gene 
expression are the result of the joint contribution of several SNPs 
acting according to biological pathways. According to these pro-
cesses, it is possible to establish relationships between genetics 
features under the form of relation networks, represented by ontol-
ogies such as the KEGG pathways2 and the Gene Ontology 
Consortium.3 

When applying data-driven multivariate analysis methods to 
this kind of data, it is therefore relevant to promote interpretability 
and plausibility of the model, by enforcing the solution to follow 
the structural constraints underlying the data. This kind of model 
behavior can be achieved through regularization of the model 
parameters. 

In particular, group-wise regularization [50] is an effective 
approach to enforce structural patterns during model optimization, 
where related features are jointly penalized with respect to a com-
mon parameter. For example, group-wise constraints may be intro-
duced to account for biological pathways in models of gene 
association, or for known brain networks and regional interactions 
in neuroimaging studies. More specifically, we assume that the Di 

features of a modality x i = ðxi1, . . ., xiDi
Þ are grouped in subsets 

fS lgL l =1, according to the indices S l = ðs1, . . ., sN l
Þ. The regulariza-

tion of the of the general multivariate model of Eq. 2 according to 
the group-wise constraint can be expressed as: 

W � = argmin 
W 

kX 1 -X 2 �W k2 þ λ 
L 

l =1 

βlRðW lÞ, ð31Þ 

where RðW lÞ= D1 

j =1 s∈S l 
W ½s , j �2 is the penalization of the 

entries of W associated with the features of X2 indexed by S l. The 
total penalty is achieved by the sum across the D1 columns. 

Group-wise regularization is particularly effective in the follow-
ing situations:

• To compensate for large data dimensionality, by reducing the 
number of “free parameters” to be optimized by aggregating the 
available features [51]. 

2 https://www.genome.jp/kegg/pathway.html. 
3 http://geneontology.org/.

https://www.genome.jp/kegg/pathway.html
http://geneontology.org/
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• To account for the small effect size of each independent features, 
to combine features in order to increase the detection power. 
For example, in genetic analysis, each SNP accounts for below 
1% of the variance in brain imaging quantitative traits when 
considered individually [52, 53].

• To meaningfully integrate complementary information to intro-
duce biologically inspired constraints into the model. 

In the context of group-wise regularization in neural networks, 
several optimization/regularization strategies have been proposed 
to allow the identification of compressed representation of multi-
modal data in the bottleneck layers, such as by imposing sparsity of 
the model parameters or by introducing grouping constraints moti-
vated by prior knowledge [54]. 

For instance, the Bayesian Genome-to-Phenome Sparse 
Regression (G2PSR) method proposed in [55] associates genomic 
data to phenotypic features, such as multimodal neuroimaging and 
clinical data, by constraining the transformation to optimize rele-
vant group-wise SNPs-gene associations. The resulting architecture 
groups the input SNP layer into corresponding genes represented 
in the intermediate layer L of the network (Fig. 6). Sparsity at the 
gene level is introduced through variational dropout [56], to esti-
mate the relevance of each gene (and related SNPs) in reconstruct-
ing the output phenotypic features. 

In more detail, to incorporate biological constraints in G2PSR 
framework, a group-wise penalization is imposed with nonzero 
weights Wg mapping the input SNPs to their common gene g. 
The idea is that during optimization the model is forced to jointly 
discard all the SNPs mapping to genes which are not relevant to the 
predictive task. Following [56], the variational approximation is

Fig. 5 The multi-channel VAE (mcVAE) for the joint modeling of multimodal 
medical imaging, clinical, and biological information. The mcVAE approximates 
the latent posterior p(z|X1, X2, X3, X4) to maximize the likelihood of the data 
reconstruction p(X1, X2, X3, X4|z) (plus a regularization term)



parametrized as q(Wg ), such that each element of the input layer is 
defined as W 

g 
i � N ðμg i ; αg :μg i 2Þ [57], where the parameter αg is 

optimized to quantify the common uncertainty associated with 
the ensemble of SNPs contributing to the gene g.
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Fig. 6 Illustration of G2PSR SNP-gene grouping constraint and overall neural 
network architecture 

5 Conclusions 

This chapter presented an overview of basic notions and tools for 
multimodal analysis. The set of frameworks introduced here repre-
sents an ideal starting ground for more complex analysis, either 
based on linear multivariate methods [58, 59] or on neural network 
architectures, extending the modeling capabilities to account for 
highly heterogeneous information, such multi-organ data [46], 
text information, and data from electronic health records [60, 61]. 
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