
HAL Id: hal-04239712
https://hal.science/hal-04239712v1

Submitted on 25 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rank-Envy-Freeness in Roommate Matchings
Baptistin Coutance, Prasanna Maddila, Anaëlle Wilczynski

To cite this version:
Baptistin Coutance, Prasanna Maddila, Anaëlle Wilczynski. Rank-Envy-Freeness in Roommate
Matchings. 26th European Conference on Artificial Intelligence (ECAI 2023), Sep 2023, Krakow
(Cracovie), Poland. �10.3233/FAIA230308�. �hal-04239712�

https://hal.science/hal-04239712v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Rank-Envy-Freeness in Roommate Matchings
Baptistin Coutancea, Prasanna Maddilaa and Anaëlle Wilczynski a;*

aMICS, CentraleSupélec, Université Paris-Saclay

Abstract. In the roommate problem, pairs of agents must be
formed, based on ordinal preferences of the agents over each other.
In this article, we examine fair roommate matchings by relaxing
envy-freeness to account for justified envy based on the rank in
the agents’ preferences. A rank-envy-free matching prevents that an
agent prefers the partner of another agent whereas she has ranked
it better. Although this requirement is pretty weak in house alloca-
tion [9], we show that it is more demanding in the roommate setting.
We study parameterizations of rank-envy-freeness, as well as further
natural relaxations of this concept. We also investigate the connec-
tions between the family of rank-based fairness criteria and known
optimality or stability concepts.

1 Introduction

Matching under preferences is a very attractive framework that cap-
tures a large number of real-world applications. This research area
has gained much attention in computer science, in particular in algo-
rithmic game theory and computational social choice [28, 30]. The
setting where pairs of agents must be formed, without distinction
among the agents, is known as the roommate setting [22]. This is
the non-bipartite version of the marriage setting, where the agents
are partitioned in two types and only agents of different types can
be matched. The roommate setting can be seen as a specific hedonic
game [7], where coalitions of agents of size two must be formed.

This matching problem has been initially studied under the prism
of stability [25], in the line of the seminal work of Gale and Shapley
on the stable marriage problem [22]. Given ordinal agents’ prefer-
ences, the aim is to find a matching that is stable w.r.t. blocking pairs
of agents (BP) who prefer to be matched together than with their
current partner in the matching. Alternative notions of stability have
been introduced since then, and in particular the one of exchange-
stability (also known as swap-stability) [6, 14].

Another important direction of research in matching problems
concerns the search for optimal matchings, aiming to ensure the
global satisfaction of the agents. In the context of ordinal preferences,
the most prominent optimality concept is Pareto-optimality [5]. Yet,
since many Pareto-optimal matchings exist, refinements have been
proposed, e.g., rank-maximality [26] which aims to lexicographically
optimize the ranks of the matched agents, and popularity [18], which
is based on pairwise comparisons of matchings by the agents.

Alternatively to stability or optimality, we adopt another view in
this article by exploring fairness issues in roommate matchings. Con-
trary to optimality, fairness does not focus on the global satisfaction
but on the individual feeling of fair treatment. While an unstable
matching is typically also unfair, the two notions are independent
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because feeling of fair treatment does not imply that the solution is
immune to local perturbations and agents may still feel frustrated in a
stable solution [34]. Although fairness has been widely investigated
in resource allocation [12, 32], this topic has been less explored in
settings matching agents with other agents. The main development
in the literature concerns justified envy-freeness in school choice [2],
which aims to avoid that a student prefers to be matched with a given
college that also prioritizes her. The analogous notion of fairness has
also been studied in hedonic games [35]. Other works concern the
marriage setting to counterbalance the inherent difference of treat-
ment between the two types of agents in stable matchings [31]. In
roommate matchings, we can particularly cite the rank-fairness no-
tion [27] imposing that partners assign the same rank to each other.

In this article, we focus on another notion of fairness called rank-
envy-freeness (r-EF), which is a relaxation of envy-freeness [20] that
requires that no agent prefers to be matched with the partner of an-
other agent whereas she has ranked the desired agent at a better po-
sition in her preference ranking. This concept is particularly relevant
in an ordinal context and is related to the notion of justified envy,
but considers the justification for envy w.r.t. the preferences of the
envious agent: Alice can legitimately feel discriminated if Bob got
matched with Charlie, who is his second choice, whereas Alice has
reported that Charlie was her first choice. This notion has been intro-
duced in school choice mechanism design under the name favoring
higher ranks [29], and has been mainly studied in random assign-
ment (of agents to objects) [23, 33]. Rank-envy-freeness has also
been recently investigated [9] in house allocation [1], a setting where
each agent must be matched with a single object. This latter work
proves that both rank-maximality and popularity imply r-EF, guaran-
teeing the existence of an r-EF allocation, while no implication re-
lation holds with Pareto-optimality. It also generalizes the notion to
rankk-envy-freeness (rk-EF) and proves that popularity is equivalent
to r1-EF when there are as many objects as agents.

In this article, we investigate rank-envy-freeness in the particular
roommate setting where agents have strict ordinal preferences over
all other agents and where every agent must be matched. Preference
restrictions are sometimes considered to strengthen our results. We
show that, contrary to house allocation, an r-EF matching does not al-
ways exist and the previous implications with optimality do not hold
anymore. We also examine rk-EF matchings and show that r1-EF is
no longer equivalent to popularity but keeps the characterization of
popularity for house allocation [3], making it decidable in polyno-
mial time, contrary to popularity [19, 24]. We further introduce new
relaxations of r-EF, namely weak rank-envy-freeness (wr-EF), BP
rank-envy-freeness (rBP-EF) and weak BP rank-envy-freeness (wrBP-
EF), and show that we can always construct a wrBP-EF matching in
polynomial time. This finding contrasts with the NP-completeness of
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the decision problems related to the existence of matchings satisfying
r-EF, wr-EF or rBP-EF. We determine the exact implication relations
between all these rank-based envy-freeness criteria and known opti-
mality or stability criteria; they are summarized in Figure 1. Finally,
we empirically evaluate the existence of such fair matchings.
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Figure 1: Implication relations between rank-based envy-freeness cri-
teria and optimality or stability criteria.

2 Preliminaries

For an integer k, let [k] := {1, . . . , k}. We are given a set of agents
N = [n] where n is even. Each agent i ∈ N is associated with a lin-
ear order �i over N \ {i} representing her strict ordinal preferences
over the other agents. A preference profile � is the set of all linear
orders �i for all agents i ∈ N . A roommate instance is thus simply
a pair (N,�). A matching σ : N → N is a bijection over N .

2.1 Preference restrictions

We sometimes consider restrictions in the preference profile, that can
capture a certain correlation in the agents’ preferences.

A preference profile� is single-peaked [11] if there exists a linear
order < over N such that for each agent i ∈ N and each triple of
agents j, k, � ∈ N \ {i} with j < k < � or � < k < j, we have j �i

k implies k �i �. A particular case is when agents consider their
own position as an ideal position in the axis. A preference profile �
is narcissistically single-peaked [8] if � is single-peaked w.r.t. axis
< and, for every agent, her most preferred agent is directly adjacent
to her in axis <, either on her “left” or on her “right”.

Instead of a common axis, a global evaluation of the matches can
be considered. A preference profile � is globally-ranked [4] if there
exists a global order � over all possible agent pairs such that for
every i ∈ N and j, k ∈ N \ {i}, j �i k iff {i, j}� {i, k}; i.e., each
agent prefers those with whom she forms an objectively better pair.

Finally, we consider a stronger restriction which satisfies both nar-
cissistic single-peakedness and global-rankedness. A preference pro-
file � is 1-Euclidean [17] if there exists an embedding E : N → R

such that for every agent i ∈ N and two agents j, k ∈ N \ {i},
j �i k iff |E(i) − E(j)| < |E(i) − E(k)|. The idea is that the
agents prefer those that are closer to them on a given common scale.

2.2 Stable matchings

Stability is initially defined w.r.t. a blocking pair: agents i and j form
a blocking pair in matching σ if they prefer to be matched together
than with their partner in σ, i.e., j �i σ(i) and i �j σ(j). A match-
ing σ is blocking-pair (BP-)stable if there is no blocking pair in σ.

Another notion of stability comes from the notion of swap. A
matching σ is swap-stable if there is no pair of agents i and j who
prefer to swap their partner, i.e., σ(j) �i σ(i) and σ(i) �j σ(j).

2.3 Optimal matchings

One of the most classical optimality notion is Pareto-optimality. A
matching σ′ Pareto-dominates a matching σ if σ′(i) �i σ(i) for
every agent i and there exists an agent j such that σ′(j) �j σ(j). A
matching σ is Pareto-optimal if no matching σ′ Pareto-dominates it.

The Pareto criterion can be strengthened by considering a lexico-
graphic maximization of the agents’ satisfaction given by the rank
of their partner in the matching. The signature sσ of matching σ is
the (n − 1)-vector giving the number of agents sσ(k) assigned to
their kth most preferred agent in σ, for all k ∈ [n − 1]. Signature
sσ is lexicographically strictly greater than signature sσ′ , denoted
by sσ >lex sσ′ , if there exists an index i ∈ [n − 1] such that
sσ(i

′) = sσ′(i′) for all i′ < i and sσ(i) > sσ′(i). A matching
σ is rank-maximal if there is no matching σ′ such that sσ′ >lex sσ .

Another direction to strengthen Pareto-optimality is by consider-
ing votes between matchings. Agent i prefers matching σ to match-
ing σ′ if σ(i) �i σ

′(i). A matching σ is more popular than a match-
ing σ′ if the number of agents who prefer σ to σ′ is strictly greater
than the number of agents who prefer σ′ to σ. A matching σ is pop-
ular if there is no matching σ′ more popular than σ.

3 Rank-Based Envy-Free Matchings

We study fair matchings w.r.t. rank-based envy-freeness notions.

3.1 Rank-envy-freeness

The classical notion of envy-freeness [20] is too strong in the room-
mate setting, because it requires that every agent is matched with
her most preferred agent. Therefore, we consider rank-envy-freeness,
a relaxation of envy-freeness which aims to prevent justified envy
based on the rank. An agent i rank-envies another agent j in match-
ing σ if i prefers the partner of j to her own whereas i ranks the
desired partner in a better position in her preference ranking than
agent j. Let ri : N → [n − 1] be the function giving the rank of an
agent in�i, i.e., ri(j) = |{� ∈ N : � �i j}|, for agent j ∈ N \ {i}.
Definition 1 (Rank-envy-freeness (r-EF)). A matching σ is r-EF if
σ(i) �i σ(j) or rj(σ(j)) ≤ ri(σ(j)), for every i, j ∈ N .

A generalization of r-EF can be defined by considering a parame-
terization of the concept w.r.t. rank 0 ≤ k < n − 1. The associated
justification for envy is that the desired agent has not been ranked
good enough (among the top k best agents) by the envied agent.

Definition 2 (Rankk-envy-freeness (rk-EF)). A matching σ is rk-EF
if σ(i) �i σ(j) or rj(σ(j)) ≤ min{ri(σ(j)), k} for every i, j ∈ N .

Note that rk-EF implies rk′ -EF for every k′ > k. Moreover, rn−2-
EF is equivalent to r-EF and r0-EF is equivalent to envy-freeness.

The next basic first observation can be made for r-EF matchings.

Observation 1. Every agent that is ranked first by some agent must
be matched in an r-EF matching with an agent who ranks her first.

Contrary to house allocation where an r-EF allocation always ex-
ists [9], an r-EF matching may not exist in roommate instances, even
under 1-Euclidean preferences, as shown in Example 1.
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Example 1. Let us consider a roommate instance with six agents
who have the preferences below.

1 : 2 � 3 � 4 � 5 � 6

2 : 3 � 4 � 5 � 6 � 1

3 : 4 � 5 � 6 � 2 � 1

4 : 5 � 6 � 3 � 2 � 1

5 : 4 � 6 � 3 � 2 � 1

6 : 5 � 4 � 3 � 2 � 1

The preferences are 1-Euclidean w.r.t. the following embedding:

1 2 3 4 5 6

By Observation 1, in an r-EF matching, agent 2 must be matched
with agent 1 while agent 3 must be matched with agent 2, a contra-
diction. Hence, there cannot exist an r-EF matching in this instance.

3.2 Relaxations of rank-envy-freeness

We thus propose relaxations of r-EF, which strengthen the conditions
for justified envy. First, if an agent is well-ranked by her current part-
ner, she may feel flattered and would not dare to claim for a better
partner, especially if she does not rank the desired agent at a better
rank than what her current partner does for her. The associated notion
of envy is as follows: agent i strongly rank-envies agent j in matching
σ if σ(j) �i σ(i), ri(σ(j)) < rj(σ(j)), and rσ(i)(i) > ri(σ(j)).

Definition 3 (Weak rank-envy-freeness (wr-EF)). A matching σ is
wr-EF if σ(i) �i σ(j) or rj(σ(j)) ≤ ri(σ(j)) or rσ(i)(i) ≤
ri(σ(j)), for every i, j ∈ N .

Example 1 (continued). The framed matching is wr-EF. Indeed, the
only rank-envious agent is agent 2 (who is rank-envious towards
agent 6), but she is matched with agent 1 who ranks her first, there-
fore agent 2 does not complain.

Another direction for relaxing r-EF is to consider a justification of
envy based on a blocking pair: the desired partner would also prefer
to be matched with the envious agent. Agent i BP rank-envies agent j
in matching σ if σ(j) �i σ(i), ri(σ(j)) < rj(σ(j)), and i �σ(j) j.

Definition 4 (BP rank-envy-freeness (rBP-EF)). A matching σ is rBP-
EF if σ(i) �i σ(j) or rj(σ(j)) ≤ ri(σ(j)) or j �σ(j) i, for every
i, j ∈ N .

Example 1 (continued). The framed matching is rBP-EF. Indeed,
even if agent 2 is rank-envious for the desired agent 3, agent 3 would
not prefer to be matched with agent 2.

The next basic observation can be made for rBP-EF matchings.

Observation 2. An rBP-EF matching matches every agent ranked
first by someone with an agent who ranks her first or with an agent
that she ranks better than all agents who rank her first.

By definition, every BP-stable matching is rBP-EF, implying that
an rBP-EF matching always exists under globally-ranked [4] or nar-
cissistically single-peaked preferences [13]. Yet, in general, an rBP-
EF matching may not exist, as shown in the next example. Moreover,
a wr-EF matching may not exist even under 1-Euclidean preferences.

Example 2. Let us consider a roommate instance with six agents
who have the preferences below.

1 : 4 � 3 � 5 � 2 � 6
2 : 5 � 6 � 1 � 3 � 4
3 : 4 � 2 � 5 � 6 � 1
4 : 1 � 6 � 2 � 5 � 3
5 : 6 � 2 � 3 � 1 � 4
6 : 2 � 5 � 1 � 4 � 3

By Observation 2, agent 2 can only be matched with agent 5 or 6,
while agent 5 can only be matched with agent 6 or 2 and agent 6 can
only be matched with agent 2 or 5. This cannot be achieved together,
thus there cannot be an rBP-EF matching in this instance.

Consequently, we further relax wr-EF and rBP-EF by combining
their two versions of justified envy. Agent i strongly BP rank-envies
agent j in matching σ if σ(j) �i σ(i), ri(σ(j)) < rj(σ(j)),
rσ(i)(i) > ri(σ(j)) and i �σ(j) j.

Definition 5 (Weak BP rank-envy-freeness (wrBP-EF)). A matching
σ is wrBP-EF if σ(i) �i σ(j) or rj(σ(j)) ≤ ri(σ(j)) or rσ(i)(i) ≤
ri(σ(j)) or j �σ(j) i, for every i, j ∈ N .

We prove below that a rank-maximal matching is always wrBP-EF,
guaranteeing the existence of a wrBP-EF matching.

Proposition 1. Every rank-maximal matching is wrBP-EF.

Proof. Let σ be a rank-maximal matching that is not wrBP-EF. It
follows that there exist two agents i and j such that σ(j) �i σ(i),
ri(σ(j)) < rj(σ(j)), ri(σ(j)) < rσ(i)(i) and i �σ(j) j. If we
consider the matching σ′ resulting from the swap between i and j in
σ, then i is matched with σ(j) and j is matched with σ(i) in σ′, while
the rest remains unchanged. Therefore, i and σ(j) are better off in σ′,
while σ(i) and j may be worse off. However, the rank that i gets for
her partner in σ′ is strictly better than the one that σ(i) and j get in
σ. Therefore, the signature of σ′ is strictly better, lexicographically,
than the signature of σ, contradicting the rank-maximality of σ.

Corollary 1. Every roommate instance admits a wrBP-EF matching.

4 Characterization of Rank-Based Envy-Freeness

For a given matching σ and a given integer k ∈ [n], let Nσ
k denote

the subset of agents who are matched in σ with an agent they rank at
a position better than k in their preferences, i.e., Nσ

k := {j ∈ N :
rj(σ(j)) < k}. This enables us to define, for each agent i ∈ N , the
best rank ρσ(i) that a “not already satisfied” agent can assign to i,
i.e., ρσ(i) = mink∈[n−1] minj∈N\Nσ

k
rj(i). Then, we can partition

the agents w.r.t. these ranks in subsets (Tσ
1 , . . . , T

σ
n−1) where T σ

k :=
{i ∈ N : ρσ(i) = k} for each k < n. For each agent i, let Aσ

i be
the subset of agents that realize the best rank of i, i.e., Aσ

i = {j ∈
N \Nσ

ρσ(i) : rj(i) = ρσ(i)} (the mentions to σ may be omitted).
We refine Observation 1 in the next characterization theorem.

Theorem 1. A matching σ is r-EF iff every agent i ∈ Tσ
� is assigned

to an agent in Aσ
i , for all � ∈ [n− 1].

Proof. Suppose that a matching σ is r-EF. We proceed by induction
over � ∈ [n − 1]. The base case � = 1 trivially follows from Obser-
vation 1. Suppose that the statement is true for all �′ < � for a given
� ∈ [n−1], and that there exists an agent i ∈ T� such that σ(i) /∈ Ai.
By definition of T�, Ai �= ∅, and we can consider an agent j ∈ Ai.
Since σ(i) /∈ Ai, we have σ(i) ∈ Nσ

� or rσ(i)(i) �= �. If σ(i) ∈ Nσ
� ,

then by definition rσ(i)(i) < � implying that i ∈ T�′ for some �′ < �,
a contradiction. Otherwise, we must have rσ(i)(i) > �, implying that
j rank-envies σ(i) since rj(i) = � and j /∈ Nσ

� , a contradiction.
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Consider now the matching σ that assigns to each agent i ∈ T�

an agent in Ai, for every � ∈ [n − 1]. Suppose that σ is not r-EF.
There exist agents i and j such that i rank-envies j, i.e., ri(σ(j)) <
ri(σ(i)) and ri(σ(j)) < rj(σ(j)). Suppose that σ(j) ∈ T�, i.e.,
rj(σ(j)) = �, and thus �′ := ri(σ(j)) < �. Since σ(j) /∈ T�′ , we
have that i ∈ Nσ

�′ and thus ri(σ(i)) < �′, a contradiction.

Let us now generalize this characterization by considering rank-
envy-freeness parameterized by rank k. For a given matching σ, let
us denote by Ei the subset of agents that prefer i to their match or
are matched with i, i.e., Ei := {j ∈ N : ∃�, rj(i) = � ∧ j /∈ Nσ

� }.
Proposition 2. A matching σ is rk-EF iff for every agent i ∈ T� we
have σ(i) ∈ Ai, for all � ∈ [n− 1], and |Ei| = 1 if � > k.

The previous characterization for rk-EF becomes more interesting
when k = 1 since r1-EF gets the same characterization as popularity
in the house allocation setting [3].

Proposition 3. A matching is r1-EF iff every agent gets matched
with either her most preferred agent or her most preferred agent that
is not ranked first by someone.

Proof. Let σ be a matching under which one of the two conditions of
the statement holds. Suppose that there exist agents i and j such that
i r1-envies j, i.e., σ(j) �i σ(i) and [rj(σ(j)) > 1 or rj(σ(j)) >
ri(σ(i))] (*). Since i is envious, σ(i) cannot be her most preferred
agent, and thus σ(i) is her most preferred agent that is not ranked
first by someone. It follows that σ(j) is ranked first by someone.
It cannot be by agent j because, otherwise, condition (*) would not
hold. Therefore, σ(j) is ranked first by someone else, a contradiction.

Let σ be an r1-EF matching. Consider any agent i. If σ(i) is the
most preferred agent of i, we are done. Otherwise, i envies all agents
j such that σ(j) �i σ(i). Since it cannot be r1-envy, rj(σ(j)) ≤
min{ri(σ(j)), 1} = 1 holds for all such j. Suppose now that σ(i)
is also ranked first by some agent j. Therefore, σ(j) is not the most
preferred agent of j and thus j r1-envies i, a contradiction.

Considering relaxations of rank-envy-freeness, we can provide
some necessary conditions for rBP-EF and wr-EF, stated below. Find-
ing exact characterizations for these criteria is an open question.

Proposition 4. If a matching σ is rBP-EF then for every i ∈ T� either
σ(i) ∈ Ai or ri(σ(i)) < minj∈Ai ri(j) holds, for all � ∈ [n− 1].

Observation 3. For every i in T1 such that for every j ∈ Ai, j /∈ T1

or Aj = {i}, we have σ(i) ∈ Ai, in every wr-EF matching.

5 Existence of Rank-Based Envy-Free Matchings

We have already mentioned some existence statements when intro-
ducing our criteria. This section deals with the complexity of decid-
ing the existence of a solution satisfying a given fairness concept.

An r-EF matching does not always exist, as shown in Example 1,
but we further prove below that the related decision problem is hard.

Theorem 2. Deciding whether a roommate instance admits an r-EF
matching is NP-complete even under globally-ranked preferences.

Proof sketch. Membership to NP is straightforward. For hardness,
we reduce from (3,B2)-SAT [10]. In an instance of (3,B2)-SAT, we
are given a CNF propositional formula ψ where every clause Cj ,
for j ∈ [m], contains exactly three literals and every variable xi,
for i ∈ [p], occurs exactly twice as a positive literal xi and twice
as a negative literal xi in ψ. From an instance of (3,B2)-SAT, we
construct a roommate instance as follows.

• For each clause Cj , we create: three clause-agents K1
j , K

2
j , and

K3
j , associated with the three literals of the clause, two agents q1j

and q2j , and two agents G1
j and G2

j .
• For each variable xi, we create: four literal-agents y1

i , y
2
i , y

1
i and

y2
i and four literal-agents Z1

i , Z
2
i , Z

1
i and Z

2
i , associated with

each occurrence of variable literals, two agents ai and bi, and a
variable-gadget composed of six agents Γi, Δi, Θi and γi, δi, θi.

• We additionally create m
2

agents dk for k ∈ [m
2
], and ten dummy

agents λk and Λk for k ∈ [5].

The preferences of the agents are constructed as described in Ta-
ble 1.1 One can observe that the preferences are globally-ranked.

Table 1: Agents’ preferences for the reduction proof of Theorem 2
for every j ∈ [m], i ∈ [p], k ∈ [m/2], and r ∈ [5]. Notation t�j
stands for the literal-agent associated with the �th literal of clause Cj

for � ∈ [3]; and K(yl
i) (resp., K(yl

i)) denotes the clause-agent K�
j

such that t�j = yl
i (resp., t�j = yl

i). Notation [x]condition means that
x is present at the given rank only if condition is satisfied. Framed
dots [. . . ] denote an arbitrary order over the remaining agents.

K1
j : λ1 � λ2 � λ3 � t1j � q1j � λ4 � [. . . ]

K2
j : λ1 � λ2 � λ3 � t2j � λ4 � q2j � [. . . ]

K3
j : λ1 � λ2 � λ3 � t3j � q1j � q2j � [. . . ]

G1
j : λ1 � λ2 � λ3 � λ4 � q1j � λ5 �

d1 � . . . � dm
2

� [. . . ]

G2
j : λ1 � λ2 � λ3 � λ4 � λ5 � q2j �

d1 � . . . � dm
2

� [. . . ]

Z1
i : ai � δi � y1i � [. . . ]

Z
1
i : ai � θi � y1i � [. . . ]

Z2
i : bi � δi � y2i � [. . . ]

Z
2
i : bi � θi � y2i � [. . . ]

Γi : λ1 � λ2 � θi � δi � [. . . ]
Δi : γi � δi � θi � [. . . ]
Θi : γi � θi � δi � [. . . ]

Λr : λr � [. . . ]

q1j : K1
j � K3

j � G1
j � [. . . ]

q2j : K2
j � K3

j � G2
j � [. . . ]

dk : Λ2 � Λ1 � G1
1 � G2

1 � . . . � G1
m �

G2
m � [. . . ]

y1i : [Λ2]∃j, y1
i =t3j

� K(y1i ) � [Λ2]∃j,y1
i ∈{t1j ,t2j} � Z1

i � [. . . ]

y1i : [Λ2]∃j, y1
i=t3j

� K(y1i ) � [Λ2]∃j,y1
i∈{t1j ,t2j} � Z

1
i � [. . . ]

y2i : [Λ2]∃j, y2
i =t3j

� K(y2i ) � [Λ2]∃j,y2
i ∈{t1j ,t2j} � Z2

i � [. . . ]

y2i : [Λ2]∃j, y2
i=t3j

� K(y2i ) � [Λ2]∃j,y2
i∈{t1j ,t2j} � Z

2
i � [. . . ]

ai : Λ2 � Λ3 � Λ4 � Z1
i � Z

1
i � [. . . ]

bi : Λ2 � Λ3 � Λ4 � Z2
i � Z

2
i � [. . . ]

γi : Γi � Δi � Θi � [. . . ]
δi : Γi � Δi � Θi � [. . . ]
θi : Γi � Θi � Δi � [. . . ]

λr : Λr � [. . . ]

We claim that formula ψ is satisfiable iff there exists an r-EF
matching in the constructed roommate instance.

=⇒ : Suppose that there exists a truth assignment φ of the vari-
ables that satisfies ψ. We construct an r-EF matching σ as follows:

• For every r ∈ [5], let σ(λr) = Λr;

1 One can show that this reduction proof also holds for the marriage setting,
by distinguishing the lower and upper case agents as the two different types.
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• For every literal-agent y�
i (resp., y�

i ), if the associated literal xi

(resp., xi) is true in φ then σ(y�i ) = K(y�i ) (resp., σ(y�
i) =

K(y�
i)). Otherwise, σ(y�i ) = Z�

i (resp., σ(y�
i) = Z

�
i );

• For every clause-agent K�
j that has not been assigned yet, if

� ∈ [2], then σ(K�
j ) = q�j , otherwise σ(K3

j ) = q1j if q1j is still
available or σ(K3

j ) = q2j otherwise;

• For every agent Z�
i (resp., Z

�
i ) that has not been assigned yet,

σ(Z�
i ) = ai if � = 1 and σ(Z�

i ) = bi if � = 2 (resp., σ(Z
�
i) = ai

if � = 1 and σ(Z
�
i) = bi if � = 2).

• For every variable xi, if xi is true in φ then let σ(Δi) = γi,
σ(Θi) = θi, and σ(Γi) = δi. Otherwise, i.e., if xi is false in φ,
then let σ(Δi) = δi, σ(Θi) = γi, and σ(Γi) = θi.

• For every agent q�j that has not been assigned yet, let σ(q�j) = G�
j .

• For every remaining agents G�
j and dk, let σ(G�

j) = dk.

⇐= : The global idea is as follows. For each i ∈ [p], the variable-
gadget enforces that exactly two literal-agents among y1

i , y
2
i , y

1
i , and

y2
i are matched with their associated agents Z1

i , Z
2
i , Z

1
i , and Z

2
i ,

and that these two chosen literal-agents mimic a truth assignment of
the variables, i.e., they correspond to the same literal. The two re-
maining literal-agents are forced to be matched with their associated
clause-agent, representing the clause to which their corresponding
occurrence of literal belongs. If for a clause Cj , no clause-agent K�

j

is assigned to a literal-agent, then agent K3
j will be necessarily as-

signed to an agent ranking her worse than second, while her associ-
ated literal-agent t3j ranks her second and is currently matched with
her third choice, creating rank-envy, a contradiction.

Whereas the characterization results of the previous section enable
to derive algorithms that can be exponential, the characterization of
r1-EF provides a polynomial-time algorithm, as stated below.

Proposition 5. Deciding whether a roommate instance admits an
r1-EF matching can be done in polynomial time.

Proof. By Proposition 3, it suffices to search for a perfect matching
in the undirected graph G = (N,E) where {i, j} ∈ E iff j is either
ranked first by i or is her most preferred agent that is not ranked first
by someone, and the reverse holds for i w.r.t. j’s preferences.

Concerning the relaxations of rank-envy-freeness, the same con-
struction as in the proof of Theorem 2 can be used to show that de-
ciding about the existence of a wr-EF matching is NP-hard.

Proposition 6. Deciding whether a roommate instance admits a wr-
EF matching is NP-complete under globally-ranked preferences.

Although an rBP-EF matching can be efficiently computed by con-
structing a BP-stable matching, under globally-ranked or narcissisti-
cally single-peaked preferences [4, 13], we prove that in general the
related decision problem is hard. The complexity proof is similar to
the one in Theorem 2 but the agents cannot be partitioned in two
types and we need gadgets that are based on odd rings [15].

Theorem 3. Deciding whether a roommate instance admits an rBP-
EF matching is NP-complete.

Finally, by the fact that a rank-maximal matching always exists
in a roommate instance, the same guarantee holds for a wrBP-EF
matching (Corollary 1). As already discussed in the literature, a rank-
maximal matching can be constructed by solving a maximum weight
matching problem with weight nn−ri(j) + nn−rj(i) for a pair of
agents {i, j}. By using the scaling algorithm of Gabow and Tar-
jan [21], this problem can be solved in polynomial time.

Corollary 2. A wrBP-EF matching can be found in polynomial time.

6 Rank-Based Envy-Freeness and Optimality

Let us analyze in this section the connections between optimal
matchings and rank-based envy-free matchings, that result in the
links between optimality and fairness criteria of Figure 1.

We first prove that, although rank-maximality implies our weakest
criterion wrBP-EF (Proposition 1), it is not true for popularity.

Proposition 7. A popular matching may not be wrBP-EF, even under
1-Euclidean preferences.

Proof. Let us consider a roommate instance with eight agents who
have the preferences below.

1 : 2 � 3 � 4 � 5 � 6 � 7 � 8

2 : 3 � 1 � 4 � 5 � 6 � 7 � 8

3 : 2 � 1 � 4 � 5 � 6 � 7 � 8

4 : 5 � 3 � 2 � 1 � 6 � 7 � 8

5 : 4 � 3 � 2 � 6 � 7 � 1 � 8
6 : 7 � 8 � 5 � 4 � 3 � 2 � 1

7 : 6 � 8 � 5 � 4 � 3 � 2 � 1

8 : 7 � 6 � 5 � 4 � 3 � 2 � 1

The preferences are 1-Euclidean w.r.t. the following embedding:

1 2 3 4 5 6 7 8

The framed matching is popular but not wrBP-EF: agent 4 is
strongly BP rank-envious towards agent 8.

Note that the implication of wrBP-EF by rank-maximality is tight
w.r.t. the hierarchy of our relaxed criteria because stronger fairness
criteria are not implied by rank-maximality, as stated below.

Proposition 8. A rank-maximal matching may not be wr-EF or rBP-
EF, even under 1-Euclidean preferences.

Conversely, even r1-EF is not a stronger requirement than rank-
maximality, as proved in the next proposition.

Proposition 9. An r1-EF matching may not be rank-maximal even
under 1-Euclidean preferences.

Proof. Let us consider a roommate instance with six agents who
have the preferences below.

1 : 2 � 3 � 4 � 5 � 6

2 : 3 � 1 � 4 � 5 � 6

3 : 2 � 4 � 1 � 5 � 6

4 : 3 � 5 � 2 � 1 � 6

5 : 6 � 4 � 3 � 2 � 1

6 : 5 � 4 � 3 � 2 � 1

The preferences are 1-Euclidean w.r.t. the following embedding:

1 2 3 4 5 6

The encircled matching is r1-EF, but it is not rank-maximal because
the unique rank-maximal matching is the framed matching.

And even r2-EF is not stronger than popularity, as stated below.

Proposition 10. An r2-EF matching may not be popular even under
1-Euclidean preferences.

The previous result is tight w.r.t. the scale of rk-EF because it does
not hold when k = 1, as proved in the next proposition.

B. Coutance et al. / Rank-Envy-Freeness in Roommate Matchings 497



Proposition 11. Every r1-EF matching is popular.

Proof. Let σ1 be an r1-EF matching that is not popular, i.e., there
exists a matching σ2 such that |N2| > |N1|, whereN � := {i ∈ N :
σ�(i) �i σ3−�(i)} for � ∈ [2]. Let i be an agent in N2, and j the
agent such that σ2(i) = σ1(j). Since σ1 is r1-EF, we must have that
rj(σ

1(j)) ≤ min{ri(σ1(j)), 1} = 1. Therefore, σ1(j) �j σ2(j),
and thus j ∈ N1. Hence, we can associate each agent in N2 with a
distinct agent in N1, and thus |N1| ≥ |N2|, a contradiction.

Finally, our weakest fairness criterion satisfies Pareto-optimality.

Proposition 12. Every wrBP-EF matching is Pareto-optimal.

Proof. Suppose that a wrBP-EF matching σ is Pareto-dominated by
matching σ′. Therefore, there exists an improving cycle from σ to
σ′ along the agents (i1, . . . , ik) and (j1, . . . , jk) such that σ′(i�) =
σ(i�+1) = j�+1 and σ′(j�) = σ(j�−1) = i�−1 for every � ∈ [k]
(k + 1 corresponds to 1 and 0 corresponds to k). Consider an agent
c1 := i1 in the improving cycle. Since σ′ Pareto-dominates σ, we
have σ′(i�) = j�+1 �i� σ(i�) = j� and σ′(j�) = i�−1 �j� σ(j�) =
i� for every � ∈ [k]. Therefore, the agents i1 and j2, who are matched
together in σ′, form a blocking pair in σ and agent i1 envies agent i2
who is matched with agent j2 in σ. Thus, for i1 not being strongly
BP rank-envious towards i2, we need that (1) ri2(j2) ≤ ri1(j2) or
(2) rj1(i1) ≤ ri1(j2). If (1) holds, then we have that ri2(σ

′(i2)) <
ri2(σ(i2)) = ri2(j2) ≤ ri1(j2) = ri1(σ

′(i1)). If (2) holds, then
we have that rj1(σ

′(j1)) < rj1(σ(j1)) = rj1(i1) ≤ ri1(j2) =
ri1(σ

′(i1)). If (1) holds then we set c2 := i2, otherwise (2) holds
and we set c2 := j1. It follows that c2 is matched with a partner at a
rank strictly better than c1 in σ′. By repeating this argument starting
from c2 and so on, we get a chain of agents c1, c2, . . . , ck′ from⋃

�∈[k]{i�, j�} such that c� is matched with a partner at a rank strictly
better than c�−1 in σ′, for � ∈ {2, . . . , k}. Since ⋃

�∈[k]{i�, j�} is
finite, there exist two agents c� and c�′ for � �= �′ such that c� = c�′ ,
contradicting the iterative strict improvement of the ranks in σ′.

7 Rank-Based Envy-Freeness and Stability

We analyze in this section the connections between stable matchings
and rank-based envy-free matchings, that result in the links between
stability and fairness criteria of Figure 1. We first remark that, al-
though BP-stability implies rBP-EF and thus the criterion wrBP-EF, it
does not imply further rank-based envy-free criteria.

Proposition 13. A blocking-pair and swap-stable matching may not
be wr-EF even under 1-Euclidean preferences.

Proof. Let us consider a roommate instance with six agents who
have the preferences below.

1 : 2 � 3 � 4 � 5 � 6
2 : 3 � 4 � 1 � 5 � 6

3 : 2 � 4 � 1 � 5 � 6

4 : 3 � 2 � 5 � 1 � 6

5 : 4 � 3 � 2 � 1 � 6

6 : 5 � 4 � 3 � 2 � 1

The preferences are 1-Euclidean w.r.t. the following embedding:

1 2 3 4 5 6

The framed matching is BP-stable and swap-stable but it is not
wr-EF: agent 6 envies agent 4 for her partner 5.

Conversely, even r1-EF does not imply BP-stability.

Proposition 14. An r1-EF matching may not be blocking-pair stable
even under 1-Euclidean preferences.

Proof. Let us consider a roommate instance with four agents who
have the preferences below (left) that are 1-Euclidean w.r.t. the em-
bedding given below (right).

1 : 2 � 3 � 4

2 : 3 � 1 � 4

3 : 2 � 4 � 1

4 : 3 � 2 � 1
1 2 3 4

The framed matching is r1-EF but it is not BP-stable: agents 2 and
3 prefer to be together than with their current partner.

Every envy-free matching is trivially swap-stable because no agent
prefers the partner of another agent. We show that although r-EF is a
strong relaxation of envy-freeness, it still implies swap-stability.

Proposition 15. Every r-EF matching is swap-stable.

Proof. Suppose that two agents i and j have an incentive to swap
from a matching σ which is r-EF, i.e., ri(σ(j)) < ri(σ(i)) and
rj(σ(i)) < rj(σ(j)). By rank-envy-freeness, we have rj(σ(j)) ≤
ri(σ(j)). Therefore, we get that rj(σ(i)) < rj(σ(j)) ≤ ri(σ(j)) <
ri(σ(i)), and thus rj(σ(i)) < ri(σ(i)), implying that agent j is
rank-envious towards agent i in σ, a contradiction.

However, this implication does not hold for weaker versions of
rank-envy-freeness, as stated below.

Proposition 16. A wr-EF matching may not be swap-stable even
under 1-Euclidean preferences.

Proposition 17. An rBP-EF matching may not be swap-stable even
under globally-ranked or narcissistically single-peaked preferences.

Yet, under stronger restrictions, the implication holds for rBP-EF.

Proposition 18. Every rBP-EF matching is swap-stable under 1-
Euclidean preferences.

Proof. Let σ be an rBP-EF matching that is not swap-stable. There
exist two agents i and j such that σ(j) �i σ(i) and σ(i) �j σ(j).
There must exist an agent between i and j who rank the partner of the
other agent at a better rank, say it is the case for j, i.e., rj(σ(i)) <
ri(σ(i)). Because σ is rBP-EF, we must have i �σ(i) j. Suppose
that the preferences are 1-Euclidean w.r.t. the embedding E : N →
R such that, w.l.o.g., E(i) < E(j). To respect the preferences of
the agents, only two orders are possible: (1) E(i) < E(σ(j)) <
E(σ(i)) < E(j), or (2) E(σ(j)) < E(i) < E(σ(i)) < E(j).

If (1) holds, then E(σ(i)) − E(i) < E(j) − E(σ(i)) because i
�σ(i) j. SinceE(σ(j)) < E(σ(i)), we have thatE(σ(j))−E(i) <
E(j) − E(σ(j)), i.e., agent σ(j) prefers i to j. By the axis, σ(j)
also prefers σ(i) to j. If σ(j) prefers σ(i) to i (resp., i to σ(i)), then
the only agents that σ(j) may prefer to σ(i) (resp., i) are the agents
x �= σ(j) such that E(i) < E(x) < E(σ(i)). In contrast, i (resp.,
σ(i)) prefers the agents x to σ(i) (resp., i) such thatE(i) < E(x) <
E(σ(i)), including σ(j). Therefore, σ(j) rank-envies i (resp., σ(i)),
while agent σ(i) (resp., i) also prefers σ(j) to i (resp., σ(i)), i.e.,
σ(i) (resp., i) and σ(j) form a blocking pair, a contradiction.

If (2) holds, then we have that the only agents that i may prefer to
σ(j) are the agents x �= i such that E(σ(j)) < E(x) < E(σ(i)). In
contrast, j prefers the agents x to σ(j) such thatE(σ(j)) < E(x) ≤
E(σ(i)) or E(σ(i)) < E(x) < E(j). Therefore, i is rank-envious
towards j, while agent σ(j) also prefers i over j (by the axis), mean-
ing that i and σ(j) form a blocking pair, a contradiction.

B. Coutance et al. / Rank-Envy-Freeness in Roommate Matchings498



r1 r2 r3 r4 ref wr
ef

rB
Pe
f

BP SS Po
p0

0.5

1

Criteria

Fr
eq

ue
nc

y
of

ex
is
te
nc

e

IC SP-UP narSP-UP GR 1D

(a) Proportion of instances for which a matching satisfying the given cri-
terion exists (criteria for which existence is guaranteed are omitted)

r1 r2 r3 r4 ref wr
ef
rB
Pe
f

wr
BP
ef BP SS Po

p
RM PO

0

20

40

60

80

318

401

Criteria

N
um

be
ro

fs
ol
ut
io
ns

(b) Number of matchings in average that satisfy the given criterion

Figure 2: Existence experiments for rank-based envy-free matchings,
stable matchings, or optimal matchings in roommate instances with
10 agents and various preference distributions for 10,000 runs.

8 Empirical Study of Rank-Based Envy-Freeness

In this section, we empirically evaluate the existence of fair match-
ings, and compare them to optimal or stable matchings, under dif-
ferent types of preferences. The generated preferences can follow:
the impartial culture (IC), i.e., they are uniformly drawn from the set
of all possible linear orders; the (narcissistically) single-peaked uni-
form peak ((nar)SP-UP) distribution [16], i.e., an axis > over agents
is generated and then, for each agent i, we construct�i by uniformly
choosing a peak agent and then iteratively and uniformly choosing
between the left and right next available agent on > for the next pre-
ferred agent (for narcissistic preferences, the peak is one of the two
agents directly adjacent to i in>); the globally-ranked uniform (GR)
distribution, i.e., the preference profile is derived from a uniformly
drawn global order � over all pairs of agents; or the 1-Euclidean
(1D) uniform distribution, i.e., a preference profile is generated by
first uniformly choosing a real number for each agent and then deriv-
ing all agents’ preference rankings by sorting the distances.

The existence of matchings satisfying different criteria is ana-
lyzed, for n = 10 agents and by sampling 10, 000 instances for each
preference distribution. The criteria under consideration are rank-
based envy-freeness, where the results for rk-EF are only shown for
k ∈ [4], BP-stability (BP), swap-stability (SS), popularity (Pop),
rank-maximality (RM), and Pareto-optimality (PO). For each crite-
rion, we count the number of instances where a matching satisfying
it exists as well as the number of such matchings per instance and
compute its average (all possible matchings are checked).

Figure 2a shows the proportion of instances that satisfy each cri-

terion. We observe that r-EF and rk-EF matchings exist with a sig-
nificant probability only for preferences that are at least narcissisti-
cally single-peaked or globally-ranked, they rarely exist for general
or single-peaked preferences. This confirms that r-EF is a very de-
manding fairness criterion. However, for 1-Euclidean preferences,
even an r1-EF matching exists with a probability greater than 0.5,
so we really need a strong structure on the preferences. Interestingly,
a wr-EF matching exists with a probability greater than 0.75 for all
preference distributions (and even greater than 0.9 for narSP-UP or
GR distributions). This finding contrasts with our theoretical results
establishing the same impossibilities for r-EF and wr-EF, and shows
that wr-EF is nevertheless a useful relaxation. Finally, the probability
of existence of an rBP-EF matching is very close to 1 even on general
preferences for which the existence is not theoretically guaranteed.

Figure 2b indicates the average number of matchings that satisfy
each criterion. As expected, the number of r-EF matchings is very
low. While there are more wr-EF matchings, this number is not very
large, even for instances where there exist such matchings, showing
that this concept would not recommend too many solutions in prac-
tice. The same remark holds for rBP-EF. A larger number of match-
ings satisfy wrBP-EF, especially under weak preference restrictions.
Nevertheless, this number is much smaller than the number of Pareto-
optimal matchings, showing the filtering ability of wrBP-EF.

9 Conclusion

We have investigated fair roommate matchings under the prism of
rank-based envy-freeness. Our study takes inspiration from a previ-
ous work on rank-envy-freeness (r-EF) in house allocation [9]. Inter-
estingly, when matching agents to other agents instead of matching
them to objects, we observe important differences w.r.t. fairness. In-
deed, while an r-EF matching can be computed in polynomial time
in house allocation, we have shown that r-EF may not be achiev-
able in the roommate setting and that the related decision problem
is NP-complete. Additionally, whereas the stronger criterion r1-EF is
equivalent to popularity in house allocation [9], we show that their
characterization in that setting [3] fails to transfer to the roommate
setting for popularity but still holds true for r1-EF. We also connect r-
EF and Pareto-optimality, contrary to house allocation, because even
our strongest relaxation of r-EF, namely wrBP-EF, implies it, while a
wrBP-EF matching is computable in polynomial time. This criterion
is nevertheless not trivially satisfied since it discards many Pareto-
optimal matchings in practice. See Figure 1 for a global picture of
the interactions between stability, optimality and fairness criteria.

Several challenging open questions remain, such as the exact char-
acterization of our relaxations of r-EF. Moreover, whereas decid-
ing about the existence of a weak r-EF (wr-EF) or an r-EF match-
ing is hard even under globally-ranked preferences, we do not know
whether other restrictions would help for an efficient algorithm. Fi-
nally, although the existence of an rk-EF matching can be verified in
polynomial time when k = 1, we conjecture that it is hard for k = 2.

Our study raises many interesting perspectives for future work. It
would for instance make sense to explore settings with indifference
or partial preference lists. However, since our results already point
out many impossibilities, there is no hope to get much more positive
results in such extensions. For instance, even in the marriage setting,
a wr-EF matching may not exist under 1-Euclidean preferences, and
the complexity proof of Theorem 2 also holds. The main difference is
that an rBP-EF matching can always be computed in polynomial time,
because it is the case for a BP-stable matching [22]. In contrast, the
related existence problem is NP-complete in the roommate setting.

B. Coutance et al. / Rank-Envy-Freeness in Roommate Matchings 499



Acknowledgements

This work is supported by the ANR project APPLE-PIE (grant ANR-
22-CE23-0008-01).

References
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