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Various recent results involve or develop connexions between posets, finite topologies, operads, brace algebras, coalgebras, Hopf algebras and algebraic topology. Among those, we may mention here as directly relevant for the present work, Foissy's works on the combinatorial and brace algebras structures on operads [START_REF] Foissy | Algebraic structures associated to operads[END_REF], advances on the algebraic structures on finite topologies, posets and quasi-posets [START_REF] Foissy | Infinitesimal and B ∞ -algebras, finite spaces, and quasi-symmetric functions[END_REF][START_REF] Fauvet | The Hopf algebra of finite topologies and mould composition, en collaboration avec[END_REF][START_REF] Fauvet | Operads of finite posets[END_REF][START_REF] Foissy | A theory of pictures for quasi-posets[END_REF] and various works in the combinatorics of free probability, among which [START_REF] Ebrahimi-Fard | Operads of (noncrossing) partitions, interacting bialgebras, and moment-cumulant relations[END_REF].

The purpose of the present paper is to get new insights on these connexions using a theorem of Gerstenhaber and Schack (the cohomology comparison theorem, CCT). The CCT asserts that, for a given triangulated topological space with associated incidence algebra A, there exists a quasi-isomorphism of cochain complexes between a certain relative cohomological Hochschild complex of A and the singular cochain complex of that topological space [START_REF] Gerstenhaber | Simplicial cohomology is Hochschild cohomology[END_REF][START_REF] Gerstenhaber | Algebraic cohomology and deformation theory. Deformation theory of algebras and structures and applications[END_REF], and a quasi-isomorphism with the standard Hochschild complex [START_REF] Gerstenhaber | Simplicial cohomology is Hochschild cohomology[END_REF], [START_REF] Dourlens | On the Hochschild cohomology of triangular algebras[END_REF]Th. 1.3]. When extended to arbitrary posets and finite topologies, the theorem allows to connect two families of objects of different nature: an operadic-type object of a non standard type (the relative Hochschild complex of an incidence algebra) and a classical object in combinatorial topology (the singular cochain complex associated to the nerve of a poset). Our results investigate how algebraic structures on these objects transport under the CCT: differential brace algebras (following an unpublished paper by one of us [START_REF] Patras | Brace algebras and the cohomology comparison theorem[END_REF]) and various algebraic and topological structures associated to operads (that are investigated more generally in recent work by two of us [START_REF] Mbatchou | Simplicial Structure on Connected Multiplicative Operads[END_REF]). The equivalence of categories between finite (T 0 ) topologies and posets is the prototype for more complex duality phenomena such as Stone duality. We hope our results will also lead to developments in that direction.

The article also features the meaningfulness of the notion of relative calculus and operads, introduced here and abstracted from the notion of relative Hochshicld cochains by extending the scope of the usual links between Hochschild complexes and endomorphism operads.

The paper is organized as follows: Section 2 recollects basic constructions on posets (incidence algebra, nerve, cochain algebra structure). Section 3 develops various constructions around the incidence algebra of a poset, recalls the notion of relative Hochschild cochains and the CCT. In the process constructions underlying the CCT are introduced at the dual (chain, homological) level and a dual homological comparison theorem is proved. Section 4 extends the CCT at the cosimplicial level. Section 5 introduces an operadic structure on relative Hochschild cochains and shows that the CCT holds at operadic level. Section 6 features the idea that constructions on posets are best understood using relative constructions. This is illustrated by the introduction of relative operads, a notion also meaningful for operator-valued probability. The article concludes by showing that the CCT also holds at the level of brace differential graded algebras.

Remark 1.1 We conclude this introduction with a remark on finite topologies. The article will be mostly written in the language of posets, however its deeper meaning is best understood when having in mind the connexion between the latter and finite topologies. There is indeed a bijection between finite topological spaces T satisfying the T 0 separation axiom (given two points x, y in T there should always exist an open set that contains one point but not the other) and finite posets. Any finite topological space is (finitely) homotopy equivalent to a finite T 0 space, so that the separation assumption is not a serious restriction. It follows in particular that all constructions in the article have a direct topological meaning, besides a combinatorial one. For a survey of the theory of finite topological spaces and of the bibliography in the subject, we refer to [START_REF] Foissy | Infinitesimal and B ∞ -algebras, finite spaces, and quasi-symmetric functions[END_REF].
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Conventions and notation

In the sequel, • K denotes an arbitrary field. Vector spaces, tensor products and linear maps are defined over K unless otherwise stated.

• The linear span of a set X is denoted K(X), the cardinality of X is denoted |X|.

• If V is a graded object, then the suspension of V is defined as follows: (sV ) n = V n-1 . An element x ∈ V n is of degree n and we write |x| = n.

• If A f → B is a vector space map then the dual map is denoted: B * f * → A * .
• The Kronecker symbol is written ∂ x,y (recall it is equal to 1 if x = y and 0 else).

Posets, nerves, chains and cochains

Let (Σ, ≤) be a finite poset (that is, a finite ordered set, where the order is not strict in general). An increasing sequence in Σ, (σ

0 ≤ • • • ≤ σ n ), is called a n-chain (or simply a chain). It is a strict (or nondegenerate) chain if and only if the sequence is strictly increasing (σ 0 < • • • < σ n ).
Recall that the category ∆ is the category whose objects are the [n] := {0, . . . , n} and whose morphisms are the weakly increasing maps between them. The set of morphisms of ∆ is generated (under the composition product) by the face maps

d n i : [n-1] → [n]
, 0 ≤ i ≤ n and the degeneracy maps s n i : [n+1] → [n], i = 0, . . . , n. Here, d n i is the unique injective weakly increasing map from [n -1] to [n] such that i is not in its image and s n i the unique surjective weakly increasing map that maps i and i + 1 to i. The face and degeneracy maps satisfy identities such as

s n j-1 • s n+1 i = s n i • s n+1 j , 0 ≤ i < j ≤ n + 1
that can be used alternatively to define simplicial sets, see [START_REF]Simplicial objects in algebraic topology[END_REF] for details. A simplicial (resp. cosimplicial) set is a contravariant (resp. covariant) functor from ∆ to Set, the category of sets. The nerve of Σ, denoted Σ, is the simplicial set whose n-simplices are ordered morphisms (weakly increasing maps) from [n] to Σ or equivalently the chains in Σ, σ 0 ≤ • • • ≤ σ n . As some authors use different conventions, notice that, in our terminology, chains correspond to weakly increasing maps from [n] to Σ whereas strictly increasing maps correspond to strict chains. Remark 2.1 A particular case is the one where Σ is a subset of the set of subsets of an arbitrary non empty finite set S. Then, Σ is a finite simplicial complex if, for each σ ∈ Σ, the set of non empty subsets of σ is a subset of Σ. If |σ| = n + 1, σ is called a n-simplex of Σ. Elements of Σ are ordered by inclusion and in particular Σ endowed with the inclusion order denoted ≤, can be viewed as a poset. In that case, the simplicial set Σ is also named barycentric subdivision of Σ, its homology and cohomology compute the simplicial homology and cohomology of Σ.

The simplical structure on Σ := { Σn } n≥1 is constructed as follows: for n ≥ 1 and 0 ≤ i ≤ n, 1. The face morphism d n i , from Σn to Σn-1 is defined by Σn

d n i -→ Σn-1 A -→ (σ 0 ≤ σ 1 ≤ σ 2 ≤ • • • ≤ σ i-1 ≤ σ i+1 ≤ • • • ≤ • • • ≤ σ n ) for A := (σ 0 ≤ σ 1 ≤ σ 2 ≤ • • • ≤ σ i-1 ≤ σ i ≤ σ i+1 ≤ • • • ≤ • • • ≤ σ n ) or equivalently d n i (A) = (σ 0 ≤ σ 1 ≤ • • • ≤ σ i-1 ≤ σi ≤ σ i+1 ≤ • • • ≤ σ n )
, where the notation σi means that the vertex is omitted.

2. The degeneracy morphism s n i duplicates the simplex σ i at the position i of the sequence: Σn

s n i -→ Σn+1 A -→ (σ 0 ≤ σ 1 ≤ • • • ≤ σ i-1 ≤ σ i ≤ σ i ≤ σ i+1 ≤ • • • ≤ σ n )
It is an easy and standard exercise to show that these face and degeneracy maps define a simplicial set structure on Σ [START_REF]Simplicial objects in algebraic topology[END_REF].

The simplicial vector space K( Σ) generated by Σ is denoted C * ( Σ) and called the singular chain complex of Σ. It is obtained by applying the functor X → K(X) to Σ.

Recall (see e.g. [START_REF]Simplicial objects in algebraic topology[END_REF]) that Proposition 2.2 The singular chain complex, C * ( Σ) = {C n ( Σ)} n≥0 , is naturally endowed by the Alexander-Whitney map with a differential graded coalgebra structure.

The coproduct is given by:

C n ( Σ) ∆ -→ n j=0 C j ( Σ) ⊗ C n-j ( Σ) u -→ ∆(u) = n j=0 ∆ j,n-j (u) = n j=0 d n-j n (u) ⊗ d j 0 (u)
where (-1) i d n i . The coaugmentation map is the map that sends all 0-simplices to 1 and higher dimensional simplices to 0.

d n-j n = d j+1 j+1 d j+2 j+2 • • • • d n
Dualising, one gets a cosimplicial structure on the singular cochain complex C * ( Σ) = {C n ( Σ) := Hom( Σn , K)} n≥1 whose coface and codegeneracy maps are:

C n-1 ( Σ) F n-1 i -→ C n ( Σ) f -→ F n-1 i (f ) = f • d n i .
C n ( Σ)

D n i -→ C n-1 ( Σ) f -→ D n i (f ) = f • s n-1 i .
The Alexander-Whitney coproduct dualizes to the cup product of cochains:

Proposition 2.3 The singular cochain complex, C * ( Σ) is naturally endowed by the cup product with a differential graded algebra structure.

Concretely, the cup product is given, for

f ∈ C p ( Σ), g ∈ C q ( Σ) and σ ∈ Σ p+q by f ∪ g(σ) := (f ⊗ g) • ∆ p,q (σ).
The unit of the cup product is the counit of ∆: the cochain in C 0 ( Σ) that maps each 0-simplex to 1.

Incidence algebras, relative Hochschild chains and cochains

In this section, we recall some classical definitions (incidence algebras, relative Hochschild cochains) and extend them, featuring in particular how the idea of relativity (to a separable subalgebra) can be developped systematically to better account of the properties of posets and their nerves. We state and prove an homology comparison theorem and recall the classical CCT.

Definition 3.1 The incidence algebra I Σ of the poset Σ is the associative unital K-algebra generated by the pairs of simplices (σ, σ ′ ) with σ ≤ σ ′ . The product of two pairs (σ, σ ′ ) and (β,

β ′ ) is (σ, β ′ ) if σ ′ = β and 0 else. The unit of the algebra 1 I is the sum σ∈Σ (σ, σ).
The incidence algebra I Σ has a (separable) commutative unital subalgebra S Σ generated as a K-algebra by the pairs (σ, σ).

Remark 3.2

The category BM of S Σ -bimodules (that is, left and right modules over S Σ , where the right and left action can be different) is a (nonsymmetric) tensor category for the tensor product:

M ⊗ BM N := M ⊗ SΣ N,
where M ⊗ SΣ N is the quotient S Σ -bimodule of M ⊗N by the relations ma⊗n-m⊗an for m ∈ M, n ∈ N and a ∈ S Σ . The same definition will apply to tensor products of bimodules over an arbitrary ring.

The incidence algebra I Σ can then be better understood as an associative unital algebra in the tensor category BM. Notice in particular that the algebra product from I Σ ⊗ I Σ to I Σ factorises through the canonical projection from

I Σ ⊗ I Σ to I Σ ⊗ SΣ I Σ .
Definition 3.3 The barycentric incidence algebra BI Σ of the poset Σ is the associative unital K-algebra generated by the n-simplices of Σ, (σ 0 , . . . , σ n ), n ≥ 0 with the product (σ 0 , . . . , σ n ) • (σ n+1 , . . . , σ n+k ) equal to (σ 0 , . . . , σ n , σ n+2 , . . . , σ n+k ) if σ n = σ n+1 and 0 else. The unit of the algebra is the sum σ∈Σ (σ). Proof. Indeed, direct inspection shows that I Σ ⊗ BM I Σ has as a basis the tensor products (σ 0 , σ 1 ) ⊗ BM (σ 1 , σ 2 ) and more generally I ⊗S Σ n Σ has as a basis the tensor products (σ 0 , σ 1 )

⊗ BM • • • ⊗ BM (σ n-1 , σ n ).
The isomorphism between BI Σ and the free associative algebra over I Σ in BM is then obtained as:

(σ 0 ) -→ (σ 0 , σ 0 ), and for n > 0, (σ 0 , . . . , σ n ) -→ (σ 0 , σ 1 ) ⊗ BM • • • ⊗ BM (σ n-1 , σ n ).
Remark 3.5 Notice that the map

(σ 0 , σ 1 ) ⊗ BM • • • ⊗ BM (σ n-1 , σ n ) -→ (σ 0 , σ n )
is a map of associative unital algebras from T SΣ (I Σ ) to I Σ . Remark 3.6 Notice also that the arguments above show that there is a canonical retract from I ⊗S Σ n Σ to I ⊗n Σ given, in the natural basis of I ⊗S Σ n Σ by:

(σ 0 , σ 1 ) ⊗ BM • • • ⊗ BM (σ n-1 , σ n ) -→ (σ 0 , σ 1 ) ⊗ • • • ⊗ (σ n-1 , σ n ).
Definition 3.7 The S Σ -relative Hochschild chain complex of I Σ is the S Σ bimodule T SΣ (I Σ ) equipped with

• a simplicial structure by the face maps

d n i (A) -→ (σ 0 , σ 1 ) ⊗ BM • • • ⊗ BM (σ i-1 , σ i+1 ) ⊗ BM • • • ⊗ BM (σ n-1 , σ n ),
for 0 < i < n, with

d n 0 (A) -→ (σ 1 , σ 2 ) ⊗ BM • • • ⊗ BM (σ n-1 , σ n ), d n n (A) -→ (σ 0 , σ 1 ) ⊗ BM • • • ⊗ BM (σ n-2 , σ n-1
), and the degeneracy maps

s n i (A) -→ (σ 0 , σ 1 )⊗ BM • • •⊗ BM (σ i-1 , σ i )⊗ BM (σ i , σ i )⊗ BM (σ i , σ i+1 ) • • •⊗ BM (σ n , σ n+1 ),
where

A := (σ 0 , σ 1 ) ⊗ BM • • • ⊗ BM (σ n , σ n+1 ) and i = 0, • • • , n.
• It is equipped with a differential coalgebra structure by the coproduct

I ⊗S Σ n Σ ֒→ I ⊗n Σ → n i=0 I ⊗i Σ ⊗ I ⊗n-i Σ → n i=0 I ⊗S Σ i Σ ⊗ I ⊗S Σ n-i Σ ,
where we use the retraction of

I ⊗S Σ n+1 Σ into I ⊗n+1 Σ
, together with the differential induced by the simplicial structure,

∂ n := n i=0 (-1) i d n i .
Proof. The linear isomorphism from C * ( Σ) to T SΣ (I Σ ),

(σ 0 , • • • , σ n ) -→ ((σ 0 , σ 1 ) ⊗ BM • • • ⊗ BM (σ n-1 , σ n ))
induces (by structure transportation through the isomorphism) a simplicial and differential coalgebra structure on T SΣ (I Σ ). It is an easy exercise to check that it identifies with the structures given in the Definition. We get as a corollary an homological version of the CCT (the latter to be stated below). Strangely enough, this Theorem does not seem to have been observed and stated in the literature, at our best knowledge, although allowing to directly connect the homology of (finite) topological spaces to Hochschild homology. Theorem 3.8 (Homology comparison theorem) Given a finite topological space T with associated poset Σ, there exists an isomorphism of simplicial vector spaces

C * ( Σ) ∼ = T SΣ (I Σ )
which induces an isomorphism in homology (with arbitrary coefficients)

H * (T ) ∼ = H * ( Σ) ∼ = H * (T SΣ (I Σ )).
Let us turn now to the dual, cohomological, side of these questions. Definition 3.9 (Relative Hochschild cochain complex) The n-cochains of the Hochschild cochain complex of I Σ relative to S Σ are the elements of Hom BM (I

⊗S Σ n Σ , I Σ ).
The relative Hochschild cochain complex is a differential algebra. The coboundary map (the differential) is obtained (by right composition of morphisms) from the boundary map of the Hochschild chain complex. The cup product is obtained (also by duality) from the coalgebra structure of the Hochschild chain complex.

Closed formulas will be given below for the differential. Notice that this is the usual formula for the Hochschild coboundary, extended to the relative setting.

Direct inspection shows that Hom BM (I

⊗S Σ n Σ , I Σ )
, is generated linearly (over the ground field) by the maps sending a given tensor product ((σ 0 , σ

1 )⊗ BM (σ 1 , σ 2 )⊗ BM • • • ⊗ BM (σ n-1 , σ n )) to (σ 0 , σ n ).
Observe also that the incidence algebra, I Σ , is a triangular algebra. The Hochschild cohomology of such algebras can be computed explicitly by means of a spectral sequence, introduced by S. Dourlens [START_REF] Dourlens | On the Hochschild cohomology of triangular algebras[END_REF]. We refer from now on to [START_REF] Gerstenhaber | Algebraic cohomology and deformation theory. Deformation theory of algebras and structures and applications[END_REF] and [START_REF] Dourlens | On the Hochschild cohomology of triangular algebras[END_REF] for the general properties of the Hochschild cohomology of triangular and incidence algebras.

A key Theorem, due to Gerstenhaber and Schack [START_REF] Gerstenhaber | Simplicial cohomology is Hochschild cohomology[END_REF][START_REF] Gerstenhaber | Algebraic cohomology and deformation theory. Deformation theory of algebras and structures and applications[END_REF] shows the key role of the relative Hochschild complex in relating the cohomology of topological spaces with Hochschild cohomology. Although little attention seems to have been paid to these results, they appear to us as a key ingredient of the program of a noncommutative geometry (although the latter program has been developed historically in another direction). 

Theorem 3.11 (Cohomology comparison theorem (CCT))

There is a cochain complex isomorphism ι, that preserves the cup product, between the singular cochain complex of Σ, C * ( Σ) and the relative Hochschild cochain complex of the incidence algebra

I Σ , C * SΣ (I Σ , I Σ ) := {Hom BM (I ⊗S Σ n Σ , I Σ )} n≥1 .
The isomorphism is given by:

ι(f )((σ 0 , σ 1 )⊗ BM (σ 1 , σ 2 )⊗ BM • • •⊗ BM (σ n-1 , σ n )) := f (σ 0 ≤ σ 1 σ ≤ • • • ≤ σ n )•(σ 0 , σ n ).
for f ∈ C n ( Σn ). In particular, by Thm 3.10,

HH * (I Σ , I Σ ) ∼ = H * ( Σ, K).
Proof. A proof will follow from the finer cosimplicial comparison theorem to be stated in the next section of the article. The original proof of the Theorem (in this form, as there are various variants of the CCT in Gerstenhaber and Schack's works) can be found in [START_REF] Gerstenhaber | Algebraic cohomology and deformation theory. Deformation theory of algebras and structures and applications[END_REF]Thm 138,Section 15]. See the same article for details, generalizations, applications (in geometry and deformation theory) and a survey of the history of this theorem and its various variants.

The cosimplicial comparison theorem

In this section, we prove that the CCT can be enhanced to the cosimplicial level.

For completeness sake we give some details on the proof, as the result also implies the classical CCT. Recall that the maps d n i , s n i endow T SΣ (I Σ ) with a simplicial structure. By duality, this yields a cosimplicial structure on the relative Hochschild cochain complex C * SΣ (I Σ , I Σ ) whose coface and codegeneracy maps are :

F n i : Hom BM (I ⊗S Σ n-1 Σ , I Σ ) -→ Hom BM (I ⊗S Σ n Σ , I Σ ) f -→ F n i (f ) = f • d n i D n i : Hom BM (I ⊗S Σ n Σ , I Σ ) -→ Hom BM (I ⊗S Σ n-1 Σ , I Σ ) f -→ D n i (f ) = f • I s n i .
Let us explicitely check one of the cosimplicial identities. For 0 ≤ i < j ≤ n and f ∈ Hom SΣ (I

⊗S Σ n Σ , I Σ ), we have D n-1 i D n j (f ) = D n-1 i (f • s n j ) = (f • s n j ) • s n-1 i ; = f • (s n j • s n-1 i ) = f • (s n i • s n-1 j-1 ); = (f • s n i ) • s n-1 j-1 = D n-1 j-1 (f • s n i ); = D n-1 j-1 D n i (f ).
Theorem 4.1 (Cosimplicial comparison theorem) The cochain complexes isomorphism ι : C * ( Σ) -→ C * SΣ (I Σ , I Σ ) preserves the cosimplicial structures. Proof. Let us explicitely check for example that the map ι is compatible with the degeneracy operators, that is that the diagrams below are commutative

C n ( Σ) ιn D n i , 2 C n-1 ( Σ) ιn-1 i.e., D n i • ι n = ι n-1 • D n i (I) C n SΣ (I Σ , I Σ ) D n i , 2 C n-1 SΣ (I Σ , I Σ ) Indeed for any f ∈ C n ( Σ), one has: (D n i • ι n (f ))((σ 0 , σ 1 ) ⊗ SΣ • • • ⊗ SΣ (σ n-2 , σ n-1 )) = D n i (ι n (f ))((σ 0 , σ 1 ) ⊗ SΣ • • • ⊗ SΣ (σ n-2 , σ n-1 )) = (ι n (f ) • d n i )((σ 0 , σ 1 ) ⊗ SΣ • • • ⊗ SΣ (σ n-2 , σ n-1 )) = ι n (f )((σ 0 , σ 1 ) ⊗ SΣ • • • ⊗ SΣ (σ i-1 , σ i ) ⊗ SΣ (σ i , σ i )⊗ SΣ (σ i , σ i+1 ) ⊗ SΣ • • • ⊗ SΣ (σ n-2 , σ n-1 )) = f (σ 0 ≤ σ 1 ≤ • • • ≤ σ i-1 ≤ σ i ≤ σ i ≤ σ i+1 ≤ • • • ≤ σ n-1 ) (σ 0 , σ n-1 ) = (f • d n i )(σ 0 ≤ σ 1 ≤ • • • ≤ σ i-1 ≤ σ i ≤ σ i+1 ≤ • • • ≤ σ n-1 ) (σ 0 , σ n-1 ) = ι n-1 (f • d n i )((σ 0 , σ 1 ) ⊗ SΣ • • • ⊗ SΣ (σ n-2 , σ n-1 )) = (ι n-1 • D n i )(f )((σ 0 , σ 1 ) ⊗ SΣ • • • ⊗ SΣ (σ n-2 , σ n-1 )).
5 Operadic comparison theorem Definition 5.1 A nonsymmetric operad (or operad for short, in this article) over the category of K-vector spaces is a collection of vector spaces {O(k) | k ≥ 1} together with composition products:

O(k) ⊗ O(n 1 ) ⊗ • • • ⊗ O(n k ) γ O -→ O(n 1 + • • • + n k ) x ⊗ x 1 ⊗ • • • ⊗ x k -→ γ O (x; x 1 , • • • , x k )
which are:

1. associative in the sense that

γ O (γ O (x; x 1 , • • • , x k ); y 1 , • • • , y n1+•••+n k ) = γ O (x; γ O (x 1 ; y 1 , • • • , y n1 ), γ O (x 2 ; y n1+1 , • • • , y n1+n2 ) • • • , γ O (x k ; y n1+•••+n k-1 +1 , • • • , y n1+•••+n k-1 +n k )),
2. there is an identity element 1 O ∈ O(1), also called simply the unit of the operad, such that 

γ O (x; 1 O , • • • , 1 O k times ) = x = γ O (1 O ; x).
O ′ . A morphism of operads O f -→ O ′ is a collection {f n : O(n) -→ O ′ (n)} n≥0
of vector space morphisms such that:

1. f (1 O ) = 1 O ′ ; 2. f j (γ O (x 0 ⊗ x 1 ⊗ ... ⊗ x n )) = γ O ′ (f n (x 0 ) ⊗ f i1 (x 1 ) ⊗ ... ⊗ f in (x n )) with j = i 1 + i 2 + ... + i n .
Remark 5.3 1. Equivalently an operad can also be defined by the so called partial compositions:

O(m) ⊗ O(n) •i -→ O(m + n -1) , 1 ≤ i ≤ m x ⊗ y -→ x • i y
satisfying some properties inherited from Definition 5.1 (see e.g. [START_REF] Bremner | Algebraic Operads: An Algorithmic Companion[END_REF][START_REF] Loday | Algebraic Operads[END_REF] for explicit axioms).

The two definitions are related as follows:

(

1-i) x • i y = γ O (x; m-tuple id, • • • , y i , • • • id); 1 ≤ i ≤ m. (1-ii) γ O (x; y 1 , • • • , y m ) = (• • • (((x • m y m ) • m-1 y m-1 ) • • • ) • 1 y 1 2. An operad, O, is said to be multiplicative if there exists m ∈ O(2) such that m • 1 m = m • 2 m.
3. An operad O is said to be unitary if the unit morphism η : K -→ O( 1) is an isomorphism in which case the unit element of O will be denoted:

1 1 = 1 O = η(1 K ) ∈ O(1).
Example 5. [START_REF] Ebrahimi-Fard | Operads of (noncrossing) partitions, interacting bialgebras, and moment-cumulant relations[END_REF] The fundamental example of an operad is the operad L V of multilinear endomorphisms of a vector space V , called endomorphism operad and defined by: for all n ≥ 1, L V (n) = Hom K (V ⊗n , V ). The composition product is obtained from the composition of multilinear maps. The associated unit is the identity map:

V idV -→ V .
Example 5.5 The fundamental example of a multiplicative operad is the operad L A of multilinear endomorphisms of an associative algebra A: for all n ≥ 1, we have again L A (n) = Hom K (A ⊗n , A). The associated unit is the identity map, the multiplication m is the algebra product. Multiplication is essential for our forthcoming developments. For example, the existence of the product m is what allows the definition of a differential on the Hochschild cochain complex of an associative algebra, or the definition of the cup product. . We set:

End IΣ,SΣ (n) := S Σ -Hom(I ⊗n Σ , I Σ ). The family (End IΣ,SΣ (n)) n≥1 is a suboperad of the endomorphism operad L IΣ .

In the Theorem, the S Σ -bimodule structure of I ⊗n Σ is given by: (β, β)

• ((σ 0 , σ 1 ) ⊗ • • • ⊗ (σ n-1 , σ n )) • (γ, γ) := ∂ β,σ0 ∂ σn,γ (σ 0 , σ 1 ) ⊗ • • • ⊗ (σ n-1 , σ n ),
and the factorization property means that a µ ∈ Hom(I ⊗n Σ , I Σ ) is required to factorize as:

µ : I ⊗n Σ → I ⊗S Σ n Σ → I Σ .
Proof. The space End IΣ,SΣ (n) is spanned by the maps:

µ (σ0,••• ,σn) : ((β 0 , β 1 )⊗(β ′ 1 , β 2 )⊗• • •⊗(β ′ n-1 , β n )) -→ ∂ β1,β ′ 1 • • • ∂ βn-1,β ′ n-1 ∂ (β0,••• ,βn),(σ0,••• ,σn) •(σ 0 , σ n ). The first component End IΣ,SΣ (1) contains in particular σ0≤σ1∈Σ µ (σ0,σ1) , which is the identity of I Σ . Moreover, given µ (σ0,••• ,σn) and µ (β0,••• ,β k ) , we have µ (σ0,••• ,σn) • i µ (β0,••• ,β k ) = ∂ σi-1,β0 ∂ σi,β k µ (σ0,••• ,σi-1=β0,β1,••• ,β k =σi,σi+1,••• ,σn) , (1) 
where • i stands for the composition product in L IΣ , which concludes the proof.

Example 5.7 (Cochain operads) The simplicial cochain complex C * ( Σ) has an operad structure defined by [START_REF] Gerstenhaber | Homotopy G-algebras and moduli space operad[END_REF]:

γ : C k ( Σ) ⊗ C n1 ( Σ) ⊗ • • • ⊗ C n k ( Σ) → C n1+•••+n k ( Σ) γ((σ 0 , • • • , σ k ) * ⊗ (β 1 0 , • • • , β 1 n1 ) * ⊗ • • • ⊗ (β k 1 , • • • , β k n k ) * )(γ 0 , • • • , γ n1+•••+n k ) := ∂ (σ0,••• ,σ k ),(γ0,γn 1 ,••• ,γn 1 +•••+n k ) ∂ (γ0,••• ,γn 1 ),(β 1 0 ,••• ,β 1 n 1 ) • • • ∂ (γn 1 +•••+n k-1 ,••• ,γn 1 +•••+n k ),(β k 1 ,••• ,β k n k ) , where (σ 0 , • • • , σ k ) * denotes the k-cochain whose value on (β 0 , • • • , β k ) is ∂ (σ0,••• ,σ k ),(β0,••• ,β k ) .
The unit of the operad is σ0≤σ1 (σ 0 , σ 1 ) * . Theorem 5.8 (Operadic comparison theorem) The map

(σ 0 , • • • , σ k ) * -→ µ (σ0,••• ,σ k ) induces an isomorphism of operads C * ( Σ) ∼ = End IΣ,SΣ ( * ).
Proof. We indeed have

(σ 0 , • • • , σ n ) * • i (β 0 , • • • , β k ) * = γ((σ 0 , • • • , σ n ) * ⊗ ( γ0≤γ1∈Σ (γ 0 , γ 1 ) * ⊗ • • • ⊗ γ0≤γ1∈Σ (γ 0 , γ 1 ) ⊗ (β 0 , • • • , β ni ) * ⊗ γ0≤γ1∈Σ (γ 0 , γ 1 ) * ⊗ • • • ⊗ γ0≤γ1∈Σ (γ 0 , γ 1 ) * ) = ∂ σi-1,β0 ∂ σi,β k (σ 0 , • • • , σ i-1 , β 1 , • • • , β ni-1 , σ i , • • • , σ k ) * ,
that agrees with Eq. (1). Corollary 5.9 There is a canonical embedding of the cochain operad of a poset into the endomorphism operad of its incidence algebra:

C * ( Σ) ֒→ {Hom(I ⊗ * Σ , I Σ )}.

Relative operads

The previous operadic framework can be naturally refined to the relative setting that, we claim, is the right one to study poset combinatorics and its links to topology and homological algebra. We let B be an associative unital algebra. Definition 6.1 A B-relative operad (relative operad, for short) is a collection of B-bimodules {O(k) | k ≥ 1} together with B-bimodule morphisms:

γ O : O(k) → Hom B-BiMod (O(n 1 ) ⊗ B • • • ⊗ B O(n k ), O(n 1 + • • • + n k )) x -→ (x 1 ⊗ B • • • ⊗ B x k -→ γ O (x; x 1 , • • • , x k ))
which are:

1. associative in the sense that

γ O (γ O (x; x 1 , • • • , x k );y 1 , • • • , y n1+•••+n k ) = γ O (x; γ O (x 1 ; y 1 , • • • , y n1 ), γ O (x 2 ; y n1+1 , • • • , y n1+n2 ), • • • • • • , γ O (x k ; y n1+•••+n k-1 +1 , • • • , y n1+•••+n k-1 +n k )),
2. there is an identity element 1 O ∈ O(1), also called simply the unit of the operad, such that

γ O (x; 1 O , • • • , 1 O k times ) = x = γ O (1 O ; x).
Example 6.2 (Relative endomorphism operad) Let A be an associative unital algebra and B a subalgebra. The B-relative endomorphism operad of A is the relative operad defined by:

{Hom B-BiMod (A ⊗B n , A), n ≥ 1}
with structure operator γ defined by the composition of multilinear B-bimodules morphisms.

Example 6.3 (Operator-valued probability operad) A particularly interesting example of relative operad originates in noncommutative probability that aims at encoding a notion of conditional probability suited for operator-valued random variables, see e.g. [START_REF] Mingo | Free Probability and Random Matrices[END_REF].

In that case, we consider

{Hom B-BiMod (A ⊗B n , B)| n ≥ 1}.
It is obviously a suboperad of the relative endomorphism operad of A: the operadic composition of B-valued morphisms is a B-valued morphism.

Example 6.4 The most meaningful example for our purposes originates in the relative Hochschild complex. We consider here:

{Hom BM (I ⊗S Σ n Σ , I Σ )|n ≥ 1}.
The previous computations in the article show that the structure map defining the operadic structure on {S Σ -Hom(I ⊗n Σ , I Σ )} n≥1 go over and also define an operadic structure on {Hom BM (I

⊗S Σ n Σ , I Σ )|n ≥ 1}.
Using the CCT isomorphism ι, the same construction can also be performed at the cochain algebra level (we leave the exercise to the reader).

Brace differential graded algebras

Let us introduce now BDGAs. These algebras first appeared in the work of Getzler-Jones on algebras up to homotopy (without a specific name) as a particular case of B ∞ -algebras, associated in particular to Hochschild complexes of associative algebras, see [START_REF] Getzler | homotopy algebra and iterated integrals[END_REF]Sect. 5.2]. When Gerstenhaber and Voronov studied them more in detail [START_REF] Gerstenhaber | Homotopy G-algebras and moduli space operad[END_REF][START_REF] Voronov | Higher operations on the Hochschild complex[END_REF][START_REF] Voronov | Homotopy Gerstenhaber algebras[END_REF], they decided to call these algebras homotopy G-algebras. However, this terminology appeared to be a misleading one after Tamarkin had shown that the name G(erstenhaber)-algebra up to homotopy should be naturally given to another class of algebras [START_REF] Tamarkin | Another proof of M. Kontsevich formality theorem[END_REF]. We call them by a name that reflects their properties and should not create confusion, namely: brace differential graded algebras.

The basic idea is that BDGAs are associative differential graded algebras together with extra (brace) operations that behave exactly as the Kadeishvili-Getzler brace operations on the Hochschild cohomological complex of an associative algebra [START_REF] Kadeishvili | Structure of the A(∞)-algebra and the Hochschild and Harrison cohomologies[END_REF][START_REF] Getzler | Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology[END_REF]. We write, as usual, B(A) for the cobar coalgebra over a differential graded algebra (DGA) A, where the product is written • and the differential (of degree +1) δ. That is, B(A) is the cofree graded coalgebra T (A [START_REF] Mbatchou | Simplicial Structure on Connected Multiplicative Operads[END_REF]) := n∈N A [START_REF] Mbatchou | Simplicial Structure on Connected Multiplicative Operads[END_REF] ⊗n over the desuspension A [START_REF] Mbatchou | Simplicial Structure on Connected Multiplicative Operads[END_REF] of A (A [START_REF] Mbatchou | Simplicial Structure on Connected Multiplicative Operads[END_REF] n := A n+1 ). We use the bar notation and write [a 1 |...|a n ] for a 1 ⊗ ... ⊗ a n ∈ A [START_REF] Mbatchou | Simplicial Structure on Connected Multiplicative Operads[END_REF] ⊗n . In particular, the coproduct on T (A [START_REF] Mbatchou | Simplicial Structure on Connected Multiplicative Operads[END_REF]) is given by:

∆[a 1 |...|a n ] := n i=0 [a 1 |...|a i ] ⊗ [a i+1 |...|a n ].
There is a differential coalgebra structure on B(A) induced by the DGA structure on A. In fact, since B(A) is cofree as a graded coalgebra, the properties of the cofree coalgebra functor imply that, in general, a coderivation D ∈ Coder(B(A)) is entirely determined by the composition (written as a degree 0 morphism):

D : B(A) D -→B(A)[1] p -→A[2],
where p is the natural projection. In particular, the differential d on B(A) is induced by the maps:

δ : A[1]-→A[2],
and

µ : A[1] ⊗ A[1]-→A[2],
where µ(a, b) := (-1) |a| a • b. The algebra A is a BDGA if it is provided with a set of extra-operations called the braces:

B k : A[1] ⊗ A[1] ⊗k -→A[1], k ≥ 1,
satisfying certain relations. These relations express exactly the fact that the braces have to induce a differential Hopf algebra structure on B(A). Explicitly, the relations satisfied by the braces are then [14, Sect. 5.2] and [START_REF] Khalkhali | Operations on cyclic homology, the X complex, and a conjecture of Deligne[END_REF][START_REF] Voronov | Homotopy Gerstenhaber algebras[END_REF] (we use Getzler's notation: v{v

1 , ..., v n } := B n (v ⊗ (v 1 ⊗ ... ⊗ v n ))):
1. The brace relations (the associativity relations for the product on B(A)).

(v{v 1 , ..., v m }){w 1 , ..., w n } = 

δ(v{v 1 , ..., v n }) -δv{v 1 , ..., v n } + n i=1 (-1) |v|+|v1|+...+|vi-1|-i+1 v{v 1 , ..., δv i , ..., v n } = (-1) |v|(|v1|-1) v 1 • (v{v 2 , ..., v n }) - n-1 i=1 (-1) |v|+|v1|+...+|vi|-i-1 v{v 1 , ..., v i • v i+1 , ..., v n } +(-1) |v|+|v1|+...+|vn-1|-n (v{v 1 , ..., v n-1 }) • v n . Example 7.1
There is a BDGA structure on the Hochschild cochain complex C * (A, A) of an associative algebra A over a commutative unital ring k [START_REF] Gerstenhaber | Homotopy G-algebras and moduli space operad[END_REF]. Recall that C n (A, A) = Hom k (A ⊗n , A). The brace operations on C * (A, A) are the multilinear operators defined for x, x 1 , ..., x n homogeneous elements in C * (A, A) and a 1 , ..., a m elements of A by: {x}{x 1 , ..., x n }(a 1 , ..., a m ) := 0≤i1≤i1+|x1|≤i2≤...≤in+|xn|≤n (-1)

n k=1 i k •(|x k |-1)
x(a 1 , ..., a i1 , x 1 (a i1+1 , ..., a i1+|x1| ), ..., a in , x n (a in+1 , ..., a in+|xn| ), ...a m ).

The other operations defining the BDGA structure, δ and • are, respectively, the Hochschild coboundary and the cup product. The Proposition follows from the observation that S Σ -equivariance properties are preserved by the brace operations, that are obtained by iterated compositions of S Σ -equivariant morphisms.

Example 7.3 There is a BDGA structure on the cochain complex of a simplicial set [START_REF] Getzler | homotopy algebra and iterated integrals[END_REF][START_REF] Gerstenhaber | Homotopy G-algebras and moduli space operad[END_REF]. Recall that a simplicial set is a contravariant functor from the category ∆ of finite sets [n] = {0, ..., n} and increasing morphisms to Set. For a simplicial set S : ∆ -→ Set, for σ ∈ S n := S([n]), and for a strictly increasing sequence 0 ≤ a 0 < ... < a m ≤ n, we write σ(a 0 , ..., a m ) for S(i a )(σ) ∈ S m , where i a is the unique map from [m] to [n] sending [m] to {a 0 , ..., a m }. Define a map ∆ 1,r from the singular complex of Σ, C * ( Σ) to C * ( Σ) ⊗ C * ( Σ) ⊗r as follows. For σ ∈ Σn , set: Dualizing ∆ 1,r , we get a map from C * ( Σ) ⊗ C * ( Σ) ⊗r to C * ( Σ). By analogy with the case of Hochschild cochains, we write σ{σ 1 , ..., σ r } for ∆ * 1,r (σ ⊗ (σ 1 ⊗ ... ⊗ σ r )). These brace operations on cochains, together with the simplicial coboundary and the cup product induce a BDGA structure on the bar coalgebra on C * ( Σ). = ±ι(f ){ι(f 1 ), ..., ι(f k )}((σ 0 , σ 1 ), (σ 1 , σ 2 ), ..., (σ m-1 , σ m )), and the proof of the proposition follows.

Theorem 7.5 The morphism ι is an isomorphism of BDGAs between the singular cochain complex of the barycentric subdivision of a finite simplicial complex Σ and the S Σ -relative Hochschild cochain complex of the incidence algebra of Σ.

In particular, as the embedding of the latter complex into the classical Hochschild cochain complex of the incidence algebra of Σ is also a morphism of BDGAs, besides being a quasi-isomorphism, the cohomology comparison theorem of Gerstenhaber and Schack relating singular cohomology and Hochschild cohomology can be realized, at the cochain level, as a quasi-isomorphism of BDGAs.
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