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Chapter 16 

Subtyping Brain Diseases from Imaging Data 

Junhao Wen, Erdem Varol, Zhijian Yang, Gyujoon Hwang, 
Dominique Dwyer, Anahita Fathi Kazerooni, Paris Alexandros Lalousis, 
and Christos Davatzikos 

Abstract 

The imaging community has increasingly adopted machine learning (ML) methods to provide individua-
lized imaging signatures related to disease diagnosis, prognosis, and response to treatment. Clinical 
neuroscience and cancer imaging have been two areas in which ML has offered particular promise. 
However, many neurologic and neuropsychiatric diseases, as well as cancer, are often heterogeneous in 
terms of their clinical manifestations, neuroanatomical patterns, or genetic underpinnings. Therefore, in 
such cases, seeking a single disease signature might be ineffectual in delivering individualized precision 
diagnostics. The current chapter focuses on ML methods, especially semi-supervised clustering, that seek 
disease subtypes using imaging data. Work from Alzheimer’s disease and its prodromal stages, psychosis, 
depression, autism, and brain cancer are discussed. Our goal is to provide the readers with a broad overview 
in terms of methodology and clinical applications. 

Key words Neuroimaging, Machine learning, Semi-supervised clustering, Heterogeneity 

1 Introduction 

There is a growing clinical evidence that structural and functional 
brain development and aging take heterogeneous paths within differ-
ent subsets of the human population [1–3]. This heterogeneity has 
been relatively ignored in case-control study analyses, yielding a 
limited understanding of the diversity of underlying biological pro-
cesses that might give rise to similar clinical phenotypes. The advent 
of high-throughput neuroimaging technologies and the concen-
trated efforts of the collection of large-scale datasets [4, 5] provide a 
unique opportunity to dissect the structural and functional heteroge-
neity of brain disorders in finer details and in an unbiased data-driven 
manner. A developing body of work that leverages ML and neuroim-
aging seeks disease subtypes of neuropsychiatric and neurodegenera-
tive disorders, including Alzheimer’s disease (AD) [6–11], 
schizophrenia [12, 13], and late-life depression [14]. 
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Subtyping brain diseases is a clustering problem where the goal 
is to break down the set of patients into distinct and relatively 
homogeneous subgroups (i.e., subtypes). While this has been 
actively investigated in the computer science community, subtyping 
neuroimaging data is endowed with a unique set of obstacles, such 
as the “curse of dimensionality” and the confounding nuisance 
effects, such as global demographics and scanner differences. Fur-
thermore, brain development and pathologies often progress along 
a continuum, e.g., from healthy state to preclinical stages to full-
fledged disease [15], thereby modeling directly in the patient 
domain may lead to a biased clustering solution. Thus, to tackle 
these problems, some recent efforts have focused on developing 
semi-supervised [6, 8, 9, 16] and unsupervised clustering methods 
[10, 11]. Early studies mainly focused on unsupervised clustering 
methods, such as K-means [17] or hierarchical clustering [18], to 
derive data-driven subtypes using imaging data. However, such 
approaches directly partition the patients based on similarities/ 
dissimilarities, potentially biased by confounding factors, such as 
demographics or heterogeneity caused by unrelated pathological 
processes. More recently, semi-supervised clustering methods [6, 8, 
9, 16] have been proposed to tackle this problem from a novel 
angle. To seek a pathology-oriented clustering solution, semi-
supervised approaches dissect disease heterogeneity by the “1-to-
k” mapping between the reference group (i.e., healthy control 
(CN)) and the subgroups of the patient group (i.e., the 
k subtypes). This approach presumably zooms into the heterogene-
ity of pathological processes rather than unwanted heterogeneity in 
general. Furthermore, confounding variations, such as demo-
graphics, are often ruled out in these approaches. 

Aiming to provide the reader in the imaging and machine 
learning community with a broad guideline in terms of methodol-
ogy and clinical applications, we organize the remainder of this 
chapter as follows. In Subheading 2, we provide a brief overview 
of clustering methods, including unsupervised and semi-supervised 
approaches. Subheading 3 discusses their applications in various 
neurological and neuropsychiatric disorders and diseases. Subhead-
ing 4 concludes the paper by discussing our main observations, 
methodological limitations, and future directions. 

2 Methodological Development Using Machine Learning and Neuroimaging 

Machine learning and neuroimaging have brought unprecedented 
opportunities to elucidate disease heterogeneity in various brain 
disorders and diseases [19]. Several trailblazing methodological 
papers have been recently published [9–11], challenging the con-
ventional approach of patient stratification that puts all patients into 
the same bucket. Among these, unsupervised [10, 11] and semi-



supervised clustering methods [9] sought to derive biologically 
data-driven disease subtypes, but they anchor the modeling from 
distinct perspectives. For conciseness, let us note that our imaging 
dataset contains q healthy control (CN) samples 
X r = ½x1, . . ., xq �,X r∈p × q , representing our reference group, 

and n patient samples (PT) X t = ½x1, . . ., xm�,X t∈p ×m , represent-
ing the target subtype population. We denote the whole population 
as a matrix X that is organized by arranging each image as a vector 
per column X = ½x1, . . ., xqþm�,X∈p × ðqþmÞ, where p is the num-
ber of features per image. We use binary labels to distinguish the 
patient and control groups, where 1 represents PT and -1 means 
CN. Disease subtyping sought to find the number of clusters (k) in  
the patient group that are neuroanatomically distinct while clini-
cally relevant. 
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2.1 Unsupervised 

Clustering 

Many recent efforts to discover the heterogeneous nature of brain 
diseases have investigated different unsupervised clustering algo-
rithms [10, 11, 20–32]. Among these approaches, the key cluster-
ing methods are often K-means, hierarchical clustering, and 
nonnegative matrix factorization (NMF) (Fig. 1). In this

Fig. 1 Schematic diagram of representative unsupervised clustering methods, K-means, NMF, and hierarchi-
cal clustering



subsection, we first briefly go through these methods. Subse-
quently, we focus on two representative models building on these 
unsupervised methods, i.e., Sustain [10] and latent 
Dirichlet allocation [11].
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2.1.1 K-Means 

Clustering 

K-means clustering aims to directly partition the n patients into 
k clusters. Each patient belongs to the cluster with the nearest mean 
(i.e., cluster centroid) quantified by a distance metric of choice 
(e.g., Euclidean distance). Since searching the global minimum in 
clustering is computationally difficult (NP-hard), local minima are 
searched in the K-means algorithm via an iterative refinement 
approach. This usually involves two steps after giving an initial set 
of k centroids: (i) assignment step, assigning each data point to the 
cluster with the nearest centroid with the least squared Euclidean 
distance, and (ii) update step, recalculating means (centroids) for all 
data points assigned to each cluster. The two steps iteratively con-
tinue until the convergence, i.e., the assignments no longer change. 
More details regarding the k-means algorithm are provided in 
Chap. 2, Subheading 12.1. Please refer to [33–35] for representa-
tive studies using K-means for disease subtyping. 

2.1.2 NMF Clustering Nonnegative matrix factorization (NMF) is a method that implic-
itly performs clustering by taking advantage that complex patterns 
can be construed as a sum of simple parts. In essence, the input data 
Xt is factorized into two nonnegative matrices C∈p × k and 

L∈k ×m , for which we refer to the component matrix and loading 
coefficient matrix, respectively. This method has been widely used 
as an effective dimensionality reduction technique in signal proces-
sing and image analysis [36]. By its nature, the L matrix can be 
directly used for clustering purposes, which is analogous to 
K-means if we impose an orthogonality constraint on the L matrix. 
Specifically, if Lkj> Lij for all i≠k, this clusters the data point xn into 
the k-th cluster. The vectors of the C matrix indicate the cluster 
centroids. Please refer to [32] for a representative study using NMF 
for disease subtyping. 

2.1.3 Hierarchical 

Clustering 

Hierarchical clustering aims to build a hierarchy of clusters, includ-
ing two types of approach: agglomerative and divisive [18]. In 
general, the merges and splits are determined greedily and pre-
sented in a dendrogram. Similarly, a measure of dissimilarity 
between sets of observations is required. Most commonly, this is 
achieved by using an appropriate metric (e.g., Euclidean distance) 
and a linkage criterion that specifies the dissimilarity of sets as a 
function of the pairwise distances of observations. Please refer to 
[24, 25, 30, 37, 38] for representative studies using the hierarchical 
clustering for disease subtyping.

https://doi.org/10.1007/978-1-0716-3195-9_2
https://doi.org/10.1007/978-1-0716-3195-9_12


2.2 Semi-supervised

Clustering
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2.1.4 Representative 

Unsupervised Clustering 

Methods 

Sustain [10] is an unsupervised clustering method for subtype and 
stage inference. Specifically, Sustain formulates the model as groups 
of subjects with a particular biomarker progression pattern as a 
subtype. The biomarker evolution of each subtype is modeled as a 
linear z-score model, a continuous generalization of the original 
event-based model [39]. Each biomarker follows a piecewise linear 
trajectory over a common timeframe. The key advantage of this 
model is that it can work with purely cross-sectional data and derive 
an imaging signatures of subtype and stage simultaneously. 

A Bayesian latent Dirichlet allocation model [11] was proposed 
to extract latent AD-related atrophy factors. This probabilistic 
approach hypothesizes that each patient expresses one or more 
latent factors, and each factor is associated with distinct but possibly 
overlapping atrophy patterns. However, due to the nature of latent 
Dirichlet allocation methods, the input images have to be discre-
tized. Moreover, this method exclusively models brain atrophy 
while ignoring brain enlargement. For example, larger brain 
volumes in basal ganglia have been associated with one subtype of 
schizophrenia [12]. 

Semi-supervised clustering methods dissect the subtle heterogene-
ity of interest under the principle of deriving data-driven and 
neurobiologically plausible subtypes (Fig. 2). In essence, these 
methods seek the “1-to-k” mapping between the reference CN

Fig. 2 Schematic diagram of semi-supervised clustering methods. Figure is adapted from [14]



group and the PT group, thereby teasing out clusters that are likely 
driven by distinct pathological trajectories, instead of by global 
similarity/dissimilarity in data, which is the core momentum of 
conventional unsupervised clustering methods.
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In the following subsections, we briefly discuss four semi-
supervised clustering methods. These methods employ different 
techniques to seek this “1-to-k” mapping. In particular, CHI-
MERA [16] and Smile-GAN [9] utilize generative models to 
achieve this mapping, while HYDRA [6] and MAGIC [8] are 
built on top of discriminative models. 

Box 1: Representative Semi-supervised Clustering Methods 
The central principle of semi-supervised clustering methods is 
to seek the “1-to-k” mapping from the reference domain to 
the patient domain.

• CHIMERA: a generative approach that leverages the coher-
ent point drift algorithm and maps the data distribution of the 
CN group to the PT group, thereby enabling to subtype by 
the distinct k regularized transformations.

• Smile-GAN: a generative approach based on GANs to learn 
multiple distinct mappings by generating PT from 
CN. Simultaneously, a clustering model is trained interac-
tively with mapping functions to assign PT into the 
corresponding subtype memberships.

• HYDRA: a discriminative approach which leverages multiple 
linear support vector machines to construct a polytope that 
clusters the patients depending on the patterns of differences 
between the CN group and the PT group.

• MAGIC: a generalization of HYDRA that aims to dissect 
disease heterogeneity at multiple imaging scales for a scale-
consistent solution. 

2.2.1 CHIMERA CHIMERA employs a generative probabilistic approach, considers 
all samples as points in the imaging space, and infers the clusters 
from the transformations between the CN and PT distributions. It 
hypothesizes that the PT distribution can be generated from the 
CN distribution under k sets of transformations, each reflecting a 
distinct disease process. 

Mathematically, the transformation T is a convex 
combination of the k linear transformations that map a CN subject 
in the reference space to the target space: 

xr 
i∈q → x t 

i =T ðxiÞ= k 
j =1ξjT j ðxiÞ, where ξj is the probability 

that a PT belongs to the j-th subtype. Ideally, if the disease subtypes 
were distinct, ξj should take value 1 for the transformation



corresponding to this specific disease subtype and value 0 otherwise. 
At its core, the coherent point drift algorithm [40], a generative 
probabilistic approach, is used to estimate the transformation T. 
Specifically, the CN sample point is mapped to the PT domain and 
regarded as a centroid of a spherical Gaussian cluster, whereas the 
patient points are treated as independent and identically distributed 
data generated by a Gaussian mixture model (GMM) with equal 
weights for each cluster. The goal is to maximize the data likelihood 
during the distribution matching while also taking into account 
covariate confounds (e.g., age and gender). The expectation-
maximization approach is adopted to optimize the resulting energy 
objective. Clustering inference is straightforward after the opti-
mized transformation Tj is achieved, i.e., a patient can be assigned 
the subtype membership corresponding to the largest likelihood. 
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2.2.2 Smile-GAN Smile-GAN is a novel generative deep learning approach based on 
generative adversarial networks (GAN). The reader may refer to 
Chap. 5 for generic information about GANs. Smile-GAN aims to 
learn a mapping function, f, from joint CN domain X and subtype 
domain Z to the PT domain Y , by transforming CN data x to 
different synthesized PT data y′= f(x, z) that are indistinguishable 
from real PT data, y, by the discriminator, D. Mapping function, f, 
is regularized for inverse consistencies, with a clustering function, 
g : Y → Z, trained interactively to reconstruct z from synthesized 
PT data y′. The clustering function, g, can also be directly used to 
cluster both training and unseen test data after the training process. 

More specifically, three different data distributions are denoted 
as x� pCN (for controls), y� pPT (for patients), and z� pSub (for a 
subtype), respectively, where z� pSub is sampled from a discrete 
uniform distribution and encoded as a one-hot vector with dimen-
sion K (number of clusters). Mapping function, f : X � Z → Y , and 
clustering function, g : Y → Z, are learned through the following 
training procedure (lc denotes the cross-entropy loss): 

f , g = argmin 
f , g 

max 
D 

LGANðD, f Þ þ  μLchangeðf Þ þ  λLclusterðf , gÞ ð1Þ 
where 

LGANðD, f Þ =y�pPT ½log ðDðyÞÞ�
þz�pSub,x�pCN ½1- log ðDðf ðx, zÞÞÞ�� ð2Þ 

Lchangeðf Þ =x�pCN,z�pSub ½jjf ðx, zÞ- xjj1� ð3Þ 

Lclusterðf , gÞ =x�pCN,z�pSub ½l cðz, gðf ðx, zÞÞÞ� ð4Þ

https://doi.org/10.1007/978-1-0716-3195-9_5
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The objective consists of adversarial loss LGAN, regularization terms 
Lchange and Lcluster. Adversarial loss forces the synthesized PT data 
to follow similar distributions as real PT data. The discriminator D, 
trying to identify synthesized PT data from real PT data, attempts 
to maximize the loss, while the mapping f attempts to minimize 
against it. Both regularization terms serve to constrain the function 
class where the mapping function f is sampled from so that it is truly 
meaningful while matching the distributions. Minimization of 
Lchange encourages sparsity of regions captured by f, with the 
assumption that only some regions are changed by disease effect. 
Optimizing Lcluster ensures that the input sub variable z can be 
reconstructed from synthesized PT data y′, so that the mutual 
information between z and y′ are maximized, and distinct imaging 
patterns are synthesized when z takes different values. Further 
regularization is also imposed by forcing mapping function f and 
clustering function g to be Lipschitz continuous. More impor-
tantly, thanks to the inverse consistencies led by Lcluster, function 
g can directly output cluster probabilities and cluster labels when 
given unseen test PT data. 

2.2.3 HYDRA In contrast to the generative approaches used in CHIMERA and 
Smile-GAN, HYDRA leverages a widely used discriminative 
method, i.e., support vector machines (SVM), to seek this “1-to-
k” mapping. The novelty is that HYDRA extends multiple linear 
SVMs to the nonlinear case in a piecewise fashion, thereby simulta-
neously serving for classification and clustering. Specifically, it con-
structs a convex polytope by combining the hyperplane from 
k linear SVMs, separating the CN group and the k subpopulation 
of the PT group. Intuitively, each face of the convex polytope can 
be regarded to encode each subtype, capturing a distinct disease 
effect. 

The convex polytope is estimated by sequentially solving each 
linear SVM as a subproblem under the principle of the sample 
weighted SVM [41]. The optimization stops when the sample 
weights become stable, i.e., the polytope is stably established. The 
objective of maximizing the polytope’s margin can be summarized 
as 

min
fwj , bjgk ðj =1Þ 

k 

ðj =1Þ 

jjwj jj2 2 
2 

þ μ 
ijyi =þ1 

1 
k 
maxf0, 1-wT 

j X
T 
i - bjg 

þμ 
ijyi = -1 

s i,j maxf0, 1þ wT 
j X

T 
i þ bjg 

ð5Þ 
where wj and bj are the weight and bias for each hyperplane, 
respectively. μ is a penalty parameter on the training error, and S is 
the subtype membership matrix of dimension m � k deciding



whether a patient sample i belongs to subtype j. The cluster mem-
bership is inferred as follows: 
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S i,j =f1, j = arg maxj ðwT 
j X

T þ bj Þ 
0, otherwise 

ð6Þ 

2.2.4 MAGIC MAGIC was proposed to overcome one of the main limitations that 
HYDRA faced. That is, a single-scale set of features (e.g., atlas-
based regions of interest) may not be sufficient to derive subtle 
differences, compared to global demographics, disease heterogene-
ity, since ample evidence has shown that the brain is fundamentally 
composed of multi-scale structural or functional entities. To this 
objective, MAGIC extracts multi-scale features in a coarse-to-fine 
granular fashion via stochastic orthogonal projective nonnegative 
matrix factorization (opNMF) [42], a very effective unbiased, data-
driven method for extracting biologically interpretable and repro-
ducible feature representations. Together with these multi-scale 
features, HYDRA is embedded into a double-cyclic optimization 
procedure to yield robust and scale-consistent cluster solutions. 

MAGIC encapsulates the two previous proposed methods (i.e., 
opNMF and HYDRA) and optimizes the clustering objective for 
each single-scale feature as a sub-optimization problem. To fuse the 
multi-scale clustering information and enforce the clusters to be 
scale-consistent, it adopts a double-cyclic procedure that transfers 
and fine-tunes the clustering polytope. Firstly, (i) inner cyclic pro-
cedure: let us remind that HYDRA decides the clusters based on 
the subtype membership matrix (S). MAGIC first initializes the S 
matrix with a specific single-scale feature set, i.e., Li, and then the S 
matrix is transferred to the next set of feature set Li+1 until the 
predefined stopping criterion is achieved (i.e., the clustering solu-
tion across scales is stable). Secondly, (ii) outer cyclic procedure: the 
inner cyclic procedure was repeated by initializing with each single-
scale feature set. Finally, to determine the final subtype assignment, 
we perform a consensus clustering by computing a co-occurrence 
matrix based on all the clustering results and then perform spectral 
clustering [43]. 

3 Application to Brain Disorders 

Brain disorders and diseases affect the human brain across a wide 
age range. Neurodevelopmental disorders, such as autism spectrum 
disorders (ASD), are usually present from early childhood and 
affect daily functioning [44]. Psychotic disorders, such as schizo-
phrenia, involve psychosis that is typically diagnosed for the first 
time in late adolescence or early adulthood [45]. Dementia and 
mild cognitive impairment (MCI) prevail both in late mid-life for



early-onset AD (usually 30–60 years of age) and most frequently in 
late-life for late-onset AD (usually over 65 years of age) [46]. Brain 
cancers in children and adults are heterogeneous and encompass 
over 100 different histological types of tumors, based on cells of 
origin and other histopathological features, and have substantial 
morbidity and mortality [47]. Ample clinical evidence encourages 
the stratification of the patients in these brain disorders and cancers, 
potentially paving the road toward individualized precision 
medicine. 
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This section collectively overviews previous work aiming to 
unravel imaging-derived heterogeneity in ASD, psychosis, major 
depressive disorders (MDD), MCI and AD, and brain cancer. 

3.1 Autism Spectrum 

Disorder 

ASD encompasses a broad spectrum of social deficits and atypical 
behaviors [48]. Heterogeneity of its clinical presentation has 
sparked massive research efforts to find subtypes to better delineate 
its diagnosis [49, 50]. Recent initiatives to aggregate neuroimaging 
data of ASD, such as the ABIDE [51] and the EU-AIMS [52], also 
have motivated large-scale subtyping projects using imaging 
signatures [53]. 

Different clustering methods have been applied to reveal struc-
tural brain-based subtypes, but primarily traditional techniques 
such as the K-means [54] or hierarchical clustering [37]. Besides 
structural MRI, functional MRI [55] and EEG [56] have also been 
popular modalities. For reasons discussed earlier, normative clus-
tering and dimensional analyses are better suited to parse a patient 
population that is highly heterogeneous [57]. However, efforts in 
this avenue have been primitive, with only a few recent publications 
using cortical thickness [58]. Taken together, although more vali-
dation and replication efforts are necessary to define any reliable 
neuroanatomical subtypes of ASD, some convergence in findings 
has been noted [53]. First, most sets of ASD neuroimaging sub-
types indicate a combination of both increases and decreases in 
imaging features compared to the CN group, instead of pointing 
in a uniform direction. Second, most subtypes are characterized by 
spatially distributed imaging patterns instead of isolated or focal 
patterns. Both findings emphasize the significant heterogeneity in 
ASD brains and the need for better stratification. 

The search for subtypes in the ASD population has unique 
challenges. First, the early onset of ASD implies that it is heavily 
influenced by neurodevelopmental processes. Depending on the 
selected age range, the results may significantly differ. Second, 
ASD is more prevalent in males, with three to four male cases for 
one female case [59], which adds a layer of potential bias. Third, 
individuals with ASD often suffer psychiatric comorbidities, such as 
ADHD, anxiety disorders, and obsessive-compulsive disorder, 
among many others [60], which, if not screened carefully, can 
dilute or alter the true signal.
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3.2 Psychosis Psychosis is a medical syndrome characterized by unusual beliefs 
called delusions and sometimes hallucinations of visions, sounds, 
smells, or body sensations that are not present in reality. Symptoms, 
functioning, and outcomes are highly heterogeneous across indivi-
duals, leading to long-standing hypotheses of underlying brain 
subgroups. However, objective brain biomarkers have largely not 
been discovered for any psychosis diagnosis, stage, or clinically 
defined subgroup [61, 62]. Neuroimaging studies are also affected 
by brain heterogeneity [63, 64]. Recent research has thus focused 
on finding structural brain subtypes using unbiased statistical tech-
niques [12, 13, 65]. 

Psychosis studies have mainly focused on determining subtypes 
by clustering brain structural data within the chronic schizophrenia 
population that has had the illness for years, with results demon-
strating two [12, 13], three [26], and six [31] subgroups. Various 
clustering techniques have been used to achieve these outcomes, 
including conventional approaches, such as k-means, in addition to 
more advanced machine learning methods, such as semi-supervised 
learning. A limitation of the work so far has been the lack of internal 
or external validation. Still, in studies with robust internal valida-
tion methods using metrics that choose the optimal cluster number 
based on the stability of the solution (e.g., consensus clustering), 
subtypes cluster along the lines of the severity of brain differences. 

In a recent study, with the largest sample to date (n=671), 
clustered individuals with chronic schizophrenia using HYDRA 
and multiple internal validation procedures were applied (i.e., 
cross-validation resampling, split-half reproducibility, and leave-
site-out validation) [12]. A two-subtype solution was found, with 
one subtype demonstrating widespread reductions and the other 
showing the localized larger volume of the striatum that was not 
associated with antipsychotic use. Interestingly, there were limited 
associations with current psychosis symptoms in this work, but 
indications of associations with education and illness duration in 
specific subtypes. 

Functional imaging has also been used to define psychosis 
subgroups using functional connectivity at rest [66] and effective 
connectivity during task performance [67]. The research com-
monly has relatively low sample sizes with little internal or external 
validation. Still, of these works, preliminary results demonstrate 
that clusters can follow diagnostic divisions between individuals 
with psychosis [67] and that specific networks (e.g., frontoparietal 
network) are associated with specific psychotic symptoms [67] 
[66]. A recent advanced deep learning approach has also revealed 
clinical separations along the lines of symptom severity [68]. Taken 
together with brain structural results, it is possible that functional 
imaging maps onto symptom states rather than underlying illness 
traits that are captured by structural imaging. Further internal and 
external validation work is required to investigate this hypothesis by



characterizing, comparing, and ultimately combining clustering 
solutions. A critical future direction will also be to conduct longi-
tudinal studies that track individuals over time. Such research could 
lead the way toward clinical translation. 
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3.3 Major Depressive 

Disorder 

MDD is a common, severe, and recurrent disorder, with over 
300 million people affected worldwide, and is characterized by 
low mood, apathy, and social withdrawal, with symptoms spanning 
multiple domains [69]. Its vast heterogeneity is exemplified by the 
fact that according to DSM-5 criteria, at least 227 and up to 16,400 
unique symptom presentations exist [70, 71]. The potential causes 
for this heterogeneity vary from divergent clinical symptom profiles 
to genetic etiologies and individual differences in treatment 
outcomes. 

Despite neurobiological findings in MDD spanning cortical 
thickness, gray matter volume (GMV), and fractional anisotropy 
(FA) measures, objective brain biomarkers that can be used to 
diagnose and predict disease course and outcome remain elusive 
[71–73]. Recently, there have been efforts to identify neurobiolo-
gically based subtypes of depression using a bottom-up approach, 
mainly using data from resting-state fMRI [71]. Several studies 
[33–35] employed k-means clustering and group iterative multiple 
model estimation, respectively, to identify two functional connec-
tivity subtypes, while Tokuda et al. [74] and Drysdale et al. [75] 
identified three and four subtypes, respectively, using nonparamet-
ric Bayesian mixture models and hierarchical clustering. These 
subtypes are characterized by reduced connectivity in different net-
works, including the default mode network (DMN), ventral atten-
tion network, and frontostriatal and limbic dysfunction. Regarding 
structural neuroimaging, one study has used k-means clustering on 
fractional anisotropy (FA) data to identify two depression subtypes. 
The first subtype was characterized by decreased FA in the right 
temporal lobe and the right middle frontal areas and was associated 
with an older age at onset. In contrast, the second subtype was 
characterized by increased FA in the left occipital lobe and was 
associated with a younger age at onset [76]. 

Current research in the identification of brain subtypes in 
MDD has produced results that are promising but confounded by 
methodological and design limitations. While some studies have 
shown clinical promises such as predicting higher depressive symp-
tomatology and lower sustenance of positive mood [34, 35], 
depression duration [33], and TMS therapy response [75], they 
are confounded by limitations such as relatively small sample sizes; 
nuisance variances such as age, gender, and common ancestry; lack 
of external validation; and lack of statistical significance testing of 
identified clusters. Furthermore, there has been a lack of ambition 
in the use of novel clustering techniques. Clustering based on



structural neuroimaging is limited compared to other disease enti-
ties and is an avenue that future research should consider. Future 
studies should also aim to perform longitudinal clustering to eluci-
date the stability of identified brain subtypes over time and examine 
their utility in predicting disease outcomes. 
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3.4 MCI and AD AD, along with its prodromal stage presenting MCI, is the most 
common neurodegenerative disease, affecting millions across the 
globe. Although a plethora of imaging studies have derived 
AD-related imaging signatures, most studies ignored the heteroge-
neity in AD. Recently, there has been a developing body of effort to 
derive imaging signatures of AD that are heterogeneity-aware (i.e., 
subtypes) [7–11]. 

Most previous studies leveraged unsupervised clustering meth-
ods such as Sustain [10], NMF [32], latent Dirichlet allocation 
[11], and hierarchical clustering [24, 25, 30, 38]. Other papers 
[6, 9, 20, 77, 78] utilized semi-supervised clustering methods. Due 
to the variabilities of the choice of databases and methodologies 
and the lack of ground truth in the context of clustering, the 
reported number of clusters and the subtypes’ neuroanatomical 
patterns differ and cannot be directly compared. The targeted 
heterogeneous population of study also varies across papers. For 
instance, [6] focused on dissecting the neuroanatomical heteroge-
neity for AD patients, while [77] included AD plus MCI and [20] 
studied MCI only. However, some common subtypes were found 
in different studies. First, a subtype showing a typical diffuse atro-
phy pattern over the entire brain was witnessed in several studies 
[6, 8–10, 22, 27, 29, 30, 32, 38, 77]. Another subtype demon-
strating nearly normal brain anatomy was robustly identified [8, 9, 
16, 20, 22, 24, 25, 29, 30]. Moreover, studies [8, 9, 29, 30, 77] 
also reported one subtype showing atypical AD patterns (i.e., hip-
pocampus or medial temporal lobe atrophy spared). 

Though these methods enabled a better understanding of het-
erogeneity in AD, there are still limitations and challenges. First, 
due to demographic variations and the existence of comorbidities, 
it is not guaranteed that models cluster the data based on variations 
of the pathology of interest. Semi-supervised methods might tackle 
this problem to some extent, but more careful sample selection and 
further study with longitudinal data may ensure disease specificity. 
Second, spatial differences and temporal changes may simulta-
neously contribute to subtypes derived through clustering meth-
ods. Third, subtypes captured from neuroimaging data alone bring 
limited insight into disease treatments, thereby a joint study of 
neuroimaging and genetic heterogeneity may provide greater clini-
cal value [14, 79].
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3.5 Brain Cancer Brain tumors, such as glioblastoma (GBM), exhibit extensive inter-
and intra-tumor heterogeneity, diffuse infiltration, and invasiveness 
of various immune and stromal cell populations, which pose diag-
nostic and prognostic challenges, and render the standard therapies 
futile [80]. Deciphering the underlying heterogeneity of brain 
tumors, which arises from genomic instability of these tumors, 
plays a key role in understanding and predicting the course of 
tumor progression and its response to the standard therapies, 
thereby designing effective therapies targeted at aberrant genetic 
alterations [81, 82]. Medical imaging noninvasively portrays the 
phenotypic differences of brain tumors and their microenviron-
ment caused by molecular activities of tumors on a macroscopic 
scale [83, 84]. It has the potential to provide readily accessible and 
surrogate biomarkers of particular genomic alterations, predict 
response to therapy, avoid risks of tumor biopsy or inaccurate 
diagnosis due to sampling errors, and ultimately develop persona-
lized therapies to improve patient outcomes. An imaging subtype 
of brain tumors may provide a wealth of information about the 
tumor, including distinct molecular pathways [85, 86]. 

Recent studies on radiomic analysis of multiparametric MRI 
(mpMRI) scans provide evidence of distinct phenotypic presenta-
tion of brain tumors associated with specific molecular character-
istics. These studies propose that quantification of tumor 
morphology, texture, regional microvasculature, cellular density, 
or microstructural properties can map to different imaging sub-
types. In particular, one study [87] discovered three distinct clus-
ters of GBM subtypes through unsupervised clustering of these 
features, with significant differences in survival probabilities and 
associations with specific molecular signaling pathways. These 
imaging subtypes, namely solid, irregular, and rim-enhancing, 
were significantly linked to different clinical outcomes and molecu-
lar characteristics, including isocitrate dehydrogenase-1, 
O6-methylguanine-DNA methyltransferase, epidermal growth fac-
tor receptor variant III, and transcriptomic molecular subtype 
composition. 

These studies have offered new insights into the characteriza-
tion of tumor heterogeneity on both microscopic, i.e., histology 
and molecular, and macroscopic, i.e., imaging levels, consequently 
providing a more comprehensive understanding of the tumor 
aggressiveness and patient prognosis, and ultimately, the develop-
ment of personalized treatments. 

4 Conclusion 

Taken together, these novel clustering algorithms tailored for high-
resolution yet highly variable neuroimaging datasets have demon-
strated a broad utility in disease subtyping across many neurological 
and psychiatric conditions. Simultaneously, cautions need to be



taken in order not to overclaim the biological importance of sub-
types, since all clustering methods find patterns in data, even if such 
patterns don’t have a meaningful underlying biological correlate 
[88]. External validations are necessary. For instance, evidence of 
post hoc evaluations, e.g., a difference in clinical variables or genetic 
architectures, can support the biological relevance of identified 
neuroimaging-based subtypes [14]. Moreover, good practices 
such as split-sample analysis, permutation tests [12], and compari-
son to the guideline of semi-simulated experiments [8] discern the 
robustness of the subtypes. As dataset sizes and imaging resolution 
improve over time, unique computational challenges are expected 
to appear, along with unique opportunities to further refine our 
methodologies to decipher the diversity of brain diseases. 
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