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This paper deals with the stability analysis of Lure type systems through aperiodic sampled-data control laws, where the nonlinearity is assumed to be both sector and slope restricted. The proposed method is based on the use of a new class of looped-functionals, which depends on the nonlinearity and its slope, and on a generalized Lure type function, that is quadratic on both the states and the nonlinearity and has a Lure-Postnikov integral term. On this basis, conditions in the form of linear matrix inequalities (LMIs) to certify global or regional asymptotic stability of the closed-loop system are obtained. These conditions are then used in optimization problems for computing the maximum intersampling interval or the maximum sector bounds for which the stability of the sampled-data closed-loop system is guaranteed. Numerical examples to illustrate the results are provided.

Introduction

The study of the stability and stabilization of systems evolving in continuous-time whereas the controller delivers inputs at discrete-time instants, i.e., sampled-data control, has been the subject of many works in the literature. In the book from Åström [START_REF] Karl | Computer-controlled systems: theory and design[END_REF] (and references therein) linear sampled-data control systems updated at constant sampling periods were extensively studied. In the last years, the sampled-data control problem, in particular considering aperiodic sampling [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF], has presented a renewed interest mainly from the following facts:

• The spread of networked control, where the control loops are implemented over communication networks, brought some challenges regarding the operation of the closed-loop system in the presence of communication restrictions, which induces jitters, packet dropouts and delays, among others. These restrictions can be perceived by the control loop as an aperiodic sampling policy [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. In this case, the exact linearization commonly applied to the analysis of linear systems with periodic sampled control, which leads to a discrete-time model for the closed-loop system cannot be longer used to conclude about stability and performance.

• For nonlinear systems, the formal analysis of sampled data controlled systems is more challenging, since even considering a periodic sampling policy, exact discretization is in general not possible. Furthermore, the use of numerical approximations of the system dynamics to design sampled-data control laws in a discrete-time framework does not guarantee that the actual continuous-time nonlinear system considering a sample and hold implementation will operate properly [START_REF] Nešić | Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations[END_REF].

To conclude about the stability of nonlinear systems or even linear systems under aperiodic sampled-data control, the hybrid behavior of the closed-loop system has to be taken into account, that is, the continuous evolution of the state trajectories during the intersampling time and the impulsive update of the control signal at sampling instants. In this sense, different methods have been proposed in the literature to model sampled-data systems, such as: the lifting and discrete-time approaches [START_REF] Bamieh | A lifting technique for linear periodic systems with applications to sampled-data control[END_REF][START_REF] Fujioka | A discrete-time approach to stability analysis of systems with aperiodic sample-andhold devices[END_REF]; the impulsive modeling, in which a time-varying Lyapunov function is used [START_REF] Hu | Constrained robust sampled-data control for nonlinear uncertain systems[END_REF][START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF]; the modeling with a continuous-time system with time-varying delay on the plant control input [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF][START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF]; and the looped-functional approach [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF][START_REF] Seuret | Taking into account period variations and actuator saturation in sampled-data systems[END_REF] that focuses on the behavior in the intersampling interval, ensuring that a positive definite function is strictly decreasing at the sampling instants. For a general overview of these approaches and others, the reader can refer to the survey by Hetel et al. [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF].

Lure type systems are a particular class of nonlinear systems composed by the feedback connection of a linear time-invariant system with a sector-bounded nonlinearity. As many physical systems can be represented in this setup, the stability analysis of Lure systems has been attracting the attention of the control community over the years. The first studies by Lure-Postnikov [START_REF] Lur | On the theory of stability of control systems[END_REF] regarding the absolute stability problem were based on time-domain representation and considered only sectorbounded nonlinearities. Then, stability criteria based on the properties of the frequency response of the linear part of the system, leading to the conditions known as the circle and the Popov criteria [START_REF] Hassan | Nonlinear systems[END_REF], where different assumptions regarding the time-variation of the the sector-bounded nonlinearity are made, have been proposed. More recently, motivated by semi-definite programming advances, several Lyapunov and passivity based methods have been proposed to assess the stability and to design stabilizing control laws for Lure type systems in continuous [START_REF] Eugênio B Castelan | Control design for a class of nonlinear continuous-time systems[END_REF][START_REF] Turner | Lyapunov functions and l2 gain bounds for systems with slope restricted nonlinearities[END_REF][START_REF] Carrasco | Zames-falb multipliers for absolute stability: From o'shea's contribution to convex searches[END_REF][START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF] and discrete-time [START_REF] Carlos Ac Gonzaga | Stability analysis of discrete-time Lur'e systems[END_REF][START_REF] Mc Turner | Discrete-time systems with slope restricted nonlinearities: Zames-falb multiplier analysis using external positivity[END_REF]. We can also mention works focusing on event-triggered control [START_REF] Zhang | Practical absolute stabilization of Lur'e systems via periodic event-triggered feedback[END_REF][START_REF] L G Moreira | Observer-based event-triggered control for systems with slope-restricted nonlinearities[END_REF], synchronization of chaotic systems [START_REF] Jun | An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems[END_REF] and network delays [START_REF] Hao | Absolute stability of Lurie networked control systems[END_REF][START_REF] Zeng | Absolute stability and stabilization for Lurie networked control systems[END_REF]. In these contexts, different classes of Lyapunov Functions (LFs), e.g. quadratic ones [START_REF] Eugênio B Castelan | Control design for a class of nonlinear continuous-time systems[END_REF] (associated to the Circle criterion), Lure-Postnikov LFs (associated to the Popov criterion) [START_REF] Va Yakubovich | The method of matrix inequalities in the stability theory of nonlinear control systems. ii. absolute stability in a class of nonlinearities with a condition on the derivative[END_REF][START_REF] Jak Suykens | An absolute stability criterion for the Lur'e problem with sector and slope restricted nonlinearities[END_REF][START_REF] Park | Stability criteria of sector-and slope-restricted Lur'e systems[END_REF][START_REF] Turner | Lyapunov functions and l2 gain bounds for systems with slope restricted nonlinearities[END_REF][START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF] and composite LFs [START_REF] Hu | Absolute stability with a generalized sector condition[END_REF] have been considered. To handle delays, Lyapunov-Krasovskii functionals are in general considered [START_REF] Hao | Absolute stability of Lurie networked control systems[END_REF][START_REF] Zeng | Absolute stability and stabilization for Lurie networked control systems[END_REF][START_REF] Guo | Novel delay-partitioning approaches to stability analysis for uncertain lur'e systems with time-varying delays[END_REF].

However, regarding Lure systems under sampled-data control, only few studies were carried out. The problem is addressed by Seifullaev and Fradkov [START_REF] Ruslan | Robust nonlinear sampled-data system analysis based on Fridman's method and S-procedure[END_REF][START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF] considering the input delay approach proposed by Fridman [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF][START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF], which is based on Lyapunov-Krasovskii functionals. The functionals used in these references are required to be positive definite and do not depend on the nonlinearity. The design of stabilizing sampled data control laws, considering periodic sampling, is tackled by Gabriel and Geromel [START_REF] Gabriela | Sampled-data control of lur'e systems[END_REF] through differential linear matrix inequalities obtained from a classical Lure type Lyapunov function, where a piecewise affine time-dependence is considered in the quadratic part. In this case, to obtain conditions in LMI form a suitable partition of the intersampling interval needs to be chosen. The sampled-data synchronization of Lure type systems is treated in Park et al. [START_REF] Jun | An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems[END_REF][START_REF] Huang | Master-slave synchronization of complex-valued delayed chaotic Lur'e systems with sampled-data control[END_REF] considering a fragmentation approach. Conditions to assess the stability of closed-loop systems when the sampled-data control law is designed from the Euler approximated discrete-time Lure system are provided in Louis et al. [START_REF] Louis | Sufficient LMI stability conditions for Lur'e type systems governed by a control law designed on their Euler approximate model[END_REF]. It should be pointed out that all the above papers are concerned only by the global stability of the origin. The case where the nonlinearity verifies sector conditions only locally is not considered.

This paper focuses on the stability analysis of aperiodic sampled-data closed-loop Lure systems with sector bounded and slope restricted nonlinearities.

The main contributions of the present paper can be summarized as follows:

1. A looped functional approach is considered to provide conditions to assess the stability of Lure type systems under sampled-data control. This approach is based on the use of two elements: a function V and a functional W0. Differently from the linear case, treated in [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], and similar approaches considering Lyapunov-Krasovskii functionals [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF][START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF], in our case we consider that V and W0 depend also on the sector nonlinearity. In particular, the function V is considered as a generalized Lure-type function [START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF] composed by two terms: a generic quadratic term depending on the state and the nonlinearity; and an integral term. Differently from classical Lure-type functions [START_REF] Hassan | Nonlinear systems[END_REF], the quadratic part does not need to be defined by a positive definite matrix and the multipliers of the integral terms do not need to be nonnegative. Moreover, we also show that the functional W0 does not need to be positive definite for the assessment of global stability, which is an extra relaxation with respect to the previous results in [START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF] considering Lyapunov-Krasovskii functionals. All these new elements and relaxations lead to a significant conservatism reduction, as shown in the numerical examples.

2. Both the global and local stability cases are tackled. To the best of our knowledge, this is the first time that the local stability analysis of Lure type systems under sampled-data control is formally addressed. This is particularly relevant when the nonlinearity verifies the sector conditions only locally, which allows to provide stability certificates for a broad class of nonlinear systems by casting them in a Lure setup. Regarding this case, we also provide conditions that allow to characterize estimates of the region of attraction of the origin of the closed-loop systems as the level sets of the function V .

Furthermore, the proposed stability conditions are in the form of linear matrix inequalities (LMIs). We show therefore how to incorporate these conditions as constraints of optimization problems aiming at providing bounds on the maximal intersampling interval or on the nonlinearity sector, for which the stability of the Lure-type system under aperiodic sampled-data control can be certified.

It should be noticed that some preliminary results in this sense were presented in [START_REF] Titton | Stability of sampled-data control for lurie systems with slope-restricted nonlinearities[END_REF], considering only global results and without an in-depth discussion and a detailed mathematical development of the theoretical results.

This paper is organized as follows. The next section describes the problem formulation. Section 3 presents the looped-functional approach in a general way. In Section 4, considering a generalized Lure-Postnikov function and a looped-functional that depends on the nonlinearities, the conditions derived in Section 3 are cast as LMIs. Section 5 features some optimization problems and Section 6 gives numerical examples to highlight the potentialities of the method. Section 7 summarizes the main points covered in the paper and discuss some possible extensions.

Notation. The set of diagonal and symmetric matrices of dimension n are denoted, respectively, by D n and S n . D n 0 (S n 0 ) means that the matrix is diagonal (symmetric) and positive semi-definite. The set of positive real numbers is denoted by R + . To express diagonal matrices in a compact form, we write 'diag(e1, ..., en)', where ei, i = 1, ..., n are, respectively, the elements in position (i, i). A T denotes the transpose of matrix A. He(A) A + A T , Im and 0m are, respectively, the identity and zero square matrices of order m. For a given positive scalar T, define C n [0,T] the set of continuous functions from an interval [0, T] to R n and the union set of continuous functions with support in a certain range defined as Consider the continuous-time plant described by the following Lure system [START_REF] Hassan | Nonlinear systems[END_REF][START_REF] Eugênio B Castelan | Control design for a class of nonlinear continuous-time systems[END_REF][START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF]:

K n [T 1 ,T 2 ] = ∪ T∈[T 1 ,T 2 ] {C n [0,T] }.
ẋ(t) = Ax(t) + Buu(t) + B φ φ(y(t)) (1a) 
y(t) = Cx(t) + D φ φ(y(t)), (1b) 
where x ∈ R n represents the states of the plant, u ∈ R q represents its inputs and y ∈ R m its outputs (i.e., the argument of the nonlinearity φ), A ∈ R n×n , Bu ∈ R n×q , B φ ∈ R n×m , C ∈ R m×n and D φ ∈ R m×m . The vector-valued nonlinearity φ : R m → R m , is assumed to be timeinvariant, memoryless, Lipschitz on R m , decentralized, sector bounded and slope restricted, i.e., φ(y) = [φ1(y1), . . . , φm(ym)] T , with φi(yi) satisfying, ∀i = 1, . . . , m:

φi(0) = 0, (2a) φi(yi) yi ∈ [δ i , δi] ∀y ∈ Y0 ⊆ R m , (2b) ∂φi(yi) ∈ [γ i , γ i ], ∀y ∈ Y0 ⊆ R m , (2c) 
where δ i ∈ R, δi ∈ R, δ i ≤ δi are, respectively, the lower and upper sector bounds for the ith nonlinearity and γ i ∈ R, γ i ∈ R, γ i ≤ γ i are, respectively, the lower and upper slope bounds for the ith nonlinearity. From these bounds, denote ∆ diag(δ 1 , . . . , δ m ), ∆ diag(δ1, . . . , δm), Γ diag(γ 1 , . . . , γ m ) and Γ diag(γ 1 , . . . , γ m ). If Y0 = R m , the relations are said to be verified globally and otherwise locally. The Lipschitz assumption on φ implies that ∂φi(yi) = dφ i dy i almost everywhere, relaxing the requirement for the nonlinearity to be continuously differentiable.

Taking into account that φi(yi) = dφ i (y i ) dt = ∂φi(yi) ẏi and relations (2), the following Lemmas can be stated. 

for all y ∈ Y0.

Lemma 2. [START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF] If U2 ∈ D m 0 and φ : R m → R m satisfies (2), then

SΓ(U2, φ(y), ẏ) ( φ(y) -Γ ẏ) T U2(Γ ẏ -φ(y)) ≥ 0, (4) 
almost everywhere for y ∈ Y0.

It should be noted that if D φ = 0 equation ( 1b) is an implicit one. In this case, the well-posedness of the algebraic loop (1b) is guaranteed if there exists a unique solution to the implicit equation F (y) y -D φ φ(y) = Cx, that is, a mapping y(x) satisfying F (y(x)) = Cx. Applying the reasoning used in Valmorbida and Drummond [START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF], a condition for the well-posedness of (1b) considering φ satisfying (2) is given by the following proposition. Proposition 1. [START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF] If there exists a matrix N ∈ D m 0 such that

2N -He{N (Im -D φ Γ) -1 D φ (Γ -Γ)} 0, (5) 
then matrix (Im-D φ Γ) is nonsingular for all matrices Γ ∈ ∆Γ {Γ ∈ D m ; Γ = diag(γ1, γ2, . . . , γm), γi ∈ [δ i , δi], i = 1, . . . , m} and the algebraic-loop (1b) is well-posed.

Henceforth, we consider the following Assumption.

Assumption 1 (Well-posedness). There exists a matrix N ∈ D m 0 such that (5) holds. Note that when D φ = 0 this assumption is trivially verified. Provided that Assumption 1 is satisfied, the following set can be defined

X0 {x ∈ R n ; y ∈ Y0, y -D φ φ(y) = Cx}. (6) 
The set X0 corresponds to all the states such that y = Cx + D φ (y) ∈ Y0. When the sector conditions and the slope restrictions are satisfied globally, i.e. Y0 = R m , we have that X0 is equal to R n .

The sampled-data control law

We suppose that the control signal u is updated at sampling instants denoted t k and remains constant between two successive sampling instants through a zero-order holder (ZOH). Namely, we consider the following sampled-data control law:

u(t) = Kxx(t k ) + K φ φ(y(t k )), ∀t ∈ [t k , t k+1 ), (7) 
where Kx ∈ R q×n , K φ ∈ R q×m . This generic control law allows to use information about the nonlinearity [START_REF] Eugênio B Castelan | Control design for a class of nonlinear continuous-time systems[END_REF]. For saturating systems, a method for the design of such a control law using piecewise quadratic functions is presented in Queinnec et al. [START_REF] Queinnec | Design of saturating state-feedback with sign-indefinite quadratic forms[END_REF]. If the nonlinearity φ is not precisely known or φ(y) cannot be directly measured, it suffices to consider K φ = 0, i.e. a linear state feedback control law. We consider the case of aperiodic sampling. In this context, we assume that there exist two positive scalars T1 ≤ T2 such that the difference between two successive sampling instants

T k = t k+1 -t k satisfies 0 < T1 ≤ T k ≤ T2, ∀k ∈ N. (8) 
Thus, {t k } k∈N is an increasing sequence of positive scalars such that k∈N [t k , t k+1 ) = [0, +∞). Note that the periodic sampling appears as a particular case in which T k has the same value ∀k ∈ N, i.e., T k = T1 = T2, ∀k.

In this paper, we are interested in deriving conditions that allow to assess the asymptotic stability of the origin of system [START_REF] Karl | Computer-controlled systems: theory and design[END_REF], where the nonlinearity φ satisfies the sector and slope restrictions given in [START_REF] Bamieh | A lifting technique for linear periodic systems with applications to sampled-data control[END_REF], with a sampled-data control law given by ( 7) assuming an aperiodic sampling policy satisfying [START_REF] Fujioka | A discrete-time approach to stability analysis of systems with aperiodic sample-andhold devices[END_REF]. With this aim, we consider a looped-functional approach, which is detailed in the next section.

Looped-Functional Approach

The looped-functional approach has originally been introduced by Seuret [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] to study linear systems under sampled-data control. It can be seen as a generalization of Lyapunov-Krasovskii approaches [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF], in the sense that the functional does not need to be positive definite. In this section we extend these ideas to cope with Lure type systems.

As in the linear systems case, we formally show that for global stability results the positivity of the functional is not needed. On the other hand, for deriving local results some further assumptions are needed to ensure that the trajectories are bounded in the region where the sector conditions are valid.

To state the results, we consider the notation [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] x k (τ )

x(t k + τ ), y k (τ ) y(t k + τ ) and φ k (τ )
φ(y k (τ )). Hence, the closed-loop dynamics in the interval [t k , t k+1 ) is governed by the following equations:

ẋk (τ ) = Ax k (τ ) + B φ φ k (τ ) + Bu(Kxx k (0) + K φ φ k (0)) y k (τ ) = Cx k (τ ) + D φ φ k (τ ), ∀τ ∈ [0, T k ), (9) 
where ẋk (τ ) = d dτ x k (τ ). Let Dx ⊆ X0 ⊆ R n be a compact domain containing the origin in its interior. In what follows we consider a differentiable function

V : Dx → R + satisfying µ1||x|| p ≤ V (x) ≤ µ2||x|| p , ∀ x ∈ Dx, with µ1, µ2 > 0, p > 1. ( 10 
)
Associated to V (x), define the level sets

L(V, ρ) = {x ∈ R n |V (x) ≤ ρ}, (11) 
with ρ > 0.

In addition, consider a differentiable functional with respect to τ , called a looped functional [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF],

W0 : [0, T2] × K n [T 1 ,T 2 ] × [T1, T2] → R that satisfies: W0(T k , z, T k ) = W0(0, z, T k ), ∀z ∈ K n [T 1 ,T 2 ] and ∀T k ∈ [T1, T2]. (12) 

Global Stability

Assume that the nonlinearity φ satisfies (2b) and (2c) globally, that is, they are verified ∀y ∈ Y0 = R m , or equivalently, X0 = R n . In this case, the next theorem provides conditions to ensure the global asymptotic stability of the origin of the closed-loop system composed by ( 1) and ( 7) with

T k ∈ [T1, T2].
Theorem 1. Consider a differentiable function V and a differentiable looped-functional W0 satisfying (10) and ( 12), respectively, with

Dx = R n . If for all k ∈ N, T k ∈ [T1, T2] and τ ∈ [0, T k ] it follows that d dτ [V (x k (τ )) + W0(τ, x k , T k )] < 0 ( 13 
)
along the trajectories of (9), then the origin of the closed-loop system composed by ( 1) and the sampled-data control law ( 7), with

T k ∈ [T1, T2], is globally asymptotically stable (GAS), i.e. x(t) → 0 as t → ∞, ∀ x(0) ∈ R n .
Proof. First, by continuity of the system trajectories, note that x k (T k ) = x k+1 (0). Integrating now [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF] in the interval [0, T k ] and using [START_REF] Hao | Absolute stability of Lurie networked control systems[END_REF], it follows that

∆V (k) = V (x k+1 (0)) -V (x k (0)) = V (x(t k+1 )) -V (x(t k )) < 0, ∀k ∈ N.
Thus, we can conclude that the sequence of samples

x k (0) = x(t k ) → 0 as k → ∞.
To conclude the proof, we need to show that the x(t) is uniformly bounded ∀t ∈ [t k , t k+1 ), ∀k, and that the continuous-time trajectories also converge to the origin, i.e., x(t) → 0 as t → ∞. For this, note that as φ i (y i )

y i ∈ [δ i , δi], it follows that, ∀t ≥ 0, there exist scalars αi(t), 0 ≤ αi(t) ≤ 1, ∀i = 1, . . . , m, such that φi(yi(t)) = [αi(t)δ i + (1 -αi(t))δi ]yi(t) = υi(t)yi(t), with υi(t) ∈ [δ i , δi]. (14) 
Thus, we can write φ(y(t)

) = Υ(υ(t))y(t), with Υ(υ(t)) = diag(υ1(t), υ2(t), . . . , υm(t)), υ(t) ∈ υ = {υ ∈ R m | δ i ≤ υi ≤ δi, i = 1, . . . , m}.
In this case, we have that y(t) = Cx(t) + D φ Υ(v(t))y(t), and from Assumption 1 it follows that

y(t) = (I -D φ Υ(v(t))) -1 Cx(t). (15) 
Hence, the closed-loop system can be represented by the following linear time-varying system, ∀t ∈ [t k , t k+1 ):

ẋ(t) = Ax(t) + Bu(Kxx(t k ) + K φ φ(y(t k ))) + B φ Υ(υ(t))(I -D φ Υ(υ(t))) -1 Cx(t). (16) 
Equivalently, considering the lifted-variables one has

ẋk (τ ) = (A + B φ Υ(υ k (τ ))(I -D φ Υ(υ k (τ ))) -1 C)x k (τ ) + Bu(Kxx k (0) + K φ φ k (0)), (17) 
where

υ k (τ ) υ(t k +τ ). For each admissible υ k ∈ K n [T 1 ,T 2 ]
, such that υ k (τ ) ∈ υ , define the transition matrix for the system (16) without the constant term in Bu, as Ψυ k (τ, s) Ψυ(t k + τ, t k + s). Thus, it follows that

x k (τ ) = Ψυ k (τ, 0)x k (0)+ τ 0 Ψυ k (τ, s)Bu Kx K φ x k (0) φ k (0) ds. ( 18 
)
Thus, we obtain the following upper bound for the trajectories:

||x k (τ )|| ≤ ||Ψυ k (τ, 0)|| ||x k (0)|| + τ 0 Ψυ k (τ, s) ds Bu Kx K φ x k (0) φ k (0) ≤ ||Ψυ k (τ, 0)|| + τ 0 Ψυ k (τ, s) ds ||BuKx|| + ||BuK φ || ||Υ(υ k (0))(I -D φ Υ(υ k (0))) -1 C|| ||x k (0)|| ≤ ||Ψυ k (τ, 0)|| + T 2 0 ||Ψυ k (τ, s)||ds ||BuKx|| + ||BuK φ || ||Υ(υ k (0))(I -D φ Υ(υ k (0))) -1 C|| ||x k (0)||. (19) 
Then, since υ k (τ ) ∈ υ , ∀τ ∈ [0, T2], there exists a scalar µΨ, µΨ = sup

υ k ∈C n [0,T 2 ] s.t. υ k (τ ) ∈ υ ||Ψυ k (τ, 0)|| + T 2 0 ||Ψυ k (τ, s)||ds(||BuKx|| + ||BuK φ µυ||) , with µυ = max υ∈ υ ||Υ(υ)(I -D φ Υ(υ)) -1 C||, such that ||x k (τ )|| ≤ µΨ||x k (0)||. Hence, if x k (0) → 0 as k → ∞, i.e., x(t k ) → 0 as k → ∞, then x(t k + τ ) = x k (τ ) → 0 as k → ∞, ∀τ ∈ [0, T k ], that is x(t) = x(t k + τ ) → 0 as t → ∞.
It should be noticed that, as for the case of linear systems [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], in Theorem 1 no assumption regarding the positivity of the functional W0 is needed.

Regional Stability

Whenever the nonlinearity φ verifies (2b) and (2c) only locally, that is only for y ∈ Y0 (or, equivalently, x ∈ X0), stability results only in a local context can be derived. In this case, beyond the asymptotic stability of the origin, it is important to characterize an estimate of its region of attraction. Hence, provided that the initial state of system (1) belongs to this estimate, it is ensured that the trajectories of the closed-loop system (1)-( 7) converge to the origin ∀T k ∈ [T1, T2]. Similar to reference [START_REF] Palmeira | Regional stabilization of nonlinear sampled-data control systems: A quasi-LPV approach[END_REF], general conditions to tackle this problem are presented in the next theorem.

Theorem 2. Consider the closed-loop system composed by ( 1) and the sampled-data control law [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF], with T k satisfying ( 8) and ( 2) being satisfied ∀y ∈ Y0 ⊂ R m . Consider a compact domain Dx ⊆ X0 ⊂ R n containing the origin and let V : Dx → R + be a differentiable function such that

µ1 x p ≤ V (x) ≤ µ2 x p , ∀ x ∈ Dx, with µ1, µ2 > 0, p > 1. ( 20 
)
Let L(V, ρ), with ρ > 0, be the level sets of V and a continuous-time functional

W0 : [0, T2] × K n [T 1 ,T 2 ] × [T1, T2] → R + , such that W0(0, x k , T k ) = W0(T k , x k , T k ) = 0, (21a) W0(τ, x k , T k ) > 0, ∀τ ∈ [0, T k ), ∀T k ∈ [T1, T2], ∀x k ∈ K n [T 1 ,T 2 ] such that x k (τ ) ∈ Dx -{0}. (21b) Define W (τ, x k , T k ) = V (x k (τ ))+W0(τ, x k , T k ) and let Ẇ (τ, x k , T k ) be the derivative of W (τ, x k , T k ) with respect to τ . If the inequality Ẇ (τ, x k , T k ) < 0 ( 22 
)
is satisfied ∀x k ∈ K n [T 1 ,T 2 ] such that x k (τ ) ∈ Dx -{0} ⊂ R n , ∀τ ∈ [0, T k ), ∀T k ∈ [T1, T2], ∀k ∈ N, then for any initial condition x(0) = x0(0) lying inside any level set L(V, ρ) ⊂ Dx, it follows that: (i) ∆V (k) = V (x k+1 (0)) -V (x k (0)) < 0, ∀k ∈ N, x k (0) = 0;
(ii) The corresponding trajectories of the closed-loop system, formed by ( 1) and ( 7) with T k ∈ [T1, T2] satisfy x(t) ∈ L(V, ρ), ∀t, and converge asymptotically to the origin.

Proof. Suppose that x(0) = x0(0) ∈ ∂L(V, ρ) ⊂ Dx ⊆ X0 and that ( 22) is satisfied. Then, it follows that

W (τ, x0, T0) < W (0, x0, T0), ∀τ ∈ (0, T0]. (23) 
Taking into consideration [START_REF] Palmeira | Regional stabilization of nonlinear sampled-data control systems: A quasi-LPV approach[END_REF] and the properties of W0 stated in [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF], it follows that [START_REF] Nešić | Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations[END_REF] over the interval [0, T0] and considering [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF], one obtains that V (x0(T0)) -V (x0(0)) < 0. Since by continuity of the trajectories it follows that x0(T0) = x1(0), we conclude that ∆V (0) < 0 and thus V (x1(0)) = ρ1 < V (x0(0)) = ρ, which implies that V (x1(0)) < ρ, i.e., x1(0) ∈ ∂L(V, ρ1) ⊂ L(V, ρ). By repeating this reasoning for k = 1, 2, . . . , ∞, it follows that ∆V (k) < 0, ∀k ∈ N, which proves item (i). As a consequence, it follows that lim k→∞ x k (0) = lim k→∞ x(t k ) = 0. Moreover, it follows that V (x k (τ )) < V (x k (0)), ∀k ≥ 0, and we can conclude that L(V, ρ) ⊂ Dx ⊆ X0 is a positively invariant set and thus the continuous state trajectories never leave the set X0, for which the conditions (2) are satisfied. Furthermore, since lim k→∞ V (x k (0)) = 0 and V (x k (τ )) < V (x k (0)), we conclude that lim k→∞ V (x k (τ )) = 0 and hence x k (τ ) → 0 for k → ∞, which concludes the proof of item (ii).

V (x0(τ )) < W (τ, x0, T0) < W (0, x0, T0) = V (x0(0)) = ρ, ∀τ ∈ (0, T0], implying that x0(τ ) ∈ L(V, ρ) ⊂ Dx, ∀τ ∈ (0, T0]. Now, integrating
Note that, differently from Theorem 1, here we have to consider a functional W0 that is positive definite and satisfies W0(0, x k , T k ) = W0(T k , x k , T k ) = 0. This is necessary to ensure that the trajectories do not leave Dx ⊆ X0 between two sampling instants. Note however that function V is not required to be strictly decreasing with respect to the continuous-time trajectory, which implies that L(V, ρ) is positively invariant but not continuously contractive.

Remark 1. Theorems 1 and 2 are inspired by the results in [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF]. It should however be pointed out that reference [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] regards only linear systems. In that paper, since the closed-loop dynamics is linear, the proof that ∆V (k) < 0 implies the convergence of the continuous-time trajectories to the origin is straightforward. For nonlinear systems, in general, it is not possible to conclude that ∆V (k) < 0 implies the convergence of the continuous-time trajectories to the origin without further conditions. However, for the class of Lure type nonlinear systems, we formally prove in Theorem 1 that ∆V (k) < 0 indeed implies the convergence of the continuous-time trajectories to the origin. Then, as in reference [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], the considered functional W0 does not need to be positive definite. This is an original and important contribution of the present work. On the other hand, for the local stability results, it is necessary to impose the positivity of W0, since we have to ensure that the trajectories of the system are confined in the region where the sector conditions are valid. This is formally proved in Theorem 2 and it is another contribution of the present work. Note that whenever the system is linear, as in reference [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], the stability of trajectories is a global property and therefore there is no need for a particular analysis of regional stability as for nonlinear systems.

LMI Stability Conditions

Based on appropriate classes of candidates for the function V and the functional W0, we show now how to cast the conditions in Theorems 1 and 2 as LMIs, which allow to assess the stability of the origin of the closed-loop system under the sampled-data control law through numerical tests. Moreover, these conditions can be added as constraints in optimization problems as it will be seen in Section 5.

Parametrization of the function V and the looped functional W 0

We consider as candidates for the function V the class of generalized Lure functions V : R n → R defined as follows

V (x) = VQG(x) + m i=1 λi y i (x) 0 (φi(s) -δ i s)ds, (24) 
where

VQG(x) = x φ(y(x)) T P11 P12 P T 12 P22 P x φ(y(x)) , (25) 
and y(x) is the solution to (1b). This function generalizes the classic Lure-Postnikov [START_REF] Hassan | Nonlinear systems[END_REF] one, given by x T P11x+ m i=1 λi

y i (x) 0
(φi(s)δ i s)ds with P11 0 and non-negative coefficients λi (also known as Lure-Postnikov terms), i = 1, . . . , m. Regarding [START_REF] Jun | An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems[END_REF] we do not require the positive-definiteness of P , nor the non-negativity of the coefficients λi. In this case, the positive-definiteness of V should be ensured as stated in the following lemma. Lemma 3. [START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF] Consider V in [START_REF] Jun | An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems[END_REF] where φ satisfies (2) and define Λ diag(λ1, . . . , λm). If there exists a matrix Λ ∈ D m 0 such that

Λ ≥ -Λ, (26) 
VQG(x) - 1 2 y T (x)(∆ -∆) Λy(x) > 0, ∀x ∈ X0, (27) 
then V (x) > 0, ∀x ∈ X0, x = 0.

For the looped-functional W0, we consider a generalized version of the one proposed in Seuret and Gomes da Silva Jr. [START_REF] Seuret | Taking into account period variations and actuator saturation in sampled-data systems[END_REF], where terms depending on φ and φ are added as follows:

W0(τ, x k , T k ) = (T k -τ )τ x k (0) φ k (0) T X x k (0) φ k (0) + (T k -τ ) τ 0 ẋT k (θ)Rx ẋk (θ)dθ + (x k (τ ) -x k (0)) T [Fx(x k (τ ) -x k (0)) + 2Gxx k (0)] + (T k -τ ) τ 0 φT k (θ)R φ φk (θ)dθ + (φ k (τ ) -φ k (0)) T [F φ (φ k (τ ) -φ k (0)) + 2G φ φ k (0)] (28) 
with

Fx ∈ S n , Gx ∈ R n×n , X ∈ S n+m , F φ ∈ S m , G φ ∈ R m×m , Rx ∈ S n 0 and R φ ∈ S m 0 .
Note that the functional W0 given in [START_REF] Ruslan | Robust nonlinear sampled-data system analysis based on Fridman's method and S-procedure[END_REF] satisfies the conditions ( 12) and (21a). Since (T k -τ ) = 0 when τ = T k and x k (τ ) -x k (0) = 0 when τ = 0, it follows that W0(0, x k , T k ) = W0(T k , x k , T k ) = 0. Moreover, it is continuous and differentiable with respect to τ .

Remark 2. The function V and the looped-functional W0 can be seen as a generalized versions of the ones proposed by Seuret [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF]. In that paper, to address the case of linear systems, it has been considered V (x) = x T P x with P = P > 0 [START_REF] Seuret | Stability of linear systems with time-varying delays using bessel-legendre inequalities[END_REF] and

W0(τ, x k , T k ) = (T k -τ )τ x k (0) T Xx k (0) + (T k -τ ) τ 0 ẋT k (θ)Rx ẋk (θ)dθ(x k (τ ) -x k (0)) T [Fx(x k (τ ) -x k (0)) + 2Gxx k (0)] (30) 
It should also be noticed that the Lyapunov-Krasovskii functional used by Seifullaev and Fradkov [START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF] to deal with Lure type sampled-data systems, corresponds (using our notation) to V + W0 with V as in (29) and W0 as in [START_REF] Seuret | Taking into account period variations and actuator saturation in sampled-data systems[END_REF], but without the term x k (0) T Xx k (0). On the other hand, note that V and W0 in our case, as defined in (24)-( 25) and (28) respectively, present several terms that depend on the nonlinearity φ. Moreover, Lemma 3 allows to ensure the positive definiteness of function V without imposing the positive definiteness of matrices P and Λ. These aspects introduce extra degrees of freedom in the stability conditions, leading to a conservatism reduction at the expense of a higher computational complexity. As it will be seen in the next sections, since the considered functional has more terms, the stability conditions derived with (24)-( 25) and (28) will present more decision variables when compared with the conditions in reference [START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF], which are obtained with a simpler functional.

Global case

Based on the general formulation of Theorem 1, the following theorem provides LMI conditions to certify the global asymptotic stability of the origin of the closed-loop system under aperiodic sampling, by using the class of functions V and functionals W0 defined in the previous section.

To present the LMIs in a more compact form, consider the definition of the following auxiliary matrices:

1 M0 = [A B φ -I 0 BuKx BuK φ ] M1 = [I 0 0 0 0 0] M2 = [0 I 0 0 0 0] M3 = [0 0 I 0 0 0] M4 = [0 0 0 I 0 0] M5 = [0 0 0 0 I 0] M6 = [0 0 0 0 0 I] M15 = M1 -M5 M26 = M2 -M6 M12 = [M T 1 M T 2 ] T M34 = [M T 3 M T 4 ] T M56 = [M T 5 M T 6 ] T M135 = [M T 1 M T 3 M T 5 ] T M246 = [M T 2 M T 4 M T 6 ]
T . Theorem 3. For given T1 and T2 such that 0 < T1 ≤ T2, assume that there exist matrices

P ∈ S n+m , Λ ∈ D m , Λ ∈ D m 0 , Uj, j = 0, . . . , 3 ∈ D m 0 , Fx ∈ S n , Gx ∈ R n×n , F φ ∈ S m , G φ ∈ R m×m , Rx ∈ S n 0 , R φ ∈ S m 0 , Qx ∈ R (3n)×n , Q φ ∈ R (3m)×m , X ∈ S n+m , L ∈ R 3(n+m)×n that satisfy, for i = 1, 2: Ψ1(Ti) = Π1 + TiΠ2 + TiΠ3 ≺ 0 (31) Ψ2(Ti) =   Π1 -TiΠ3 TiM T 135 Qx TiM T 246 Q φ -TiRx 0 -TiR φ   ≺ 0 (32) Λ -Λ (33) V (x) ≥ x φ T Ψ(τ ) x φ + m i=1 λi y i 0 (δis -φi(s))ds ≥ x φ T Ψ(τ ) x φ , (35) 
with Ψ = P -1 2 [START_REF] Turner | Lyapunov functions and l2 gain bounds for systems with slope restricted nonlinearities[END_REF] holds, it follows that there exists a scalar

C T D T φ (∆ -∆) Λ [C D φ ]. Now if
µ1 > 0 such that x φ T Ψ(τ ) x φ -S∆(U0, φ, y) ≥ µ1|| x φ || 2 ≥ µ1||x|| 2 (36) 
Hence, from Lemma 1, ( 36) and [START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF] we conclude that

V (x) ≥ µ1||x|| 2 .
On the other hand, recalling from the proof of Theorem 1 that φ(y) = Υ(υ)y and y = (I -

D φ Υ(υ)) -1 Cx = Υ(υ)x, with υ ∈ υ = {υ ∈ R m | δ i ≤ υi ≤ δi, i = 1, .
. . , m}, and using the fact that λi

y i 0 (φi(s) -δ i s)ds ≤ |λi| y i 0 (δis -δ i s)ds = 1 2 y T i |λi|(δ (i) -δ (i)
)yi, it follows that:

V (x) ≤ x T P11x + 2x T ΥT (υ)Υ(υ)P12x + x T ΥT (υ)Υ(υ)P22Υ(υ) Υ(υ)x + x T ||Λ|| Υ(υ) T (∆ -∆) Υ(υ)x (37) ≤ µ2||x|| 2 (38) 
with µ2 = max υ∈ υ (||P11 + 2 ΥT (υ)Υ(υ)P12 + Υ(υ) T Υ(υ)P22Υ(υ) Υ(υ) + (||Λ|| Υ(υ) T (∆ -∆) Υ(υ))||).
Hence, we conclude that V (x) defined in ( 24)-( 25) verifies [START_REF] Carlos Ac Gonzaga | Stability analysis of discrete-time Lur'e systems[END_REF]. Since W0 given in (28) satisfies the condition (12) by construction, the rest of the proof consists in showing that ( 32)-( 33) implies [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. With this aim, the expression of Ẇ is given as follows:

Ẇ (τ, x k , T k ) =2 x k (τ ) φ k (τ ) T P ẋk (τ ) φk (τ ) -[(x T k (τ )(∆C) T + φ T k (τ )(∆D φ -Im) T )ΛC] ẋk (τ ) -[(x T k (τ )(∆C) T + φ T k (τ )(∆D φ -Im) T )ΛD φ ] φk (τ ) -(x k (τ ) -x k (0)) T [Fx(x k (τ ) -x k (0)) + 2Gxx k (0)] + (T k -2τ ) x k (0) φ k (0) T X x k (0) φ k (0) + (T k -τ ) ẋT k (τ )[Rx ẋk (τ ) + 2Fx(x k (τ ) -x k (0)) + 2Gxx k (0)] - τ 0 ẋT k (θ)Rx ẋk (θ)dθ -(φ k (τ ) -φ k (0)) T [F φ (φ k (τ ) -φ k (0)) + 2G φ φ k (0)] + (T k -τ ) φT k (τ )[R φ φk (τ ) + 2F φ (φ k (τ ) -φ k (0)) + 2G φ φ k (0)] - τ 0 φT k (θ)R φ φk (θ)dθ. ( 39 
)
Using the sector conditions defined in Lemma 1 and Lemma 2, we have that

Ẇ (τ, x k , T k ) < Ẇ (τ, x k , T k ) + 2S∆(U1, φ k (τ ), y k (τ )) + 2SΓ(U2, φk (τ ), ẏk (τ )) + 2S∆(U3, φ k (0), y k (0)), or equivalently Ẇ (τ, x k , T k ) < Ẇ (τ, x k , T k ) + 2(φ T k (τ )(Im -(∆D φ ) T ) -x T k (τ )(∆C) T )U1(∆Cx k (τ ) + (∆D φ -Im)φ k (τ )) + 2( φT k (τ )(Im -(ΓD φ ) T ) -ẋT k (τ )(ΓC) T )U2(ΓC ẋk (τ ) + (ΓD φ -Im) φk (τ )) + 2(φ T k (0)(Im -(∆D φ ) T ) -x T k (0)(∆C) T )U3(∆Cx k (0) + (∆D φ -Im)φ k (0)). ( 40 
)
Consider the vector

η k (τ ) = [x T k (τ ) φ T k (τ ) ẋT k (τ ) φT k (τ ) x T k (0) φ T k (0)] T , the vector ζ k (τ ) = M135 η k (τ ) and a matrix Qx ∈ R (3n)×n . Since Rx is assumed to be positive definite, it follows that ( ẋk (θ) - R -1 x Q T x ζ k (τ )) T Rx( ẋk (θ) -R -1 x Q T x ζ k (τ )) > 0.
Integrating this expression over [0, τ ], the following inequality is obtained [START_REF] Briat | Convergence and equivalence results for the Jensen's inequality-application to time-delay and sampled-data systems[END_REF] 

τ 0 ẋk (θ) T Rx ẋk (θ)dθ -2ζ T k (τ )Qx(x k (τ ) -x k (0)) + τ ζ T k (τ )QxR -1 x Q T x ζ k (τ ) ≥ 0. ( 41 
)
Consider now a new vector ψ k (τ ) = M246 η k (τ ) and a matrix Q φ ∈ R (3m)×m . Following the same reasoning as above, we have that:

τ 0 φk (θ) T R φ φk (θ)dθ -2ψ T k (τ )Q φ (φ k (τ ) -φ k (0)) + τ ψ T k (τ )Q φ R -1 φ Q T φ ψ k (τ ) ≥ 0. ( 42 
)
On the other hand, along the solutions of ( 9) there exists a coupling relation between the components of the vector η k (τ ). Hence, ∀ L ∈ R 3(n+m)×n the following equality is satisfied:

LM0η k (τ ) = 0. ( 43 
)
This null term can be added to (41). Hence, combining (41), ( 42), ( 43) and ( 44), one obtains that

Ẇ ≤ η T k (τ )[Π1 + (T k -τ )Π2 + τ (M T 135 QxR -1 x Q T x M135 + M T 246 Q φ R -1 φ Q T φ M246) + (T k -2τ )Π3]η k (τ ).
Thus, to prove that Ẇ < 0, it suffices to guarantee that

Π1 + (T k -τ )Π2 + τ (M T 135 QxR -1 x Q T x M135 + M T 246 Q φ R -1 φ Q T φ M246) + (T k -2τ )Π3 ≺ 0.
Since this matrix inequality is affine in τ , and τ ∈ [0, T k ], a necessary and sufficient condition for the inequality to hold is obtained by checking the inequality in the interval limits 0 and T k , thus giving the following two inequalities:

Π1 + T k (Π2 + Π3) ≺ 0 (44) Π1 -T k Π3 + T k (M T 135 QxR -1 x Q T x M135 + M T 246 Q φ R -1 φ Q T φ M246) ≺ 0. ( 45 
)
Finally, since (45) and ( 46) are affine in T k and T k ∈ [T1, T2], applying the same reasoning and the Schur complement to (46), we conclude that Ψ1(Ti) ≺ 0 and Ψ2(Ti) ≺ 0, i = 1, 2, are sufficient to ensure Ẇ < 0. Hence, by virtue of Theorem 1 the satisfaction of conditions ( 32)- [START_REF] Turner | Lyapunov functions and l2 gain bounds for systems with slope restricted nonlinearities[END_REF] ensures the global asymptotic convergence of the trajectories to the origin.

Optimization Problems

From the conditions stated in Theorems 3 and 4, we propose three optimization problems with different goals as follows.

P1. Given T1, the sector and slope bounds, find the maximum value of T2 such that the asymptotic stability of the origin of closed-loop system (9) can be ensured. P2. Given a nominal sampling time Tnom, the sector and slope bounds, find a bound on the maximum symmetrical allowable jitter, denoted by σ, (i.e., T1 = Tnom -σ, T2 = Tnom + σ), such that the asymptotic stability of the origin of closed-loop system (9) can be ensured.

P3. Given T1 and T2, compute the maximum sector and slope bounds, such that the asymptotic stability of the origin of closed-loop system (9) can be ensured.

Provided T1, T2 and the sector bounds (that is, matrices ∆, ∆, Γ and Γ) are fixed, note that the matrix inequalities of Theorem 3 (( 32)-( 35)) and Theorem 4 (( 47)-( 50)) are LMIs. Hence, these optimization problems can be straightforwardly solved by considering feasibility LMI problems and bisection techniques, where we iteratively increase/decrease and test T2, σ or a parameter defining the sector.

In the regional case, we are also interested in computing an estimate of the region of attraction of the origin given by the sublevel set L(V, ρ), with ρ as large as possible, such that L(V, ρ) ⊂ X0. With this aim, consider that the region of validity of the sector and slope bounds in (2) are given by

Y0 = {y ∈ R m | y j ≤ yj ≤ y j ≤ 0, j = 1, . . . , m}. (52) 
Since y depends on the state x through the implicit equation (1b), the region Y0 can be mapped in space R n by X0 given in ( 6), which can be equivalently described as follows:

X0 = {x ∈ R n |(yj(x) -y j )(yj(x) -y j ) ≤ 0, j = 1, . . . , m}. (53) 
with yj(x) = Cjx + D φ j φ(y(x)). In this case, if there exist scalars σj > 0 such that the following inequalities are satisfied [START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF].

-σj(yj(x) -

y j )(yj(x) -y j ) ≥ (ρ -V (x)), (54) 
for j = 1, . . . , m, then it follows that L(V, ρ) ⊂ X0. Note that for each x ∈ L(V, ρ) one has that (ρ -V (x)) ≥ 0 and, from (55), we conclude that (yj(x) -y j )(yj(x) -y j ) ≤ 0. Based on relations (55), the following proposition provides LMI conditions to check the inclusion of L(V, ρ) in the set given by (54).

Proposition 2. Consider function V as defined in [START_REF] Jun | An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems[END_REF] and the set X0 given by (54). If there exist matrices, Λ ∈ D m 0 , Λ ≥ -Λ, Sc,j ∈ D m 0 and positive scalars σj and ρ, such that the following LMI is satisfied

   -(σjy j y j + ρ) σj y j +y j 2 Cj σj y j +y j 2 D φ j P11 -1 2 C T (∆ -∆) ΛC P12 -1 2 C T (∆ -∆) ΛD φ P22 -1 2 D T φ (∆ -∆) ΛD φ    -σj   0 0 0 C T j Cj C T j D φ j D T φ j D φ j   + He    1 2   0 (∆C) T (∆D φ -I) T   Sc,j 0 ∆C (∆D φ -I)    0, (55) for j = 1, . . . , m, then L(V, ρ) ⊂ X0.
Proof. From the definition of V in [START_REF] Jun | An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems[END_REF], inequalities (55) become

-σjy j y j -ρ + σj(y j + y j )yj(x) -σjy 2 j (x) + VQG(x) + m i=1 λi y i 0 (φi(s) -δ i s)ds ≥ 0, (56) 
j = 1, . . . , m. Since by assumption Λ ≥ -Λi, we obtain from [START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF] the following lower bound for the Lure-Postnikov terms (see details in reference [START_REF] Valmorbida | Regional analysis of sloperestricted Lurie systems[END_REF]):

m i=1 λi y i 0 (φi(s) -δ i s)ds ≥ - 1 2 y T (∆ -∆) Λy ≥ 0. (57) 
Hence, provided the inequalities -σjy j y j -ρ + σj(y j + y j )yj(x) -σjy 2 j (x) + VQG(x) -

1 2 y T (∆ -∆) Λy ≥ 0 (58) 
hold, ∀j = 1, • • • , m, we have that (57) holds. Expanding the terms yj(x) = Cjx + D φ j φ(y(x)), rewriting (59) using a matrix Ψ and relaxing for all x and φ which satisfies the sector conditions by adding the term -S∆(Sc,j, φ, y) (as defined in Lemma 1) on the left side of (59), we have that the following inequalities provide sufficient conditions to verify (59):

  1 x φ   T Ψ   1 x φ   -S∆(Sc,j, φ, y) =   1 x φ   T Ψ   1 x φ   ≥ 0, (59) 
with Ψ given by

Ψ =    -(σjy j y j + ρ) σj y j +y j 2 Cj σj y j +y j 2 D φ j P11 -1 2 C T (∆ -∆) ΛC P12 -1 2 C T (∆ -∆) ΛD φ P22 -1 2 D T φ (∆ -∆) ΛD φ    -σj   0 0 0 0 C T j Cj C T j D φ j 0 D T φ j D φ j   + He    1 2   0 (∆C) T (∆D φ -I) T   Sc,j 0 ∆C (∆D φ -I)    . (60) 
Hence, a sufficient condition to ensure (60) and thus (55) is that Ψ 0, which corresponds to (56).

If the validity region Y0 is symmetric, i.e., y j = y j , then a simplified inclusion condition can be considered. In this case, we have that

X0 = {x ∈ R n | |yj(x)| ≤ y j , j = 1, . . . , m}, (61) 
and thus a condition to verify the inclusion L(V, ρ) ⊂ X0 is given by

yj(x) T ρ(y j ) -2 yj(x) ≤ V (x), (62) 
for j = 1, . . . , m. Note that if x ∈ L(V, ρ) then V (x) ≤ ρ. Thus, from (63), one has ρ ≥ yj(x) T ρ(y j ) -2 yj(x), that is, yj(x) T yj(x) ≤ y 2 j , which implies that x ∈ X0. The following proposition provides a LMI test to verify relations (63). Proposition 3. Consider function V as defined in [START_REF] Jun | An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems[END_REF] and the set X0 given by (62). If there exist matrices Λ ∈ D m 0 , Λ ≥ -Λ, Sc,j ∈ D m 0 and a positive scalar ρ such that the following LMIs are satisfied

  P11 -1 2 C T (∆ -∆) ΛC P12 -1 2 C T (∆ -∆) ΛD φ ρC T j P22 -1 2 D T φ (∆ -∆) ΛD φ ρD T φ j ρy 2 j   + He    1 2   (∆C) T (∆D φ -I) T 0   Sc,j ∆C (∆D φ -I) 0    0, (63) 
for j = 1, . . . , m, then L(V, ρ) ⊂ X0.

Proof. Applying Schur's Complement to the terms on the third row and third column of the matrix on the left of (64), then right and left multiplying the resulting inequality, respectively by [x T φ T ] T and its transpose, respectively, one obtains:

x φ T P11 P12 P22 x φ - 1 2 y T (∆ -∆) Λy -S∆(Sc,j, φ, y) ≥ ρ(x T C T j + φ T D T φ j )ρ -1 (y j ) -2 (Cjx + D φ j φ)ρ. (64) 
As S∆(Sc,j, φ, y) ≥ 0 for x ∈ X0, from (65) it follows that

x φ T P11 P12 P22 x φ - 1 2 y T (∆ -∆) Λy ≥ ρ(x T C T j + φ T D T φ j )ρ -1 (y j ) -2 (Cjx + D φ j φ)ρ. (65) 
Finally using (58) and the fact that yj(x) = Cjx + D φ j φ, it follows that (63) is verified, which concludes the proof.

Hence, once the function V that solves one of the problems (P1, P2 or P3) above is determined, that is, the matrices P and Λ are obtained, the maximum sublevel set L(V, ρ) included in X0 can be determined through the following convex problem: maximize ρ, subject to (56) (or (64)).

(66)

Numerical Examples

Next four examples illustrate the application of the proposed results. In Example 1 we emphasize the conservatism reduction obtained thanks to the use of a generalized Lure type function V as defined in ( 24)-( 25). Examples 2 and 3 present comparisons with the approach in reference [START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF],

showing the conservatism reduction achieved with the use of our functional, which depends also on the nonlinearity. Finally, Example 4 illustrates the application of the conditions to assess local stability and to provide an estimate of the region of attraction of the origin. The associated Matlab routines for each one of the examples can be provided on demand to the authors.

Example 1: Consider system (1) given by the following matrices

A =     -0.5 -6.2 -0.105 -1.2 1 0 0 0 0 1 0 0 0 0 1 0     , Bu =     1 0 0 0     , B φ =     0.5 0 0 0     C = 0 0.2 0 0 , D φ = [0],
the control law [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF] with the following gains

Kx = 0.1 0.2 0.005 0.2 , K φ = [0.5],
and the bounds on φ given by δ = 0, δ = , γ = -, γ = . To show the potential advantage and the conservatism reduction induced by the generalized Lure type function, we consider different structures from the function V defined in [START_REF] Jun | An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems[END_REF]. More specifically, we evaluate the feasibility of the LMIs such that they also hold for VQG (i.e. V with Λ = 0), for a quadratic function VQ(x) = x T P11x, which corresponds to V with P12 = 0, P22 = 0, Λ = 0 and for a classical Lure-Postnikov function

VLP (x) = x T P11x + m i=1 λi y i 0 (φi(s) -δ i s)ds, (67) 
which corresponds to V with P12 = 0, P22 = 0 and λi ≥ 0, i = 1, . . . , m. Note that for VQ and VLP we consider P11 0 and for VQG we consider P 0. The obtained results for problem P1 are detailed in Table 1, for values of T1 = 0.1 ms and = 1 √ 2 . For problem P2, we fixed Tnom = 1.5 s and = 1 √ 2 , which results are presented in Table 2. Finally, for problem P3 we defined T1 = 0.1 ms and T2 = 2.0 s, which results are depicted in Table 3. V Q V QG V LP V 0.5955 0.5970 0.7842 1.1043 In the first problem, using the generalized Lure function V we obtain values for T2 that are 19.1%, 136.1% and 136.4% larger than the ones obtained with VLP , VQG and VQ, respectively. For problem P2, we guarantee the stability for T1 = 0.2740 s and T2 = 2.7260 s, with σ 12.6%, 16.8 % and 16.8 % larger than the ones obtained with VLP , VQG and VQ, respectively. For the last feasibility problem, the maximum sector bounds, represented by were 40.8%, 84.9% and 85.4% larger than the ones obtained with VLP , VQG and VQ, respectively. We can conclude that a significant conservatism reduction is achieved with the use of a generalized Lure type function V in comparison with some classical and simpler functions.

For the result obtained with the proposed function V in Table 1, the following matrix P have been obtained: whose eigenvalues are -0.0102, 0.0512, 0.1506, 0.3750, 1.1525. This illustrates that, with the proposed function V , matrix P does not need to be positive definite, thanks to the application of Lemma 3.

P =       0.
To show that the obtained results certify the global stabilization of the closed-loop system (9), we simulate the system considering the result from problem P1, i.e., T k ∈ [0.0001, 2.6362], and the nonlinearity φ(y(t)) = 0.1sin(5y(t)) + 0.15y(t), (68

) that satisfies (2) with δ = 0, δ = 1 √ 2 , γ = -1 √ 2 , γ = 1 √ 2 .
The control action and the states of the closed-loop system are presented in Figures 1 and2. To obtain the values of T k , we used a pseudorandom algorithm that generates its numbers from the standard uniform distribution on the interval previously defined. We observe that the states and the control signal converge to the origin, as Example 2: For the plant of Example 1, we consider now the control law given by: Kx = -2.8322 -2.5547 -6.6458 -1.3226 , K φ = 0, that is, a linear state feedback. Supposing that φ satisfies the sector and slope bounds given by given by δ = 0, δ = , γ = -, γ = , with = 1 √ 2 and considering T1 = 0.0001, the maximal admissible bound T2 for which we can certify stability with the proposed results (i.e by solving P1) was 0.60. On the other hand, by simulation, we obtain a diverging trajectory of the closed loop with T2 = 0.61. To illustrate this consider again the nonlinearity φ(y(t)) = 0.15y(t) + 0.1sin(5y(t)). In this case, considering the initial condition x(0) = 1 1 1 1 , Figures 3 and4 show the states response for a periodic sampling with T k = 0.6 and T k = 0.61, ∀k, respectively. Note that the bound on T2 obtained with the proposed conditions is close of the actual maximal admissible one.

For comparison purposes, the maximal T2 obtained with the results from Seifullaev and Fradkov [START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF], which consider a time-delay approach and a Lyapunov-Krasovskii functional proposed in [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF] (see Remark 2), was 0.57. This shows the conservatism reduction achieved by the proposed method. 

ẋ1(t) = -2x1(t) + sin(x2(t)), ẋ2(t) = x1(t) -x2(t) + 2 sin(x2(t)) + u(t), (69) 
y(t) = x2(t), u(t) = -Ky(t k ), ∀t ∈ [t k , t k+1 ), t k+1 -t k ≤ T2.
System (70) can be rewritten in form ( 1)-( 7) with the following matrices:

A = -2 1 1 1 , Bu = 0 1 , B φ = 1 2 , C = 0 1 , D φ = [0], Kx = 0 -K , K φ = [0],
with nonlinearity φ(y(t)) = sin(y(t)) -y(t), satisfying (2) with δ = -1.2173, δ = 0, γ = -2, γ = 0. The values of the maximum T2 obtained with Theorem 3, by considering V and T1 = 0.1 ms and with Theorem 3 from reference [START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF] are given in Table 4 for different gains.

From Table 4, we observe that the proposed conditions lead to larger values of T2 than the ones obtained with the conditions of reference [START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF]. The dependence of the upper bound of the sampling intervals T2 obtained by both approaches as a function of the controller gain K is shown in Figure It can be observed that our approach provides less conservative results in terms of the maximum admissible bound T2, in particular for small values of K. The maximum value of T2 obtained was T2 = 1.3602 s, with K = 1.51. As discussed in Remark 2, this conservatism reduction comes from the fact that our function V and functional W0 are more generic than the ones used to derive the results in reference [START_REF] Ruslan | Sampled-data control of nonlinear systems based on Fridman's analysis and passification design[END_REF]. Moreover, as discussed in Remark 1, in our conditions W0 is not required to be positive definite.

Example 4: Consider system (1) given by the following matrices:

A = -2 1 1 1 , Bu = 1 0 0 1 , B φ = 1 0 0 2 C = 0 1 1 0 , D φ = 0 0 0 0 ,
and the control law [START_REF] Fridman | Robust sampled-data stabilization of linear systems: an input delay approach[END_REF] with the following gains

Kx = -1 -2 -0.5 -2 , K φ = 0 1 -0.5 1 .
Suppose that this system is fed back by the nonlinearities φ(y1) = sin(y1), φ(y2) = sin(y2). These nonlinearities lie in a sector given by δ 1 = δ 2 = 0, δ1 = δ2 = 1, with slope bounds γ 1 = γ 2 = -1 and γ 1 = γ 2 = 1, provided that y1, y2 ∈ [-π, π]. In this case, the obtained results for problems P1, P2 and P3 are detailed in Table 5 by considering different structures of V . For problem P1, we fixed T1 = 0.1 ms. For problem P2, we defined Tnom = 0.25 s and for problem P3 we defined T1 = 0.1 ms and T2 = 0.2 s, but we change the sector conditions to δ i = 0, γ i = -Ω, δi = γ i = Ω, for i = 1, 2 (y i and y i were kept the same). and solving (67) we obtain ρ = 0.4550. Observe that with the function V , we enlarge the estimate of the region of attraction in comparison to the other functions. Furthermore, we increase the sector and slope admissible bounds.

To show that stability is guaranteed for the obtained region, we simulate the closed-loop system by considering the solution of problem P3 with V , T k ∈ [0.0001, 0.2] and the nonlinearities φ(y1) = 1.4 sin(y1) and φ(y2) = 1.4 sin(y2), which satisfies the sector conditions for δ 1 = δ 2 = 0, δ1 = δ2 = 1.4, The resulting trajectories for initial conditions on the boundary of the obtained estimate of the region of attraction are presented in Fig. 7. We considered in the simulation the same sampling sequence for all trajectories. As expected, they all converge to the origin.

Conclusions

In this work, new convex conditions for the asymptotic stability assessment of Lure-type aperiodic sampled-data controlled systems, subject to sector and slope-restricted nonlinearities have been proposed. The approach is based on the used of a generalized Lure type function, in the sense that the quadratic part depends also on the nonlinearity and the coefficient of the Lure-Postnikov terms are not necessarily non-negative, and on a looped-functional that also depends on the system nonlinearities. From these elements, LMI conditions to certify the global as well as the regional stability of the origin have been formulated. In particular, for the global case it has been shown that the positivity of the functional can also be relaxed, as in the linear systems case. For the regional case, sets of admissible initial states (which can be seen as estimates of the region of attraction of the origin) have been formally characterized as level sets of the generalized Lure type function.

Finally, it has been discussed how the proposed LMI conditions can be used to find a bound on the maximum admissible intersampling time, on the jitter around a nominal sampling period, or on the maximum sector for which the stability can be ensured. Several numerical examples illustrate the application and effectiveness of the proposed conditions, which are based on a more general function and functional than the ones considered in previous literature, to reduce the conservatism of the results.

As future work, other classes of functionals and the use of other relaxations to bound integral terms instead of the equivalent Jensen's inequality [START_REF] Briat | Convergence and equivalence results for the Jensen's inequality-application to time-delay and sampled-data systems[END_REF], such as Writinger or Bessel ones [START_REF] Seuret | Stability of linear systems with time-varying delays using bessel-legendre inequalities[END_REF], can be considered at the expense of obtaining numerical formulations of increasing complexity. The extension of the results using matrices depending on τ is also relatively straightforward, but it will lead to even more complex conditions. If this dependence is polynomial, the problem can be indeed addressed in a sum of squares (SOS) framework. The extension of the proposed results to address the stabilization problem, i.e. to provide conditions allowing the synthesis of the control law gains, is another problem that should be investigated. The main issue regards the determination of linear (or quasi-linear) matrix inequalities due to several products between variables. Even performing some suitable congruence transformations and changes of variables some products will still remain. In this case, relaxation schemes have to be used by fixing some variables and solving LMI problems in an iterative way. A preliminary result in this sense has been published in [START_REF] Titton | Stabilization of sampleddata lure systems with slope-restricted nonlinearities[END_REF].

Lemma 1 .

 1 [START_REF] Hassan | Nonlinear systems[END_REF] If U1 ∈ D m 0 and φ : R m → R m satisfies (2), then S∆(U1, φ(y), y) (φ(y) -∆y) T U1(∆y -φ(y)) ≥ 0,

Figure 1 :

 1 Figure 1: Control signal of the closed-loop system with nonlinearity (69).

  expected.

Figure 2 :

 2 Figure 2: States of the closed-loop system with nonlinearity (69).

Figure 3 : 3 :

 33 Figure 3: States response for T k = 0.6, ∀k

Figure 4 :

 4 Figure 4: States response for T k = 0.61, ∀k

Figure 5 :

 5 Figure 5: Upper bound T 2 as a function of gain K.

Figure 6 :

 6 Figure 6: Estimates of the region of attraction for P3 with different functions.

Figure 7 :

 7 Figure 7: Trajectories of the closed-loop system

  The notations | • | and || • || represent the absolute value of a scalar and the Euclidean norm, respectively. The ith element of a vector v is Depending on the context, we use ∂ to denote the sub-differential operator or the boundary of a set. The symmetric terms in a symmetric matrix are denoted by .

	denoted by vi. P	0 (P	0) means that P is positive (semi-)definite and P ≺ 0 (P	0) means
	that P is negative (semi-)definite. 2 Problem Statement	
	2.1 The Lure System	

Table 1 :

 1 Maximum value of T 2 for different Lyapunov function structures.

	V Q	V QG	V LP	V
	T 2 1.1151 1.1161 2.2121 2.6362

Table 2 :

 2 Maximum value of σ for different Lyapunov function structures.

	V Q	V QG	V LP	V
	σ 1.0492 1.0496 1.0888 1.2260

Table 3 :

 3 Maximum value of for different Lyapunov function structures.

Table 5 :

 5 Regional analysis, Ex. 3 -Results for problems P1-P3.Using the generalized Lure function V , for problem P1 we achieve values for T2 that are 16.9%, 17.8% and 19.0% larger than the ones obtained with VQG, VL and VQ, respectively. For problem

	Problem Parameter	V Q	V QG	V L	V
	P1	T 2	0.3403 0.3464 0.3437 0.4052
	P2	σ	0.0904 0.0965 0.1513 0.1553
	P3	Ω	1.2902 1.3063 1.3750 1.4397

The matrices M i are not of the same dimension. The notations 0 and I correspond to the zero and identity matrices of appropriate dimensions that will become clear in the context.
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(∆C) T (∆D φ -Im) T U0 ∆C (∆D φ -Im) 0, [START_REF] Titton | Stabilization of sampleddata lure systems with slope-restricted nonlinearities[END_REF] with

Then the origin of the sampled-data closed-loop system (1)-( 7), with φ satisfying (2) globally and T k ∈ [T1, T2], is GAS.

Proof. Considering Theorem 1, we obtain the result by showing that (10), ( 12) and ( 13) are satisfied considering the generalized Lure type function ( 24)-( 25) and W0 as in [START_REF] Ruslan | Robust nonlinear sampled-data system analysis based on Fridman's method and S-procedure[END_REF].

By using Lemma 1 and Lemma 3, it is straightforward to prove that the positivity of V is ensured by the inequalities ( 34) and [START_REF] Turner | Lyapunov functions and l2 gain bounds for systems with slope restricted nonlinearities[END_REF]. Moreover, note that [START_REF] Titton | Stabilization of sampleddata lure systems with slope-restricted nonlinearities[END_REF] holds with Λ ∈ D m 0 , it follows that

Regional case

Based on the result of Theorem 2, in this section we derive LMI conditions to assess the local stability of the origin of the closed-loop system. It should be recalled that in this case the functional W0 is required to be positive definite to ensure the boundedness of the trajectories in the region of validity of the sector conditions. For this, we consider V as defined in [START_REF] Jun | An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems[END_REF] and a functional W0 as defined in [START_REF] Ruslan | Robust nonlinear sampled-data system analysis based on Fridman's method and S-procedure[END_REF] with Gx = 0, G φ = 0 and X 0, Fx 0 and F φ 0. Note that this particular structure will ensure the positivity of the crossed terms between x k (τ ) and x k (0) and between φ k (τ ) and φ k (0), guaranteeing therefore the positivity of the functional. Theorem 4. For given T1 and T2 such that 0 < T1 ≤ T2, assume that there exist matrices

with

Then, for all initial conditions belonging to L(V, ρ) ⊂ X0, the corresponding trajectories of the closedloop system (1)-( 7) with φ satisfying (2) and T k ∈ [T1, T2] converge asymptotically to the origin.

Proof. The proof follows the same steps of the one of Theorem 3. The inequalities (47)-(50) ensure the positivity of V and that Ẇ (τ, x k , T k ) < 0, considering W0 with Gx = 0, G φ = 0, X 0, Fx 0 and F φ 0.

Remark 3. When the slope bounds (i.e. Γ and Γ) are unknown or when we want to ensure stability for any nonlinearity in a given sector, that is, considering that only (2a) and (2b) are satisfied, Lemma 2 can no longer be used to deal with the terms depending on φ in the derivative of V + W0. In this case, stability conditions can be obtained by applying Theorems 1 and 2 with a quadratic function V (x) = x T P11x and the simplified functional

+ (T k -τ ) with Fx ∈ S n , Gx ∈ R n×n , X ∈ S n+m and Rx ∈ S n 0 . Then, following the same developments of Theorems 3 and 4, LMI conditions can be straightforwardly derived for this case both in global and regional contexts.