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Abstract 
 

Stress-modified activated processes are analyzed using a model first proposed by Evans and 
Polanyi that uses transition-state theory to calculate the effect of some perturbation, described by 
an intensive variable, 𝐼, on the reaction rate. They suggested that the rate constant depended 
primarily on the equilibrium between the transition state and the reactant, which, in turn, depends 
on the effect of the perturbation 𝐼 on the Gibbs free energy, 𝐺 = 𝑈 − 𝑇𝑆 + 𝐼𝐶, where 𝐶 is a 
variable conjugate to 𝐼. For example, in the case of a hydrostatic pressure 𝑃, the conjugate variable 
is the volume, −𝑉. This allows a pressure-dependent rate to be calculated from the equilibrium 
constant between the reactant and transition state. Advantages to this approach are that the analysis 
is independent of the pathway between the two states and can simultaneously include the effect of 
multiple perturbations. These ideas are applied to the Prandtl-Tomlinson model, which analyses 
the force-induced transition rate over a surface energy barrier. The Evans-Polanyi analysis is 
independent of the shape of the sliding potential and merely requires the locations of the initial 
and transition states. It also allows the effects of both normal and shear stresses to be analyzed to 
identify the molecular origins of the well-known pressure-dependent shear stress: 𝜏 = 𝜏- + 𝜇/𝑃, 
where 𝜏- is a pressure-independent stress. The analysis reveals that 𝜇/  depends on the molecular 
corrugation of the potential and that 𝜏- is velocity dependent, in accord with an empirical equation 
proposed by Briscoe and Evans. 
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Introduction, 
 

Identical physical principles underpin all stress-activated processes, for example, the Prandtl-

Tomlinson model for friction [1-5], the Eyring model for viscosity [6, 7], and models for mechano- 

or tribochemical reaction rates [8]. They involve an applied force modifying the potential energy 

surface (PES) for the system, therefore changing the reaction and transition-state energies. This, 

in turn, changes the reaction activation energy and, as a result, influences the rate [9]. This central 

concept, in principle, allows the molecular mechanisms that describe macroscale phenomena such 

as friction, wear [10], viscosity, or mechanochemistry [8] to be identified. Such theories are 

invariably framed in terms of a reaction pathway linking the transition-state to the reactant. This 

pathway can be either in the form of a simple analytical function, often just a sinusoid [1-4, 7, 8, 

11-14], or can be derived from a force-modified potential energy surface (FMPES) [15-19]. 

A process occurring in the absence of an imposed stress is usually taken to follow the steepest-

descent pathway (SDP) from a transition state to a reactant [20, 21]. However, an advantage of 

transition-state theory is that the rates do not depend on the reaction pathway, just the energy 

difference between the initial and transition states and their partition functions [22]. Efficient 

methods have been developed to calculate the structure and properties of the metastable activated 

complex of a transition state [23-25]. 

An approach to calculating the effect of an external perturbation such as a pressure on a 

reaction rate constant has been proposed by Evans and Polanyi [26, 27] based on the concepts of 

transition-state theory. Note that this theory is different from the linear-free-energy relation, also 

named for Evans and Polanyi, that has been used to model catalytic reaction kinetics [28-30]. 

As conventionally analyzed, transition-state theory assumes that the reactant and the transition-

state (activated complex) structures are in thermodynamic equilibrium and uses statistical 
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thermodynamics to calculate an equilibrium constant between them to obtain a reaction rate 

constant [22]. Instead, Evans and Polanyi used a thermodynamic analysis to calculate the effect of 

a perturbation such as hydrostatic pressure 𝑃 on the rate constant [31, 32]. In the following, we 

review the analysis used by Evans and Polanyi to describe the effect of hydrostatic pressure on the 

rate of a chemical reaction. In the section following that, we extend the analysis to investigating 

the influence of a general applied stress on a reaction rate, and finally we apply the model to sliding 

friction to illustrate how it can provide deeper insights into the molecular origins of friction than 

more conventional Prandtl-Tomlinson-type models. 

Summary of Evans-Polanyi Analysis of Pressure-Dependent Reaction Rates 

The Evans-Polanyi analysis is based on the idea that the equilibrium constant of chemical 

reaction, 𝐾, can be obtained from the standard Gibbs free energy change per mole for the process, 

∆𝐺⦵, as: 

      ∆𝐺⦵ = −𝑅𝑇𝑙𝑛𝐾     (1), 
  
where 𝑅 is the gas constant and 𝑇 is the absolute temperature [33]. Note that, because the number 

of moles of reactant and product are equal, 𝐾 is unitless. Since ∆𝐺 = ∆𝑈 + 𝑃∆𝑉 − 𝑇∆𝑆, the 

variation in equilibrium constant with (hydrostatic) pressure is given by 6789
6:
;
<
= − ∆=

><
, where here 

∆𝑉 has the units of volume per mole; it corresponds to some molar volume change between the 

reactant and the product. Evans and Polanyi argued that, rather than using statistical 

thermodynamics to calculate the equilibrium constant between the transition state and the reactant 

[22], classical thermodynamic concepts could be used instead. As a result, a similar equation could 

be written for a rate constant 𝑘 as:  678@
6:
;
<
= −∆=‡

><
, where ∆𝑉‡ is known as an activation volume, 

measured for one mole under standard conditions. It has the units of volume per mole (or per 
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molecule) and is formally a volume difference between the activated complex and the reactant. 

The physical interpretation of this volume change will be clarified below. Evans and Polanyi also 

pointed out that this idea could be extended to analyzing the effect of any external potential, 𝑓, on 

the rate constant 𝑘 of a chemical reaction [26, 27], and showed that  C78@
CD

= − EFGFHI
><

, where 𝛼 and 

𝛼K are factors such that (𝛼 − 𝛼K)𝑓 is the energy change of the system in passing from the initial to 

the transition state. That is, 𝛼 is the intensive variable conjugate to 𝑓. For example, if 𝑓 = 𝑃, the 

hydrostatic pressure, the conjugate variable is −𝑉. Thus, the variable conjugate to an imposed 

stress has the units of volume. 

If the rate constant under a standard pressure is 𝑘-, then 𝑘(𝑃) = 𝑘-𝑒𝑥𝑝 Q−
:∆=‡

><
R. This has 

been called the Bell equation [34] and was originally applied to analyzing cell adhesion. Using the 

Arrhenius form of the rate constants shows that 𝐸TUV(𝑃) = 𝐸TUV- + 𝑃∆𝑉‡, where 𝐸TUV-  is the 

activation barrier in the absence of an applied pressure and 𝐸TUV(𝑃) is the pressure-dependent 

barrier. Thus, a decrease in volume of the activated complex compared to the reactant causes ∆𝑉‡ 

to be negative, so that increasing the pressure reduces the activation barrier and increases the 

reaction rate. Conversely, a positive activation volume results in a decrease in rate with increasing 

pressure. 

There are several advantages to using such an approach compared to those that use a force-

modified potential energy surface [15, 35] or a one-dimensional periodic function. First, as a 

consequence of Hess’ law [33], such a thermodynamic analysis does not depend on the pathway 

between the activated complex and the reactant [17]. This provides a significant advantage for 

applications to real systems, because calculating the potential-energy surface is tedious, while 

obtaining just the reactant and transition-state energies and structures and their properties is much 

simpler [23-25, 36]. 
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Second, analyses such as those used to describe the molecular origins of friction and viscosity 

invariably only use a single force, while both normal and shear stresses are invariably applied at 

the same time in real experiments. The Evans-Polanyi perturbation model can easily be extended 

to describe the effect of a combination of stresses as well as including the effects of other 

perturbations. This approach facilitate linking macroscale sliding phenomena to the molecular 

origins that underpin them. 

Thus, the central concept that underpins Evans-Polanyi (E-P) perturbation theory is that the 

Gibbs Free Energy 𝐺 of a system can include the effect of some perturbation of the system 

described by an intensive variable, 𝐼, by using an associated extensive conjugate variable, 𝐶, where 

𝐼𝑑𝐶 equals the reversible work, so that 𝐺 = 𝑈 − 𝑇𝑆 + 𝐼𝐶	[37]. In the case of a chemical process 

in which there are two states, we can define two values of the Gibbs free energies for each state 

under standard conditions of pressure and temperature so that ∆𝐺⦵ = 𝐺Y
⦵ − 𝐺Z

⦵. For constant 

values of temperature 𝑇 and 𝐼, ∆𝐺⦵ = ∆𝑈⦵ − 𝑇∆𝑆⦵ + 𝐼∆𝐶⦵. This equation can be used to 

calculate the way in which the equilibrium constant (𝐾) or the rate constant (𝑘) of a chemical 

process depends on the perturbation 𝐼. Note that, in many cases, the value of the conjugate variable, 

𝐶, can itself depend on 𝐼, as was alluded to by Evans and Polanyi [26, 27], so that the equation for 

the standard Gibbs free energy change becomes: 

    ∆𝐺⦵ = ∆𝑈⦵ − 𝑇∆𝑆⦵ + 𝐼∆𝐶⦵(𝐼)    (2). 

∆𝐶⦵(𝐼) can most conveniently be evaluated by carrying out a Taylor series expansion. The rate 

constant 𝑘 is given by: 

     𝑙𝑛𝑘(𝐼) = 𝑙𝑛𝑘- −
∆\‡

><
𝐼     (3), 

where again 𝑘- is the rate constant for the process in the absence of the perturbation. In the 

following analysis, we will apply this general method to examining stress-modified surface 
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processes but will neglect the variation of the variable 𝐶, and this will be discussed in more detail 

elsewhere. The method will be used to analyze the molecular origins of pressure-dependent shear 

stresses within the general framework of the Prandtl-Tomlinson friction model [3, 4, 11, 38]. 

Application of Evans-Polanyi Perturbation Theory to Stress-Modified 

Processes 

In a reactive process, whether a chemical reaction or a sliding contact, the atoms located at 

some initial, stable configuration, 𝒓^(𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡), 𝑖 = 1	𝑡𝑜	𝑁, where 𝑁 is the number of atoms in 

the molecular assembly, undergo a transformation by transiting an energy barrier which has a 

transition-state structure (an activated complex) with atomic positions, 𝒓^(𝑇𝑆), to yield a product 

with different atomic position vectors, 𝒓^(𝑃𝑟𝑜𝑑𝑢𝑐𝑡)[22]. The reactants and products have local 

minima with positive Hessians, while the transition-state is metastable with one negative Hessian 

[25]. In this analysis, we are interested in calculating the Gibbs free energy change between the 

transition state and the reactant with a view to evaluating the stress dependence of the reaction rate 

constant using the E-P perturbation method described above. The reaction involves motion of the 

𝑖Vh atom given by 𝒓^(𝑇𝑆) − 𝒓^(𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡). These structures and their position vectors can be 

calculated using quantum mechanics [23-25, 36, 39]. 

Thermomechanical properties are analyzed using continuum mechanics by distorting some 

reference configuration (typically the reactant state) so that it undergoes a transformation 𝒙 =

𝒙(𝑿), to give the position 𝒙 of the particle with original position 𝑿. This mapping is assumed to 

be continuous, differentiable and invertible. The transformation is described by the deformation 

gradient tensor 𝑭, where 𝐹^m =
6no
6pq

, and is represented by a 3 × 3 matrix. The deformation of a 
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reference configuration with volume 𝑉- into a new configuration with volume 𝑉 is given by 𝑉 =

𝑉- det(𝑭) = 𝑉-𝐽, where 𝐽 = det(𝑭) is the determinant of the deformation gradient tensor [40]. 

In order to implement the Evans-Polanyi perturbation method for mechanically induced 

processes, it is necessary to define the relevant conjugate variables 𝐶 (strain) and 𝐼	(stress). Using 

the convention used in the analysis of the mechanical properties of materials of using a reference 

density 𝜌-, the internal work per unit mass is given by: 𝜔z-^8V𝑑𝑡 = 𝜌-𝑑𝑊- = 𝐼𝑑𝐶 = 𝐽𝑻: 𝑑𝑭	𝑭GZ =

𝚷:𝑑𝑭 = 𝑺: 𝑑𝑬, where 𝜔z-^8V is the stress power per unit reference volume [37] and 𝑻, 𝚷	and S are 

the Cauchy and first and second Piola-Kirchhoff stress tensors, while 𝑬 is the Green-Lagrange 

deformation tensor [40]. Here the double dot : denotes the standard scalar product of two tensors; 

𝑨:𝑩 = 𝑡𝑟(𝑨𝑩<) = 𝐴^m𝐵^m.   

 In the case of a hydrostatic pressure, 𝑃, the Cauchy stress 𝑻	 =	–𝑃𝑰, where 𝑰 is the unit tensor, 

and the internal work reduces to ρ-	𝑑𝑊- = 𝐽	𝑻:	𝑑𝑭	𝑭GZ =	– 	𝑃	𝐽	𝑡𝑟(	𝑑𝑭	𝑭GZ) =	– 	𝑃	𝑑𝐽	 =	– 𝑃	𝑑𝑉, 

which is used in the original E-P paper [26]. Here, the conjugate pair, (𝐶, 𝐼) 	= 	 (−𝑉, 𝑃). 

Unfortunately, this is the only case in which the Cauchy stress tensor can be used to model stress-

induced processes. 

From the above equation, two candidates for the combinations of strain and stress are (𝑭, 𝜫) 

and (𝑺, 𝑬). The first conjugate pair is generally not appropriate because the elastic constitutive 

equation, 𝜫(𝑭) cannot be inverted to yield 𝑭(𝜫), thus making it impossible to define a Gibbs free 

energy 𝐺(𝜫). In contrast, (𝐶, 𝐼) 	= 	 (𝑬, 𝑺) can be inverted and can thus provide an appropriate 

conjugate pair to define a Gibbs free energy change occurring during a chemical transformation. 

The disadvantage to this choice is that, while the Green-Lagrange strain tensor, 𝑬, has a clear 

physical meaning, the second Piola-Kirchhoff stress tensor, S, does not.  
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For the sake of simplicity in the 

following, it will be assumed that the 

deformation is constrained to have an 

invariant plane coincident with the sliding 

plane. Other deformations can be included 

quire easily, if necessary. However, this is 

the most common occurrence in tribological 

problems, where a normal stress is exerted 

along the perpendicular 𝑥� (𝑧) direction combined with shear within the 𝑥Z𝑥Y (𝑥𝑦) plane so that 

the transformation is: 𝑥Z = 	𝑋Z,			𝑥Y = 𝑋Y	,			𝑥� = 	𝛾Z𝑋Z 	+	𝛾Y𝑋Y 	+	𝑓�𝑋� (Figure1) and the 

gradient tensor is given by 𝑭	 = 	�
1 0 𝛾Z
0 1 𝛾Y
0 0 𝑓�

� with 𝑑𝑒𝑡𝑭 = 	𝐽 = 𝑓�. Its inverse is 𝑭GZ =

�
1 0 −𝛾Z/𝑓�
0 1 −𝛾Y/𝑓�
0 0 1/𝑓�

�, so that 𝒅𝑭𝑭GZ = �
0 0 𝑑𝛾Z
0 0 𝑑𝛾Y
0 0 𝑑𝑓�

��
1 0 −𝛾Z/𝑓�
0 1 −𝛾Y/𝑓�
0 0 1/𝑓�

� = �
0 0 𝑑𝛾Z/𝑓�
0 0 𝑑𝛾Y/𝑓�
0 0 𝑑𝑓�/𝑓�

�. In 

the case of a general Cauchy stress 𝝈 = 𝑻 =	�
𝜎Z 𝜏ZY 𝜏Z�
𝜏ZY 𝜎Y 𝜏Y�
𝜏Z� 𝜏Y� 𝜎�

�. It is appropriate to use molar 

quantities in the case of a molecular transformation so that the work is given by C��
=�

=

𝐽𝑻: 𝑑𝑭𝑭GZ = 𝜏Z�𝑑𝛾Z + 𝜏Y�𝑑𝛾Y + 𝜎�𝑑𝑓�, where V0 is the molar volume in the reactant state which, 

in the following, is taken to be the reference configuration. This leads to the conjugate pair 𝐼 =

(𝜎�, 𝜏Z�, 𝜏Y�) and 𝐶 = 𝑉-(𝑓�, 𝛾Z, 𝛾Y), and the resulting Gibbs free energy change between the 

transition state and the reactant under standard conditions is: 

   ∆𝐺⦵ = ∆𝑈⦵ − 𝑇∆𝑆⦵ + 𝑉-(𝜏Z�𝑑𝛾Z + 𝜏Y�𝑑𝛾Y + 𝜎�𝑑𝑓�	)  (4). 

 
 
Figure 1: Depiction of the deformation of a 
unit cube with an invariant 𝑥𝑦 plane. 
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We note that the same result could have been obtained more directly by calculating the work done 

by a force 𝓕 = (ℱZ, ℱY,ℱ�)	exerted on an invariant surface, 𝑥� = Constant. This, in fact, also 

corresponds to the alternative form 	𝚷: 𝑑𝑭 since in this case 𝜫�� = 	𝑻^�,	𝑖 = 1…3. More generally, 

it can also be shown that, after some computation using the particular structure of the deformation 

gradient, the 𝐶 − 𝐼 term in the Gibbs free energy can equally well be written as 𝐼𝐶 = 𝜏Z�𝛾Z +

𝜏Y�𝛾Y + 𝜎�𝑓� 	= 	𝑭:𝜫	 = 𝑺:𝑬. 

Molecular Origins of Sliding Friction; Evans-Polanyi Analysis of the Prandtl-
Tomlinson Friction 
 

The above concept will be used to calculate the friction force within the framework of the 

Prandtl-Tomlinson model for constant-force sliding, but could readily be extended to analyzing 

compliant sliding in atomic-force microscopy (AFM) and nanoscale [41] friction measurements. 

Furthermore, we will initially ignore the effect of an applied stress on the activation volume; this 

is formally equivalent to the Bell model in mechanochemistry [34]. 

Experimentally, the shear stress 𝜏 has been found to have a contribution that depends on the 

normal stress (the contact pressure 𝑃) and a term that is independent of the normal stress [42-45]: 

      𝜏 = 𝜏- + 𝜇/𝑃     (5), 

where 𝜏- is a pressure-independent stress. The associated friction coefficient 𝜇 = �
:
= ��

:
+ 𝜇/ , and 

if 𝜏- is small, the friction coefficient obeys Amontons’ law [46]. Both macroscopic and 

microscopic explanations have been proposed for this behavior. For example, Barquins proposed 

that the friction stress is the sum of adhesive and ploughing contributions [47], while an alternative 

postulate suggests that, according to Greenwood and Williamson theory [48], when randomly 

rough surfaces contact only at the tips of the highest asperities, the real contact area increases in 

direct proportion to the normal applied load to give a load-dependent shear stress [48]. The effect 
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of roughness on the pressure-dependent contribution to friction stress was also highlighted and 

discussed in Ref. [44] where the coupling with the molecular architecture of the adsorbed 

nanometric layers was investigated. Derjaguin ascribed the 𝜏- to adhesion between the contacting 

surfaces [49, 50] and Briscoe and Evans [51] proposed a formula for the velocity and temperature 

dependences of self-assembled monolayers (SAMs) that agreed well with experiment [52, 53]. It 

has also recently been suggested that the relative values of 𝜏- and 𝜇/ , and thus how well a system 

obeys Amontons’ law, depends on the scale of the contact [54].  

Results and Discussion 

Velocity Dependence of Shear-Modified Processes 

As explained by Prandtl [1] and by Eyring [7, 14], the velocity dependence of sliding friction 

is established by equating the stress-dependent rate constant for the transit over an activation 

barrier, 𝑘(𝝈), to the velocity-dependent transit time, 𝑡 = ∆n‡

�
, where the distance from the reactant 

to the activated complex along the sliding direction is an activation length, ∆𝑥‡, and 𝑣 is the sliding 

velocity. This yields the equation 𝑘(𝝈) = 𝑣/∆𝑥‡ where 𝑘(𝝈) is calculated using Evans-Polanyi 

perturbation theory. 

Normal-Stress-Dependent Shear Stresses 

The following illustrates the ability of Evans-Polanyi perturbation theory to simultaneously 

analyze the effects of normal and shear stresses on Prantl-Tomlinson friction. We analyze the 

effect of a combined normal stress, 𝜎¡ ≡ 𝑃 for sliding along the 𝑥 direction with a shear stress 

𝜏n¡ ≡ 𝜏. Note here that 𝜎¡ and the 𝑧 axis of 𝜏n¡ are directed along +𝑧. This yields a Cauchy stress 

tensor: 

       𝝈 = £ 0 𝜏n¡
𝜏¡n 𝜎¡

¤    (6). 
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The energy profile depicted in Figure 2(A) 

shows that the initial (reactant) state is 

located at (𝑥¥, 𝑧¥) and the transition state is at 

(𝑥<, 𝑧<). That is, going from the initial- to the 

transition-state involves motion both along 

the 𝑥 and 𝑧 directions. Note that the value of 

the energy barrier is not required for the 

analysis, just the rate in the absence of a 

stress, 𝑘-. Considering a volume element of 

initial thickness ℎ- and an area 𝐴\  over 

which the stresses act, the components of the 

(2 × 2) deformation gradient tensor, 𝑭, as 

illustrated in Figure 2(B), are given by  𝑭 =

¨1 ∆𝑥‡/ℎ-
0 1 + ∆𝑧‡/ℎ-

©. Applying the results 

obtained above where  𝐼 = (𝜎¡, 𝜏n¡) and  𝐶 =

𝑉-	(1 + ∆𝑧/ℎ-, ∆𝑥‡/ℎ-) finally yields: 𝐺 = ∆𝑈 − 𝑇∆𝑆 + 𝑉-	(𝜏n¡ Q
∆n‡

h�
R + 𝜎¡ Q

∆¡‡

h�
R). This 

emphasizes the idea that the activation volume depends on the direction of the stress relative to the 

surface. If we take the 𝑉- to be the initial volume of the system so that =�
h�
= 𝐴\, the activation 

volumes in the 𝑥 and	𝑧 directions can be written as ∆𝑉n
‡ = 𝐴\∆𝑥‡ and ∆𝑉¡

‡ = 𝐴\∆𝑧‡, in accord 

with a proposal made by Stearn and Eyring [14]. These have the units of volume and are the 

product of an area (𝐴\) and a displacement along 𝑥 and	𝑧 given by ∆𝑥‡ = 𝑥< − 𝑥¥ and ∆𝑧‡ = 𝑧< −

𝑧¥. This formula for the stress-dependent Gibbs free energy change between the reactant and 

 
 
Figure 2: (A) Plot of the potential energy 
profile for analyzing a pressure-dependent 
shear strength from an initial state to a 
transition state, (B) an illustration of the 
deformations from the initial-state structure to 
the transition state used in the analytical model. 
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transition state can be used to calculate a stress-dependent rate constant. The change in the rate 

constant due to pressure and shear is given by: 𝛿𝑙𝑛𝑘(𝜏, 𝑃) = 678@(�,:)
6«¬

;
�¬
𝛿𝜎¡ +

678@(�,:)
6�¬

;
«¬
𝛿𝜏n¡. 

Using Evans and Polanyi perturbation theory gives  6®¯	(@(�,:))
6�¬

;
<,«¬

= − °±∆n‡

@²<
 and 

6®¯	(@(𝝉,𝑷))
6«¬

;
<,�¬

= − °±∆¡‡

@²<
 so that 𝛿𝑙𝑛𝑘(𝜏, 𝑃) = − °±∆¡‡

@²<
𝛿𝜎¡ −

°±∆n‡

@²<
	𝛿𝜏n¡. Putting 𝜎¡ = −𝑃 and 

𝜏n¡ = −𝜏 and integrating gives: 𝑙𝑛𝑘(𝜏, 𝑃) = 𝑙𝑛𝑘- +
°±∆¡‡

@²<
𝑃 + °±∆n‡

@²<
	𝜏. This enables a value of the 

rate constant as a function of shear stress and pressure, 𝑘(𝜏, 𝑃) to be calculated and equated to the 

sliding velocity 𝑣 as: 

    𝑘(𝜏, 𝑃) = 𝑘-exp	 Q+
°·E�∆n‡¸:∆¡‡I

@²<
R = 𝑣/∆𝑥‡  (7), 

for sliding along the 𝑥 direction, where the transition rate is dictated by the time for the system to 

move from the initial state to the transition state. Straightforward manipulation of this equation 

gives: 

     𝜏 = −£∆¹¬
‡

∆¹
‡¤ 𝑃 −

º²»

∆¹
‡ 78Q

¼
¼�
R    (8), 

where 𝑣- = 𝑘-∆𝑥‡. Comparison with Eqn. (5) reveals that:  

    𝜏- = −º²»

∆¹
‡ 78Q

¼
¼�
R and 	𝜇/ = −£∆¹¬

‡

∆¹
‡¤   (9), 

so that 𝜏- depends on temperature and the sliding velocity, while 𝜇/  depends only on the nanoscale 

topography of the sliding interface through the ratio of the activation volumes for motion in the 𝑧 

direction relative to the motion along the 𝑥 direction. The activation volume along the 𝑥 direction, 

∆𝑉n
‡ should be negative for the shear stress to reduce the energy barrier to yield the same 

temperature dependences as found for an analysis of the Prandtl-Tomlinson model for constant-

force sliding using a sinusoidal potential [9]. It should be mentioned that other temperature the 
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existence of dependences have been found experimentally but have been ascribed to additional 

effects such as an activated attachment of the tip and surface [55], by unusual properties of a 

compliant atomic force microscope tip Manzi [11], or the formation thermally activated capillary 

bridges between the tip and substrate [56]. Note that here 𝑘- is a rate constant and thus depends 

on the activation energy, 𝐸TUV, of the process, however, the Evans-Polanyi perturbation method 

directly calculates a rate constant. This depends on the activation energy and the temperature, 𝑇 

through the Arrhenius equation: 𝑘- = 𝐴𝑒𝑥𝑝(−𝐸TUV 𝑘½𝑇⁄ ), where 𝐴 is a pre-exponential factor and 

𝑘½ is the Boltzmann constant. Substituting for 𝑘- in the formula for 𝑣- yields the following form 

of Eqn. 8: 

     𝜏 = Gº²»
∆¹
‡ 78Q

¼
¼±
RG¿À·Á

∆¹
‡ G¨

∆¹¬
‡

∆¹
‡©:    (10), 

where now 𝑣\ = A∆𝑥‡. It is instructive to compare this equation with that derived and compared 

with experiment by Briscoe and Evans for SAM friction [51], where we maintain their 

nomenclature as: 

        𝜏 = @²<
Ã
𝑙𝑛 Q �

=�
R + Z

Ã
(𝑄K + 𝑃Ω)    (11), 

where 𝜙 is known as the stress activation volume and Ω is the pressure activation volume. 𝑄′ is 

the barrier height and 𝑉- is a velocity factor. It is clear that the equation derived from Evans-

Polanyi theory and that obtained semi-empirically and confirmed experimentally by Briscoe and 

Evans are identical; 𝜙 ≡ ∆𝑉n
‡ = 𝐴\∆𝑥‡,  Ω = −∆𝑉¡

‡ = 𝐴\∆𝑧‡ so that ratio Ω/	𝜙 is expected to be 

a constant and quite small. Briscoe and Evans found it to be 0.038 for stearic acid (C18H37COOH) 

and 0.036 for behenic acid (C21H43COOH). The velocity factor 𝑉- = 𝑣\ = A∆𝑥‡. 

The stress activation volume 𝜙 has been interpreted as the volume of molecules that are moved 

during shear [57-61] but the above analysis indicates that it is due to the lateral motion of the 
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system during sliding. This comparison shows how an Evans-Polanyi analysis, in this case of 

Prandtl-Tomlinson sliding,  can reveal the nature of the molecular-scale processes that lead to the 

appearance of macroscale tribological phenomena. 

Similar pressure-dependent shear stresses have been found for solid sliding [43] and in 

particular for thin potassium chloride films on various metal substrates [62, 63], where the 

properties of the film were analyzed using density functional theory (DFT) [64]. This revealed  

that the friction coefficient did depend on the contact pressure and correlated with the corrugation 

of the surface topology, i.e.,  ∆𝑧‡, calculated by DFT in accord with the model outlined here [65, 

66]. 

The  scale of the contact has been suggested to influence the relative sizes of 𝜏- and 𝜇/  [54] 

with nanoscale contacts suggested to have 𝜏- < 𝜇/𝑃 and macroscale contacts are proposed to have 

the opposite behavior, of 𝜏- < 𝜇/𝑃. Eqn. 10 predicts that 𝜇/  depends only on materials properties 

while 𝜏- also depends on the experimental conditions (sliding velocity and temperature). Thus, 

Eqn. 10 predicts that the lower sliding velocities used for nanoscale experiments would lead to 

relatively lower the value of 𝜏-, while experiments at the macroscale should have larger 𝜏- values. 

This may suggest that an alternative explanation may be due to disparities in the sliding velocity 

between the regimes. Other interpretations based on the location of the shear plane in the contact 

might also explain this contradiction [45]. 

Conclusion 

This work illustrates the use of a perturbation method developed by Evans and Polanyi to 

analyze the rates of stress-accelerated processes using the Prandtl-Tomlinson model, initially 

focusing on analyzing the molecular origins of friction. The approach consists of a thermodynamic 

analysis of the way in which the equilibrium constant between the initial state and the transition 
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state (activated complex) in transition-state theory is influenced by an external perturbation, here 

an applied stress. An important property of such a thermodynamic analysis is that it is independent 

of the path between the two states and only depends on the locations of the transition state relative 

to the reactant. This makes the approach straightforward to apply to real systems because the 

energies, positions and properties of the initial state and the transition state are relatively 

straightforward to calculate [23-25]. 

We note that there have been previous attempts to carry out thermodynamic analyses of friction 

and wear [67, 68] using the concepts of non-equilibrium thermodynamics [69]. Since tribo- and 

mechanochemical processes occur by an applied stress modifying the activation energy [9], we 

contend that the Evans-Polanyi perturbation method is a more appropriate method for analyzing 

these processes, 

The method is illustrated for sliding friction that allows the molecular-scale energy dissipation 

processes that control friction to be identified. We analyze the effect of combined normal and shear 

stresses to identify the molecular origins of the pressure-dependent shear stress using just the linear 

stress-dependent change in Gibbs free energy, which depends on the volume difference between 

the reactant and transition state structures. We show that the calculated activation volume is 

consistent with a proposal made by  Stearn and Eyring [14] and equals the distance from the initial 

to the transition state along the sliding direction (an activation length), multiplied by the area over 

which the stress acts, and thus has the requisite units of volume.  The analysis leads to a value of 

𝜏- that depends on the temperature and sliding velocity, while a 𝜏- that is due to adhesion should 

be independent of both parameters. Such analyses can be straightforwardly extended to more 

complex sliding interfaces; to those in which the initial- and transition-states are compliant, and to 

other dissipation processes such as fluid shear or tribochemistry. 
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