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Abstract
Motivated by various developments in algebraic combinatorics and its applica-

tions, we investigate here the fine structure of a fundamental but little known theo-
rem, the Gerstenhaber and Schack cohomology comparison theorem. The theorem
classically asserts that there is a cochain equivalence between the usual singular
cochain complex of a simplicial complex and the relative Hochschild complex of
its incidence algebra, and a quasi-isomorphism with the standard Hochschild com-
plex. Here, we will be mostly interested in its application to arbitrary posets (or,
equivalently, finite topologies) and their incidence algebras. We construct various
structures, classical and new, on the above two complexes: cosimplicial, differential
graded algebra, operadic and brace algebra structures and show that the compari-
son theorem preserves all of them. These results provide non standard insights on
links between the theory of posets, incidence algebras, endomorphism operads and
finite and combinatorial topology. By non standard, we refer here to the use of
relative versions of Hochschild complexes and operads.
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1 Introduction

Various recent results involve or develop connexions between posets, finite topolo-
gies, operads, brace algebras, coalgebras, Hopf algebras and algebraic topology.
Among those, we may mention here as directly relevant for the present work, Foissy’s
works on the combinatorial and brace algebras structures on operads [7], advances
on the algebraic structures on finite topologies, posets and quasi-posets [8, 5, 6, 9]
and various works in the combinatorics of free probability, among which [4].

The purpose of the present paper is to get new insights on these connexions
using a theorem of Gerstenhaber and Schack (the cohomology comparison theorem,
CCT). The CCT asserts that, for a given triangulated topological space with asso-
ciated incidence algebra A, there exists a quasi-isomorphism of cochain complexes
between a certain relative cohomological Hochschild complex of A and the singular
cochain complex of that topological space [10, 11], and a quasi-isomorphism with
the standard Hochschild complex [10], [3, Th. 1.3]. When extended to arbitrary
posets and finite topologies, the theorem allows to connect two families of objects
of different nature: an operadic-type object of a non standard type (the relative
Hochschild complex of an incidence algebra) and a classical object in combinato-
rial topology (the singular cochain complex associated to the nerve of a poset).
Our results investigate how algebraic structures on these objects transport under
the CCT: differential brace algebras (following an unpublished paper by one of us
[20]) and various algebraic and topological structures associated to operads (that
are investigated more generally in recent work by two of us [1]). The equivalence
of categories between finite (T0) topologies and posets is the prototype for more
complex duality phenomena such as Stone duality. We hope our results will also
lead to developments in that direction.

The article also features the meaningfulness of the notion of relative calculus
and operads, introduced here and abstracted from the notion of relative Hochshicld
cochains by extending the scope of the usual links between Hochschild complexes
and endomorphism operads.

The paper is organized as follows: Section 2 recollects basic constructions on
posets (incidence algebra, nerve, cochain algebra structure). Section 3 develops
various constructions around the incidence algebra of a poset, recalls the notion of
relative Hochschild cochains and the CCT. In the process constructions underlying
the CCT are introduced at the dual (chain, homological) level and a dual homolog-
ical comparison theorem is proved. Section 4 extends the CCT at the cosimplicial
level. Section 5 introduces an operadic structure on relative Hochschild cochains
and shows that the CCT holds at operadic level. Section 6 features the idea that
constructions on posets are best understood using relative constructions. This is
illustrated by the introduction of relative operads, a notion also meaningful for
operator-valued probability. The article concludes by showing that the CCT also
holds at the level of brace differential graded algebras.

Remark 1.1 We conclude this introduction with a remark on finite topologies. The
article will be mostly written in the language of posets, however its deeper meaning
is best understood when having in mind the connexion between the latter and finite
topologies. There is indeed a bijection between finite topological spaces T satisfying
the T0 separation axiom (given two points x, y in T there should always exist an open
set that contains one point but not the other) and finite posets. Any finite topological
space is (finitely) homotopy equivalent to a finite T0 space, so that the separation
assumption is not a serious restriction. It follows in particular that all constructions
in the article have a direct topological meaning, besides a combinatorial one. For a
survey of the theory of finite topological spaces and of the bibliography in the subject,
we refer to [8].
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Conventions and notation

In the sequel,
• K denotes an arbitrary field. Vector spaces, tensor products and linear maps are
defined over K unless otherwise stated.
• The linear span of a set X is denoted K(X), the cardinality of X is denoted |X |.
• If V is a graded object, then the suspension of V is defined as follows: (sV )n =
Vn−1.
An element x ∈ Vn is of degree n and we write |x| = n.

• If A
f
→ B is a vector space map then the dual map is denoted: B∗ f∗

→ A∗.
• The Kronecker symbol is written ∂x,y (recall it is equal to 1 if x = y and 0 else).

2 Posets, nerves, chains and cochains

Let (Σ,≤) be a finite poset (that is, a finite ordered set, where the order is not strict
in general). An increasing sequence in Σ, (σ0 ≤ · · · ≤ σn), is called a n-chain (or
simply a chain). It is a strict (or nondegenerate) chain if and only if the sequence
is strictly increasing (σ0 < · · · < σn).

Recall that the category ∆ is the category whose objects are the [n] := {0, . . . , n}
and whose morphisms are the weakly increasing maps between them. The set of
morphisms of ∆ is generated (under the composition product) by the face maps
dni : [n−1] → [n], 0 ≤ i ≤ n and the degeneracy maps sni : [n+1] → [n], i = 0, . . . , n.
Here, dni is the unique injective weakly increasing map from [n− 1] to [n] such that
i is not in its image and sni the unique surjective weakly increasing map that maps
i and i+ 1 to i. The face and degeneracy maps satisfy identities such as

snj−1 ◦ s
n+1
i = sni ◦ sn+1

j , 0 ≤ i < j ≤ n+ 1

that can be used alternatively to define simplicial sets, see [18] for details.
A simplicial (resp. cosimplicial) set is a contravariant (resp. covariant) functor

from ∆ to Set, the category of sets. The nerve of Σ, denoted Σ̂, is the simplicial
set whose n-simplices are ordered morphisms (weakly increasing maps) from [n] to
Σ or equivalently the chains in Σ, σ0 ≤ · · · ≤ σn. As some authors use different
conventions, notice that, in our terminology, chains correspond to weakly increasing
maps from [n] to Σ whereas strictly increasing maps correspond to strict chains.

Remark 2.1 A particular case is the one where Σ is a subset of the set of subsets
of an arbitrary non empty finite set S. Then, Σ is a finite simplicial complex if, for
each σ ∈ Σ, the set of non empty subsets of σ is a subset of Σ. If |σ| = n + 1, σ
is called a n-simplex of Σ. Elements of Σ are ordered by inclusion and in particular
Σ endowed with the inclusion order denoted ≤, can be viewed as a poset. In that
case, the simplicial set Σ̂ is also named barycentric subdivision of Σ, its homology
and cohomology compute the simplicial homology and cohomology of Σ.

The simplical structure on Σ̂ := {Σ̂n}n≥1 is constructed as follows: for n ≥ 1
and 0 ≤ i ≤ n,

1. The face morphism dni , from Σ̂n to Σ̂n−1 is defined by

Σ̂n

dn
i−→ Σ̂n−1

A 7−→ (σ0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σi−1 ≤ σi+1 ≤ · · · ≤ · · · ≤ σn)
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for A := (σ0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σi−1 ≤ σi ≤ σi+1 ≤ · · · ≤ · · · ≤ σn) or
equivalently dni (A) = (σ0 ≤ σ1 ≤ · · · ≤ σi−1 ≤ σ̂i ≤ σi+1 ≤ · · · ≤ σn), where
the notation σ̂i means that the vertex is omitted.

2. The degeneracy morphism sni duplicates the simplex σi at the position i of
the sequence:

Σ̂n

sni−→ Σ̂n+1

A 7−→ (σ0 ≤ σ1 ≤ · · · ≤ σi−1 ≤ σi ≤ σi ≤ σi+1 ≤ · · · ≤ σn)

It is an easy and standard exercise to show that these face and degeneracy maps
define a simplicial set structure on Σ̂ [18].

The simplicial vector space K(Σ̂) generated by Σ̂ is denoted C∗(Σ̂) and called
the singular chain complex of Σ. It is obtained by applying the functor X → K(X)
to Σ̂.

Recall (see e.g. [18]) that

Proposition 2.2 The singular chain complex, C∗(Σ̂) = {Cn(Σ̂)}n≥0, is naturally
endowed by the Alexander-Whitney map with a differential graded coalgebra struc-
ture.

The coproduct is given by:

Cn(Σ̂)
∆
−→

n⊕
j=0

Cj(Σ̂)⊗ Cn−j(Σ̂)

u 7−→ ∆(u) =
n∑

j=0

∆j,n−j(u) =
n∑

j=0

d̃n−j
n (u)⊗ d̃

j
0(u)

where d̃n−j
n = d

j+1
j+1d

j+2
j+2 · · · · d

n
n︸ ︷︷ ︸

n−jtimes

and d̃
j
0 = d

n−j+1
0 · · · dn0︸ ︷︷ ︸

jtimes

with d̃00 = Id = d̃0n

and the boundary operator by: ∂n =
n∑

i=0

(−1)idni . The coaugmentation map is the

map that sends all 0-simplices to 1 and higher dimensional simplices to 0.
Dualising, one gets a cosimplicial structure on the singular cochain complex

C∗(Σ̂) = {Cn(Σ̂) := Hom(Σ̂n,K)}n≥1 whose coface and codegeneracy maps are:

Cn−1(Σ̂)
F

n−1

i−→ Cn(Σ̂)
f 7−→ F

n−1
i (f) = f ◦ dni .

Cn(Σ̂)
D

n
i−→ Cn−1(Σ̂)

f 7−→ Dn
i (f) = f ◦ sn−1

i .

The Alexander-Whitney coproduct dualizes to the cup product of cochains:

Proposition 2.3 The singular cochain complex, C∗(Σ̂) is naturally endowed by the
cup product with a differential graded algebra structure.

Concretely, the cup product is given, for f ∈ Cp(Σ̂), g ∈ Cq(Σ̂) and σ ∈ Σp+q

by
f ∪ g(σ) := (f ⊗ g) ◦∆p,q(σ).

The unit of the cup product is the counit of ∆: the cochain in C0(Σ̂) that maps
each 0-simplex to 1.
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3 Incidence algebras, relative Hochschild chains

and cochains

In this section, we recall some classical definitions (incidence algebras, relative
Hochschild cochains) and extend them, featuring in particular how the idea of
relativity (to a separable subalgebra) can be developped systematically to better
account of the properties of posets and their nerves. We state and prove an homol-
ogy comparison theorem and recall the classical CCT.

Definition 3.1 The incidence algebra IΣ of the poset Σ is the associative unital
K-algebra generated by the pairs of simplices (σ, σ′) with σ ≤ σ′. The product of
two pairs (σ, σ′) and (β, β′) is (σ, β′) if σ′ = β and 0 else. The unit of the algebra
1I is the sum

∑
σ∈Σ

(σ, σ).

The incidence algebra IΣ has a (separable) commutative unital subalgebra SΣ gen-
erated as a K-algebra by the pairs (σ, σ).

Remark 3.2 The category BM of SΣ-bimodules (that is, left and right modules
over SΣ, where the right and left action can be different) is a (nonsymmetric) tensor
category for the tensor product:

M ⊗BM N := M ⊗SΣ
N,

where M⊗SΣ
N is the quotient SΣ-bimodule of M⊗N by the relations ma⊗n−m⊗an

for m ∈ M,n ∈ N and a ∈ SΣ. The same definition will apply to tensor products
of bimodules over an arbitrary ring.

The incidence algebra IΣ can then be better understood as an associative unital
algebra in the tensor category BM. Notice in particular that the algebra product
from IΣ ⊗ IΣ to IΣ factorises through the canonical projection from IΣ ⊗ IΣ to
IΣ ⊗SΣ

IΣ.

Definition 3.3 The barycentric incidence algebra BIΣ of the poset Σ is the asso-
ciative unital K-algebra generated by the n-simplices of Σ̂, (σ0, . . . , σn), n ≥ 0 with
the product (σ0, . . . , σn) · (σn+1, . . . , σn+k) equal to (σ0, . . . , σn, σn+2, . . . , σn+k) if
σn = σn+1 and 0 else. The unit of the algebra is the sum

∑
σ∈Σ

(σ).

Lemma 3.4 The barycentric incidence algebra identifies with the tensor algebra

TSΣ
(IΣ) :=

⊕
n≥0

I
⊗SΣ

n

Σ over IΣ in the category of SΣ-bimodules, where we set I
⊗SΣ

0

Σ :=

SΣ.

Proof. Indeed, direct inspection shows that IΣ ⊗BM IΣ has as a basis the tensor

products (σ0, σ1)⊗BM (σ1, σ2) and more generally I
⊗SΣ

n

Σ has as a basis the tensor
products (σ0, σ1)⊗BM · · ·⊗BM (σn−1, σn). The isomorphism between BIΣ and the
free associative algebra over IΣ in BM is then obtained as:

(σ0) 7−→ (σ0, σ0),

and for n > 0,

(σ0, . . . , σn) 7−→ (σ0, σ1)⊗BM · · · ⊗BM (σn−1, σn).

Remark 3.5 Notice that the map

(σ0, σ1)⊗BM · · · ⊗BM (σn−1, σn) −→ (σ0, σn)

is a map of associative unital algebras from TSΣ
(IΣ) to IΣ.
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Remark 3.6 Notice also that the arguments above show that there is a canonical

retract from I
⊗SΣ

n

Σ to I⊗n
Σ given, in the natural basis of I

⊗SΣ
n

Σ by:

(σ0, σ1)⊗BM · · · ⊗BM (σn−1, σn) 7−→ (σ0, σ1)⊗ · · · ⊗ (σn−1, σn).

Definition 3.7 The SΣ-relative Hochschild chain complex of IΣ is the SΣ bimodule
TSΣ

(IΣ) equipped with

• a simplicial structure by the face maps

dni (A) 7−→ (σ0, σ1)⊗BM · · · ⊗BM (σi−1, σi+1)⊗BM · · · ⊗BM (σn−1, σn),

for 0 < i < n, with

dn0 (A) 7−→ (σ1, σ2)⊗BM · · · ⊗BM (σn−1, σn),

dnn(A) 7−→ (σ0, σ1)⊗BM · · · ⊗BM (σn−2, σn−1),

and the degeneracy maps

sni (A) 7−→ (σ0, σ1)⊗BM · · ·⊗BM (σi−1, σi)⊗BM (σi, σi)⊗BM (σi, σi+1) · · ·⊗BM (σn, σn+1),

where A := (σ0, σ1)⊗BM · · · ⊗BM (σn, σn+1) and i = 0, · · · , n.

• It is equipped with a differential coalgebra structure by the coproduct

I
⊗SΣ

n

Σ →֒ I⊗n
Σ →

n⊕

i=0

I⊗i
Σ ⊗ I⊗n−i

Σ →
n⊕

i=0

I
⊗SΣ

i

Σ ⊗ I
⊗SΣ

n−i

Σ ,

where we use the retraction of I
⊗SΣ

n+1

Σ into I⊗n+1
Σ , together with the differ-

ential induced by the simplicial structure, ∂n :=
n∑

i=0

(−1)idni .

Proof. The linear isomorphism from C∗(Σ̂) to TSΣ
(IΣ),

(σ0, · · · , σn) 7−→ ((σ0, σ1)⊗BM · · · ⊗BM (σn−1, σn))

induces (by structure transportation through the isomorphism) a simplicial and
differential coalgebra structure on TSΣ

(IΣ). It is an easy exercise to check that it
identifies with the structures given in the Definition.

We get as a corollary an homological version of the CCT (the latter to be stated
below). Strangely enough, this Theorem does not seem to have been observed and
stated in the literature, at our best knowledge, although allowing to directly connect
the homology of (finite) topological spaces to Hochschild homology.

Theorem 3.8 (Homology comparison theorem) Given a finite topological space
T with associated poset Σ, there exists an isomorphism of simplicial vector spaces

C∗(Σ̂) ∼= TSΣ
(IΣ)

which induces an isomorphism in homology (with arbitrary coefficients)

H∗(T ) ∼= H∗(Σ̂) ∼= H∗(TSΣ
(IΣ)).

Let us turn now to the dual, cohomological, side of these questions.
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Definition 3.9 (Relative Hochschild cochain complex) The n-cochains of the

Hochschild cochain complex of IΣ relative to SΣ are the elements of HomBM (I
⊗SΣ

n

Σ , IΣ).
The relative Hochschild cochain complex is a differential algebra. The coboundary
map (the differential) is obtained (by right composition of morphisms) from the
boundary map of the Hochschild chain complex. The cup product is obtained (also
by duality) from the coalgebra structure of the Hochschild chain complex.

Closed formulas will be given below for the differential. Notice that this is the usual
formula for the Hochschild coboundary, extended to the relative setting.

Direct inspection shows that HomBM (I
⊗SΣ

n

Σ , IΣ), is generated linearly (over the
ground field) by the maps sending a given tensor product ((σ0, σ1)⊗BM (σ1, σ2)⊗BM

· · · ⊗BM (σn−1, σn)) to (σ0, σn).
Observe also that the incidence algebra, IΣ, is a triangular algebra. The Hochschild

cohomology of such algebras can be computed explicitly by means of a spectral se-
quence, introduced by S. Dourlens [3]. We refer from now on to [11] and [3] for
the general properties of the Hochschild cohomology of triangular and incidence
algebras.

A key Theorem, due to Gerstenhaber and Schack [10, 11] shows the key role
of the relative Hochschild complex in relating the cohomology of topological spaces
with Hochschild cohomology. Although little attention seems to have been paid to
these results, they appear to us as a key ingredient of the program of a noncom-
mutative geometry (although the latter program has been developed historically in
another direction).

Theorem 3.10 (Gerstenhaber-Schack) The relative Hochschild cochain com-
plex, written C∗

SΣ
(IΣ, IΣ), computes HH∗(IΣ, IΣ), the usual Hochschild cohomology

of IΣ.

Theorem 3.11 (Cohomology comparison theorem (CCT)) There is a cochain
complex isomorphism ι, that preserves the cup product, between the singular cochain
complex of Σ̂, C∗(Σ̂) and the relative Hochschild cochain complex of the incidence
algebra IΣ,

C∗
SΣ

(IΣ, IΣ) := {HomBM (I
⊗SΣ

n

Σ , IΣ)}n≥1.

The isomorphism is given by:

ι(f)((σ0, σ1)⊗BM (σ1, σ2)⊗BM · · ·⊗BM (σn−1, σn)) := f(σ0 ≤ σ1σ ≤ · · · ≤ σn)·(σ0, σn).

for f ∈ Cn(Σ̂n). In particular, by Thm 3.10,

HH∗(IΣ, IΣ) ∼= H∗(Σ̂,K).

Proof. A proof will follow from the finer cosimplicial comparison theorem to be
stated in the next section of the article. The original proof of the Theorem (in
this form, as there are various variants of the CCT in Gerstenhaber and Schack’s
works) can be found in [11, Thm 138, Section 15]. See the same article for details,
generalizations, applications (in geometry and deformation theory) and a survey of
the history of this theorem and its various variants.

4 The cosimplicial comparison theorem

In this section, we prove that the CCT can be enhanced to the cosimplicial level.
For completeness sake we give some details on the proof, as the result also implies
the classical CCT. Recall that the maps dni , sni endow TSΣ

(IΣ) with a simplicial
structure. By duality, this yields a cosimplicial structure on the relative Hochschild
cochain complex C∗

SΣ
(IΣ, IΣ) whose coface and codegeneracy maps are :

7



Fn
i : HomBM (I

⊗SΣ
n−1

Σ , IΣ) −→ HomBM (I
⊗SΣ

n

Σ , IΣ)
f 7−→ Fn

i (f) = f ◦ dni

Dn
i : HomBM (I

⊗SΣ
n

Σ , IΣ) −→ HomBM (I
⊗SΣ

n−1

Σ , IΣ)
f 7−→ Dn

i (f) = f ◦I sni .

Let us explicitely check one of the cosimplicial identities. For 0 ≤ i < j ≤ n and

f ∈ HomSΣ
(I

⊗SΣ
n

Σ , IΣ), we have

Dn−1
i Dn

j (f) = Dn−1
i (f ◦ snj ) = (f ◦ snj ) ◦ s

n−1
i ;

= f ◦ (snj ◦ sn−1
i ) = f ◦ (sni ◦ sn−1

j−1 );

= (f ◦ sni ) ◦ s
n−1
j−1 = Dn−1

j−1 (f ◦ sni );

= Dn−1
j−1D

n
i (f).

Theorem 4.1 (Cosimplicial comparison theorem) The cochain complexes iso-
morphism ι : C∗(Σ̂) −→ C∗

SΣ
(IΣ, IΣ) preserves the cosimplicial structures.

Proof. Let us explicitely check for example that the map ι is compatible with the
degeneracy operators, that is that the diagrams below are commutative

Cn(Σ̂)

ιn

��

D
n
i

,2 Cn−1(Σ̂)

ιn−1

��

i.e.,Dn
i ◦ ιn = ιn−1 ◦Dn

i (I)

Cn
SΣ

(IΣ, IΣ)
Dn

i
,2 Cn−1

SΣ
(IΣ, IΣ)

Indeed for any f ∈ Cn(Σ̂), one has:

(Dn
i ◦ ιn(f))((σ0, σ1)⊗SΣ

· · · ⊗SΣ
(σn−2, σn−1)) = Dn

i (ιn(f))((σ0, σ1)⊗SΣ
· · · ⊗SΣ

(σn−2, σn−1))

= (ιn(f) ◦ d
n
i )((σ0, σ1)⊗SΣ

· · · ⊗SΣ
(σn−2, σn−1))

= ιn(f)((σ0, σ1)⊗SΣ
· · · ⊗SΣ

(σi−1, σi)⊗SΣ
(σi, σi)⊗SΣ

(σi, σi+1)⊗SΣ
· · · ⊗SΣ

(σn−2, σn−1))

= f(σ0 ≤ σ1 ≤ · · · ≤ σi−1 ≤ σi ≤ σi ≤ σi+1 ≤ · · · ≤ σn−1)

(σ0, σn−1)

= (f ◦ dni )(σ0 ≤ σ1 ≤ · · · ≤ σi−1 ≤ σi ≤ σi+1 ≤ · · · ≤ σn−1)

(σ0, σn−1)

= ιn−1(f ◦ dni )((σ0, σ1)⊗SΣ
· · · ⊗SΣ

(σn−2, σn−1))

= (ιn−1 ◦D
n
i )(f)((σ0, σ1)⊗SΣ

· · · ⊗SΣ
(σn−2, σn−1)).

5 Operadic comparison theorem

Definition 5.1 A nonsymmetric operad (or operad for short, in this article) over
the category of K-vector spaces is a collection of vector spaces {O(k) | k ≥ 1}
together with composition products:

O(k)⊗O(n1)⊗ · · · ⊗ O(nk)
γO

−→ O(n1 + · · ·+ nk)
x⊗ x1 ⊗ · · · ⊗ xk 7−→ γO(x;x1, · · · , xk)
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which are:

1. associative in the sense that

γO(γO(x;x1, · · · , xk); y1, · · · , yn1+···+nk
) = γO(x; γO(x1; y1, · · · , yn1

), γO(x2; yn1+1, · · · , yn1+n2
)

· · · , γO(xk; yn1+···+nk−1+1, · · · , yn1+···+nk−1+nk
)),

2. there is an identity element 1O ∈ O(1), also called simply the unit of the
operad, such that

γO(x; 1O, · · · , 1O︸ ︷︷ ︸
k times

) = x = γO(1O;x).

Definition 5.2 Let O and O′ be two Σ-operads with respective composition products
γO and γO′

and respective associated units 1O and 1O′ . A morphism of operads

O
f

−→ O′ is a collection {fn : O(n) −→ O′(n)}n≥0 of vector space morphisms such
that:

1. f(1O) = 1O′;

2. fj(γ
O(x0 ⊗ x1 ⊗ ... ⊗ xn)) = γO′

(fn(x0) ⊗ fi1(x1) ⊗ ... ⊗ fin(xn)) with j =
i1 + i2 + ...+ in.

Remark 5.3 1. Equivalently an operad can also be defined by the so called par-
tial compositions:

O(m) ⊗O(n)
◦i−→ O(m+ n− 1) , 1 ≤ i ≤ m

x⊗ y 7−→ x ◦i y

satisfying some properties inherited from Definition 5.1 (see e.g. [2, 17] for
explicit axioms).
The two definitions are related as follows:

(1-i) x ◦i y = γO(x;

m−tuple︷ ︸︸ ︷
id, · · · , y︸︷︷︸

i

, · · · id); 1 ≤ i ≤ m.

(1-ii) γO(x; y1, · · · , ym) = (· · · (((x ◦m ym) ◦m−1 ym−1) · · · ) ◦1 y1

2. An operad, O, is said to be multiplicative if there exists m ∈ O(2) such that
m ◦1 m = m ◦2 m.

3. An operad O is said to be unitary if the unit morphism η : K −→ O(1) is an
isomorphism in which case the unit element of O will be denoted: 11 = 1O =
η(1K) ∈ O(1).

Example 5.4 The fundamental example of an operad is the operad LV of multi-
linear endomorphisms of a vector space V , called endomorphism operad and defined
by: for all n ≥ 1, LV (n) = HomK(V

⊗n, V ). The composition product is obtained
from the composition of multilinear maps. The associated unit is the identity map:

V
idV−→ V .

Example 5.5 The fundamental example of a multiplicative operad is the operad
LA of multilinear endomorphisms of an associative algebra A: for all n ≥ 1, we
have again LA(n) = HomK(A

⊗n, A). The associated unit is the identity map, the
multiplication m is the algebra product.

Multiplication is essential for our forthcoming developments. For example, the
existence of the product m is what allows the definition of a differential on the
Hochschild cochain complex of an associative algebra, or the definition of the cup
product.
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Theorem 5.6 Let SΣ−Hom(I⊗n
Σ , IΣ) to be the SΣ-bimodule of SΣ-bimodule mor-

phisms from I⊗n
Σ to IΣ that factorize through I

⊗SΣ
n

Σ . We set:

EndIΣ,SΣ
(n) := SΣ −Hom(I⊗n

Σ , IΣ).

The family (EndIΣ,SΣ
(n))n≥1 is a suboperad of the endomorphism operad LIΣ .

In the Theorem, the SΣ-bimodule structure of I⊗n
Σ is given by:

(β, β) · ((σ0, σ1)⊗ · · · ⊗ (σn−1, σn)) · (γ, γ) := ∂β,σ0
∂σn,γ(σ0, σ1)⊗ · · · ⊗ (σn−1, σn),

and the factorization property means that a µ ∈ Hom(I⊗n
Σ , IΣ) is required to fac-

torize as:
µ : I⊗n

Σ → I
⊗SΣ

n

Σ → IΣ.

Proof. The space EndIΣ,SΣ
(n) is spanned by the maps:

µ(σ0,··· ,σn) : ((β0, β1)⊗(β′
1, β2)⊗· · ·⊗(β′

n−1, βn)) 7−→ ∂β1,β
′

1
· · ·∂βn−1,β

′

n−1
∂(β0,··· ,βn),(σ0,··· ,σn)·(σ0, σn).

The first component EndIΣ,SΣ
(1) contains in particular

∑
σ0≤σ1∈Σ

µ(σ0,σ1), which

is the identity of IΣ. Moreover, given µ(σ0,··· ,σn) and µ(β0,··· ,βk), we have

µ(σ0,··· ,σn) ◦i µ(β0,··· ,βk) = ∂σi−1,β0
∂σi,βk

µ(σ0,··· ,σi−1=β0,β1,··· ,βk=σi,σi+1,··· ,σn), (1)

where ◦i stands for the composition product in LIΣ , which concludes the proof.

Example 5.7 (Cochain operads) The simplicial cochain complex C∗(Σ̂) has an
operad structure defined by [12]:

γ : Ck(Σ̂)⊗ Cn1(Σ̂)⊗ · · · ⊗ Cnk(Σ̂) → Cn1+···+nk(Σ̂)

γ((σ0, · · · , σk)
∗ ⊗ (β1

0 , · · · , β
1
n1
)∗ ⊗ · · · ⊗ (βk

1 , · · · , β
k
nk
)∗)(γ0, · · · , γn1+···+nk

)

:= ∂(σ0,··· ,σk),(γ0,γn1
,··· ,γn1+···+nk

)∂(γ0,··· ,γn1
),(β1

0
,··· ,β1

n1
) · · ·∂(γn1+···+nk−1

,··· ,γn1+···+nk
),(βk

1
,··· ,βk

nk
),

where (σ0, · · · , σk)
∗ denotes the k-cochain whose value on (β0, · · · , βk) is ∂(σ0,··· ,σk),(β0,··· ,βk).

The unit of the operad is
∑

σ0≤σ1

(σ0, σ1)
∗.

Theorem 5.8 (Operadic comparison theorem) The map

(σ0, · · · , σk)
∗ 7−→ µ(σ0,··· ,σk)

induces an isomorphism of operads

C∗(Σ̂) ∼= EndIΣ,SΣ
(∗).

Proof. We indeed have

(σ0, · · · , σn)
∗ ◦i (β0, · · · , βk)

∗ =

γ((σ0, · · · , σn)
∗ ⊗ (

∑

γ0≤γ1∈Σ

(γ0, γ1)
∗ ⊗ · · · ⊗

∑

γ0≤γ1∈Σ

(γ0, γ1)⊗ (β0, · · · , βni
)∗⊗

∑

γ0≤γ1∈Σ

(γ0, γ1)
∗ ⊗ · · · ⊗

∑

γ0≤γ1∈Σ

(γ0, γ1)
∗)

= ∂σi−1,β0
∂σi,βk

(σ0, · · · , σi−1, β1, · · · , βni−1, σi, · · · , σk)
∗,

that agrees with Eq. (1).

Corollary 5.9 There is a canonical embedding of the cochain operad of a poset into
the endomorphism operad of its incidence algebra:

C∗(Σ̂) →֒ {Hom(I⊗∗
Σ , IΣ)}.
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6 Relative operads

The previous operadic framework can be naturally refined to the relative setting
that, we claim, is the right one to study poset combinatorics and its links to topology
and homological algebra. We let B be an associative unital algebra.

Definition 6.1 A B-relative operad (relative operad, for short) is a collection of
B-bimodules {O(k) | k ≥ 1} together with B-bimodule morphisms:

γO : O(k) → HomB−BiMod(O(n1)⊗B · · · ⊗B O(nk),O(n1 + · · ·+ nk))
x 7−→ (x1 ⊗B · · · ⊗B xk 7−→ γO(x;x1, · · · , xk))

which are:

1. associative in the sense that

γO(γO(x;x1, · · · , xk);y1, · · · , yn1+···+nk
) =

γO(x; γO(x1; y1, · · · , yn1
), γO(x2; yn1+1, · · · , yn1+n2

), · · ·

· · · , γO(xk; yn1+···+nk−1+1, · · · , yn1+···+nk−1+nk
)),

2. there is an identity element 1O ∈ O(1), also called simply the unit of the
operad, such that

γO(x; 1O, · · · , 1O︸ ︷︷ ︸
k times

) = x = γO(1O;x).

Example 6.2 (Relative endomorphism operad) Let A be an associative uni-
tal algebra and B a subalgebra. The B-relative endomorphism operad of A is the
relative operad defined by:

{HomB−BiMod(A
⊗Bn, A), n ≥ 1}

with structure operator γ defined by the composition of multilinear B-bimodules
morphisms.

Example 6.3 (Operator-valued probability operad) A particularly interest-
ing example of relative operad originates in noncommutative probability that aims
at encoding a notion of conditional probability suited for operator-valued random
variables, see e.g. [19].

In that case, we consider

{HomB−BiMod(A
⊗Bn, B)| n ≥ 1}.

It is obviously a suboperad of the relative endomorphism operad of A: the operadic
composition of B-valued morphisms is a B-valued morphism.

Example 6.4 The most meaningful example for our purposes originates in the
relative Hochschild complex. We consider here:

{HomBM (I
⊗SΣ

n

Σ , IΣ)|n ≥ 1}.

The previous computations in the article show that the structure map defining the
operadic structure on {SΣ−Hom(I⊗n

Σ , IΣ)}n≥1 go over and also define an operadic
structure on

{HomBM (I
⊗SΣ

n

Σ , IΣ)|n ≥ 1}.

Using the CCT isomorphism ι, the same construction can also be performed at
the cochain algebra level (we leave the exercise to the reader).
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7 Brace differential graded algebras

Let us introduce now BDGAs. These algebras first appeared in the work of Getzler-
Jones on algebras up to homotopy (without a specific name) as a particular case of
B∞-algebras, associated in particular to Hochschild complexes of associative alge-
bras, see [14, Sect. 5.2]. When Gerstenhaber and Voronov studied them more in
detail [12, 23, 22], they decided to call these algebras homotopy G-algebras. How-
ever, this terminology appeared to be a misleading one after Tamarkin had shown
that the name G(erstenhaber)-algebra up to homotopy should be naturally given to
another class of algebras [21]. We call them by a name that reflects their properties
and should not create confusion, namely: brace differential graded algebras.

The basic idea is that BDGAs are associative differential graded algebras to-
gether with extra (brace) operations that behave exactly as the Kadeishvili-Getzler
brace operations on the Hochschild cohomological complex of an associative algebra
[15, 13]. We write, as usual, B(A) for the cobar coalgebra over a differential graded
algebra (DGA) A, where the product is written · and the differential (of degree
+1) δ. That is, B(A) is the cofree graded coalgebra T (A[1]) :=

⊕
n∈N

A[1]⊗n over

the desuspension A[1] of A (A[1]n := An+1). We use the bar notation and write
[a1|...|an] for a1⊗ ...⊗an ∈ A[1]⊗n. In particular, the coproduct on T (A[1]) is given
by:

∆[a1|...|an] :=
n∑

i=0

[a1|...|ai]⊗ [ai+1|...|an].

There is a differential coalgebra structure on B(A) induced by the DGA structure
on A. In fact, since B(A) is cofree as a graded coalgebra, the properties of the
cofree coalgebra functor imply that, in general, a coderivation D ∈ Coder(B(A)) is
entirely determined by the composition (written as a degree 0 morphism):

D̃ : B(A)
D
−→B(A)[1]

p
−→A[2],

where p is the natural projection. In particular, the differential d on B(A) is induced
by the maps:

δ : A[1]−→A[2],

and
µ : A[1]⊗A[1]−→A[2],

where µ(a, b) := (−1)|a|a · b. The algebra A is a BDGA if it is provided with a set
of extra-operations called the braces:

Bk : A[1]⊗A[1]⊗k−→A[1], k ≥ 1,

satisfying certain relations. These relations express exactly the fact that the braces
have to induce a differential Hopf algebra structure on B(A). Explicitly, the rela-
tions satisfied by the braces are then [14, Sect. 5.2] and [16, 22] (we use Getzler’s
notation: v{v1, ..., vn} := Bn(v ⊗ (v1 ⊗ ...⊗ vn))):

1. The brace relations (the associativity relations for the product on B(A)).

(v{v1, ..., vm}){w1, ..., wn} =
∑

0≤i1≤j1≤...≤im≤jm≤n

(−1)

m∑

k=1

(|vk|−1)(
ik∑

l=1

(|wl|−1))

v{w1, ..., wi1 , v1{wi1+1, ..., wj1}, wj1+1, ..., vm{wim+1, ..., wjm}, wjm+1, ..., wn},

with the usual conventions on indices: for example, an expression such as
v5{w7, ..., w6} has to be read v5{∅} = v5.

12



2. The distributivity relations of the product w.r. to the braces.

(v · w){v1, ..., vn} =
n∑

k=0

(−1)
|w|

k∑

p=1

(|vp|−1)

v{v1, ..., vk} · w{vk+1, ..., vn},

3. The boundary relations.

δ(v{v1, ..., vn})− δv{v1, ..., vn}

+
n∑

i=1

(−1)|v|+|v1|+...+|vi−1|−i+1v{v1, ..., δvi, ..., vn}

= (−1)|v|(|v1|−1)v1 · (v{v2, ..., vn})

−
n−1∑

i=1

(−1)|v|+|v1|+...+|vi|−i−1v{v1, ..., vi · vi+1, ..., vn}

+(−1)|v|+|v1|+...+|vn−1|−n(v{v1, ..., vn−1}) · vn.

Example 7.1 There is a BDGA structure on the Hochschild cochain complex C∗(A,A)
of an associative algebra A over a commutative unital ring k [12]. Recall that
Cn(A,A) = Homk(A

⊗n, A). The brace operations on C∗(A,A) are the multilinear
operators defined for x, x1, ..., xn homogeneous elements in C∗(A,A) and a1, ..., am
elements of A by:

{x}{x1, ..., xn}(a1, ..., am) :=
∑

0≤i1≤i1+|x1|≤i2≤...≤in+|xn|≤n

(−1)

n∑

k=1

ik·(|xk|−1)

x(a1, ..., ai1 , x1(ai1+1, ..., ai1+|x1|), ..., ain , xn(ain+1, ..., ain+|xn|), ...am).

The other operations defining the BDGA structure, δ and · are, respectively, the
Hochschild coboundary and the cup product.

Proposition 7.2 The canonical embedding of SΣ−Hom(I⊗n
Σ , IΣ) ∼= HomBM (I

⊗SΣ
n

Σ , IΣ)
into Hom(I⊗n

Σ , IΣ) induces a BDGA structure on the relative Hochschild cochain

complex {HomBM (I
⊗SΣ

n

Σ , IΣ)}n≥1.

The Proposition follows from the observation that SΣ-equivariance properties
are preserved by the brace operations, that are obtained by iterated compositions
of SΣ-equivariant morphisms.

Example 7.3 There is a BDGA structure on the cochain complex of a simplicial
set [14, 12]. Recall that a simplicial set is a contravariant functor from the category
∆ of finite sets [n] = {0, ..., n} and increasing morphisms to Set. For a simplicial
set S : ∆ −→ Set, for σ ∈ Sn := S([n]), and for a strictly increasing sequence
0 ≤ a0 < ... < am ≤ n, we write σ(a0, ..., am) for S(ia)(σ) ∈ Sm, where ia is the
unique map from [m] to [n] sending [m] to {a0, ..., am}. Define a map ∆1,r from

the singular complex of Σ, C∗(Σ̂) to C∗(Σ̂)⊗C∗(Σ̂)
⊗r as follows. For σ ∈ Σ̂n, set:

∆1,r(σ) :=
∑

0≤b′
1
≤b1≤...≤b′r≤br≤n

(−1)

r∑

k=1

((bk−b′k)b
′

k)

σ(0, 1, ..., b′1, b1, b1 + 1, ..., b′2, b2, ..., b
′
r, br, ..., n− 1, n)

⊗(σ(b′1, ..., b1)⊗ σ(b′2, ..., b2)⊗ ...⊗ σ(b′r, ..., br)).
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Dualizing ∆1,r, we get a map from C∗(Σ̂) ⊗ C∗(Σ̂)⊗r to C∗(Σ̂). By analogy with
the case of Hochschild cochains, we write σ{σ1, ..., σr} for ∆∗

1,r(σ⊗ (σ1 ⊗ ...⊗ σr)).
These brace operations on cochains, together with the simplicial coboundary and the
cup product induce a BDGA structure on the bar coalgebra on C∗(Σ̂).

Proposition 7.4 The isomorphism ι commutes with the action of the brace oper-
ations on C∗(Σ̂) and C∗

SΣ
(IΣ, IΣ).

Proof. Indeed, let f, f1, ..., fk belong respectively to Cn(Σ̂), Cn1(Σ̂),..., Cnk(Σ̂).
Let (σ0 ≤ σ1 ≤ σ2 ≤ ... ≤ σm−1 ≤ σm) ∈ Σ̂m, wherem := n+n1+...+nk−k. Let us
also introduce the following useful convention. Let e.g. (σi0 , σi1 , k1, k2, σi3 , ..., σiq , kp)
be any sequence, the elements of which are either scalars (the kis), either simplices
of Σ (the σis), and assume that (σi0 ≤ σi1 ≤ ... ≤ σiq ) is a simplex of Σ̂. Then, we
write f(σi0 , σi1 , k1, k2, σi3 , ..., σiq , kp) for (

∏p
i=1 ki) · f(σi0 ≤ σi1 ≤ ... ≤ σiq ).

We have, according to the definition of the braces (we omit the signs for lisibility,
following a standard practice in algebraic topology):

f{f1, ..., fk}(σ0 ≤ σ1 ≤ ... ≤ σm)

=
∑

±f(σ0, ..., σi1 , f1(σi1 ≤ ... ≤ σi1+n1
), σi1+n1

, ..., σik ,

fk(σik ≤ ... ≤ σik+nk
), σik+nk

, ..., σm).

Therefore:
ι(f{f1, ..., fk})((σ0, σ1), (σ1, σ2), ..., (σm−1, σm))

= {
∑

±f(σ0, ..., σi1 , f1(σi1 ≤ ... ≤ σi1+n1
), σi1+n1

, ..., σik ,

fk(σik ≤ ... ≤ σik+nk
), σik+nk

, ..., σm)} · (σ0, σm)

=
∑

±ι(f)((σ0, σ1), ..., (σi1−1, σi1 ), f1(σi1 ≤ ... ≤ σi1+n1
) · (σi1 , σi1+n1

),

(σi1+n1
, σi1+n1+1), ..., (σik−1, σik),

fk(σik ≤ ... ≤ σik+nk
) · (σik , σik+nk

), ..., (σm−1, σm))

=
∑

±ι(f){ι(f1), ..., ι(fk)}((σ0, σ1), (σ1, σ2), ..., (σm−1, σm)),

and the proof of the proposition follows.

Theorem 7.5 The morphism ι is an isomorphism of BDGAs between the singular
cochain complex of the barycentric subdivision of a finite simplicial complex Σ and
the SΣ-relative Hochschild cochain complex of the incidence algebra of Σ.

In particular, as the embedding of the latter complex into the classical Hochschild
cochain complex of the incidence algebra of Σ is also a morphism of BDGAs, besides
being a quasi-isomorphism, the cohomology comparison theorem of Gerstenhaber
and Schack relating singular cohomology and Hochschild cohomology can be realized,
at the cochain level, as a quasi-isomorphism of BDGAs.
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