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Abstract

This paper deals with the stability analysis of Lure type systems through aperiodic sampled-data
control laws, where the nonlinearity is assumed to be both sector and slope restricted. The proposed
method is based on the use of a new class of looped-functionals, which depends on the nonlinearity
and its slope, and on a generalized Lure type function, that is quadratic on both the states and the
nonlinearity and has a Lure-Postnikov integral term. On this basis, conditions in the form of linear
matrix inequalities (LMIs) to certify global or regional asymptotic stability of the closed-loop system
are obtained. These conditions are then used in optimization problems for computing the maximum
intersampling interval or the maximum sector bounds for which the stability of the sampled-data
closed-loop system is guaranteed. Numerical examples to illustrate the results are provided.

Keywords: Sampled-data control; Lure systems; stability analysis; sector bounded nonlinearities;
looped-functional approach.

1 Introduction

The study of the stability and stabilization of systems evolving in continuous-time whereas the con-
troller delivers inputs at discrete-time instants, i.e., sampled-data control, has been the subject of
many works in the literature. In the book from Åström[1] (and references therein) linear sampled-data
control systems updated at constant sampling periods were extensively studied. In the last years,
the sampled-data control problem, in particular considering aperiodic sampling [13], has presented a
renewed interest mainly from the following facts:

• The spread of networked control, where the control loops are implemented over communication
networks, brought some challenges regarding the operation of the closed-loop system in the pres-
ence of communication restrictions, which induces jitters, packet dropouts and delays, among
others. These restrictions can be perceived by the control loop as an aperiodic sampling policy
[13]. In this case, the exact linearization commonly applied to the analysis of linear systems
with periodic sampled control, which leads to a discrete-time model for the closed-loop system
cannot be longer used to conclude about stability and performance.

• For nonlinear systems, the formal analysis of sampled data controlled systems is more chal-
lenging, since even considering a periodic sampling policy, exact discretization is in general not
possible. Furthermore, the use of numerical approximations of the system dynamics to design
sampled-data control laws in a discrete-time framework does not guarantee that the actual
continuous-time nonlinear system considering a sample and hold implementation will operate
properly [22].
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To conclude about the stability of nonlinear systems or even linear systems under aperiodic
sampled-data control, the hybrid behavior of the closed-loop system has to be taken into account,
that is, the continuous evolution of the state trajectories during the intersampling time and the
impulsive update of the control signal at sampling instants. In this sense, different methods have
been proposed in the literature to model sampled-data systems, such as: the lifting and discrete-time
approaches [2, 8]; the impulsive modeling, in which a time-varying Lyapunov function is used [14, 21];
the modeling with a continuous-time system with time-varying delay on the plant control input [7, 6];
and the looped-functional approach [30, 31] that focuses on the behavior in the intersampling interval,
ensuring that a positive definite function is strictly decreasing at the sampling instants. For a general
overview of these approaches and others, the reader can refer to the survey by Hetel et al. [13].

Lure type systems are a particular class of nonlinear systems composed by the feedback connection
of a linear time-invariant system with a sector-bounded nonlinearity. As many physical systems can
be represented in this setup, the stability analysis of Lure systems has been attracting the attention
of the control community over the years. The first studies by Lure-Postnikov[19] regarding the
absolute stability problem were based on time-domain representation and considered only sector-
bounded nonlinearities. Then, stability criteria based on the properties of the frequency response of
the linear part of the system, leading to the conditions known as the circle and the Popov criteria [17],
where different assumptions regarding the time-variation of the the sector-bounded nonlinearity are
made, have been proposed. More recently, motivated by semi-definite programming advances, several
Lyapunov and passivity based methods have been proposed to assess the stability and to design
stabilizing control laws for Lure type systems in continuous [5, 35, 4, 37] and discrete-time [10, 36].
We can also mention works focusing on event-triggered control [40, 20], synchronization of chaotic
systems [24] and network delays[12, 39]. In these contexts, different classes of Lyapunov Functions
(LFs), e.g. quadratic ones [5] (associated to the Circle criterion), Lure-Postnikov LFs (associated to
the Popov criterion) [38, 32, 25, 35, 37] and composite LFs [15] have been considered. To handle
delays, Lyapunov-Krasovskii functionals are in general considered[12, 39, 11].

However, regarding Lure systems under sampled-data control, only few studies were carried out.
The problem is addressed by Seifullaev and Fradkov [28, 27] considering the input delay approach
proposed by Fridman [7, 6], which is based on Lyapunov-Krasovskii functionals. The functionals used
in these references are required to be positive definite and do not depend on the nonlinearity. The
design of stabilizing sampled data control laws, considering periodic sampling, is tackled by Gabriel
and Geromel [9] through differential linear matrix inequalities obtained from a classical Lure type
Lyapunov function, where a piecewise affine time-dependence is considered in the quadratic part. In
this case, to obtain conditions in LMI form a suitable partition of the intersampling interval needs to
be chosen. The sampled-data synchronization of Lure type systems is treated in Park et al. [24, 16]
considering a fragmentation approach. Conditions to assess the stability of closed-loop systems when
the sampled-data control law is designed from the Euler approximated discrete-time Lure system are
provided in Louis et al.[18]. It should be pointed out that all the above papers are concerned only
by the global stability of the origin. The case where the nonlinearity verifies sector conditions only
locally is not considered.

This paper focuses on the stability analysis of aperiodic sampled-data closed-loop Lure systems
with sector bounded and slope restricted nonlinearities.

The main contributions of the present paper can be summarized as follows:

1. A looped functional approach is considered to provide conditions to assess the stability of Lure
type systems under sampled-data control. This approach is based on the use of two elements:
a function V and a functional W0. Differently from the linear case, treated in [30], and similar
approaches considering Lyapunov-Krasovskii functionals [6, 27], in our case we consider that V
and W0 depend also on the sector nonlinearity. In particular, the function V is considered as a
generalized Lure-type function [37] composed by two terms: a generic quadratic term depending
on the state and the nonlinearity; and an integral term. Differently from classical Lure-type
functions [17], the quadratic part does not need to be defined by a positive definite matrix
and the multipliers of the integral terms do not need to be nonnegative. Moreover, we also
show that the functional W0 does not need to be positive definite for the assessment of global
stability, which is an extra relaxation with respect to the previous results in [27] considering
Lyapunov-Krasovskii functionals. All these new elements and relaxations lead to a significant
conservatism reduction, as shown in the numerical examples.

2. Both the global and local stability cases are tackled. To the best of our knowledge, this is the first
time that the local stability analysis of Lure type systems under sampled-data control is formally
addressed. This is particularly relevant when the nonlinearity verifies the sector conditions only
locally, which allows to provide stability certificates for a broad class of nonlinear systems by
casting them in a Lure setup. Regarding this case, we also provide conditions that allow to
characterize estimates of the region of attraction of the origin of the closed-loop systems as the
level sets of the function V .
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Furthermore, the proposed stability conditions are in the form of linear matrix inequalities (LMIs).
We show therefore how to incorporate these conditions as constraints of optimization problems aiming
at providing bounds on the maximal intersampling interval or on the nonlinearity sector, for which
the stability of the Lure-type system under aperiodic sampled-data control can be certified.

It should be noticed that some preliminary results in this sense were presented in [33], considering
only global results and without an in-depth discussion and a detailed mathematical development of
the theoretical results.

This paper is organized as follows. The next section describes the problem formulation. Section
3 presents the looped-functional approach in a general way. In Section 4, considering a generalized
Lure-Postnikov function and a looped-functional that depends on the nonlinearities, the conditions
derived in Section 3 are cast as LMIs. Section 5 features some optimization problems and Section
6 gives numerical examples to highlight the potentialities of the method. Section 7 summarizes the
main points covered in the paper and discuss some possible extensions.

Notation. The set of diagonal and symmetric matrices of dimension n are denoted, respectively,
by Dn and Sn. Dn�0 (Sn�0) means that the matrix is diagonal (symmetric) and positive semi-definite.
The set of positive real numbers is denoted by R+. To express diagonal matrices in a compact form,
we write ‘diag(e1, ..., en)’, where ei, i = 1, ..., n are, respectively, the elements in position (i, i). AT

denotes the transpose of matrix A. He(A) , A + AT , Im and 0m are, respectively, the identity and
zero square matrices of order m. For a given positive scalar T, define Cn[0,T] the set of continuous
functions from an interval [0, T] to Rn and the union set of continuous functions with support in
a certain range defined as Kn[T1,T2] = ∪T∈[T1,T2]{Cn[0,T]}. The notations | · | and || · || represent the
absolute value of a scalar and the Euclidean norm, respectively. The ith element of a vector v is
denoted by vi. P � 0 (P � 0) means that P is positive (semi-)definite and P ≺ 0 (P � 0) means
that P is negative (semi-)definite. Depending on the context, we use ∂ to denote the sub-differential
operator or the boundary of a set. The symmetric terms in a symmetric matrix are denoted by ?.

2 Problem Statement

2.1 The Lure System

Consider the continuous-time plant described by the following Lure system [17, 5, 37]:

ẋ(t) = Ax(t) +Buu(t) +Bφφ(y(t)) (1a)

y(t) = Cx(t) +Dφφ(y(t)), (1b)

where x ∈ Rn represents the states of the plant, u ∈ Rq represents its inputs and y ∈ Rm its
outputs (i.e., the argument of the nonlinearity φ), A ∈ Rn×n, Bu ∈ Rn×q, Bφ ∈ Rn×m, C ∈
Rm×n and Dφ ∈ Rm×m. The vector-valued nonlinearity φ : Rm → Rm, is assumed to be time-
invariant, memoryless, Lipschitz on Rm, decentralized, sector bounded and slope restricted, i.e.,
φ(y) = [φ1(y1), . . . , φm(ym)]T , with φi(yi) satisfying, ∀i = 1, . . . ,m:

φi(0) = 0, (2a)

φi(yi)

yi
∈ [δi, δi] ∀y ∈ Y0 ⊆ Rm, (2b)

∂φi(yi) ∈ [γ
i
, γi], ∀y ∈ Y0 ⊆ Rm, (2c)

where δi ∈ R, δi ∈ R, δi ≤ δi are, respectively, the lower and upper sector bounds for the ith
nonlinearity and γ

i
∈ R, γi ∈ R, γ

i
≤ γi are, respectively, the lower and upper slope bounds

for the ith nonlinearity. From these bounds, denote ∆ , diag(δ1, . . . , δm), ∆ , diag(δ1, . . . , δm),
Γ , diag(γ

1
, . . . , γ

m
) and Γ , diag(γ1, . . . , γm). If Y0 = Rm, the relations are said to be verified

globally and otherwise locally. The Lipschitz assumption on φ implies that ∂φi(yi) = dφi
dyi

almost
everywhere, relaxing the requirement for the nonlinearity to be continuously differentiable.

Taking into account that φ̇i(yi) = dφi(yi)
dt

= ∂φi(yi)ẏi and relations (2), the following Lemmas
can be stated.

Lemma 1. [17] If U1 ∈ Dm�0 and φ : Rm → Rm satisfies (2), then

S∆(U1, φ(y), y) , (φ(y)−∆y)TU1(∆y − φ(y)) ≥ 0, (3)

for all y ∈ Y0.

Lemma 2. [37] If U2 ∈ Dm�0 and φ : Rm → Rm satisfies (2), then

SΓ(U2, φ̇(y), ẏ) , (φ̇(y)− Γẏ)TU2(Γẏ − φ̇(y)) ≥ 0, (4)

almost everywhere for y ∈ Y0.
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It should be noted that if Dφ 6= 0 equation (1b) is an implicit one.
In this case, the well-posedness of the algebraic loop (1b) is guaranteed if there exists a unique

solution to the implicit equation F (y) , y − Dφφ(y) = Cx, that is, a mapping y(x) satisfying
F (y(x)) = Cx. Applying the reasoning used in Valmorbida and Drummond[37], a condition for the
well-posedness of (1b) considering φ satisfying (2) is given by the following proposition.

Proposition 1. [37] If there exists a matrix N ∈ Dm�0 such that

2N −He{N(Im −DφΓ)−1Dφ(Γ− Γ)} � 0, (5)

then matrix (Im−DφΓ) is nonsingular for all matrices Γ ∈ ∆Γ , {Γ ∈ Dm ; Γ = diag(γ1, γ2, . . . , γm), γi ∈
[δi, δi], i = 1, . . . ,m} and the algebraic-loop (1b) is well-posed.

Henceforth, we consider the following Assumption.

Assumption 1 (Well-posedness). There exists a matrix N ∈ Dm�0 such that (5) holds.

Note that when Dφ = 0 this assumption is trivially verified.
Provided that Assumption 1 is satisfied, the following set can be defined

X0 , {x ∈ Rn ; y ∈ Y0, y −Dφφ(y) = Cx}. (6)

The set X0 corresponds to all the states such that y = Cx+Dφ(y) ∈ Y0. When the sector conditions
and the slope restrictions are satisfied globally, i.e. Y0 = Rm, we have that X0 is equal to Rn.

2.2 The sampled-data control law

We suppose that the control signal u is updated at sampling instants denoted tk and remains constant
between two successive sampling instants through a zero-order holder (ZOH). Namely, we consider
the following sampled-data control law:

u(t) = Kxx(tk) +Kφφ(y(tk)), ∀t ∈ [tk, tk+1), (7)

where Kx ∈ Rq×n, Kφ ∈ Rq×m. This generic control law allows to use information about the
nonlinearity [5]. For saturating systems, a method for the design of such a control law using piecewise
quadratic functions is presented in Queinnec et al. [26]. If the nonlinearity φ is not precisely known
or φ(y) cannot be directly measured, it suffices to consider Kφ = 0, i.e. a linear state feedback
control law. We consider the case of aperiodic sampling. In this context, we assume that there
exist two positive scalars T1 ≤ T2 such that the difference between two successive sampling instants
Tk = tk+1 − tk satisfies

0 < T1 ≤ Tk ≤ T2, ∀k ∈ N. (8)

Thus, {tk}k∈N is an increasing sequence of positive scalars such that
⋃
k∈N[tk, tk+1) = [0,+∞). Note

that the periodic sampling appears as a particular case in which Tk has the same value ∀k ∈ N, i.e.,
Tk = T1 = T2, ∀k.

In this paper, we are interested in deriving conditions that allow to assess the asymptotic stability
of the origin of system (1), where the nonlinearity φ satisfies the sector and slope restrictions given in
(2), with a sampled-data control law given by (7) assuming an aperiodic sampling policy satisfying
(8). With this aim, we consider a looped-functional approach, which is detailed in the next section.

3 Looped-Functional Approach

The looped-functional approach has originally been introduced by Seuret [30] to study linear systems
under sampled-data control. It can be seen as a generalization of Lyapunov-Krasovskii approaches
[6], in the sense that the functional does not need to be positive definite. In this section we extend
these ideas to cope with Lure type systems.

As in the linear systems case, we formally show that for global stability results the positivity of
the functional is not needed. On the other hand, for deriving local results some further assumptions
are needed to ensure that the trajectories are bounded in the region where the sector conditions are
valid.

To state the results, we consider the notation [30] xk(τ) , x(tk + τ), yk(τ) , y(tk + τ) and
φk(τ) , φ(yk(τ)). Hence, the closed-loop dynamics in the interval [tk, tk+1) is governed by the
following equations:{

ẋk(τ) = Axk(τ) +Bφφk(τ) +Bu(Kxxk(0) +Kφφk(0))

yk(τ) = Cxk(τ) +Dφφk(τ), ∀τ ∈ [0, Tk),
(9)
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where ẋk(τ) = d
dτ
xk(τ).

Let Dx ⊆ X0 ⊆ Rn be a compact domain containing the origin in its interior. In what follows we
consider a differentiable function V : Dx → R+ satisfying

µ1||x||p ≤ V (x) ≤ µ2||x||p, ∀x ∈ Dx, with µ1, µ2 > 0, p > 1. (10)

Associated to V (x), define the level sets

L(V, ρ) = {x ∈ Rn|V (x) ≤ ρ}, (11)

with ρ > 0.
In addition, consider a differentiable functional with respect to τ , called a looped functional [30],

W0 : [0,T2]×Kn[T1,T2] × [T1,T2]→ R that satisfies:

W0(Tk, z, Tk) = W0(0, z, Tk), ∀z ∈ Kn[T1,T2] and ∀Tk ∈ [T1,T2]. (12)

3.1 Global Stability

Assume that the nonlinearity φ satisfies (2b) and (2c) globally, that is, they are verified ∀y ∈ Y0 = Rm,
or equivalently, X0 = Rn. In this case, the next theorem provides conditions to ensure the global
asymptotic stability of the origin of the closed-loop system composed by (1) and (7) with Tk ∈ [T1,T2].

Theorem 1. Consider a differentiable function V and a differentiable looped-functionalW0 satisfying
(10) and (12), respectively, with Dx = Rn. If for all k ∈ N, Tk ∈ [T1,T2] and τ ∈ [0, Tk] it follows
that

d

dτ
[V (xk(τ)) + W0(τ, xk, Tk)] < 0 (13)

along the trajectories of (9), then the origin of the closed-loop system composed by (1) and the
sampled-data control law (7), with Tk ∈ [T1,T2], is globally asymptotically stable (GAS), i.e. x(t)→ 0
as t→∞, ∀x(0) ∈ Rn.

Proof. First, by continuity of the system trajectories, note that xk(Tk) = xk+1(0). Integrating now
(13) in the interval [0, Tk] and using (12), it follows that

∆V (k) = V (xk+1(0))− V (xk(0))

= V (x(tk+1))− V (x(tk)) < 0, ∀k ∈ N.

Thus, we can conclude that the sequence of samples xk(0) = x(tk)→ 0 as k →∞.
To conclude the proof, we need to show that the x(t) is uniformly bounded ∀t ∈ [tk, tk+1), ∀k,

and that the continuous-time trajectories also converge to the origin, i.e., x(t) → 0 as t → ∞. For

this, note that as φi(yi)
yi

∈ [δi, δi], it follows that, ∀t ≥ 0, there exist scalars αi(t), 0 ≤ αi(t) ≤ 1,
∀i = 1, . . . ,m, such that

φi(yi(t)) = [αi(t)δi + (1− αi(t))δi ]yi(t) = υi(t)yi(t), with υi(t) ∈ [δi, δi]. (14)

Thus, we can write φ(y(t)) = Υ(υ(t))y(t), with Υ(υ(t)) = diag(υ1(t), υ2(t), . . . , υm(t)), υ(t) ∈ fυ =
{υ ∈ Rm| δi ≤ υi ≤ δi, i = 1, . . . ,m}. In this case, we have that y(t) = Cx(t) + DφΥ(v(t))y(t), and
from Assumption 1 it follows that

y(t) = (I −DφΥ(v(t)))−1Cx(t). (15)

Hence, the closed-loop system can be represented by the following linear time-varying system,
∀t ∈ [tk, tk+1):

ẋ(t) = Ax(t) +Bu(Kxx(tk) +Kφφ(y(tk))) +BφΥ(υ(t))(I −DφΥ(υ(t)))−1Cx(t). (16)

Equivalently, considering the lifted-variables one has

ẋk(τ) = (A+BφΥ(υk(τ))(I −DφΥ(υk(τ)))−1C)xk(τ) +Bu(Kxxk(0) +Kφφk(0)), (17)

where υk(τ) , υ(tk+τ). For each admissible υk ∈ Kn[T1,T2], such that υk(τ) ∈ fυ, define the transition

matrix for the system (16) without the constant term in Bu, as Ψυk (τ, s) , Ψυ(tk + τ, tk + s). Thus,
it follows that

xk(τ) = Ψυk (τ, 0)xk(0)+

∫ τ

0

Ψυk (τ, s)Bu
[
Kx Kφ

] [xk(0)
φk(0)

]
ds. (18)
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Thus, we obtain the following upper bound for the trajectories:

||xk(τ)|| ≤ ||Ψυk (τ, 0)|| ||xk(0)||+
∫ τ

0

∣∣∣∣∣∣∣∣Ψυk (τ, s)

∣∣∣∣∣∣∣∣ds ∣∣∣∣∣∣∣∣Bu [Kx Kφ

] [xk(0)
φk(0)

]∣∣∣∣∣∣∣∣
≤
(
||Ψυk (τ, 0)||+

∫ τ

0

∣∣∣∣∣∣∣∣Ψυk (τ, s)

∣∣∣∣∣∣∣∣ds(||BuKx||+ ||BuKφ|| ||Υ(υk(0))(I −DφΥ(υk(0)))−1C||
))
||xk(0)||

≤
(
||Ψυk (τ, 0)||+

∫ T2

0

||Ψυk (τ, s)||ds
(
||BuKx||+ ||BuKφ|| ||Υ(υk(0))(I −DφΥ(υk(0)))−1C||

))
||xk(0)||.

(19)

Then, since υk(τ) ∈ fυ, ∀τ ∈ [0, T2], there exists a scalar µΨ,

µΨ = sup
υk∈Cn[0,T2]

s.t. υk(τ)∈fυ

(
||Ψυk (τ, 0)||+

∫ T2

0

||Ψυk (τ, s)||ds(||BuKx||+ ||BuKφµυ||)
)
,

with µυ = maxυ∈fυ ||Υ(υ)(I −DφΥ(υ))−1C||, such that ||xk(τ)|| ≤ µΨ||xk(0)||. Hence, if xk(0)→ 0
as k → ∞, i.e., x(tk) → 0 as k → ∞, then x(tk + τ) = xk(τ) → 0 as k → ∞, ∀τ ∈ [0, Tk], that is
x(t) = x(tk + τ)→ 0 as t→∞.

It should be noticed that, as for the case of linear systems [30], in Theorem 1 no assumption
regarding the positivity of the functional W0 is needed.

3.2 Regional Stability

Whenever the nonlinearity φ verifies (2b) and (2c) only locally, that is only for y ∈ Y0 (or, equivalently,
x ∈ X0), stability results only in a local context can be derived. In this case, beyond the asymptotic
stability of the origin, it is important to characterize an estimate of its region of attraction. Hence,
provided that the initial state of system (1) belongs to this estimate, it is ensured that the trajectories
of the closed-loop system (1)-(7) converge to the origin ∀Tk ∈ [T1,T2]. Similar to reference [23], general
conditions to tackle this problem are presented in the next theorem.

Theorem 2. Consider the closed-loop system composed by (1) and the sampled-data control law
(7), with Tk satisfying (8) and (2) being satisfied ∀y ∈ Y0 ⊂ Rm. Consider a compact domain
Dx ⊆ X0 ⊂ Rn containing the origin and let V : Dx → R+ be a differentiable function such that

µ1‖x‖p ≤ V (x) ≤ µ2‖x‖p, ∀x ∈ Dx, with µ1, µ2 > 0, p > 1. (20)

Let L(V, ρ), with ρ > 0, be the level sets of V and a continuous-time functional W0 : [0,T2] ×
Kn[T1,T2] × [T1,T2]→ R+, such that

W0(0, xk, Tk) = W0(Tk, xk, Tk) = 0, (21a)

W0(τ, xk, Tk) > 0,∀τ ∈ [0, Tk), ∀Tk ∈ [T1,T2], ∀xk ∈ Kn[T1,T2] such that xk(τ) ∈ Dx − {0}. (21b)

Define W (τ, xk, Tk) = V (xk(τ))+W0(τ, xk, Tk) and let Ẇ (τ, xk, Tk) be the derivative of W (τ, xk, Tk)
with respect to τ . If the inequality

Ẇ (τ, xk, Tk) < 0 (22)

is satisfied ∀xk ∈ Kn[T1,T2] such that xk(τ) ∈ Dx − {0} ⊂ Rn, ∀τ ∈ [0, Tk), ∀Tk ∈ [T1,T2], ∀k ∈ N,
then for any initial condition x(0) = x0(0) lying inside any level set L(V, ρ) ⊂ Dx, it follows that:

(i) ∆V (k) = V (xk+1(0))− V (xk(0)) < 0, ∀k ∈ N, xk(0) 6= 0;

(ii) The corresponding trajectories of the closed-loop system, formed by (1) and (7) with Tk ∈ [T1,T2]
satisfy x(t) ∈ L(V, ρ), ∀t, and converge asymptotically to the origin.

Proof. Suppose that x(0) = x0(0) ∈ ∂L(V, ρ) ⊂ Dx ⊆ X0 and that (22) is satisfied. Then, it follows
that

W (τ, x0, T0) < W (0, x0, T0), ∀τ ∈ (0, T0]. (23)

Taking into consideration (23) and the properties of W0 stated in (21), it follows that V (x0(τ)) <
W (τ, x0, T0) < W (0, x0, T0) = V (x0(0)) = ρ, ∀τ ∈ (0, T0], implying that x0(τ) ∈ L(V, ρ) ⊂ Dx,
∀τ ∈ (0, T0]. Now, integrating (22) over the interval [0, T0] and considering (21), one obtains that
V (x0(T0))− V (x0(0)) < 0. Since by continuity of the trajectories it follows that x0(T0) = x1(0), we
conclude that ∆V (0) < 0 and thus V (x1(0)) = ρ1 < V (x0(0)) = ρ, which implies that V (x1(0)) < ρ,
i.e., x1(0) ∈ ∂L(V, ρ1) ⊂ L(V, ρ). By repeating this reasoning for k = 1, 2, . . . ,∞, it follows that
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∆V (k) < 0, ∀k ∈ N, which proves item (i). As a consequence, it follows that limk→∞ xk(0) =
limk→∞ x(tk) = 0. Moreover, it follows that V (xk(τ)) < V (xk(0)), ∀k ≥ 0, and we can conclude
that L(V, ρ) ⊂ Dx ⊆ X0 is a positively invariant set and thus the continuous state trajectories never
leave the set X0, for which the conditions (2) are satisfied. Furthermore, since limk→∞ V (xk(0)) = 0
and V (xk(τ)) < V (xk(0)), we conclude that limk→∞ V (xk(τ)) = 0 and hence xk(τ)→ 0 for k →∞,
which concludes the proof of item (ii).

Note that, differently from Theorem 1, here we have to consider a functional W0 that is positive
definite and satisfies W0(0, xk, Tk) = W0(Tk, xk, Tk) = 0. This is necessary to ensure that the
trajectories do not leave Dx ⊆ X0 between two sampling instants. Note however that function V is
not required to be strictly decreasing with respect to the continuous-time trajectory, which implies
that L(V, ρ) is positively invariant but not continuously contractive.

Remark 1. Theorems 1 and 2 are inspired by the results in [30]. It should however be pointed
out that reference [30] regards only linear systems. In that paper, since the closed-loop dynamics
is linear, the proof that ∆V (k) < 0 implies the convergence of the continuous-time trajectories to
the origin is straightforward. For nonlinear systems, in general, it is not possible to conclude that
∆V (k) < 0 implies the convergence of the continuous-time trajectories to the origin without further
conditions. However, for the class of Lure type nonlinear systems, we formally prove in Theorem
1 that ∆V (k) < 0 indeed implies the convergence of the continuous-time trajectories to the origin.
Then, as in reference [30], the considered functional W0 does not need to be positive definite. This is
an original and important contribution of the present work. On the other hand, for the local stability
results, it is necessary to impose the positivity of W0, since we have to ensure that the trajectories of
the system are confined in the region where the sector conditions are valid. This is formally proved
in Theorem 2 and it is another contribution of the present work. Note that whenever the system is
linear, as in reference [30], the stability of trajectories is a global property and therefore there is no
need for a particular analysis of regional stability as for nonlinear systems.

4 LMI Stability Conditions

Based on appropriate classes of candidates for the function V and the functional W0, we show now
how to cast the conditions in Theorems 1 and 2 as LMIs, which allow to assess the stability of
the origin of the closed-loop system under the sampled-data control law through numerical tests.
Moreover, these conditions can be added as constraints in optimization problems as it will be seen in
Section 5.

4.1 Parametrization of the function V and the looped functional W0

We consider as candidates for the function V the class of generalized Lure functions V : Rn → R
defined as follows

V (x) = VQG(x) +

m∑
i=1

λi

∫ yi(x)

0

(φi(s)− δis)ds, (24)

where

VQG(x) =

[
x

φ(y(x))

]T [
P11 P12

PT12 P22

]
︸ ︷︷ ︸

P

[
x

φ(y(x))

]
, (25)

and y(x) is the solution to (1b).

This function generalizes the classic Lure-Postnikov [17] one, given by xTP11x+
∑m
i=1 λi

∫ yi(x)

0
(φi(s)−

δis)ds with P11 � 0 and non-negative coefficients λi (also known as Lure-Postnikov terms), i =
1, . . . ,m. Regarding (24) we do not require the positive-definiteness of P , nor the non-negativity of
the coefficients λi. In this case, the positive-definiteness of V should be ensured as stated in the
following lemma.

Lemma 3. [37] Consider V in (24) where φ satisfies (2) and define Λ , diag(λ1, . . . , λm). If there
exists a matrix Λ̃ ∈ Dm�0 such that

Λ ≥ −Λ̃, (26)

VQG(x)− 1

2
yT (x)(∆−∆)Λ̃y(x) > 0, ∀x ∈ X0, (27)

then V (x) > 0, ∀x ∈ X0, x 6= 0.

7



For the looped-functionalW0, we consider a generalized version of the one proposed in Seuret and
Gomes da Silva Jr. [31], where terms depending on φ and φ̇ are added as follows:

W0(τ, xk, Tk) = (Tk − τ)τ

[
xk(0)
φk(0)

]T
X

[
xk(0)
φk(0)

]
+ (Tk − τ)

{∫ τ

0

ẋTk (θ)Rxẋk(θ)dθ + (xk(τ)− xk(0))T [Fx(xk(τ)− xk(0)) + 2Gxxk(0)]

}
+ (Tk − τ)

{∫ τ

0

φ̇Tk (θ)Rφφ̇k(θ)dθ + (φk(τ)− φk(0))T [Fφ(φk(τ)− φk(0)) + 2Gφφk(0)]

}
(28)

with Fx ∈ Sn, Gx ∈ Rn×n, X ∈ Sn+m, Fφ ∈ Sm, Gφ ∈ Rm×m, Rx ∈ Sn�0 and Rφ ∈ Sm�0.
Note that the functional W0 given in (28) satisfies the conditions (12) and (21a). Since (Tk−τ) = 0

when τ = Tk and xk(τ)− xk(0) = 0 when τ = 0, it follows that W0(0, xk, Tk) = W0(Tk, xk, Tk) = 0.
Moreover, it is continuous and differentiable with respect to τ .

Remark 2. The function V and the looped-functional W0 can be seen as a generalized versions of
the ones proposed by Seuret [30]. In that paper, to address the case of linear systems, it has been
considered

V (x) = xTPx with P = P ′ > 0 (29)

and

W0(τ, xk, Tk) = (Tk − τ)τxk(0)TXxk(0)

+ (Tk − τ)

{∫ τ

0

ẋTk (θ)Rxẋk(θ)dθ(xk(τ)− xk(0))T [Fx(xk(τ)− xk(0)) + 2Gxxk(0)]

}
(30)

It should also be noticed that the Lyapunov-Krasovskii functional used by Seifullaev and Fradkov [27]
to deal with Lure type sampled-data systems, corresponds (using our notation) to V +W0 with V as
in (29) and W0 as in (31), but without the term xk(0)TXxk(0). On the other hand, note that V
and W0 in our case, as defined in (24)-(25) and (28) respectively, present several terms that depend
on the nonlinearity φ. Moreover, Lemma 3 allows to ensure the positive definiteness of function V
without imposing the positive definiteness of matrices P and Λ. These aspects introduce extra degrees
of freedom in the stability conditions, leading to a conservatism reduction at the expense of a higher
computational complexity. As it will be seen in the next sections, since the considered functional
has more terms, the stability conditions derived with (24)-(25) and (28) will present more decision
variables when compared with the conditions in reference [27], which are obtained with a simpler
functional.

4.2 Global case

Based on the general formulation of Theorem 1, the following theorem provides LMI conditions to
certify the global asymptotic stability of the origin of the closed-loop system under aperiodic sampling,
by using the class of functions V and functionals W0 defined in the previous section.

To present the LMIs in a more compact form, consider the definition of the following auxiliary
matrices:1

M0 = [A Bφ − I 0 BuKx BuKφ]

M1 = [I 0 0 0 0 0] M2 = [0 I 0 0 0 0] M3 = [0 0 I 0 0 0]

M4 = [0 0 0 I 0 0] M5 = [0 0 0 0 I 0] M6 = [0 0 0 0 0 I]

M15 = M1 −M5 M26 = M2 −M6

M12 = [MT
1 MT

2 ]T M34 = [MT
3 MT

4 ]T M56 = [MT
5 MT

6 ]T

M135 = [MT
1 MT

3 MT
5 ]T M246 = [MT

2 MT
4 MT

6 ]T .

Theorem 3. For given T1 and T2 such that 0 < T1 ≤ T2, assume that there exist matrices P ∈ Sn+m,
Λ ∈ Dm, Λ̃ ∈ Dm�0, Uj, j = 0, . . . , 3 ∈ Dm�0, Fx ∈ Sn, Gx ∈ Rn×n, Fφ ∈ Sm, Gφ ∈ Rm×m, Rx ∈ Sn�0,

Rφ ∈ Sm�0, Qx ∈ R(3n)×n, Qφ ∈ R(3m)×m, X ∈ Sn+m, L ∈ R3(n+m)×n that satisfy, for i = 1, 2:

Ψ1(Ti) = Π1 + TiΠ2 + TiΠ3 ≺ 0 (31)

Ψ2(Ti) =

Π1 − TiΠ3 TiM
T
135Qx TiM

T
246Qφ

? −TiRx 0
? ? −TiRφ

 ≺ 0 (32)

Λ � −Λ̃ (33)

1The matrices Mi are not of the same dimension. The notations 0 and I correspond to the zero and identity matrices
of appropriate dimensions that will become clear in the context.
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P − 1

2

[
CT

DT
φ

]
(∆−∆)Λ̃

[
C Dφ

]
+ He

{
1

2

[
(∆C)T

(∆Dφ − Im)T

]
U0

[
∆C (∆Dφ − Im)

]}
� 0, (34)

with

Π1 = He{MT
12PM34} −MT

15FxM15 −MT
26FφM26 −He{MT

26GφM6} −He{MT
15GxM5}

−He

{
1

2
(MT

1 (∆C)T +MT
2 (∆Dφ − Im)T )ΛCM3

}
−He

{
1

2
(MT

1 (∆C)T +MT
2 (∆Dφ − Im)T )ΛDφM4

}
+ He{MT

2 (Im − (∆Dφ)T )−MT
1 (∆C)T )U1(∆CM1 + (∆Dφ − Im)M2)}

+ He{MT
4 (Im − (ΓDφ)T )−MT

3 (ΓC)T )U2(ΓCM3 + (ΓDφ − Im)M4)}

+ He{MT
6 (Im − (∆Dφ)T )−MT

5 (∆C)T )U3(∆CM5 + (∆Dφ − Im)M6)}

−He{MT
135QxM15} −He{MT

246QφM26}+ He{LM0}

Π2 = MT
3 RxM3 + He{MT

3 (FxM15 +GxM5)}+ He{MT
4 (FφM26 +GφM6)}+MT

4 RφM4

Π3 = MT
56XM56,

Then the origin of the sampled-data closed-loop system (1)-(7), with φ satisfying (2) globally and
Tk ∈ [T1,T2], is GAS.

Proof. Considering Theorem 1, we obtain the result by showing that (10), (12) and (13) are satisfied
considering the generalized Lure type function (24)-(25) and W0 as in (28).

By using Lemma 1 and Lemma 3, it is straightforward to prove that the positivity of V is
ensured by the inequalities (34) and (35). Moreover, note that

∫ yi
0

(φi(s)− δis)ds = 1
2
yTi (δ(i)− δ(i))yi

−
∫ yi

0
(δis− φi(s))ds. Hence, if (34) holds with Λ̃ ∈ Dm�0, it follows that

V (x) ≥
[
x
φ

]T
Ψ(τ)

[
x
φ

]
+

m∑
i=1

λ̃i

∫ yi

0

(δis− φi(s))ds ≥
[
x
φ

]T
Ψ(τ)

[
x
φ

]
, (35)

with Ψ = P − 1

2

[
CT

DT
φ

]
(∆ − ∆)Λ̃ [C Dφ]. Now if (35) holds, it follows that there exists a scalar

µ1 > 0 such that [
x
φ

]T
Ψ(τ)

[
x
φ

]
− S∆(U0, φ, y) ≥ µ1||

[
x
φ

]
||2 ≥ µ1||x||2 (36)

Hence, from Lemma 1, (36) and (37) we conclude that

V (x) ≥ µ1||x||2.

On the other hand, recalling from the proof of Theorem 1 that φ(y) = Υ(υ)y and y = (I −
DφΥ(υ))−1Cx = Υ̃(υ)x, with υ ∈ fυ = {υ ∈ Rm| δi ≤ υi ≤ δi, i = 1, . . . ,m}, and using the
fact that λi

∫ yi
0

(φi(s)− δis)ds ≤ |λi|
∫ yi

0
(δis− δis)ds = 1

2
yTi |λi|(δ(i) − δ(i))yi, it follows that:

V (x) ≤ xTP11x+ 2xT Υ̃T (υ)Υ(υ)P12x+ xT Υ̃T (υ)Υ(υ)P22Υ(υ)Υ̃(υ)x+ xT ||Λ||Υ̃(υ)T (∆−∆)Υ̃(υ)x
(37)

≤ µ2||x||2 (38)

with µ2 = maxυ∈fυ (||P11 +2Υ̃T (υ)Υ(υ)P12 +Υ̃(υ)TΥ(υ)P22Υ(υ)Υ̃(υ)+(||Λ||Υ̃(υ)T (∆−∆)Υ̃(υ))||).
Hence, we conclude that V (x) defined in (24)-(25) verifies (10).

Since W0 given in (28) satisfies the condition (12) by construction, the rest of the proof consists
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in showing that (32)-(33) implies (13). With this aim, the expression of Ẇ is given as follows:

Ẇ (τ, xk, Tk) =2

[
xk(τ)
φk(τ)

]T
P

[
ẋk(τ)

φ̇k(τ)

]
− [(xTk (τ)(∆C)T + φTk (τ)(∆Dφ − Im)T )ΛC]ẋk(τ)

− [(xTk (τ)(∆C)T + φTk (τ)(∆Dφ − Im)T )ΛDφ]φ̇k(τ)

− (xk(τ)− xk(0))T [Fx(xk(τ)− xk(0)) + 2Gxxk(0)] + (Tk − 2τ)

[
xk(0)
φk(0)

]T
X

[
xk(0)
φk(0)

]
+ (Tk − τ)ẋTk (τ)[Rxẋk(τ) + 2Fx(xk(τ)− xk(0)) + 2Gxxk(0)]−

∫ τ

0

ẋTk (θ)Rxẋk(θ)dθ

− (φk(τ)− φk(0))T [Fφ(φk(τ)− φk(0)) + 2Gφφk(0)]

+ (Tk − τ)φ̇Tk (τ)[Rφφ̇k(τ) + 2Fφ(φk(τ)− φk(0)) + 2Gφφk(0)]−
∫ τ

0

φ̇Tk (θ)Rφφ̇k(θ)dθ.

(39)

Using the sector conditions defined in Lemma 1 and Lemma 2, we have that

Ẇ (τ, xk, Tk) < Ẇ (τ, xk, Tk) + 2S∆(U1, φk(τ), yk(τ)) + 2SΓ(U2, φ̇k(τ), ẏk(τ)) + 2S∆(U3, φk(0), yk(0)),

or equivalently

Ẇ (τ, xk, Tk) <Ẇ (τ, xk, Tk) + 2(φTk (τ)(Im − (∆Dφ)T )− xTk (τ)(∆C)T )U1(∆Cxk(τ) + (∆Dφ − Im)φk(τ))

+ 2(φ̇Tk (τ)(Im − (ΓDφ)T )− ẋTk (τ)(ΓC)T )U2(ΓCẋk(τ) + (ΓDφ − Im)φ̇k(τ))

+ 2(φTk (0)(Im − (∆Dφ)T )− xTk (0)(∆C)T )U3(∆Cxk(0) + (∆Dφ − Im)φk(0)). (40)

Consider the vector ηk(τ) = [xTk (τ) φTk (τ) ẋTk (τ) φ̇Tk (τ) xTk (0) φTk (0)]T , the vector ζk(τ) = M135 ηk(τ)
and a matrix Qx ∈ R(3n)×n. Since Rx is assumed to be positive definite, it follows that (ẋk(θ) −
R−1
x QTx ζk(τ))TRx(ẋk(θ) − R−1

x QTx ζk(τ)) > 0. Integrating this expression over [0, τ ], the following
inequality is obtained [3]∫ τ

0

ẋk(θ)TRxẋk(θ)dθ − 2ζTk (τ)Qx(xk(τ)− xk(0)) + τζTk (τ)QxR
−1
x QTx ζk(τ) ≥ 0. (41)

Consider now a new vector ψk(τ) = M246 ηk(τ) and a matrix Qφ ∈ R(3m)×m. Following the same
reasoning as above, we have that:∫ τ

0

φ̇k(θ)TRφφ̇k(θ)dθ − 2ψTk (τ)Qφ(φk(τ)− φk(0)) + τψTk (τ)QφR
−1
φ QTφψk(τ) ≥ 0. (42)

On the other hand, along the solutions of (9) there exists a coupling relation between the compo-
nents of the vector ηk(τ). Hence, ∀L ∈ R3(n+m)×n the following equality is satisfied:

LM0ηk(τ) = 0. (43)

This null term can be added to (41). Hence, combining (41), (42), (43) and (44), one obtains that

Ẇ ≤ ηTk (τ)[Π1 + (Tk − τ)Π2 + τ(MT
135QxR

−1
x QTxM135 +MT

246QφR
−1
φ QTφM246) + (Tk − 2τ)Π3]ηk(τ).

Thus, to prove that Ẇ < 0, it suffices to guarantee that

Π1 + (Tk − τ)Π2 + τ(MT
135QxR

−1
x QTxM135 +MT

246QφR
−1
φ QTφM246) + (Tk − 2τ)Π3 ≺ 0.

Since this matrix inequality is affine in τ , and τ ∈ [0, Tk], a necessary and sufficient condition
for the inequality to hold is obtained by checking the inequality in the interval limits 0 and Tk, thus
giving the following two inequalities:{

Π1 + Tk(Π2 + Π3) ≺ 0 (44)

Π1 − TkΠ3 + Tk(MT
135QxR

−1
x QTxM135 +MT

246QφR
−1
φ QTφM246) ≺ 0. (45)

Finally, since (45) and (46) are affine in Tk and Tk ∈ [T1,T2], applying the same reasoning and
the Schur complement to (46), we conclude that Ψ1(Ti) ≺ 0 and Ψ2(Ti) ≺ 0, i = 1, 2, are sufficient
to ensure Ẇ < 0. Hence, by virtue of Theorem 1 the satisfaction of conditions (32)-(35) ensures the
global asymptotic convergence of the trajectories to the origin.
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4.3 Regional case

Based on the result of Theorem 2, in this section we derive LMI conditions to assess the local stability
of the origin of the closed-loop system. It should be recalled that in this case the functional W0 is
required to be positive definite to ensure the boundedness of the trajectories in the region of validity
of the sector conditions. For this, we consider V as defined in (24) and a functional W0 as defined in
(28) with Gx = 0, Gφ = 0 and X � 0, Fx � 0 and Fφ � 0. Note that this particular structure will
ensure the positivity of the crossed terms between xk(τ) and xk(0) and between φk(τ) and φk(0),
guaranteeing therefore the positivity of the functional.

Theorem 4. For given T1 and T2 such that 0 < T1 ≤ T2, assume that there exist matrices P ∈ Sn+m,
Λ ∈ Dm, Λ̃ ∈ Dm�0, Uj ∈ Dm�0, j = 0, . . . , 3, Fx ∈ Sn�0, Fφ ∈ Sm�0, Rx ∈ Sn�0, Rφ ∈ Sm�0, Qx ∈ R(3n)×n,

Qφ ∈ R(3m)×m, X ∈ Sn+m
�0 , L ∈ R3(n+m)×n that satisfy, for i = 1, 2:

Ψ1(Ti) = Π1 + TiΠ2 + TiΠ3 ≺ 0 (46)

Ψ2(Ti) =

Π1 − TiΠ3 TiM
T
135Qx TiM

T
246Qφ

? −TiRx 0
? ? −TiRφ

 ≺ 0 (47)

Λ � −Λ̃ (48)

P − 1

2

[
CT

DT
φ

]
(∆−∆)Λ̃

[
C Dφ

]
+ He

{
1

2

[
(∆C)T

(∆Dφ − I)T

]
U0

[
∆C (∆Dφ − I)

]}
� 0, (49)

with

Π1 = He{MT
12PM34} −MT

15FxM15 −MT
26FφM26

−He

{
1

2
(MT

1 (∆C)T +MT
2 (∆Dφ − I)T )ΛCM3

}
−He

{
1

2
(MT

1 (∆C)T +MT
2 (∆Dφ − I)T )ΛDφM4

}
+ He{MT

2 (I − (∆Dφ)T )−MT
1 (∆C)T )U1(∆CM1 + (∆Dφ − I)M2)}

+ He{MT
4 (I − (ΓDφ)T )−MT

3 (ΓC)T )U2(ΓCM3 + (ΓDφ − I)M4)}

+ He{MT
6 (I − (∆Dφ)T )−MT

5 (∆C)T )U3(∆CM5 + (∆Dφ − I)M6)}

−He{MT
135QxM15} −He{MT

246QφM26}+ He{LM0}

Π2 = MT
3 RxM3 + He{MT

3 FxM15}+ He{MT
4 FφM26}+MT

4 RφM4

Π3 = MT
56XM56, (50)

Then, for all initial conditions belonging to L(V, ρ) ⊂ X0, the corresponding trajectories of the closed-
loop system (1)-(7) with φ satisfying (2) and Tk ∈ [T1,T2] converge asymptotically to the origin.

Proof. The proof follows the same steps of the one of Theorem 3. The inequalities (47)-(50) ensure
the positivity of V and that Ẇ (τ, xk, Tk) < 0, considering W0 with Gx = 0, Gφ = 0, X � 0, Fx � 0
and Fφ � 0.

Remark 3. When the slope bounds (i.e. Γ and Γ) are unknown or when we want to ensure stability
for any nonlinearity in a given sector, that is, considering that only (2a) and (2b) are satisfied,
Lemma 2 can no longer be used to deal with the terms depending on φ̇ in the derivative of V +W0. In
this case, stability conditions can be obtained by applying Theorems 1 and 2 with a quadratic function
V (x) = xTP11x and the simplified functional

W0(τ, xk, Tk) = (Tk − τ)τ

[
xk(0)
φk(0)

]T
X

[
xk(0)
φk(0)

]
(51)

+ (Tk − τ)

{∫ τ

0

ẋTk (θ)Rxẋk(θ)dθ + (xk(τ)− xk(0))T [Fx(xk(τ)− xk(0)) + 2Gxxk(0)]

}
with Fx ∈ Sn, Gx ∈ Rn×n, X ∈ Sn+m and Rx ∈ Sn�0. Then, following the same developments of
Theorems 3 and 4, LMI conditions can be straightforwardly derived for this case both in global and
regional contexts.

11



5 Optimization Problems

From the conditions stated in Theorems 3 and 4, we propose three optimization problems with
different goals as follows.

P1. Given T1, the sector and slope bounds, find the maximum value of T2 such that the
asymptotic stability of the origin of closed-loop system (9) can be ensured.

P2. Given a nominal sampling time Tnom, the sector and slope bounds, find a bound on the
maximum symmetrical allowable jitter, denoted by σ, (i.e., T1 = Tnom − σ, T2 = Tnom + σ),
such that the asymptotic stability of the origin of closed-loop system (9) can be ensured.

P3. Given T1 and T2, compute the maximum sector and slope bounds, such that the asymptotic
stability of the origin of closed-loop system (9) can be ensured.

Provided T1, T2 and the sector bounds (that is, matrices ∆, ∆, Γ and Γ) are fixed, note that
the matrix inequalities of Theorem 3 ((32)-(35)) and Theorem 4 ((47)-(50)) are LMIs. Hence, these
optimization problems can be straightforwardly solved by considering feasibility LMI problems and
bisection techniques, where we iteratively increase/decrease and test T2, σ or a parameter defining
the sector.

In the regional case, we are also interested in computing an estimate of the region of attraction
of the origin given by the sublevel set L(V, ρ), with ρ as large as possible, such that L(V, ρ) ⊂ X0.
With this aim, consider that the region of validity of the sector and slope bounds in (2) are given by

Y0 = {y ∈ Rm | y
j
≤ yj ≤ yj ≤ 0, j = 1, . . . ,m}. (52)

Since y depends on the state x through the implicit equation (1b), the region Y0 can be mapped in
space Rn by X0 given in (6), which can be equivalently described as follows:

X0 = {x ∈ Rn|(yj(x)− y
j
)(yj(x)− yj) ≤ 0, j = 1, . . . ,m}. (53)

with yj(x) = Cjx + Dφjφ(y(x)). In this case, if there exist scalars σj > 0 such that the following
inequalities are satisfied [37].

−σj(yj(x)− y
j
)(yj(x)− yj) ≥ (ρ− V (x)), (54)

for j = 1, . . . ,m, then it follows that L(V, ρ) ⊂ X0. Note that for each x ∈ L(V, ρ) one has that
(ρ− V (x)) ≥ 0 and, from (55), we conclude that (yj(x)− y

j
)(yj(x)− yj) ≤ 0.

Based on relations (55), the following proposition provides LMI conditions to check the inclusion
of L(V, ρ) in the set given by (54).

Proposition 2. Consider function V as defined in (24) and the set X0 given by (54). If there exist
matrices, Λ̃ ∈ Dm�0, Λ̃ ≥ −Λ, Sc,j ∈ Dm�0 and positive scalars σj and ρ, such that the following LMI
is satisfied−(σjy

j
yj + ρ) σj

y
j
+yj

2
Cj σj

y
j
+yj

2
Dφj

? P11 − 1
2
CT (∆−∆)Λ̃C P12 − 1

2
CT (∆−∆)Λ̃Dφ

? ? P22 − 1
2
DT
φ (∆−∆)Λ̃Dφ


− σj

0 0 0
? CTj Cj CTj Dφj
? ? DT

φj
Dφj

+ He

1

2

 0
(∆C)T

(∆Dφ − I)T

Sc,j [0 ∆C (∆Dφ − I)
] � 0, (55)

for j = 1, . . . ,m, then L(V, ρ) ⊂ X0.

Proof. From the definition of V in (24), inequalities (55) become

− σjy
j
yj − ρ+ σj(y

j
+ yj)yj(x)− σjy2

j (x) + VQG(x) +
m∑
i=1

λi

∫ yi

0

(φi(s)− δis)ds ≥ 0, (56)

j = 1, . . . ,m. Since by assumption Λ ≥ −Λ̃i, we obtain from (27) the following lower bound for the
Lure-Postnikov terms (see details in reference [37]):

m∑
i=1

λi

∫ yi

0

(φi(s)− δis)ds ≥ −
1

2
yT (∆−∆)Λ̃y ≥ 0. (57)

Hence, provided the inequalities

−σjy
j
yj − ρ+ σj(y

j
+ yj)yj(x)− σjy2

j (x) + VQG(x)− 1

2
yT (∆−∆)Λ̃y ≥ 0 (58)
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hold, ∀j = 1, · · · ,m, we have that (57) holds. Expanding the terms yj(x) = Cjx + Dφjφ(y(x)),
rewriting (59) using a matrix Ψ and relaxing for all x and φ which satisfies the sector conditions by
adding the term −S∆(Sc,j , φ, y) (as defined in Lemma 1) on the left side of (59), we have that the
following inequalities provide sufficient conditions to verify (59):1

x
φ

TΨ
1
x
φ

− S∆(Sc,j , φ, y) =

1
x
φ

TΨ̃
1
x
φ

 ≥ 0, (59)

with Ψ̃ given by

Ψ̃ =

−(σjy
j
yj + ρ) σj

y
j
+yj

2
Cj σj

y
j
+yj

2
Dφj

? P11 − 1
2
CT (∆−∆)Λ̃C P12 − 1

2
CT (∆−∆)Λ̃Dφ

? ? P22 − 1
2
DT
φ (∆−∆)Λ̃Dφ


− σj

0 0 0
0 CTj Cj CTj Dφj
0 ? DT

φj
Dφj

+ He

1

2

 0
(∆C)T

(∆Dφ − I)T

Sc,j [0 ∆C (∆Dφ − I)
]. (60)

Hence, a sufficient condition to ensure (60) and thus (55) is that Ψ̃ � 0, which corresponds to
(56).

If the validity region Y0 is symmetric, i.e., y
j

= yj , then a simplified inclusion condition can be

considered. In this case, we have that

X0 = {x ∈ Rn| |yj(x)| ≤ yj , j = 1, . . . ,m}, (61)

and thus a condition to verify the inclusion L(V, ρ) ⊂ X0 is given by

yj(x)T ρ(yj)
−2 yj(x) ≤ V (x), (62)

for j = 1, . . . ,m. Note that if x ∈ L(V, ρ) then V (x) ≤ ρ. Thus, from (63), one has ρ ≥
yj(x)T ρ(yj)

−2yj(x), that is, yj(x)T yj(x) ≤ y2
j , which implies that x ∈ X0.

The following proposition provides a LMI test to verify relations (63).

Proposition 3. Consider function V as defined in (24) and the set X0 given by (62). If there exist
matrices Λ̃ ∈ Dm�0, Λ̃ ≥ −Λ, Sc,j ∈ Dm�0 and a positive scalar ρ such that the following LMIs are
satisfied P11 − 1

2
CT (∆−∆)Λ̃C P12 − 1

2
CT (∆−∆)Λ̃Dφ ρCTj

? P22 − 1
2
DT
φ (∆−∆)Λ̃Dφ ρDT

φj

? ? ρy2
j


+ He

1

2

 (∆C)T

(∆Dφ − I)T

0

Sc,j [∆C (∆Dφ − I) 0
] � 0, (63)

for j = 1, . . . ,m, then L(V, ρ) ⊂ X0.

Proof. Applying Schur’s Complement to the terms on the third row and third column of the matrix
on the left of (64), then right and left multiplying the resulting inequality, respectively by [xT φT ]T

and its transpose, respectively, one obtains:[
x
φ

]T[
P11 P12

? P22

][
x
φ

]
− 1

2
yT (∆−∆)Λ̃y − S∆(Sc,j , φ, y)

≥ ρ(xTCTj + φTDT
φj )ρ

−1(yj)
−2(Cjx+Dφjφ)ρ. (64)

As S∆(Sc,j , φ, y) ≥ 0 for x ∈ X0, from (65) it follows that[
x
φ

]T[
P11 P12

? P22

][
x
φ

]
− 1

2
yT (∆−∆)Λ̃y ≥ ρ(xTCTj + φTDT

φj )ρ
−1(yj)

−2(Cjx+Dφjφ)ρ. (65)

Finally using (58) and the fact that yj(x) = Cjx + Dφjφ, it follows that (63) is verified, which
concludes the proof.

Hence, once the function V that solves one of the problems (P1, P2 or P3) above is determined,
that is, the matrices P and Λ are obtained, the maximum sublevel set L(V, ρ) included in X0 can be
determined through the following convex problem:

maximize ρ, subject to (56) (or (64)). (66)
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6 Numerical Examples

Next four examples illustrate the application of the proposed results. In Example 1 we emphasize
the conservatism reduction obtained thanks to the use of a generalized Lure type function V as
defined in (24)- (25). Examples 2 and 3 present comparisons with the approach in reference [27],
showing the conservatism reduction achieved with the use of our functional, which depends also
on the nonlinearity. Finally, Example 4 illustrates the application of the conditions to assess local
stability and to provide an estimate of the region of attraction of the origin. The associated Matlab
routines for each one of the examples can be provided on demand to the authors.

Example 1: Consider system (1) given by the following matrices

A =


−0.5 −6.2 −0.105 −1.2

1 0 0 0
0 1 0 0
0 0 1 0

 , Bu =


1
0
0
0

 , Bφ =


0.5
0
0
0


C =

[
0 0.2 0 0

]
, Dφ = [0],

the control law (7) with the following gains

Kx =
[
0.1 0.2 0.005 0.2

]
, Kφ = [0.5],

and the bounds on φ given by δ = 0, δ = ε, γ = −ε, γ = ε. To show the potential advantage
and the conservatism reduction induced by the generalized Lure type function, we consider different
structures from the function V defined in (24). More specifically, we evaluate the feasibility of the
LMIs such that they also hold for VQG (i.e. V with Λ = 0), for a quadratic function VQ(x) = xTP11x,
which corresponds to V with P12 = 0, P22 = 0, Λ = 0 and for a classical Lure-Postnikov function

VLP (x) = xTP11x+

m∑
i=1

λi

∫ yi

0

(φi(s)− δis)ds, (67)

which corresponds to V with P12 = 0, P22 = 0 and λi ≥ 0, i = 1, . . . ,m. Note that for VQ and VLP
we consider P11 � 0 and for VQG we consider P � 0.

The obtained results for problem P1 are detailed in Table 1, for values of T1 = 0.1 ms and ε = 1√
2
.

For problem P2, we fixed Tnom = 1.5 s and ε = 1√
2
, which results are presented in Table 2. Finally,

for problem P3 we defined T1 = 0.1 ms and T2 = 2.0 s, which results are depicted in Table 3.

Table 1: Maximum value of T2 for different Lyapunov function structures.
VQ VQG VLP V

T2 1.1151 1.1161 2.2121 2.6362

Table 2: Maximum value of σ for different Lyapunov function structures.
VQ VQG VLP V

σ 1.0492 1.0496 1.0888 1.2260

Table 3: Maximum value of ε for different Lyapunov function structures.
VQ VQG VLP V

ε 0.5955 0.5970 0.7842 1.1043

In the first problem, using the generalized Lure function V we obtain values for T2 that are
19.1%, 136.1% and 136.4% larger than the ones obtained with VLP , VQG and VQ, respectively. For
problem P2, we guarantee the stability for T1 = 0.2740 s and T2 = 2.7260 s, with σ 12.6%, 16.8 %
and 16.8 % larger than the ones obtained with VLP , VQG and VQ, respectively. For the last feasibility
problem, the maximum sector bounds, represented by ε were 40.8%, 84.9% and 85.4% larger than the
ones obtained with VLP , VQG and VQ, respectively. We can conclude that a significant conservatism
reduction is achieved with the use of a generalized Lure type function V in comparison with some
classical and simpler functions.

14



For the result obtained with the proposed function V in Table 1, the following matrix P have
been obtained:

P =


0.1942 0.0202 0.0892 0.0029 −0.0068
0.0202 1.0496 0.0276 0.1909 −0.2620
0.0892 0.0276 0.3330 0.0057 −0.0089
0.0029 0.1909 0.0057 0.0876 −0.0478
−0.0068 −0.2620 −0.0089 −0.0478 0.0546


whose eigenvalues are −0.0102, 0.0512, 0.1506, 0.3750, 1.1525. This illustrates that, with the pro-
posed function V , matrix P does not need to be positive definite, thanks to the application of Lemma
3.

To show that the obtained results certify the global stabilization of the closed-loop system (9),
we simulate the system considering the result from problem P1, i.e., Tk ∈ [0.0001, 2.6362], and the
nonlinearity

φ(y(t)) = 0.1sin(5y(t)) + 0.15y(t), (68)

that satisfies (2) with δ = 0, δ = 1√
2
, γ = − 1√

2
, γ = 1√

2
. The control action and the states of the

closed-loop system are presented in Figures 1 and 2. To obtain the values of Tk, we used a pseudo-
random algorithm that generates its numbers from the standard uniform distribution on the interval
previously defined. We observe that the states and the control signal converge to the origin, as

Figure 1: Control signal of the closed-loop system with nonlinearity (69).

expected.

Example 2: For the plant of Example 1, we consider now the control law given by:

Kx =
[
−2.8322 −2.5547 −6.6458 −1.3226

]
, Kφ = 0,

that is, a linear state feedback. Supposing that φ satisfies the sector and slope bounds given by given
by δ = 0, δ = ε, γ = −ε, γ = ε, with ε = 1√

2
and considering T1 = 0.0001, the maximal admissible

bound T2 for which we can certify stability with the proposed results (i.e by solving P1) was 0.60.
On the other hand, by simulation, we obtain a diverging trajectory of the closed loop with T2 = 0.61.
To illustrate this consider again the nonlinearity φ(y(t)) = 0.15y(t) + 0.1sin(5y(t)). In this case,
considering the initial condition x(0) =

[
1 1 1 1

]′
, Figures 3 and 4 show the states response

for a periodic sampling with Tk = 0.6 and Tk = 0.61, ∀k, respectively. Note that the bound on T2

obtained with the proposed conditions is close of the actual maximal admissible one.
For comparison purposes, the maximal T2 obtained with the results from Seifullaev and Fradkov

[27], which consider a time-delay approach and a Lyapunov-Krasovskii functional proposed in [6] (see
Remark 2), was 0.57. This shows the conservatism reduction achieved by the proposed method.
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Figure 2: States of the closed-loop system with nonlinearity (69).

Figure 3: States response for Tk = 0.6, ∀k

Example 3: Consider the following system treated in Seifullaev and Fradkov [27]:

ẋ1(t) = −2x1(t) + sin(x2(t)),

ẋ2(t) = x1(t)− x2(t) + 2 sin(x2(t)) + u(t), (69)

y(t) = x2(t),

u(t) = −Ky(tk), ∀t ∈ [tk, tk+1), tk+1 − tk ≤ T2.

System (70) can be rewritten in form (1)-(7) with the following matrices:

A =

[
−2 1
1 1

]
, Bu =

[
0
1

]
, Bφ =

[
1
2

]
, C =

[
0 1

]
, Dφ = [0],Kx =

[
0 −K

]
, Kφ = [0],

with nonlinearity φ(y(t)) = sin(y(t)) − y(t), satisfying (2) with δ = −1.2173, δ = 0, γ = −2, γ = 0.
The values of the maximum T2 obtained with Theorem 3, by considering V and T1 = 0.1 ms and
with Theorem 3 from reference [27] are given in Table 4 for different gains.

From Table 4, we observe that the proposed conditions lead to larger values of T2 than the ones
obtained with the conditions of reference [27]. The dependence of the upper bound of the sampling
intervals T2 obtained by both approaches as a function of the controller gain K is shown in Figure
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Figure 4: States response for Tk = 0.61, ∀k

Table 4: Upper bounds for aperiodic sampling.
Theorem 2 Theorem 3 [27]

K = 2 T2 = 1.0197 T2 = 0.6800
K = 3 T2 = 0.6740 T2 = 0.5300
K = 5 T2 = 0.4018 T2 = 0.3500
K = 10 T2 = 0.2002 T2 = 0.1870

5. It can be observed that our approach provides less conservative results in terms of the maximum
admissible bound T2, in particular for small values of K. The maximum value of T2 obtained was
T2 = 1.3602 s, with K = 1.51. As discussed in Remark 2, this conservatism reduction comes from
the fact that our function V and functional W0 are more generic than the ones used to derive the
results in reference [27]. Moreover, as discussed in Remark 1, in our conditions W0 is not required to
be positive definite.

Example 4: Consider system (1) given by the following matrices:

A =

[
−2 1
1 1

]
, Bu =

[
1 0
0 1

]
, Bφ =

[
1 0
0 2

]
C =

[
0 1
1 0

]
, Dφ =

[
0 0
0 0

]
,

and the control law (7) with the following gains

Kx =

[
−1 −2
−0.5 −2

]
, Kφ =

[
0 1
−0.5 1

]
.

Suppose that this system is fed back by the nonlinearities φ(y1) = sin(y1), φ(y2) = sin(y2). These
nonlinearities lie in a sector given by δ1 = δ2 = 0, δ1 = δ2 = 1, with slope bounds γ

1
= γ

2
= −1

and γ1 = γ2 = 1, provided that y1, y2 ∈ [−π, π]. In this case, the obtained results for problems P1,
P2 and P3 are detailed in Table 5 by considering different structures of V . For problem P1, we fixed
T1 = 0.1 ms. For problem P2, we defined Tnom = 0.25 s and for problem P3 we defined T1 = 0.1 ms
and T2 = 0.2 s, but we change the sector conditions to δi = 0, γ

i
= −Ω, δi = γi = Ω, for i = 1, 2 (y

i
and yi were kept the same).

Table 5: Regional analysis, Ex. 3 - Results for problems P1-P3.
Problem Parameter VQ VQG VL V

P1 T2 0.3403 0.3464 0.3437 0.4052
P2 σ 0.0904 0.0965 0.1513 0.1553
P3 Ω 1.2902 1.3063 1.3750 1.4397

Using the generalized Lure function V , for problem P1 we achieve values for T2 that are 16.9%,
17.8% and 19.0% larger than the ones obtained with VQG, VL and VQ, respectively. For problem
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Figure 5: Upper bound T2 as a function of gain K.

Figure 6: Estimates of the region of attraction for P3 with different functions.

P2, we guaranteed the stability for T1 = 0.0947 s and T2 = 0.4053 s, with σ 2.6%, 60.9% and 71.7%
larger than the ones obtained with VL, VQG and VQ, respectively. For the last problem, the sector
and slope bounds represented by Ω were 4.7%, 10.2% and 11.5% larger than the ones obtained with
VL, VQG and VQ, respectively. The estimates of the region of attraction corresponding to the solution
of problem P3 for the different functions are presented in Fig. 6, along with the boundaries of the
region of validity X0 = {x ∈ R2| − π ≤ xi ≤ π, i = 1, 2}. In this case, the obtained generalized Lure
function V is defined by the matrices

P =


0.1233 −0.0040 −0.0161 0.0175
−0.0040 0.0478 −0.0013 −0.0227
−0.0161 −0.0013 0.0022 0.0070
0.0175 −0.0227 0.0070 0.0140

 , and Λ =

[
−0.0340 0

0 0.0501

]
.

and solving (67) we obtain ρ = 0.4550.
Observe that with the function V , we enlarge the estimate of the region of attraction in comparison

to the other functions. Furthermore, we increase the sector and slope admissible bounds.
To show that stability is guaranteed for the obtained region, we simulate the closed-loop system

by considering the solution of problem P3 with V , Tk ∈ [0.0001, 0.2] and the nonlinearities φ(y1) =
1.4 sin(y1) and φ(y2) = 1.4 sin(y2), which satisfies the sector conditions for δ1 = δ2 = 0, δ1 = δ2 = 1.4,
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Figure 7: Trajectories of the closed-loop system

γ
1

= γ
2

= −1.4 and γ1 = γ2 = 1.4. The resulting trajectories for initial conditions on the boundary
of the obtained estimate of the region of attraction are presented in Fig. 7. We considered in the
simulation the same sampling sequence for all trajectories. As expected, they all converge to the
origin.

7 Conclusions

In this work, new convex conditions for the asymptotic stability assessment of Lure-type aperiodic
sampled-data controlled systems, subject to sector and slope-restricted nonlinearities have been pro-
posed. The approach is based on the used of a generalized Lure type function, in the sense that the
quadratic part depends also on the nonlinearity and the coefficient of the Lure-Postnikov terms are
not necessarily non-negative, and on a looped-functional that also depends on the system nonlineari-
ties. From these elements, LMI conditions to certify the global as well as the regional stability of the
origin have been formulated. In particular, for the global case it has been shown that the positivity
of the functional can also be relaxed, as in the linear systems case. For the regional case, sets of
admissible initial states (which can be seen as estimates of the region of attraction of the origin) have
been formally characterized as level sets of the generalized Lure type function.

Finally, it has been discussed how the proposed LMI conditions can be used to find a bound on
the maximum admissible intersampling time, on the jitter around a nominal sampling period, or on
the maximum sector for which the stability can be ensured. Several numerical examples illustrate the
application and effectiveness of the proposed conditions, which are based on a more general function
and functional than the ones considered in previous literature, to reduce the conservatism of the
results.

As future work, other classes of functionals and the use of other relaxations to bound integral
terms instead of the equivalent Jensen’s inequality [3], such as Writinger or Bessel ones [29], can
be considered at the expense of obtaining numerical formulations of increasing complexity. The
extension of the results using matrices depending on τ is also relatively straightforward, but it will
lead to even more complex conditions. If this dependence is polynomial, the problem can be indeed
addressed in a sum of squares (SOS) framework. The extension of the proposed results to address
the stabilization problem, i.e. to provide conditions allowing the synthesis of the control law gains, is
another problem that should be investigated. The main issue regards the determination of linear (or
quasi-linear) matrix inequalities due to several products between variables. Even performing some
suitable congruence transformations and changes of variables some products will still remain. In this
case, relaxation schemes have to be used by fixing some variables and solving LMI problems in an
iterative way. A preliminary result in this sense has been published in [34].
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