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ABSTRACT: Cosmological perturbation theory is an example of a gauge theory, where gauge
transformations correspond to changes in the space-time coordinate system. To determine
physical quantities, one is free to introduce gauge conditions (i.e. to work with specific
space-time coordinates), and such conditions are often used to simplify technical aspects of
the calculation or to facilitate the interpretation of the physical degrees of freedom. Some of
the prescriptions introduced in the literature are known to fix the gauge only partially, but it
is commonly assumed that the remaining gauge degrees of freedom can be fixed somehow.
In this work, we show that this is not necessarily the case, and that some of these gauges
are indeed pathological. We derive a systematic procedure to determine whether a gauge is
pathological or not, and to complete partially-fixed gauges into healthy gauges when this is
possible. In this approach, the Lagrange multipliers (i.e. the perturbed lapse and shift in the
ADM formalism) cannot appear in the off-shell definition of the gauges, they necessarily arise
as on-shell consequences of the gauge conditions. As illustrative applications, we propose an
alternative, non-pathological formulation of the synchronous gauge, and we show that the
uniform-expansion gauge (as well as any gauge ensuring vanishing lapse perturbations) can
hardly be made healthy. Our methodology also allows us to construct all gauge-invariant
variables. We further show that our non-pathological criterion for gauges is also the one that
ensures Dirac brackets to be properly defined. This allows cosmological perturbations to be
quantised in a gauge-fixed way. We finally discuss possible generalisations of our formalism.
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1 Introduction

Cosmological-perturbation theory (CPT) is a key ingredient of modern cosmology [1, 2]. It
lays the ground for our understanding of cosmic structures, from their origin during inflation to
their evolution at large scales later on in the cosmic history. In this approach, inhomogeneities
are described by small deviations from the homogeneous and isotropic background space-time
by means of perturbative techniques, and CPT inherits the fundamental invariance of General
Relativity under the change of the coordinate system.

In the phase-space formulation of the theory, this gauge symmetry yields a constrained
Hamiltonian with Lagrange multipliers being the lapse function labelling time and the shift
vector labelling space. As a consequence, not all degrees of freedom can be considered
physical. Indeed, take for instance a system made of 2n degrees of freedom in the phase
space, whose dynamics is generated by a Hamiltonian containing m < n constraints. The
space of solution has to meet the constraints, which removes m degrees of freedom. Among
the 2n — m remaining ones, m of them will be fixed by the Lagrange multipliers, which are
arbitrarily chosen. These are called gauge degrees of freedom for they are the ones changing
under gauge transformations generated by the constraints. Since physical solutions should
hold for any arbitrary choice of the Lagrange multipliers, the gauge degrees of freedom
cannot carry physical information. Hence, the system is truly composed of 2(n — m) physical
degrees of freedom [3].

CPT applied in the context of inflation with n scalar fields is exactly of the type described
above. The phase space of scalar perturbations is composed of 2n + 4 degrees of freedom
(where the four additional degrees of freedom come from the gravitational sector) and the
Hamiltonian contains 2 algebraic constraints — the two Lagrange multipliers being the
perturbed lapse function and the scalar part of the perturbed shift vector. This leaves 2n
physical degrees of freedom out of the 2n + 4. Hence in CPT, removing gauge degrees of
freedom is necessary to make physical predictions free of any arbitrariness and to define
gauge-invariant observables to be compared with cosmological observations.

To this end, one approach consists in fixing the gauge. This exploits our freedom to
tune the Lagrange multipliers such that the gauge degrees of freedom are unequivocally fixed
by the physical degrees of freedom. Gauges are usually selected in order to simplify the
equations of motion or because they lead to a simple understanding of the coordinate system
to work in. However, they are rarely chosen on the a priori basis of removing the gauge
degrees of freedom. Instead, this property is checked to hold or not a posteriori and on a
case-by-case basis. Several gauges are known to be pathological for they do not remove all
the gauge degrees of freedom, and several examples of non-pathological gauges are known
as well. Despite these examples, a systematic prescription to build non-pathological gauges
has not been proposed yet, which is the main goal of this paper.



Another motivation of this analysis is to formulate the process of gauge-fixing in the
Hamiltonian formalism, which will prove particularly handy when it comes to selecting
non-pathological gauges. It is also worth stressing that gauge-fixing in the Hamiltonian
framework is necessary for all situations relying on the phase-space formulation of CPT,
of which we now give a few examples.

First, the phase-space formulation is the most natural framework to adopt when it comes
to the quantum-mechanical aspects of cosmological perturbations. For instance, the choice of
the initial state is intimately related to the choice of the phase-space parameterisation [4].
Though our analysis is classical, formalising gauge-fixing in the Hamiltonian approach lays the
ground for in-depth studies of gauge-fixing and gauge transformations at the quantum level.

A second situation in which the phase-space description of cosmological perturbations is
essential is the separate-universe approach [5-11] (or “quasi-isotropic picture” [12-15]). This
applies to scales much larger than the Hubble radius if the inhomogeneous universe can be
described by a set of independent, locally isotropic and homogeneous patches. When valid, this
picture greatly simplifies technical calculations of the evolution of cosmic inhomogeneities, and
captures relevant non-linear effects at large scales. The conditions for the separate-universe
approximation to hold have been discussed in refs. [9, 11, 16-20]. They allow one to tackle
situations that go far beyond slow-roll inflation, including for instance inflationary phases in
the ultra-slow-roll regime [21], contracting universes [22, 23], or bouncing cosmologies [24-29].
All these situations demand to keep track of the entire phase space. However, for this
approximation to effectively work in a gauge-fixed manner, it is necessary that the space-time
labelling of the separate universes matches the one fixed by the gauge chosen at the level of CPT
— at least in some large-scale limit (see refs. [18, 19]). For example, such a matching holds using
the synchronous gauge which is nonetheless notoriously known to be pathological in CPT, but
fails in other gauges unless specific prescriptions are implemented [19]. The Hamiltonian take
on gauge-fixing presented in this work is a mandatory step for building a generic prescription
that properly matches the separate-universe picture to CPT in a gauge-fixed way.

A third situation is the so-called stochastic-inflation formalism [13, 30], which rests on
the separate-universe approximation and models the backreaction of quantum fluctuations
onto the local background dynamics. In this approach, cosmological perturbations stretched
well beyond the Hubble radius act as a stochastic noise on the large-scale dynamics of the
universe. This formalism can be combined with the d N-formalism to extract the statistics of
curvature perturbations [31, 32]. This allows one to describe non-perturbative effects (for
instance, non-perturbative deviation from Gaussian statistics) that are particularly relevant
to the formation of primordial black holes [33-35] and other extreme objects such as heavy
dark-matter haloes [36]. Large stochastic effects mainly occur in models where deviations
from slow roll are also encountered and the stochastic-0/N formalism has been extended to
these situations where the full phase-space needs to be accounted for [18, 37-45]. Moreover,
the stochastic noise is most naturally expressed in the phase space since it is derived from the
quantum-mechanical description of cosmological perturbations. So far, the stochastic-inflation
formalism has been built in a gauge-fixed manner (for instance in the uniform-expansion
gauge when combined with the § N-formalism [18]), which again stresses the importance of
having a clear understanding of the gauge-fixing procedure in the Hamiltonian framework.



For all these reasons, our analysis will be carried out in the phase space of CPT, contrary
to most studies of CPT gauge fixing, which are done in the Lagrangian formalism (note
however formal studies of gauge-fixing in constrained Hamiltonian system in refs. [46-48]).
Part of our approach follows similar lines of thoughts — with a less formal tone — as the
one presented in ref. [49], which treats cosmological perturbations in a Kasner universe using
the Kuchar decomposition [50, 51].

Let us finally mention that removing gauge degrees of freedom can also be done by
identifying gauge-invariant variables to work with [52]. By construction, they are free from
any gauge degrees of freedom, otherwise they would change under gauge transformations.
Several gauge-invariant variables have been proposed in the literature. However, a systematic
procedure to build them is still lacking. One of our motivations is thus to lay the ground
for a generic prescription to build gauge-invariant variables, alternative to the one based on
generating functions [53, 54], as well as for defining the set of gauge-invariant quantum states.

Our analysis is performed in the context of Friedmann-Lemaitre-Robertson-Walker
(FLRW) space-times filled with a single scalar field, and we will work at leading order in
perturbations. The rest of the paper is organised as follows. The theory of cosmological
perturbations in the Hamiltonian framework is presented in section 2 where special attention
is paid to the role of constraints and to gauge transformations. In order to prepare for the rest
of our analysis, convenient vectorial notations are also introduced there. In section 3 we build
a set of basis vectors on the phase space of cosmological perturbations which clearly separates
the physical degrees of freedom from the constraints and from the gauge degrees of freedom.
This new parameterisation of the phase space is studied at the kinematical level and at the
dynamical level. In section 4 this parameterisation is then used to identify the properties that
gauge conditions must fulfil for the gauge choice to be non-pathological. This sheds new light
on the role played by Lagrange multipliers in the process of gauge-fixing and we show that
gauges that are uniquely fixed are non-pathological. In section 5, our formalism is applied to
examples of well-known gauges — showing for instance how to build the synchronous gauge
in a non-pathological way. We also introduce in this section new classes of gauge. Section 6
is devoted to the construction of gauge-invariant variables using this new parameterisation
of the phase space that we further extend to the quantum-mechanical framework. Finally,
we conclude by summarising our results and by opening on a few additional applications
of our formalism in section 7. The paper ends with technical appendices to which we defer
the derivation of some of the results used in the main text.

2 Cosmology in the phase space

This section is devoted to a presentation of cosmology, including perturbations, in the
Hamiltonian formalism. This approach has been widely used in the literature and we refer the
interested reader to e.g. refs. [19, 53, 55] for more details (see also e.g. refs. [1, 2] for reviews
in the Lagrangian framework). Our notations and definitions follow the ones of ref. [19].

In the Arnowitt-Deser-Misner (ADM) formalism [56], the line element is expressed as

ds? = —N(t,7)dr* + 5;5(r, 7) [da’ + N'(7, #)dr ]| [de? + N (7, F)dr ], (2.1)



where N is the lapse function, N* the (three-dimensional) shift vector, and 7i; is the induced
metric on the spatial hypersurfaces (indices are lowered by ~;; and raised by its inverse A,
Fixing N is equivalent to setting a time parameterisation,! while choosing N* fixes a space
parameterisation.

When the matter content of the universe is made of a single scalar field ¢, General
Relativity is described through a total Hamiltonian of the form

C[N,N| = / @*F [N (8@ 4+ 8@) + N* (DY + D). (2.2)

Variation of the action with respect to the lapse and the shift lead respectively to the scalar
constraint S(%) + S(®) = 0 and to the diffeomorphism constraints DgG) + DZ@) = (0, where the
superscript “(G)” denotes the gravitational contribution. These constraints are all functionals
of the phase space, defined by a symmetric space metric v;;, its momentum 7, a scalar
field ¢ and its momentum .

Note that here, we follow the convention where the lapse N and shift N° are treated
as Lagrange multipliers [48, 55]. Alternatively, they may also be included in the list of
phase-space variables, see appendix C for further comparison between the two viewpoints.

2.1 Background dynamics

We assume that space-time is homogeneous and isotropic at the background level, so it
can be described by a FLRW metric where the shift vector N*(7,¥) vanishes. Moreover,
we assume that spatial hypersurfaces are flat (since inflation makes any initial amount of
spatial curvature decay away very rapidly), so v;; = v¥/37;; with 7;; = diag[1, 1, 1] denotes
the euclidean metric and 7yim7ymj = 6; The scalar constraint thus reduces to

1
5 v0% + —7?35 +0V(¢)=0. (2.3)

0 — _
& 4M2, 20

This constraint is also known as the Friedmann equation, more commonly rearranged under
the following form:

_AMZ
3

7T2
6° ﬁ + V(qﬁ)] . (2.4)

It involves the background degrees of freedom: the gravitational contribution is described
by the covolume v(7) and its canonical momentum, the expansion rate 6(7).2 The variables
¢(7) and 7g(7) denote the scalar field and its canonical momentum respectively, and V' (¢)
is the potential energy of the scalar field.

The dynamics of these background degrees of freedom is obtained from the Poisson
bracket 2 = {z,C(©}, where we have defined

2
()F ()(; (9(; (9F
< > 9 (2'5)

F,.G} = -
{hG) Az::l Ofadma  Ofa0ma

In cosmology, commonly-used choices are N = 1 corresponding to cosmic time, denoted ¢ hereafter, and
N = a with a the scale factor corresponding to conformal time, denoted 7. Another convenient time-slicing is
to set N equal to the Hubble rate H, hence the time variable is the number of e-folds N.

2In terms of the usual scale factor a and Hubble factor H, one can define these variables as v := a® and
0:= —QHMEI/N7 with Mp, the reduced Planck mass.



for two arbitrary functionals of the phase space F' and GG, with the configuration variables
fa = (v,¢) and their momenta 74 = (#,7,). One can thus derive the equations of motion
for the background

. . BN
) N V==
o=N- and Mg, (2.6)
Ty = —NoVy 6=N (7%)
v

where the constraint, eq. (2.4), has been used to simplify the right-hand side of the last
equation.

2.2 Perturbation dynamics

2.2.1 Definition of the perturbations

In order to achieve a more realistic description of the universe, we now take the whole system
defined by General Relativity and subtract from it the FLRW background. This allows one
to define perturbations as deviations from a homogeneous and isotropic spacetime

{ 5¢(1, &) = ¢(1, ) — (1), { 87i (7, ) = 73 (7, @) — 735 (7)

oy (7, &) = 7y (7, T) — (7)) , omd (7, &) = m (7, &) — 7 (1),

and one can act similarly with the lapse and shift

{ SN(r,&) = N(7,Z) — N(7), (2.7)

SNi(1, %) = N(1,T).

Since background hypersurfaces are homogeneous and isotropic, all the perturbed quanti-
ties will be preferentially defined in Fourier space. The Fourier transform and its inverse are

o d3 o
5¢(k77-) _/(27‘_)§/25¢(f7 T)eilk.xa (28)
LI
so(i,7) = [ Gt o e, (2.9)

with similar expressions for other perturbation fields. This leads to [ d%k kT = (27)353 ()
and [d3x kT = (27)363 (k) with 6 the Dirac distribution. The wavevector is defined with
respect to the flat euclidean metric, hence it is the comoving wavenumber. We thus have
k=74 k; and its norm is k2 = A4 kikj. We finally stress that Fourier components are
subject to the reality constraint, QS*(E,T) = d)(—E, 7), since all quantities considered here
are real-valued fields.

For the metric fields, the Fourier modes of dv;; are further decomposed into

2
0vij (T, k) = Y 5ya(r, k)M (k) | (2.10)
A=1
.. — 2 —. R
ow' (k) =" oma(r, k)M (k) (2.11)
A=1



where we have kept scalar degrees of freedom only, and we have introduced the orthonor-
mal basis

. 1 . 3 (kiki A
1 - —_ 7. 2 S B IS ALY
MY(E) = 7y nd M3 (F) \/; ( S > (2.12)

In particular, one can check that M;?Milj, = 5£/. Since M is a pure trace, 6y describes inho-
mogeneous but isotropic perturbations while -9 characterises inhomogeneous and anisotropic
perturbations. Finally, the lapse and shift perturbations read

= d’k i ik T
(SN(T,.I') = / W(SN(T, k)e s

43k LK

) (2.13)
(SNZ(T,f) :/W(SNl(T,/{)Zke ~:I:7

where we again restricted the shift perturbation to its scalar component only.

2.2.2 Hamiltonian

Including the above expressions for the perturbed quantities into the total Hamiltonian,
one can derive the perturbed Hamiltonian. A detailed study shows that the first order in
perturbation vanishes identically when the background satisfies its equations of motion (see
e.g. ref. [19]). At quadratic order one then finds

COIN 4+ 6N, 5N = /

R3+

CE[(IN*(R) S +c.c.) +k (ONF(B) DY + c.c.) + 2N 8P
(2.14)
where “c.c.” means “complex conjugate” of the previous term. We stress that integration is
over R3t = R2xR* to avoid double-counting as required by the reality condition. In the above,
81%1) and DI(;) are the scalar constraint and the (scalar component of the) diffeomorphism
constraint, linearised at first order in perturbative degrees of freedom. Differentiating the
action with respect to the perturbed lapse and shift leads to the linear constraints S = 0

and D) = 0. Their expression in Fourier space is given by?

2 2 2 2
W _ V3 oy v (T o k L)
SE = M}glv 0o 75 \ w2 V+Mplv2/3 oy + 75 ol 02 + ” Oy + vV 460,
(2.15)
and
1 _ A oamg (L 2 o
D) =my 8¢ + 7 0 (2571 \/éé’}’z) 7Y (57r1 + \/§57r2), (2.16)

where we made the k and 7 dependence of the phase-space variables implicit in order to

lighten the notations. We stress that the background function multiplying §v; in 81%1) has

been simplified thanks to the scalar constraint at the background level, eq. (2.4).

3Although S M and DM are second-order constraints, they are linear in perturbative degrees of freedom,
so they will be referred to as “linear constraints” to avoid any confusion with 8.



Finally, when expanding the scalar constraint up to quadratic order in perturbations,
one finds

1/3 1 k2
2 v 2 2 L 2 v
S8 =z (2 [6msl” — [om] )-%20|5W¢\ +3 (v,/ ,¢¢>I5¢|

1 71-35 4 Mlglk2 2 1 Tré 4 M§1k2 2
HETE <v2 3T s )l s e g T e ) 10

0 V2M?2
4M§1 (0m1077 + c.c.) + 2M§1 (0m2075 + c.c.) + Tvplk‘Q (071675 + c.c.)
- \{fvl/?’ Kzg&% - V@d)) Ny + c.c.] . (2.17)

It is important to stress that technically, S is not a constraint since it is not multiplied by
a Lagrange multiplier of the perturbative phase-space, hence it has no reason to vanish. For
convenience however, we will refer to it as the “quadratic constraint”.

2.2.3 Equations of motion

Since the background subtraction is a canonical transformation, and since the Fourier trans-
form is a canonical transformation too, the phase space of the system is canonically described
by the three perturbation variables (5¢(E>,57T¢(E)), (6~v1(k), 6m1(k)) and (8y2(k), 5ma(K)).
As a consequence, the Poisson brackets are preserved and act on the perturbation degrees
of freedom as follow:

3
- 0F 6G 0G OF
FGY = 3 - 2.1
{rGh ;/dk<55fA55w; 55f;,557r,4>’ (2.18)

where the index A now runs up to three because of the three degrees of freedom listed above.
For conciseness of the equations, we choose to adopt a vector notation. We arrange
the perturbative degrees of freedom into a vector

N3/2 m? - m3 - - VA
52:" - <5¢( ) \T)\571(k)7 ﬁ(sfm(lﬂ) )\3/257T¢(k) mi%

=g

3
[\
—~

!

)) . (2.19)

where “T” stands for vector transpose. Note that the entries of 627 have been rescaled by
the mass parameters mg, m; and mg so they all have vanishing mass dimensions. Similarly,
we have introduced a conformal parameter A\, which has the same conformal weight as the

scale factor a = v1/3

, such that all the components of §z;: have the same conformal dimension
A73/2. The reason for introducing these additional parameters is two-fold. First, they will
make all entries of vectorial objects of the same dimension, which is convenient when it
comes to checking dimensional consistency of our expressions. Second, they will allow us
to verify that our physical results do not depend on the units in which perturbations are
being measured, which is an important sanity check.

In vectorial notation, the Poisson brackets (2.18) give rise to

-

{0702} = Qe 3k + ), (2.20)



where t stands for the complex conjugate transpose and

03 I3
Qs = 2.21
0 <—13 03> (221)

is the 6 x 6 symplectic matrix.* We note that from the reality condition, (52’% = (553;. Hence

the above is equivalently rewritten as {52’5, 5%} = Qg 63(E — E’) Note also that at leading
order in CPT, different Fourier modes decouple, given that the quadratic action (2.14) does
not involve mode mixing. As a consequence, the phase-space structure can be described
Fourier mode by Fourier mode, and in the following we shall thus restrict to one particular
Fourier mode k. When doing so, it is convenient to rescale the phase-space vector by an
(infinite) volume factor,

02 — 673/2(0)02:, (2.22)

in order to absorb the Dirac distribution evaluated at k — k = 0 that appears in the above
Poisson bracket. After this rescaling is performed, all entries of 62} have vanishing mass and
conformal dimensions, and the Poisson bracket can simply be written as

{5z,g, 55%} = Q. (2.23)
These definitions allow us to recast the linear constraints in a simple form,
S =8 07, =0, and DV =Dy 65 =0, (2.24)
and similarly for the quadratic constraint

(2.25)

The matrix Hy, is a real-valued and symmetric 6 x 6-square matrix. The vectors gk and
ﬁk, as well as the matrix Hy, depend on the wavenumber (or the scale) k, and not on the
direction of the wavevector E, thanks to the isotropy of the background space-time. They
are functions of the background phase-space variables and not of the background Lagrange
multipliers, and detailed expressions are given in appendix A.

The evolution of the perturbations 02; is easily obtained by computing the Poisson

bracket 5'5}3 = {52’,;, C(Z)}, and one finds

0% = ON (k) Q6Sy + ko N1 (k) Q6 Dy, + 2N (6 Hy,) 62, (2.26)

%
which has to be solved under the linear constraints, eqgs. (2.24). For completeness, the detailed
expressions of the linear constraints and of the equations of motion are given in appendix B.

‘Hereafter, the n X n identity matrix is denoted I, and

0 I,
on = (—In 0)

is the 2n x 2n symplectic matrix.



2.3 Constraints and gauge transformations

The role played by the constraints in the above dynamical system is twofold. Firstly they
define a surface in the phase space on which perturbations have to lie, i.e. the so-called
surface of constraints, which then has to be preserved throughout evolution. Secondly, they
generate gauge transformations in the phase space, that is an equivalence class between
different solutions of the dynamics. We now discuss each of these roles separately.

2.3.1 Conservation of the constraints

Let us first note that the two linear constraints are first-class constraints, i.e. their Poisson
bracket vanishes

{5;%1)’@1(21)} = QD = 0. (2.27)

The first equality is obtained by inserting the expression of the constraints as inner-dot
products, eq. (2.24), and by using the Poisson bracket (2.23). The second equality follows
from the expressions of the constraint-vectors given in appendix A. One remarks that eq. (2.27)
holds even when the linear constraints are not satisfied; in this sense, the Poisson bracket is
said to strongly vanish. However, the background constraint still needs to be imposed.
In addition, the constraints are preserved through the evolution (at least on the surface
of constraints). Indeed, taking the time-derivative of gk -0z and ﬁk -0z leads to
S = (5’,} +2NST Qng) 0%; and DY) = (ﬁ,} +2NDT QGHk) 60Z:,  (2.28)
where we have used the equation of motion (2.26) for 62} together with the fact that
S’Z;FQGEk = EkTﬂﬁgk = 0 under the background constraint by virtue of eq. (2.27) and its
transpose, and given that VTQ@V = 0 for any vector V since g is totally antisymmetric.
It is interesting to note that the perturbed lapse and shift are absent from the right-hand
side of these equations.” The vectors S_"k and ﬁk depend on the background only, hence
their time-derivative is given by the background Poisson bracket, i.e. S), = {gk, COIN ]}

and similarly for ﬁk This leads to

N . k2

Dy = 2NH Q6D (2.30)

Dy, (2.29)

(see appendix C for an alternative derivation of these formulas). Inserting these relations
in eq. (2.28) then yields

2
1) _ N K (1) _
S = Nv2/3 D.’ and D’ =0, (2.31)
where we have used Qg = —Qg. Therefore, if initial conditions lie on the surface of constraints,

these constraints are indeed preserved through the evolution.

5This is because the two constraints must hold irrespectively of the choice of the lapse function and the
shift vector. In other words, the perturbed Lagrange multipliers cannot be fixed by using the conservation of
the first-order constraints.
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2.3.2 Gauge transformations

In the theory of constrained Hamiltonian systems (for a pedagogical review, see e.g. ref. [57]),
the Lagrange multipliers N (Z,7) and N*(Z,7) are auxiliary variables that are introduced to
make the Legendre transform invertible. As a consequence, they do not describe physical
parameters of the system. The presence of these arbitrary functions in the Hamiltonian
implies that performing the evolution with one set of Lagrange multipliers or with another
should lead to the same physical state, i.e. described by the same physical observables. Let us
consider the evolution of §z}; over an infinitesimal time increment d7, with the lapse variable
N(7) on the one hand and N(7)(1 + 52) on the other hand. From eq. (2.14), the difference

between the evolved states is nothing but {9z}, N (7‘)528]%1)}(57‘. For this reason, we introduce

Looo (0%) = {07, Neds) ) amd Lo (%) = {ozp.ghD ), (232)

where £ denotes the Lie derivative® and the second expression comes from considering the
difference between the evolved states obtained with a vanishing shift and a shift equal to
fl(l;) = i%{,—ﬂ» (keeping scalar degrees of freedom only).

The invariance of the theory under the transformations generated by eq. (2.32) is easy
to interpret, since it merely corresponds to the invariance of General Relativity under the
infinitesimal change of coordinates z# — Z# = a# + ¢# where &* = (£9,¢%).7 For this reason,
hereafter they are referred to as “gauge transformations”, and when restricted to the scalar
type they are encoded by the two gauge parameters £ and ¢. Making use of the canonical
Poisson bracket (2.23), the gauge transformations induced by eq. (2.32) read

0%y = 07 + NSy + ke Q6 Dy, (2.33)
Let us now consider the gauge transformation of the linear constraints,
(MY _ [ ) 0c() | ¢ 2.pM)

Len (S;z ) - {SE  NEXSL + ¢k D } , (2.34)

1
E — — — — — —

vanish, see eq. (2.27), this implies that Sy - §2;; = Sk - 0z} and Dy, - 02 = Dy, - 02 Therefore,
the surface of constraints is invariant under gauge transformations.

and similarly for D..’. Given that the Poisson brackets between linear constraints strongly

It is also important to note that gauge transformations preserve the Poisson brackets. The
reason is that, at linear order in CPT, any phase-space function can be written as F((SZ’E) =
Fy + Fj, - 62}, where Fy and Fy depend on the background only. Together with eq. (2.33), this
implies that Leu[F(62%)] = F - Len(0Z);) only depends on € and on the background, and not

6Strictly speaking, eq. (2.32) does not involve the Lie derivative of the perturbed variables but instead the
Lie derivative of their background counterpart [58]. This is because, in the full theory, gauge transformations
act according to X — X + L0 ((X). Introducing a perturbative expansion and restricting it to first order
leads to X 4+ 6X — X + 0X + Leo ¢(X) where the term Lo ((6X) is discarded since it is second order in
perturbation (given that both § X and & are order one). Hence in perturbation theory the gauge transformation
is such that §X — 6X + Le0 ¢(X), and this is how the Lie derivative should be understood in eq. (2.32).

"Note that £# should be decomposed on the direction orthogonal to the spatial hypersurfaces and the plane
tangential to them since in the Hamiltonian language gauge transformations are interpreted as hypersurface
deformations (see ref. [58] for details, see also footnote 26).

— 11 —



on the phase-space variables §z}. As a consequence, for two phase-space functions F'(9z};) and
G(02), one has Leu[{F(02;), G(025)}] = {Len[F(027)], G(02) } + {F(62%), Len[G(627)]} = 0,
hence Poisson brackets are indeed invariant under gauge transformations.

This also implies that gauge transformations are canonical transformations. However,
they are time-dependent canonical transformations, first through the two gauge parameters
N&° and ¢, and second through the constraint vectors Sy, and Dy, [see eq. (2.33)]. These two
sources of time-dependence have, however, a different status: while the gauge parameters
and their time-dependence are arbitrary (this is an “explicit” time-dependence), the time-
dependence of the constraint vectors is determined by the background evolution (this is an
“implicit” time-dependence, through the flow of the background phase-space variables). It is
therefore useful to consider the equation of motion of the gauge-transformed variables,

d67- L d ; L
E_ 0 B} -
= {6N(k) + 4 (Ngk)] QS + [kON1(R) + k| Q6D + 2N Q6 Hd7;
+ NEXQS), + k&g Q6 Dy (2.35)

which is simply obtained by taking the time-derivative of eq. (2.33) and using the equations of
motion (2.26). Inserting the equation of motion of the constraint vectors, egs. (2.29) and (2.30),
this leads to

déz
dr

Bt

N2

_ [5]\](];) + % (Nf%)} Qﬁgk; + k l(SNl(E) +él§ 02/3

k&,%] Q6 Dy,
L ONQGH, (551'5 + NEYGS, + kggnﬁﬁk) . (2.36)

The gauge-transformed variables g,?]; are easily recognised in the second line of the above,
see eq. (2.33), so one finds

d6%r o .
Tzk = ON(F) Q65 + k6N, (k) 6Dy, + 2N QG H 07, (2.37)
-
which has the same form as the equation of motion (2.26) if the gauge-transformed Lagrange
multipliers are given by

ON(k) = ON(k) + N2+ NEY, (2.38)
N - 2 .
ON1(k) = 6Ny (k) — % k&) + & - (2.39)

Therefore, in the Hamiltonian framework, gauge-transformations of the Lagrange multipliers
are not given by Poisson brackets. The above procedure however shows how the dynamical
equations can be used to obtain the gauge transform of the lapse and the shift vector [58] (see
also refs. [46-48] for in-depth studies of gauge transformations in constrained Hamiltonian
systems with Lagrange multipliers).

Let us finally stress that these transforms have been obtained by considering the time
derivative of the gauge-transformed phase-space variables, which do not coincide with the
gauge-transform of the time differentiated phase-space variables. This is because time
derivation and gauge transformation do not commute when treating d N and d N; as Lagrange
multipliers, as shown in detail in appendix C.
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3 Physical and unphysical degrees of freedom

In this section, we elaborate on the gauge transformations introduced above to discuss the
concept of physical and unphysical degrees of freedom. We start by introducing some notations
and conventions. Any linear combination of the phase-space variables can be written as
V. 07z, where V is a vector of RS. In general, it is a function of the background variables,
and it may exhibit explicit time-dependence. From eq. (2.23), one has

{Vi- 05, Vo 65} = VT h, (3.1)

hence two vectors V4 and V5 will be said to be canonically conjugate if ‘71T96‘72 = 1. On the
contrary, they will be said to be canonically orthogonal if VITQG% =028
In order to lighten some expressions, it will also be useful to introduce the differential
operator V., acting on 6-dimensional vectors as follows
V.F = (d — 2NHk96) F. (3.2)
dr
The transpose of the above simply reads (VTﬁ)T = FT 4 2NﬁT96Hk where we have
used that H E = H; and QGT = —. This operator is strongly related to the dynamics
of cosmological perturbations since —2N H ;)¢ is the operator adjoint to 2N Qg H ;, which
generates the flow of 627, see eq. (2.26). From the expression of §z} introduced in eq. (2.19),
one can define a natural basis of six vectors, each being associated to a single perturbed
variable. We will call this basis the natural basis and we will denote it {é’j, 62}

Ae{0,1,2}
Explicitly, we have

égf’_(1 0,0;0 0 0%, & =(,0,0;1,0, 07
el =(0,1,00, 0 0%, & =(,0 001,07, (3.3)
& =(0,0 1;0,0, 00", & =(0,0,0; 0,0, 1T

This basis is orthonormal and is such that €} - 62} is the canonical momentum of € e w 0%
This implies that

e e =09%5ap and {@F-0%.¢F 05} = [Q27 6am, (3.4)
where ¢ = ¢,

3.1 Kinematical degrees of freedom

The natural basis does not seem particularly well suited when it comes to implementing
constraints or gauge transformations. The former relies on the vectors Si and ﬁk, see
eq. (2.24), while the later involve QS and Q¢Dy, see eq. (2.33). These vectors are not
generically aligned with any of the vectors of the natural basis, and for this reason it is
more convenient to consider the decomposition

RE=C®G®P, (3.5)

where C, G and P are three orthogonal planes that are defined as follows.

81f two vectors are not canonically orthogonal, they can always be renormalised to become canonically con-
jugate.
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The first plane is generated by the two linear constraint-vectors, C :span{ﬁk, §k}, and

is called the plane of constraints. An orthonormal basis can be constructed as € = Ap(7) Dy,
and 526 = Ag(7) l_jk + us(T) S’}c where Ap, Ag and ug are normalisation parameters.” The
surface of constraints is orthogonal to the plane C, i.e. quantities like €€ - 0z vanish when
the constraints are satisfied. Moreover, since the linear constraints are strongly vanishing,
see eq. (2.27), one has

&< - (9655,) -0, Vuu =12 (3.6)

Finally, from egs. (2.29)-(2.30), for any vector €€ € C, V€ lies in the plane of constraints.

The second plane is G :span{ﬂg;l—jk, Qﬁgk} and is called the plane of gauge degrees of
freedom. This is because, from eq. (2.33), performing a gauge transformation corresponds to
performing a translation in this plane. A basis can be obtained as {€, Mg Yu=1,2 = {—Q€ S} p=1,2;
and it is orthonormal by construction. Moreover, since the ¢

o
see eq. (3.6), so are the é’g. Finally, since Q% = —1Ig, the plane of gauge degrees of freedom

are canonically orthogonal,

is canonically conjugated to the plane of constraints, i.e.
C —
es - (Q6E5) = Oy (3.7)

(hence the minus sign in the definition of the 55 ). Therefore, quantities like €9 - 07, ie.
gauge degrees of freedom, are canonically conjugated to the constraints [3].

The last plane, P, is defined as the plane orthogonal to the two first ones. Given that
é’g = —QGé’g and é' Qge this plane is also canonically orthogonal to C ® G. Since it is
both orthogonal and canonically orthogonal to C and G, it carries the physical degrees of
freedom, so we name it the physical plane. Once a vector & of P is given, it is straightforward
to show that €] = —§6€7 also belongs to P, and that (¢}, €] ) forms an orthonormal basis
if €7 is normalised. Contrary to the two other planes, in PP two basis vectors are canonically
conjugated, i.e. €F - (Qse]) = €F - €f = 1. Quantities like €7 - 0z and e er -0z constitute
gauge-invariant canonical variables.

The above set of vectors forms an orthonormal basis that we call the physical basis.

When ordered as follows,

S [ =C C sP. G =G =P
{€ataco1,2345) = {61 162,61 ;61,6556 }, (3.8)

the three last vectors are respectively canonically conjugated to the three first ones (as in
the natural basis). As a consequence, the scalar product and the Poisson bracket between
two vectors reduce to the euclidean metric and to the symplectic 2-form

Ca- =00y and {&- 05,605} = [Ql,, - (3.9)

)

As an illustration, let us discuss the case of the Mukhanov-Sasaki variable [59, 60]

,/ 5o+ P; ﬁ/G (\/5571 - 572) =B -6z, (3.10)

“Explicitly, they are given by Ap = |De|™", s = |Drl//(1Sk||De)2 — (Sk - Dr)? and As = —pusSk -

Dk/|Dk| , such that ¢, M 5’—5uu
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which defines the vector B. A direct calculation using egs. (A.1)-(A.2) shows that B is
canonically orthogonal to Sy and Dy, hence B is orthogonal to G. This means that Qs
is a gauge-invariant combination, a well-known fact indeed. However, B is not orthogonal
to the plane of constraints, and one may instead consider the (normalised) projection of B
onto the physical plane P. Hereafter, we will assume that 6—»173 coincides with that projection,
which fixes the basis of P, hence the whole physical basis.

3.2 Dynamics

In the natural basis, the equations of motion were given by eq. (2.26). Let us now study
the phase-space dynamics in the physical basis.

3.2.1 Hamiltonian

Let g;; denote the phase-space vector in the physical basis. It is related to the phase-space
vector in the natural basis, 02, through a canonical transformation

5; = P53z, . (3.11)

Here, P = Row(é,) is symplectic, i.e. PTQsP = Qg, and since it defines a transformation
from an orthonormal basis to another orthonormal basis, it is orthogonal, i.e. PTP = I
(these two relations also imply that €26 P = PS)s). The components of §g;; will be denoted as

53 = (Q(R). Qo(B). 2:(R); Pi(R). Po(R). Za(B)) (3.12)

where @1 and @2 are the constraints (here viewed as configuration variables), P, and P,
are the gauge degrees of freedom (here viewed as the canonical momenta conjugated to the
constraints), and (Z1, Zs) is the canonical pair of physical degrees of freedom.

Since P is a time-dependent canonical transformation, starting from eq. (2.14) the new
Hamiltonian reads [4, 61]

K= &% { [oN*(B) (PSy) - 63 + c.c.| + k [ONF () (PDy) - 6q; + c.c.] |
+ - d&*koq." |2NPHP" + P dfT T] 5, (3.13)
Ky

where the matrix K, is easily shown to be symmetric since Hy is symmetric (see ref. [4]
for details). The first line is linear in the phase-space variables and corresponds to the
linear constraints. It is given by

KW = / i 43k [A;(E) Q1(k) + A5(k) Qo (k) + C.c.] , (3.14)
R3+
where
1 AS 1
Ay = — <k5N1 - 5N) and Ay =—4N (3.15)
AD us s

are the Lagrange multipliers now given by linear combinations of the perturbed lapse and
shift. The first-order constraints are given by

Q1(k) =0 = Qa(k) (3.16)
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and their (strong) first-class nature, {Q1,Q2} = 0, is obvious from the fact that these are
now two configuration variables.

The second line of eq. (3.13) is quadratic in the phase space. Since the matrix P is
built from the physical basis vectors, the elements of K} composing the quadratic part of
the Hamiltonian are given by

Kkl = 2NE, - (Hid) + 8 (Q66h) = - [V (Q66)], (3.17)

see eq. (3.2). The entries of K involving the gauge degrees can be easily computed. They
are obtained by setting €,—3 4 = 65:1,2‘ Using Qgé’g =e¢

with egs. (2.29) and (2.30), one obtains

1> and computing V.éf and V&S

[Kkl,3 = E%,o; (3.18)
As  fis As s k? fLs
K =|=-2"=-N=—+ 19, 01 - 3.19

Hence the gauge degrees of freedom P, and P» are only coupled to the constraints ()1 and
Q2. This is expected from the fact that the constraints are only sourced by themselves, i.e.
they are preserved on shell. In particular, there is no kinetic term of the form PHP;, + c.c.
nor couplings to the physical degrees of freedom.

The other entries can also be derived by direct calculations. Their explicit expressions
are not needed for the forthcoming discussion and we report them in appendix D.

3.2.2 Equations of motion
Using Hamilton’s equation with eq. (3.13), the equations of motion read'®

d5q12a

58 = A7) 9], 0 + Aalr) (Rl + [ 6K

(3.20)

-
The last term can be further simplified by noticing that since the Hamiltonian kernel is
symmetric one has

[K0G) = (K, 0z, = Kkl 0z,
=&, - [V, ()] (a; : 5*,—5)
= [V (6] - 677, (3.21)

10 Alternatively, one can time differentiate dqg,, = €a - 0Z; and use eq. (2.26), leading to

d o, . _ -
T (ea '5'212) =Ai(7) [Qe}ayo + Ao (1) [96}11,1 +(V+é.) 07z

Comparing with eq. (3.20) leads to another expression for the Hamiltonian kernel in the physical basis, namely

[Kkloy =~ Z [Q6], . (- Vree).
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where we have used eq. (3.17) in the second line, and in the third line the fact that 3. é.6} =
I since {é,} forms an orthonormal basis. This gives rise to

déqga

o — 71 (7) (9]0 + A2(7) (0], + 3 (Rl [V ()] 65 (3.22)
b

We stress that in the above, the symplectic matrix 2g inside the operator V, acts on the
components of the vector €, in the natural basis, while the one preceding the operator V..
acts across the basis vectors (in a way similar to the tetrad formalism in General Relativity).

Fourier modes can be treated separately and from now on, their dependence with k is
omitted in order to keep equations as light as possible.

Unphysical degrees of freedom. Let us now see what the equations of motion imply for the

dynamics of the unphysical degrees of freedom, i.e. the constraint and gauge degrees of freedom.

As discussed below egs. (3.18) and (3.19), the time flow of the constraints is generated by

the constraints only, hence the surface of constraints is invariant under dynamical evolution.
For the gauge degrees of freedom, one has

s _ 0K b, [As s s Ms(’f)Z
Fr= oQ1 A(r) AD B AD 1S AD N)\D vl/3 b
- [Kk]oo Ql - [Kk:](n QZ - [Kk]oz Zl - [Kk]05 Z27 (3-23)
: oK fus
Ppo=——=—-A ——=P
2= g, - M T
- [Kk]m Q1 — [Kk]n Q2 — [Kk]w Z — [Kk]us Zs. (324)

We stress that the P,’s are the only variables whose dynamics is sourced by the two Lagrange
multipliers, which shows explicitly that they are gauge degrees of freedom, i.e. they can be
arbitrarily fixed by the choice of 6N and 6N7. On the surface of constraints where @, = 0,
these equations can be solved as

1 T A
Pl(T) =~ {041 + dr’ {S ON — kN1 — A\p [Kk:]QQ Z1— Ap [Kk]% Z2:|

AD(T) Tin MS
A fis E \? ,
_/TindT [AS—%AS+NHS (01/3> ]T,PQ(T)}, (3.25)
1 T
PQ(T) ~ MT(T) {QﬁQ — / dT/ [5N — HUS [Kk]IQ Zl — HUs [Kk]15 ZQ]T,} y (326)

where a1 and a9 are two constants of time-integration (though they may depend on k), and
where the notation [-],» means that all the time-dependent functions inside the bracket are
evaluated at 7. We have also introduced the notation “~”, which means that the equality
holds on the surface of linear constraints (this is called a “weak equality” hereafter), and
we have replaced A1 and Ay using eq. (3.15). As we will see below, the physical degrees of
freedom are not coupled to the gauge degrees of freedom, hence Z; and Zs can be viewed
as pure sources in the right-hand sides of the above.
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Physical degrees of freedom. As shown in appendix D, [Kjlo3 = [Kg|24 = [Kl3s =
[Kk]a5 = 0, hence the physical degrees of freedom Z; and Z3 are decoupled from the gauge
degrees of freedom. They are also decoupled from the Lagrange multipliers, which confirms
that they can be interpreted as “physical” indeed. On the surface of constraints, their
equations of motion reduce to

7y~ [Kyls s Za+ [Kilys 21, (3.27)
Zyw = [Kilyy Z1 — [Kilys Za. (3.28)

Although solutions to the above always exist, since the dynamics is generated by elements of
the symplectic group [4], they cannot be written in a generic closed form, contrary to what
was found for the unphysical degrees of freedom. This is precisely because Z; and Zs contain
all the non-trivial part of the dynamics of cosmological perturbations.

3.3 Gauge transformations

As explained in section 3.1, gauge transformations consist in performing infinitesimal transla-
tions in the plane G. This only affects the gauge degrees of freedom, which can be checked
explicitly by writing the gauge transformation (2.33) in the physical basis, leading to'!

P =P — —k& — NE2 2
1 1 )\D gk’ HS)\D § ) (3 9)
~ 1
Py, =Py, — — N¢&°, (3.30)
s

while all the other degrees of freedom remain unchanged.

Usually, CPT is solved either by using gauge-invariant variables or by fixing the gauge.
This ensures that the final solution is free from unphysical degrees of freedom prior to solving
the equations of motion. However, the considerations presented above advocate for an
alternative procedure, which is to use the physical basis to remove gauge degrees of freedom
from solutions that neither need to be gauge-invariant, nor gauge-fixed. Indeed, suppose
a solution 6z} of the constrained system, egs. (2.24) and (2.26), has been found. In full
generality, this solution contains gauge degrees of freedom. However, it is straightforward to
separate these degrees of freedom from the physical ones by projecting the solution onto the

. Hg _ =, . —P _ o . —P
€/, 21 =0% "€ ,and Zy =62 -€y .

physical basis, which is orthonormal, i.e. P, = 6ZESO |

1 1

3.4 Dynamical degrees of freedom

Finally, let us mention the existence of another convenient basis that may be employed
to separate the dynamics of the physical degrees of freedom from the unphysical ones.
Although the physical basis follows naturally from kinematical considerations, its three
sectors (constraints, gauge and physical) are not independent at the dynamical level: the
constraints and the physical degrees of freedom source the evolution of the gauge degrees of
freedom, see egs. (3.25) and (3.26), and the constraints also source the equation of motion

"These relations coincide with the formal solutions (3.25) and (3.26) if 6N and §N; are replaced by their
gauge-transformed expressions, egs. (2.38) and (2.39) [in this replacement, expressions for As, Ap and jis have
to be inserted, they can be obtained from combining footnote 9 with egs. (2.29) and (2.30)].

,18,



of the physical degrees of freedom. On the surface of constraints, the physical degrees of
freedom become fully independent, which is sufficient for most practical analyses. Nonetheless,
through a canonical transformation it is formally possible to recast first-class constrained
systems in a way that makes the Hamiltonian separable [3], i.e. of the form

K(Qu P") = k(Qi, P') + A" Q. (3.31)

In this expression, (), are first-class constraints and their associated momenta P® correspond
to the gauge degrees of freedom, (Q;, P*) correspond to the physical degrees of freedom, and
A,’s are Lagrange multipliers whose specific values fix the gauge degrees of freedom P* (up to
integration constants). In that setup, the constraints are strongly conserved (i.e. not only on
the surface of constraints), and the physical degrees of freedom are decoupled even off shell.

In appendix E, the canonical transformation leading to a Hamiltonian of the form (3.31)
is constructed explicitly in the case of cosmological perturbations. It is shown that, in practice,
its derivation requires to solve the dynamics in the physical basis, so it does not simplify the
problem technically, but it might provide clearer interpretations in some cases.

4 Gauge fixing

Gauge-fixing exploits the freedom in selecting the perturbed lapse function and the perturbed
shift vector in order to remove the gauge degrees of freedom from the final solution of the
equation of motion. Hence, if the gauge is properly fixed, the final solution can be expressed
using the physical degrees of freedom only (the constraint degrees of freedom being removed
by solving on the surface of constraints).

In the physical basis introduced above, the gauge-fixing procedure is trivial: it simply
consists in setting the gauge degrees of freedom P, and P». In practice however, most gauges
that have been proposed in the literature are defined through two algebraic conditions that
may involve any of the phase-space variables and of the Lagrange multipliers. How such
prescriptions may or may not fix the gauge degrees of freedom is in general not obvious,
and it is the topic of this section.

4.1 Gauge-fixed dynamics

Since the dynamics is linear, the two gauge conditions are taken to be linear too. Their
general expressions read

Gi (62, 0N,6NY ) = Gy - 2 + A 6N + A kol (4.1)
where ¢ runs from 1 to 2. Hereafter, the vectors G; will be referred to as the gauge vectors
and the set ()\EN), )\Z(-Nl)) as the gauge multipliers. In general, they can all be time-dependent.
Allowing the Lagrange multipliers to appear in the gauge conditions might seem at odds
with the Hamiltonian perspective. However, there exists common gauges, introduced in the
Lagrangian framework, in which the Lagrange multipliers are constrained. For instance, this
is the case of the Newtonian gauge (see section 5.1) and this is why we adopt the general
form given in eq. (4.1). Eventually, solving the dynamics of cosmological perturbations in
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a gauge-fixed manner consists in solving the following system

55']; = 6N Q6S), + k6N, Qs Dy, + 2N (QsH ) 6Z;  [dynamical equation (2.26)]

Sk - (52}; =0= ﬁk . 55’5 [linear constraints (2.24)] . (4.2)
G1 ((52_}2, ON, 6N1) =0=G> (55,;, 0N, 6N1) [gauge conditions (4.1)]

Though apparently algebraic, gauge conditions as defined in eq. (4.1) may in fact be
differential in the phase-space variables, because of the Lagrange multipliers. Indeed, let
us consider two arbitrary vectors Vu, such that their projections onto the plane of gauge
degrees of freedom G are linearly independent.!? Projecting the equations of motion (2.26)
onto these two vectors allows us to express the Lagrange multipliers as functions of 62} and

62? It leads to the following linear system

Vi-(Q6S:) Vi (Q6Dy) 0N\ _ (Vi-8%; —2NVi - (Q6H 0Z) (4.3)
Vo (26Sy) Vi (Q6Dy) Vo 0% — 2NVs - (R H %) )

14

which is invertible since the vectors Vu have two linearly independent projections onto the
plane of gauge degrees of freedom. This leads to

ON =Wy 6%, — 2NWy - (QH 167;), (4.4)
KONy = Wy - 62; — 2NW3 - (R H 107;), (4.5)
where
—. 2 —
We=> [V V. (4.6)
w1 Hofh

As a consequence, the gauge-fixed dynamics (4.2) is equivalent to

(55}; =I0N Qﬁgk + kd N, Qﬁ[jk + 2N (Q(;Hk) 651_5
Sk 0% =0= Dy, - 6Z; : (4.7)
6’1-52E+ﬂ~55E:0:@'2-6“E+ 2-(5_};

where the gauge conditions are now built from four vectors reading

C_j/i = C_jl + 2N H Qg )\EN) Wl + )\Z(Nl) W2:| , (4.8)
Ji = AN 4 AN, (4.9)

Written in the form of eq. (4.7), it is now obvious that the gauge conditions are in full
generality differential constraints on the phase space rather than algebraic ones.

12Examples of such pairs of vectors are VH = é'f , or Vi= é’(‘f and Vo = é’;’ , although the discussion does not
depend on that choice.
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4.2 Requirements for non-pathological gauges

We now make use of the differential version of the gauge conditions to identify the requirements
for removing the gauge degrees of freedom. To this end, we decompose any solution of
eq. (4.7) on the physical basis as follows:

2
> _ ~C =G =P

5E_Z<Q#SM+P#EM+ZH€;L)’ (4.10)

pn=1
in accordance with the splitting introduced in eq. (3.12). Solutions are on the surface of
constraints, so @, ~ 0 and Qu ~ 0. Hence, the gauge conditions lead to two additional
constraints mixing the gauge degrees of freedom and the physical degrees of freedom. They

are given by

S [(Gi-ef+i-ed) Pt (Fi-ed) B~ = > il 2w (4.11)
pu=1 o' =1

where!?
Il = (G0 ) O+ (T €7) Oy + (Ji - €7 ) [Qokopp - (4.12)

Note that we made use of the equations of motion of the physical degrees of freedom to
express Zu as a function of Z,.

The conditions for the gauge degrees of freedom P, to be unequivocally fixed by the
gauge conditions are easily identified from eq. (4.11). First, eq. (4.11) has to be algebraic
in the P,’s rather than differential, otherwise the gauge degrees of freedom would be fixed
up to one (at least) integration constant. Remaining integration constants, however, can
be arbitrarily fixed to fix the remaining gauge degrees of freedom (see e.g. section 5.2.3.3
of ref. [62]). Second, the resulting algebraic system has to be invertible, otherwise only
one direction (at most) in the plane of gauge degrees of freedom is constrained. We now
study these two requirements separately.

4.2.1 Regaining algebraic conditions

Whether time derivatives can be removed or not depends on the projections of the vectors
J; onto the plane of gauge degrees of freedom that we now compute.

To this end, we denote by V;g € @G the projections of Vi and Vs onto G , and recall that they
are linearly independent. These two vectors thus form a complete basis of the plane of gauge
degrees of freedom. The matrix V' is built from the component of the ‘7;9 on the complete
basis of G given by (Qegk) and (Qeﬁk). Hence the projection of the W; onto G also forms a
complete basis of the plane of gauge degrees of freedom.!'* As a consequence, the properties

13For clarity, let us stress that we are not using the implicit summation notation here, hence p is fixed in
equation (4.12).
147t can be shown that

79 _ -9
Wy = —ps €&,
7 G >G ~G
W2 :_)\Del _)\562,

which is valid for any choice of the VM’S.
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of J_;g = AEN) ng + AN Wzg are set by the gauge multipliers. Let us introduce the matrix

X = )\&N) )\gNl)
A A

If A is rank-2, then none of the J;’s have vanishing projection onto G and the j;g’s form a

(4.13)

complete basis of the plane of gauge degrees of freedom. If A is rank-1, either one of the
two J;’s has a vanishing projection onto G while the other has a non-zero projection, or the
two J_;g are non-null but aligned one with the other. If A is rank-0, then the two J;’s have
vanishing projection onto the plane of gauge degrees of freedom (note that a vanishing rank
is obtained if all the gauge multipliers are set to zero).

From these considerations, one can identify three cases for which time derivatives of
the gauge degrees of freedom can be removed.

Case one. First, the most obvious case is when the two vectors J; are both orthogonal to
the plane of gauge degrees of freedom. This occurs when the whole set of gauge multipliers
is set equal to zero, i.e. Rank(A) = 0. In this case, eq. (4.11) is free from any P, and the
gauge-fixed dynamics reduces to

0%; = N Q6S), + kN1 Q6 Dy, + 2N (QHy) 02;
S+ 0%z = 0= Dy - 02; : (4.14)
G102, =0=Gy-0%;

where we readily see that gauge conditions are algebraic in the phase space.

Case two. Second, one can suppose that only one of the vectors J_; has a vanishing projection

gN) =0= /\gNl)], which corresponds to Rank(A) =

onto G [say Jp for instance, meaning that A
1. Then the first gauge condition is written as G - 6z;; = 0 while the second is Gy - 07 +
Jo - 6Z;; = 0. Our purpose is to recast the latter condition in a form that does not depend
explicitly on derivatives of the phase-space variables.

The first gauge condition has to be preserved throughout the evolution, which leads to
G- 5:5,; + G - 0z = 0. Decomposing the second gauge condition and the time-derivative

of the first gauge condition on the physical basis leads to

22: (Gra-ef+To-ef) Put (To-80) Bu| ~ - 22: [Tl Zy, (4.15)
p=1 pop'=1
22: [(él &9 1+ Gy 55) P+ (Gr-éf) Pu} - 22: ] Z, (4.16)
= =1 T

where J; is given by eq. (4.12) by substituting G by Gy and J; by Gy. Hence if the
projection of Jo onto the plane of gauge degrees of freedom is aligned with the projection of
G onto that same plane [i.e. if J; - é'g = a(7) (G - é'g) for all 4 =1, 2 with « any function
of time], then the time-derivative of the first gauge condition can be used to eliminate P,
in the second gauge condition, which then reads
2 . 2

Z [(é’z — aél> ~éf + (jQ — Oz(_jl> . €E:| PM ~ — Z {Jg — Ozjl} /ZH’ . (4.17)
p=1

pop'=1 .
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Let us now introduce the gauge vector G"5 defined as
2

G =3 [(Ga=aGi) ef + (h-a) - &|ef + ¥ [-adi] af. @1y

p=1

By differentiating (Ja — aGh) - é g = 0 with respect to time, one finds (Jo — aGy) - €9

=

(— Jg +aGy + aGl) g Using this identity, the gauge vector simplifies to

Gy = [( J2+aG1)-e ]e + Z [JQ—oaJli M,e*,?i, (4.19)

2
Z
=l pop =1

2

Z[(@—V Jo+aGh)-ef|éd + Z [Jg—oz.h} L
=l /=1

where we have introduced the V., operator defined in eq. (3.2) and used eqs. (4.8) and (4.9)
to express 6’2 in terms of Go and Js. Finally, the gauge-fixed dynamical system reduces to

5% = ON D65k + kN Qe Dy, + 2N (QH},) 0%
Sk - 05 = 0= Dy - 67 . (4.20)
G- 0% =0=G"5- 5%

Both gauge conditions are now free from any time derivative providing a redefinition of the
second gauge vector, and the gauge conditions are in a form such that Rank(A) = 0.

Case three. Third, we suppose that none of the J;’s are orthogonal to the plane of gauge
degrees of freedom. We decompose them as .J; = j;g + J:-J‘ where J_;g € G and j;l cCxP.
By inserting this decomposition into the gauge conditions (4.7) and by further using the
equations of motion for J_;L . 5'??5, we arrive at

(G = 2NH Q6 J-) - 05+ T - 62 = 0. (4.21)

We now assume that the two j;g’s are aligned, i.e. Jf = a(7)J¢, which means that Rank(X) =
1. One can recast the two gauge conditions as

@’1-67—5:0 and é’z-(ggg—l—jQ-a?E:O, (4.22)
where
Gy = a (@1 - 2NHkQ6fﬁ> — Gy + 2NH Q6T . (4.23)

The same situation as in “case two” is recovered and one can perform the same analysis to
define the conditions for the time-derivatives of the gauge degrees of freedom to be removed.
It requires J;g to be aligned with the projection of G"1 onto the plane of gauge degrees of
freedom. This third case is thus equivalent to the second one and the gauge conditions can
be written in a form such that Rank(\) = 0.
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Other cases. Up to our investigations, there is no other way to remove the time-derivatives
of the gauge degrees of freedom.

In particular, this is not possible if Rank(A) = 2. Indeed, if both J;’s have non-zero
projections onto the plane of the gauge degrees of freedom, which are linearly independent,
one can either use the equations of motion or the time-derivative of the linear constraints
to try to remove Pu (note that using the time-derivative of the gauge conditions is useless
here since one would end up with second time-derivatives of the gauge degrees of freedom).
The latter are useless since the time-derivatives of the linear constraints are confined to the
plane of constraints. Using the former will lead to injecting the Lagrange multipliers, hence
recovering the original form of the gauge conditions, eq. (4.1).

If Rank(X) =1 but j;g is not aligned with C_jlg , one can use the time-derivative of the
first gauge condition to get the set él 07z + C_jl . 5?,; =0 and 6/2 07 + fg . 5% =0 as the
new gauge conditions. Since j2g is not aligned with élg , we recover the situation in which
Rank(A) = 2, hence the time-derivative of the gauge degrees of freedom cannot be removed.!?

4.2.2 Solving the algebraic constraints

Gauge conditions which are free of time-derivatives of the gauge degrees of freedom can be
systematically rewritten as G; - 0z = 0. One should now identify the conditions under which
these two algebraic constraints in the phase space lead to a unique expression of the gauge
degrees of freedom. By decomposing the solution in the physical basis and working on the
surface of constraints, the two gauge conditions can be casted in the following linear system

élglg él-egg
Go-€9 Gy -

G

o |
Q
N————
/N
eclus
N————
X
L[]
N
Y
@ _®y

/;,) Z,. (4.24)
o

This system is invertible providing that det(G) # 0, i.e. providing that the projections of
the vectors G; onto the plane of gauge degrees of freedom lead to two linearly independent
vectors of G.

Then, it is straightforward to unequivocally express the gauge degrees of freedom in
terms of the physical degrees of freedom. This can be inserted in the final solution, which
is thus solely determined by the physical degrees of freedom, as required for a gauge to
be non-pathological. It reads

2
0~ Y e Zutel 3o (67! (GuEl) 2] (4.25)
p=1 !
where the second term in the square bracket lies in the plane of gauge degrees of freedom

and is explicitly set by the physical degrees of freedom.

5Note that here we have an implication instead of an equivalence, i.e.

)

0
0

ExfaEEa

{51'53,;::0 N {é1~6fg+é1-5iz

which is however sufficient to prove that time-derivatives of the gauge degrees of freedom cannot be removed.

— 24 —



4.3 Lagrange multipliers

As explained above, physically, fixing a gauge amounts to working with a specific set of space-
time coordinates, hence with a specific perturbed lapse function and shift vector. However,
so far the gauge-fixing procedure has been described as one leading to the gauge degrees of
freedom to be removed from the final solution. We now explain how this implies that, indeed,
the Lagrange multipliers can be expressed as functions of the phase-space variables.

In non-pathological gauges, the gauge conditions can be cast in the form éz <0z = 0.
The corresponding expression of the Lagrange multipliers is obtained requiring the gauge
conditions to be preserved in time, i.e. d(G; - 6Zy)/dr = 0. Taking the time-derivative of
the gauge conditions and making use of the equations of motion of 627, eq. (4.7), we arrive
at the linear system

C}1 : (966}) (21 : (961?]@) ON 1\ _ VTC} 077 (4.26)
G2 - (26S5k) Go- (Q6Dy) ) \ kN1 V.Gy -0z )’ '

GLm

where the equality holds for gauge-fixed solutions. The above system is invertible providing
that det(Gry) # 0. The vectors (Q26Sy) and (QDy) form a complete basis of the plane
of gauge degrees of freedom. Since the projections of the vectors G,’s onto G have to form
a complete basis of G for the gauge to be non-pathological, the matrix G is necessarily
non-singular.'® As a consequence, the Lagrange multipliers can be uniquely determined as
functions of the phase-space variables.

Let us note that, since the gauge degrees of freedom are uniquely expressed as functions
of the physical degrees of freedom in non-pathological gauges, the above implies that the
Lagrange multipliers are also fixed entirely by the physical degrees of freedom. This is done
in detail in appendix F, where the constraints and the gauge conditions are inserted in the
right-hand side of eq. (4.26), and the contributions from the two constraint vectors and the
two gauge vectors in V.G, are shown to vanish in (VT@i) - 0Z;. By decomposing the gauge
conditions, G - 023 = 0, and the right-hand side of eq. (4.26), on the physical basis, one finds

ON A
~ N 4.2
GLM<k5N1> <Z2>, (4.27)

where the weak equality holds for gauge-fixed solutions.!” The matrix N reads
N = (G~ Gkey) GGy — (Gy + GpQkyy ) + Gy (4.28)

where the 2 x 2 matrix G, is built from the components of the gauge vector in the plane

of physical degrees of freedom, i.e. [Gpli, = Gi - éf , and where the matrices k;’s are given

in appendix E.

16Tn fact, det(Grm) # 0 if and only if det(G) # 0. One easily finds that Gum = G L where
L= ()‘5)‘51_#1‘51 —)\51) .
—pg 0

This matrix is non-singular and is built from the projections of (€265%) and (£2¢Dx) onto the basis {e7y.
1"This equation is equivalent to egs. (3.23) and (3.24) in which the gauge conditions and the constraints
have been applied.
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It is worth stressing that for non-pathological gauges, the Lagrange multipliers are
obtained on-shell, since using the equations of motion is needed to derive expressions for § N
and 6Ny [i.e. 0z} in the right-hand side of eq. (4.26) has to satisfy the dynamical equations].
This highlights the role played by Lagrange multipliers, which are derived quantities ensuring
the gauge conditions to be preserved through evolution, rather than quantities that are chosen
a priori to fix the gauge. In other words, they are consequences of the gauge conditions,
not the gauge conditions themselves. On the contrary, for gauges that are pathological
because of the presence of time-derivatives of the gauge degrees of freedom, if Rank(\) = 2
the Lagrange multipliers are given by

SN Gy -oz;
= 2 k). 4.29
(o, ) = (657 120
Here, the perturbed lapse and shift are derived off-shell [i.e. §z}; in the right-hand side of
eq. (4.29) does not have to satisfy the dynamical equations|. We finally note that if the
gauge is pathological because det(G) = 0 and Rank(A) = 0, then the Lagrange multipliers

cannot be uniquely fixed since Gy is singular (at least one linear combination of them
remains fully undetermined).

4.4 Unicity of gauges

A criterion that is usually invoked to determine if a gauge is pathological or not is the
unicity of the gauge-fixing procedure. Here, we show that this criterion is equivalent to
the definition introduced above, where non-pathological gauges are those where the gauge
degrees of freedom are uniquely fixed by the physical ones. A gauge G is said to be uniquely
determined if the gauge parameters £ and ¢ that generate the gauge transformation to go
from any other gauges G’ to the considered gauge G are unequivocally fixed. Let us denote
by an overtilde the phase-space variables and the perturbed Lagrange multipliers in the
gauge G. The gauge conditions associated to G are

Gr- 67+ AV N + XM kN, =0, (4.30)
Go -7+ AV SN + A kSN, = 0. (4.31)

We now rewrite (%, ﬁ, and k(ﬁ\f/l in the gauge G as functions of the same variables in
another gauge G', that we denote 623, 0N, and k6Ny. This can be done using the Lie
derivatives (2.32), and one obtains eqgs. (2.33), (2.38) and (2.39). By inserting these relations
into the gauge conditions (4.30) and (4.31), one finds

d N¢O N¢O 6N G107
AMIo,—+T G =-A - = k 4.32
<2d7'+ ><k§)+ LM(k:g vy ) \Gyooz ) 45
where T is a 2 X 2 matrix given by
0 0
T = . 4.
(—Nk2/v2/3 0) (4.33)

In full generality then, the gauge parameters £ and ¢ are determined by a 2-dimensional
system of ordinary differential equations. This leads to two possible sources of underdetermi-
nation of the gauge parameters. First, because time-differentiation is involved, £ and ¢ might
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be fixed up to some arbitrary initial conditions only (that may depend on space). Second,
even if time derivatives can be removed and the system of differential equations is turned into
an ordinary algebraic system, another source of underdetermination appears if the resulting
algebraic system is not invertible. Removing time-derivatives of the gauge parameters in
eq. (4.32) requires to set Rank(A) = 0.!®* We are then left with an algebraic system which
is invertible if det(Gpn) # 0, which is equivalent to requiring det(G) # 0, see footnote 16.
Hence the gauge G is unique if Rank(A) = 0 and det(G) # 0, which coincides with the two
conditions obtained above for G to be non-pathological, i.e. for the final solution to be free
of any gauge degrees of freedom. The reverse is yet to be confirmed and would require to
show that Rank(A) = 0 and det(G) # 0 is the unique way to solve eq. (4.32).

4.5 Gauge classification

The results derived previously are summarised in figure 1 and are detailed hereafter. We
first recall that the gauge-fixed dynamics (4.2) can be written as

5??/_5 =N 96§k + kO Ny Qﬁ[jk + 2N (QﬁHk) 55E
Sk - 55}; =0=Dy- 55}2 . (4.34)
Gr- 67+ AV N 4 XM kN, = 0= Go - 62 + A5 6N + A k6N,
The gauge multipliers can be arranged into the matrix A defined in eq. (4.13), and in
section 4.2.1 it was shown that if Rank(A) = 1, after a suitable redefinition of the gauge
vectors and of the gauge multipliers one can rewrite the gauge conditions in a form such that
either Rank(A) = 0 (i.e. all the gauge multipliers are set equal to zero) or Rank(\) = 2.

Non-pathological gauges. A gauge is non-pathological if the dynamical system can be
equivalently rewritten as

0%; = ON Q6Sx + kON1 Qs Dy, + 2N (QHy) 0%
gk . 5_}; =0= ﬁk . (52}2 , (4.35)
G107 =0=Gy- 0%

such that the two vectors G; have projections onto the plane of gauge degrees of freedom
that are linearly independent (i.e. their projections form a complete basis of G). This is
equivalent to requiring Rank(A) = 0 and Rank(G) = 2, where the last condition is equivalent
to det(G) # 0.

Rewriting the gauge conditions as algebraic constraints in the phase space is mandatory
to remove time-derivatives of the gauge degrees of freedom from the gauge conditions. When
doing so, the equations of motion for 62} are used, hence the equivalence between eq. (4.34)
and eq. (4.35) is at the level of the whole systems, it does not hold equation by equation. The
condition on the projection of the gauge vectors onto the plane G is needed to further cast the
gauge conditions as expressions for the gauge degrees of freedom in terms of the physical ones.

We note that a non-pathological gauge is not necessarily one where the gauge degrees
of freedom are equal to zero in the final solution. Instead, it is such that the gauge degrees

18More precisely, according to the terminology of section 4.2.1, this corresponds to “case one”, while “case
two” and case “case three” can be shown to follow similar arguments.
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.
Time-derivative removal

J

_ —
| J

Non-Pathological Pathological

Figure 1. Classification algorithm to determine if a gauge is pathological or not. Non-pathological
gauges are such that the gauge degrees of freedom are fully determined by the physical ones, hence
they drop out of the final solution for the dynamics. In contrast, in pathological gauges, the gauge
degrees of freedom are not fully eliminated. These properties are determined by the rank of the matrix
A and by the determinant of the matrix G. The notation Vi I V, means that the two vectors are
aligned one with each other and the superscript G denotes the projection onto the plane of gauge
degrees of freedom (see main text for details).

of freedom are uniquely fixed by the physical ones. Indeed, fixing the gauge consists in
introducing two variables in the phase space, G; = G- dZ;;, which are constants of motion set
equal to zero, i.e. G; =0 and G; =0 for + = 1 and 2. For the gauge to be non-pathological,
these two constants of motion should bear two linearly independent combinations of the
gauge degrees of freedom. Hence, they necessarily have non-zero Poisson brackets with the
constraints.!? In this picture, the Lagrange multipliers given in eq. (4.26) are dynamical
consequences of the gauge conditions ensuring their preservation throughout evolution. They
are not part of the gauge definition itself.

Pathological gauges. A gauge choice is pathological if either Rank(\) = 2 or Rank(G) # 2.
If Rank(A) = 2, the gauge conditions are not free from time-derivatives of the gauge degrees of
freedom, which are thus still present in the final solution via their arbitrary initial conditions.
If Rank(A) = 0 but Rank(G) # 2, the two gauge vectors have aligned projections onto G, or at
least one of the two gauge vectors has a vanishing projection onto G. Hence the linear system
relating the gauge degrees of freedom to the physical ones is under-constrained, making the
gauge degrees of freedom not uniquely determined by the physical degrees of freedom.

Y The Poisson bracket between the two gauge conditions is {G1,G2} = él . (Qséz) and can assume any
value. When their Poisson bracket vanishes, up to a canonical transformation the gauge conditions can either
be seen as two configuration variables or two momentum variables. If the bracket is non-zero, the two gauge
conditions can be rescaled to form a pair of canonically conjugate variables without affecting the gauge choice.
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5 Applications

In order to illustrate the formalism developed so far, in this section we apply it to famous
gauges that have been proposed in the literature, for which it is well known whether they
are pathological or not. In practice, the gauges we consider have been selected to cover the
whole set of branches displayed in figure 1. In a second part, we further make use of our
formalism to construct new types of gauges.

In this section, the mass parameters and the conformal parameter introduced in eq. (2.19)

are set equal to one for convenience.?"

5.1 Examples of known gauges

Spatially-flat gauge. This gauge is defined by §v; = 0 for ¢ = 1, 2. This means that the
scalar field perturbations directly give the gauge-invariant Mukhanov-Sasaki variables, see
eq. (3.10). In our language, it corresponds to setting A to the null matrix and to introducing
the gauge vectors G = é’f5 and Gy = é’2¢ (this corresponds to the case where the two gauge
conditions are two configuration variables, see footnote 19). Time-derivatives of the gauge
degrees of freedom are absent since Rank(A) = 0. Then, the elements of the matrix Gy
defined in eq. (4.26) are

3 . _ P
£2v2/30, G - (QGDk) T (5.1)

G () = -2y V3

as well as

Gy (Q68:) =0, Go- (D) = 2\/?;2/3. (5.2)

It is easily checked that det(Gprm) # 0 and so is det(G) (see footnote 16). Hence, we recover
that the spatially-flat gauge is non-pathological. The Lagrange multipliers are subsequently
computed using eq. (4.26). Its right-hand side reads

NO _, 2No'/3

V.G = oz ey Mz er, (5.3)
. N¢ 4Nv!/3
V.Gy= & v e (5.4)

Mg, Mg,
Finally, the Lagrange multipliers are derived by inverting the linear system and by making
use of the gauge conditions. It boils down to

2 N
V6 N

We recover the standard expressions in the spatially-flat gauge (see e.g. section 3.3 in ref. [19]).

20This corresponds to working with the rescaled vectors 02 — Mézj; and V — M~V where V stands for
the gauge vectors or the vectors of constraints, and where M is a time-independent and symplectic matrix
given by
M = diag [m¢/)\3/2, VA mi, VA/m3, X2 fmy, mi/VA, mg/ﬁ] .
As a consequence, inner-dot products V. 0Z; and symplectic products Vi (96‘72) are invariant under such
a rescaling.
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Unitary gauge. This gauge is defined by imposing §¢ = 0 and §v2 = 0, which implies that
the curvature perturbation is given by 6. The corresponding gauge vectors are G; = é'g)
and Go = é'2¢ , while the matrix A vanishes. Projecting the first gauge vector onto the plane

of gauge degrees of freedom yields
— — 7T¢ — —
G- (QSkr) = — and G1- (Q¢Dy) =0. 5.7
1 ( 6 k) v an 1 ( 6 k) (5.7)

The projection onto G of the second gauge vector is given in eq. (5.2). This leads to
det(Grn) # 0, hence the unitary gauge is non-pathological. The right-hand side of eq. (4.26)
is derived from

= 3N N
_ _V3Nm, o+ (5.8)

and from eq. (5.4) for V.Gs. Eventually, this gives for the Lagrange multipliers

V3N N
N=Y"06m— — :
) 21)2/3 (5’)/1 s (57T¢, (5 9)
V6 N

where the gauge conditions have been used as well.

Newtonian gauge. This gauge is defined by dv2 = 0 and §/N; = 0 and it is often used since
it gives simple expressions for the Bardeen potentials. In our language, the Newtonian gauge

is fixed by introducing G = é’2¢ and Go = 0, as well as the matrix

00
A= <01> (5.11)

Following section 4.1, we first rewrite the second gauge conditions as a derivative condition
on the phase space. To this end, we use Vi = é}? and Vp = €2¢ to project the equations
of motion yielding W, = (v/ T$) é’g’ and Wy = —l\/g 1}2% é’f . Then, the derivative version

2
of N1 = 0 reads

whose rank equals 1.

é’g . 52_};’ + jé . 5.5’; =0, (5.12)
where
- 3 N 6 201/3
R 59
2 v2/3 QM]%I Mgl
- 1 /3 1

This shows that J is aligned with él, and so are their projections onto G. Hence the gauge
conditions can be rewritten such that Rank(A) = 0 and it is free of time-derivatives of the
gauge degrees of freedom. The simplest rewriting of the Newtonian gauge is to keep G equal
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to é’f and to set Go = &F (see also ref. [19]).2! The projection of G onto the plane of gauge
degrees of freedom is given in eq. (5.2). Projecting the second vector onto G gives

5 5 ME K 5 5 \F 1/3
Go - (Q65y) = ~ g ays ad Ga (26D%) = 0%, (5.15)
Then, it is straightforward to show that det(Gpy) # 0, hence that the Newtonian gauge
is non-pathological.

To derive the expressions of the Lagrange multipliers, we first note that

. V2N 5 5y 2N (73 VMK No
V.Gy= -2 MEE? e - R e R e 5.16
2 120 P LT 37 27z % (5.16)

v2 2 8 v2/3

while the expression of V.G is given in eq. (5.4). Plugging this into eq. (4.26) and further
using the gauge conditions, i.e. §v2 = 0 = dmy, we arrive at

SN = (5.17)

N
2\/5’02/3 7,
kSN, =0, (5.18)

which exactly match the results obtained in ref. [19]. We note that eq. (5.17) simply states
that the two Bardeen’s potentials are equal. It is also worth stressing that §N; = 0 now
appears as a consequence of the gauge conditions instead of a gauge condition per se, in
agreement with the discussion of section 4.

Comoving gauge. The comoving gauge is defined by imposing d¢ = 0 and dN; = 0 which
corresponds to setting él = é’od), ég = 0, and

00
A:(Ol). (5.19)

Thus, it differs from the Newtonian gauge by the first gauge vector. Following the calculation
carried out for the Newtonian gauge, the condition 6 V1 = 0 leads to a derivative condition
on the phase space with a vector Jo given by eq. (5.14). Its projection onto the plane of
gauge degrees of freedom is j;g = —/\Dé'lg — )\Sé'Qg , while projecting G1 onto G leads to
élg = —pgmpv! ¢¢. This shows that ng and élg are not aligned and time-derivatives of
gauge degrees of freedom are not fully removed. Hence the comoving gauge is pathological.

Synchronous gauge. This gauge is defined by dN = 0 and 6 N; = 0, which ensures the
foliation of the perturbed FLRW space-time to be synchronised with the homogeneous and
isotropic background. In our formalism, it is fixed by setting the two gauge vectors to zero

10
A:<01>. (5.20)

2INote that Go - 07z + Jo - 6?’,; = 0 can be rewritten as (aéy + BT ) - 0Zr = 0. Since the first condition is
é’f -0Z; = 0, it is equivalent to rewrite the set of gauge conditions as €2¢ -0Zp =0and & - 02; = 0.

and by using the matrix
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Its rank equals two hence we straightforwardly find that the synchronous gauge is pathological
since time-derivative of the gauge degrees of freedom cannot be removed.

We note that it remains possible to define a non-pathological gauge such that § N and § Ny
are both vanishing. This is explicitly done in appendix G. In this alternative construction,
the Lagrange multiplier are not imposed to vanish independently of the constraints and of
the equations of motion. Instead, we show that there exist two gauge vectors G, such that
a) they have linearly independent projections onto the plane of gauge degrees of freedom,
and b) the resulting V.,G,’s are linear combinations of the gauge vectors themselves. As a
consequence, imposing the gauge conditions G; - 0z = 0 leads to a non-pathological gauge.
Moreover, the right-hand side of eq. (4.26) is vanishing once the gauge conditions are imposed,
hence leading to 6N = 0 = §N;. Constructing the synchronous gauge that way makes
use of the equations of motion through eq. (4.26). Therefore, the fact that the Lagrange
multipliers vanish is derived from the gauge conditions and the equations of motion, i.e. it
is only valid on-shell. This is in contrast with the standard definition of the synchronous
gauge, in which §N = 0 and dN; = 0 are imposed off-shell as gauge conditions, i.e. they
hold independently of the equations of motion.

Uniform-expansion gauge. The uniform-expansion gauge is built to ensure vanishing
perturbations of the integrated expansion rate, that we dub 6Ny hereafter. It is commonly
used in the framework of the stochastic § N-formalism [18, 31, 32]. However, different sets
of gauge conditions can yield 6Ny = 0 and it is important to determine which of these
(if any) define non-pathological gauges.

In the Hamiltonian formalism, the perturbation of the expansion rate is given by

1
N, = —3 /dT (N 66 + O4N), (5.21)

where © = 30/(2M2) is the background expansion rate and

V3 0
00 = —po (0'36m — 6 ) 5.22

v2/3 M2, < L (5:22)
is the perturbed expansion rate. Alternatively, one can use the equation of motion to recast
the integrated expansion rate as [19]

5Nims = 2\/5%12/3 + g / dr 6N, . (5.23)
These expressions offer two different options to impose the uniform-expansion gauge, either
IN =0 =60 or §N; = 0 = dv; (note that the second option is the one most commonly
used in the literature). However, we show in appendix H that these two ways of fixing the
uniform-expansion gauge are pathological because the matrix G is singular for )N =0 = 0O,
and because time-derivatives of gauge degrees of freedom cannot be fully removed for
OIN- 1 = 0 = 5’71.

Another possibility consists in imposing N §© + O dN = 0 as the first gauge condition,
and to complement with a second gauge condition of the form G- 0z; = 0. Nevertheless, it is
proved in appendix H that any choice for that second gauge condition leads to a pathological
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gauge too. The reason is that the second gauge condition should be designed to remove
time-derivatives of the gauge degrees of freedom and to yield a non-singular matrix G.
However, these two conditions cannot be satisfied together because of the peculiar form
of the relation N JdO + ©JN = 0.

The above attempts are based on gauge conditions that involve one of the Lagrange
multiplier. Instead, one could directly start from gauge conditions restricted to the phase
space. This strategy demands to find two gauge vectors G; such that a) their projections
onto G are linearly independent and b) the perturbation of the expansion rate reads

dd/\/-int _ 2
dr —

(2

[0a(r)Gi + Bi(r) Gl (5.24)

where G; = (_jz -0z and where the a;’s and j;’s are four arbitrary functions of time. The
first requirement guarantees healthy gauges. The second yields vanishing perturbations of
the expansion rate since G; = 0 = G; upon imposing gauge conditions. We stress that the
expansion rate involves the perturbed lapse function [or the perturbed shift, depending on
which of the forms (5.21) and (5.23) is adopted], hence the time-derivative of the gauge
conditions must necessarily appear in eq. (5.24). Otherwise, its right-hand side would be free
of any Lagrange multipliers. This implies that a uniform expansion rate necessarily appears as
a dynamical consequence of the gauge conditions. In this approach, two gauge vectors can be
varied to try to fulfil the above requirements. This contrasts with the previous approach where
only one gauge vector could be varied, hence it should accommodate for more possibilities.
We try to implement this strategy in appendix H where, nonetheless, we can only find a set of
gauge vectors that have the same projections onto G, hence they define a pathological gauge.

Up to our investigations, we have not found a set of gauge vectors that meets the two
requirements identified above, and all implementations of the uniform-expansion gauge that
have been proposed so far are pathological. Two words of caution are however in order.
First, although we have been able to rule out a large class of possible implementations of
the uniform-expansion gauge, we have not exhausted all possibilities and this does not prove
that a gauge in which 6N = 0 on-shell does not exist. Further investigation is required,
in the spirit of the program proposed below in section 5.4. Second, the uniform-expansion
gauge is usually employed in the context of the § N formalism, where only the leading-order
terms in the gradient expansion are retained. For this purpose, it might be sufficient to
find a gauge in which the above requirements are valid only at leading order in k2. This
would require to develop the present formalism in the reduced phase space of the separate
universe [19], which we plan to address in a future work.

5.2 Gauges with vanishing Lagrange multipliers

Our formalism not only allows us to readily diagnose well-known gauges but also provides
an efficient framework in which new classes of gauges can be constructed. We start by
considering gauges where one of the two Lagrange multipliers vanishes.

Vanishing shift vector. Gauges with a vanishing shift vector play a key role in the context
of the separate universe approximation. Indeed, this approximation holds providing that
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the gauge conditions imposed at the level of CPT leads to a perturbed lapse function and
a perturbed shift vector which, at large scales, match the ones of the independent FLRW
patches [18, 19]. Since homogeneity and isotropy of the FLRW patches impose a vanishing
shift vector, gauges with 0 N7 = 0 are expected to be particularly appropriate for using the
separate universe approximation. However, the examples presented previously show that
this class of gauges contains pathological elements, and it is important to circumscribe the
sub-class that is non-pathological.

The easiest way to impose a vanishing shift vector is to consider the gauge vector

ég = (0 and the matrix
A= <0 0) (5.25)
01

whose rank equals 1. The first gauge vector, C_jl, is left unspecified but it should be such
that the gauge is non-pathological. Following section 4.1 and the calculations performed for
the Newtonian gauge, the vector fg is given in eq. (5.14) and its projection onto the plane
of gauge degrees of freedom reads J_g =—Ap é’lg —As é’2g . For time-derivatives of the gauge
degrees of freedom to be removed, the vector G1 must be of the form

G = e (Apef +xséf) + GP +GF, (5.26)
where oy (7) is an arbitrary function of time and scale, and where 617) and éf can be any
vectors lying in the physical plane and in the plane of constraints respectively. One now
needs to check that the matrix G is not singular. Its elements are given by the projections
of Gy and Gy — V,Jo + o'zkél onto the plane of gauge degrees of freedom. Making use of
Gy = 0 and of Jf = ay(7) Gf, the resulting determinant reads

det (6) = (5-&0) (Vedo-&f) = (Fa-e§) (Vra-ef)] (5.27)
which reduces to
det (G) = —N (;Z(AT]; (753)2 (5.28)

This is non-vanishing and the gauges defined by §/N; = 0 and Gy - 6z = 0 with G1 given
in eq. (5.26) are therefore non-pathological.

It is worth stressing that the above class of gauges does not necessarily exhaust all the
possible non-pathological gauges with a vanishing shift vector. Indeed, we started from a
specific way of writing the gauge, which introduces a matrix A with a rank equal to 1. We
showed that upon an appropriate choice of the gauge vector él, such gauges can be recast
into gauges with a vanishing matrix A. However, the reverse is not necessarily true. In
other words, there exists gauges where A = 0, which nevertheless lead to 6Ny = 0 as a
dynamical consequence. The non-pathological implementation of the synchronous gauge
is an example of such type of gauges (see appendix G). Starting from eq. (4.26), the shift
vector is given by k6N, = Ny - 0z where

- 1

M= GetGnn {|G2 (2%5k)| v:G1 = |Gy - (2%5k)| V.Ga}. (5.29)
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Hence, k0 N7 vanishes if the vector N is a linear combination of the two gauge vectors and of
the vectors of constraints. Finding the pairs of gauge vectors for which such a condition holds
(in addition to the condition det(Gry) # 0 for the gauge to be non-pathological) requires
to explore the space of eigenvectors of V.., and this task is beyond the scope of this paper.
However, this might offer another route towards gauges with vanishing perturbations of the
shift vector in situations where the construction presented above fails to provide appropriate
gauges. As a concrete example, let us consider the two following gauge vectors G = V.G
and Gy = €1g + (As/Ap) 529. By construction, this gauge is free of time-derivatives of the

gauge degrees of freedom. The elements of the matrix Gy are??
) .
_» 2\ s k - =\ As AD
Gy - (Q6Sk) =N (1}1/3> and G - (QﬁDk) e (5.30)
as well as
- - - - 1
Gy (Q68,) =0 and Gy - (QDy) = pve (5.31)

This leads to det(Grn) # 0 and the gauge is non-pathological. Then, it is straightforward to
show that 6Ny o G - 0z, which vanishes upon imposing the first gauge condition.

Vanishing lapse function. The construction developed above can also be applied to
explore gauges with a vanishing lapse function. Let us thus introduce the vector Gy =10

00
1), 6

The first gauge vector G is left unspecified. Following the calculations done in appendix H,

and the rank-1 matrix

the gauge condition 6N = 0 yields a vector .J5 given in eq. (H.4). Its projection onto the

plane of gauge degrees of freedom is J;g = —ug €2g . Thus, we constrain the first gauge
vector to be of the form
Gy =15 g9 4GP +GS. (5.33)

ag(T)

Since the vector Gy has a vanishing projection onto é’lg , the matrix G is non-singular if the
vector Gy — V,Jo + o'zkél has a non-zero projection onto é’lg . This projection reduces to
V.Js- (Qﬁﬁk), which equals zero (see appendix H). Thus, the gauge is pathological since
det(G) = 0. Note that allowing for G1 to have a non-zero projection onto é’lg is mandatory for
the matrix G to be non-singular. However, time-derivatives of the gauge degrees of freedom
are not removed anymore in that case. As a consequence, all the gauges fixed by imposing
SN =0 and Gy - 0z = 0 are pathological, irrespectively of the choice of G1. This generalises
our finding about the uniform-expansion gauge detailed in appendix H.

We stress that these considerations do not mean that non-pathological gauges leading

to N = 0 do not exist, but rather imply that such gauges cannot be constructed by

22Note that the projection of G1 onto G is expressed as a function of the couplings between the gauge
degrees of freedom and the constraints (see Appendices D, E and F).
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directly imposing 6N = 0. And indeed, we found a non-pathological implementation
of the synchronous gauge in which §N = 0. This highlights that the space of gauges
with Rank(A) = 0 cannot be entirely mapped to the space of gauges with Rank(A) = 1
complemented with an appropriate choice of the first gauge vector. From eq. (4.26), the
perturbed lapse function reads 6N = N - 0z where

1

Ne—
det(GLM)

(G- (950)] V261~ [Gr- (26D0)] ¥2Go}. (530
Any gauge choice which leads to N given by a linear combination of the gauge vectors would
thus yield vanishing perturbations of the lapse function. As is the case for gauges with
vanishing perturbations of the shift vector, deriving the set of gauge vectors fulfilling the
above condition is beyond the scope of this study.

5.3 Gauges with vanishing gauge degrees of freedom

We end this section by introducing the set of gauges for which the gauge degrees of freedom
are simply set to zero. From the perspective of the physical basis introduced above, these are
the most natural gauges to consider. They correspond to setting the gauge vectors C—f“ = é'Mg
and A = 0. These gauges are manifestly non-pathological since the two gauge vectors form a
complete basis of the plane of gauge degrees of freedom. Moreover, the two gauge vectors
are orthogonal to the plane of physical degrees of freedom and to the plane of constraints.
Hence, the right-hand side of eq. (4.24) vanishes and one recovers that the gauge degrees
of freedom are fixed to zero. We note that any set of gauge vectors that forms a complete
basis of G will lead to the same properties. For instance, we can equivalently fix the gauge
by imposing (Q@Bk) . 55}; = 0 and (Q@gk) : 55}; = 0.

The expression of the Lagrange multipliers are derived using eqs. (4.27) and (4.28) in
which G}, is now vanishing. Using footnote 16, it boils down to

SN 0 us Z1
= k. , .
(o )= (2 ) e () 535

where k.p, is built from the couplings between the constraints and the physical degrees of
freedom (see Appendices D, E and F). This formula holds irrespectively of the choice of the two
gauge vectors as long as they form a complete basis of the plane of gauge degrees of freedom.

Let us briefly comment on that gauge. Here, the two constants of motion are the two
gauge degrees of freedom, hence they have vanishing Poisson bracket since they correspond
to two momenta (see footnote 19). It is also worth noticing that removing the gauge degrees
of freedom by projecting the solutions of the equations of motion onto the physical plane
(as proposed in section 3.3) is equivalent to working in the gauge with vanishing gauge
degrees of freedom.

5.4 General strategy for defining gauges

The above investigations lay the ground for developing a general strategy to construct gauges.
As explained previously, gauges are usually chosen in order to adjust the foliation on a
quantity of interest. For instance, in the unitary gauge, spatial hypersurfaces have uniform
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inflaton-field values. Hence, in full generality, one often searches for a gauge such that 0A =0
where A is a quantity of interest. A general methodology to build a non-pathological gauge
in which 6 A = 0 is presented below. It depends on whether d A contains Lagrange multipliers
or not. Here, we only consider perturbations of physical quantities at linear order.

The easiest case is when 0 A involves phase-space variables only, thus reading §A = A 025
A first possibility is that A has a vanishing projection onto G and 0A does not involve
gauge degrees of freedom. Hence §A is either vanishing if it is a linear combination of the
constraints or non-vanishing if it bears physical degrees of freedom, but in both situations,
its value cannot be changed by fixing a gauge. A second possibility is that A has a non-zero
projection onto G. Then, one simply impose d A = 0 as a first gauge condition, which is easily
complemented with a second condition in which the projection of the second gauge vector
onto G is selected to be linearly independent of the one of A.

More involved is the case where §A contains Lagrange multipliers, i.e. §4 = ANGN +
ANDSN, + A - 0Z;. A first method consists in imposing dA = 0 and to complement it with
Go - dz; = 0. The second gauge vector then needs to be designed to remove time-derivatives
of gauge degrees of freedom and to lead to det(G) # 0. However, the example of the uniform-
expansion gauge shows that this approach can fail in providing a non-pathological gauge. If
it is so, one needs to resort to gauges with Rank(A) = 0 and find two gauge vectors such that

det(G) # 0, (5.36)
d

2
(514:; |:Oéi(7') C_T;Z(S_’E“V‘BZ(T)E (éldﬁk‘)} . (5.37)

The second requirement ensures that d A is vanishing by imposing the gauge condition. Using
the equations of motion in eq. (5.37), we arrive at

Zﬁi G - (96§k) =AM, (5.38)

Z B; Gi - (Qﬁﬁk) = AN (5.39)
22: |0i(r) G+ Bi(7) V.Gl ~ 4, (5.40)
i=1

where it is sufficient that the last equality holds on the surface of constraints.?® The two first
conditions are algebraic constraints in the plane of gauge degrees of freedom and complement
eq. (5.36). The last condition is an inhomogeneous differential system and solving it demands
to identify the eigenvectors of the operator V.. This study is beyond the scope of this
article but it would allow us to construct any gauge in a non-pathological way (or at least
to show that gauges cancelling A do not exist).

23The two first equalities are conditions in the plane of gauge degrees of freedom, hence weak equality and
strong equality are identical.
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6 Gauge-invariant variables

Gauge transformations are infinitesimal translations in the plane of gauge degrees of freedom
and gauge-invariant quantities are given by the set of variables orthogonal to that plane.
Hence, canonical pairs of gauge-invariant variables are defined by Qqgr = fQ - 02z and
Pgr = Ip - 0z;; where Ig,p € C ® P. The two variables are canonically conjugated providing
that {Qqar1, Pc1} = 1, which leads to

Io - (Qlp) = 1. (6.1)

Decomposing the vectors on the plane of constraints and the physical plane as fQ /P = I 5 /pT

fg/Pv and inserting this decomposition into eq. (6.1), one finds
15 (96IF) =1, (6.2)
while the vectors I 5 /P remain unconstrained. The above relation is easily inverted to give
P = |2 (Q6IF) + M) IE 6.3
P Q 6lg )+ (1) I, (6.3)

where A\i(7) is an arbitrary function of time and scale. Thus, the set of canonical pairs
of gauge-invariant variables read

Qa1 = I - 02 + I§ - 6%, (6.4)

Por = —|I5| " (I - 02 + M(r) I -6 + IS - 67 (6.5)
We stress that eq. (6.2) imposes the vectors I g; /p O be non-aligned, ensuring the physical
degrees of freedom to be entirely captured.

At the quantum level, defining gauge-invariant states is straightforward using the physical
basis. To this end, we promote the variables to operators @ acting on quantum states that
we denote |¥). If we were to upgrade Poisson brackets to commutators without introducing
Dirac brackets, then gauge-fixed quantum states would necessarily violate the constraints.
Indeed, let us consider the gauge-fixed quantum states |Uap), satisfying G;(k) [Uqr) = 0
where the classical gauge conditions have been promoted to operators, i.e. GZ(E) =G, 0z —
éz(E) = éz . 5/,2:’; The Heisenberg uncertainty principle leads to two obstructions for building
such states. First, the commutator between the two gauge-fixing operators reads

[GL(R), Ga(R)] = G - (26C2) (6.6)
which does not vanish in general, since the gauge vectors mix the constraints, the gauge
degrees of freedom and the physical degrees of freedom, see footnote 19. This means that

it is not always possible to find states for which both gauge-conditions are fulfilled, unless
additional prescriptions on the vectors G; are imposed to ensure [G1 (k), Go(k)] = 0.2* Second,

24The example of the Newtonian gauge perfectly illustrates this point. Classically, the Newtonian gauge
amounts to imposing dy2(k) = 0 = dma(k) for all k. However, at the quantum level, the gauge-fixed states would
be defined as dv,(k) |Var) = 0 = dma(k) |Yer) which is impossible since [§7,(k), w2 (k)] = ¢ by construction.
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fixing a gauge consists in imposing conditions on the plane of gauge degrees of freedom and

these conditions necessarily have a non-zero Poisson bracket with the constraints since those

are canonically conjugated to the gauge degrees of freedom. At the quantum level, this means

that gauge-fixing operators do not commute with constraints operators, i.e. [G;(k), Qu( k)] # 0.

Hence, quantum states which cancel both gauge conditions and the constraints cannot exist,

and gauge-fixed quantum states necessarily have non-vanishing constraints (see also ref. [63]).
To avoid this, Poisson brackets can be upgrated to Dirac brackets,

{‘7'}D = {'7'}+{‘7QM}M71 {Pm'} ) (67)

before promoting them to commutators [64]. The matrix M depends on constraints and
gauge conditions as follows:

_ (e} G
M= ( - {Gi,aj}> . (6.8)

Therefore the introduction of Dirac brackets requires first to gauge fix the system such that
M is well defined. Furthermore, since the constraints are first class, see eq. (2.27), and since
the gauge conditions can always be rewritten as conditions belonging to P, the matrix is
antidiagonal and det (M) = det (G)?. Our non-pathology criterion therefore ensures that
Dirac brackets are well defined. After promoting Dirac brackets to commutators, the only
non-vanishing commutator is therefore [Z (k), Za(k)] = i. Gauge-invariant states \\I/G1> are
defined as the set of states on which the constraints vanish, i.e. Q1 (k) [¥qr) = 0 = QQ( k) |Wear)
for all k. Both constraints can be jointly realised since Q (k) commute with Qo(K'). Gauge
transformations are given by the quantum operator generating translations in the plane of
gauge degrees of freedom, which reads

2
Lew = exp |i /d?’ié’z g@ (k)] , (6.9)

where the §‘“s are two infinitesimal parameters. The exponential is easily expanded since
[Ql( k), Q2(K')] = 0. By further using that @“(E) |Wqr) = 0, it is straightforward to show that
/Jgu |War) = |¥ar). Hence the states [Pqr) are indeed gauge-invariant.

7 Conclusion

In this paper, we have investigated the gauge-fixing procedure in a Hamiltonian formalism
for the case of (linear) cosmological perturbation theory (CPT), restricting ourselves to its
scalar sector with a scalar field as matter content. Although the background was fixed to
a Friedmann-Lemaitre-Robertson-Walker (FLRW) universe for concreteness, the discussion
remained general as the gauge fixing was performed on the six-dimensional phase space
described by perturbed variables only.

We have introduced a decomposition of this six-dimensional phase space into three two-
dimensional planes: a) the plane of constraints C generated by the scalar and the momentum
constraints, b) the plane of gauges G generated by the momenta of these constraints, which
role is to generate gauge transformations and c) the physical plane P that contains all the
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remaining quantities, which are de facto physical. This splitting amounts to the so-called
Kuchaf decomposition [50, 51]. By construction, C, G and P are orthogonal to each other and
obey certain relations under the action of the symplectic structure €2g, see section 3.1. Such a
geometrical approach makes straightforward e.g. the extraction of gauge-invariant quantities
or the application of constraints by simply projecting vectors onto the plane of interest.

In this physical basis, the Hamiltonian can be obtained by performing a time-dependent
canonical transformation, see appendix D. Although the resulting expressions may be cum-
bersome to use in practice, they highlight that the gauge degrees of freedom in the total
Hamiltonian are solely coupled to the constraints. This has to be the case in order to ensure
that the constraints are conserved over time, if they are imposed initially. Equivalently, the
dynamics of the gauge degrees of freedom is generated by the physical degrees of freedom
and by the Lagrange multipliers only (when applying the constraints). As a consequence,
once the gauge is fixed and is imposed to be conserved over time, the Lagrange multipliers
are directly parametrised in terms of the physical degrees of freedom.

We have then brought our attention to the gauge-fixing procedure. Gauge prescriptions
in the literature appear in two ways: a) healthy gauges in which all the gauge degrees of
freedom are fixed and b) pathological gauges where some gauge degrees of freedom remain
unfixed. When using pathological gauges, it is commonly assumed that the remaining gauge
degrees of freedom can be fixed somehow, eventually leading to a healthy gauge. However,
we have shown here that this is not necessarily the case.

We first presented a formal description of healthy and pathological gauges. On the one
hand, a healthy gauge is a gauge that can be recast as a set of conditions on the phase-space
variables only (e.g. 072 = dmy = 0), that generate the entire gauge plane G (det(G) # 0 in
the language of section 4.3). In healthy gauges, the Lagrange multipliers are derived on-shell,
by demanding that the gauge conditions are preserved over time. They are not involved in
the off-shell definition of the gauge, they are on-shell consequences of that definition. On the
other hand, when the gauge conditions directly fix the Lagrange multipliers or the derivatives
of the phase-space variables (e.g. 6N = 0 or 5’.y1 = 0 respectively), a dedicated analysis is
required. The procedure presented in section 4.2.1 shows how to recast these conditions into
a form that makes the gauge explicitly healthy, if this is possible, see figure 1. Otherwise,
the gauge is pathological. A healthy reformulation of the gauge can then be looked for using
the generic method presented in section 5.4, although it is not clear whether or not such a
reformulation always exists, and we leave this question for future work.

We then illustrated this methodology with some concrete examples. For instance, while
the Newtonian gauge (6v2 = 6N1 = 0) may appear pathological at first sight as it fixes a
Lagrange multiplier prior to solving the equations of motion, the methodology presented
in this paper shows that this gauge prescription can equivalently be recast under the form
09 = dme = 0, which clearly fixes all the gauge degrees of freedom. The condition dN; = 0
then appears as a dynamical consequence of this gauge fixing, instead of an off-shell condition.
We also studied the example of the uniform-expansion gauge in which the integrated-expansion
rate vanishes, 6NV, = 0. This gauge plays a key role in the stochastic-inflation formalism, in
which the modelling of quantum-backreaction effects is crucial to describe non-perturbative
non-Gaussianities and the statistics or rare fluctuations, relevant to the formation of primordial
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black holes for instance [18, 65]. Applying our method, we have investigated several ways
to implement such a gauge that nonetheless all turned out to be pathological. This does
not prove that a healthy gauge where oAy ~ 0 does not exist, but if it does it has to
lie outside the large class of gauges we have tested. Note also that, in the context of the
(stochastic or classical) JN formalism, physical quantities are computed at leading order
in the gradient expansion, hence it may be enough to impose that dNiy; is k? suppressed.
This would require to develop the present formalism for the reduced phase space of the
separate-universe approach, which we plan to carry out in a future work.

Moreover, we made use of our formalism to explore new classes of gauges. For example,
we proposed a generic class of non-pathological gauges that yield vanishing perturbations
of the shift vector N7 = 0. This type of gauges could be of particular interest in the
context of the separate-universe picture (and consequently of stochastic inflation) since this
approximation scheme assumes the shift vector to be zero. We also considered the class
of gauges where the gauge degrees of freedom vanish, which appears as the most natural
prescription from the geometrical perspective we have been using.

The methodology developed in section 4.2 is prescriptive: given two gauge conditions, it
is straightforward to follow the steps summarised in figure 1 and assess whether the gauge
is healthy or not. Adopting a constructive approach instead, we showed that building a
gauge with a desired property eventually amounts to searching for the eigenvectors of a
linear differential operator. This operator is adjoint to the one generating the dynamics of
cosmological perturbations, see section 5.4.

Finally, we highlighted that this formalism allows us to define gauge-invariant variables
easily, since it simply amounts to projecting solutions onto the plane of physical degrees of
freedom. This approach is straightforwardly extended to the construction of gauge-invariant
quantum states.

To put this work in the broader context, we would like to emphasise that, although we
focused on cosmological perturbations, our approach is generic and could be extended to other
perturbation theories, for instance to the post-Newtonian theory [66] or to any gauge theory. In
the cosmological context, our formalism can be adapted to the separate-universe picture. This
would allow us to build a well-defined prescription for matching this picture with CPT at large
scales in a gauge-fixed and/or a gauge-invariant manner. Another natural extension of this
methodology would consist in including higher orders in CPT [54, 67, 68]. While we showed
that gauges defined by conditions that do not contain the Lagrange multipliers are always well
defined, it is yet to be proven whether this property is still satisfied at higher order or in other
gauge theories. However, the vectorial formalism developed in this article relies on the linear
behaviour of cosmological perturbations. A non-linear formulation would therefore request to
rethink our methodology. Finally, these investigations may provide new understanding at the
quantum level. We show that the non-pathology criteria established in this article ensure that
Dirac brackets are naturally well defined. The methodology developed here may also inspire
new ways to treat constraints and the gauge-fixing process in a Hamiltonian setting after
quantising the theory. While it is expected that reduction of gauge system and quantisation
are two commuting procedures, no such proof has been provided so far. Such investigations
would be of great interest in particular in the context of quantum gravity [69-71].
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A Constraints in vector notations

The vectors generating the first-order constraints and introduced in eq. (2.24) are given by

) 1/3 [ 72 2 2 1.2 3/2
§p = (10 gy AU (T ) M K A—@,—ﬁf v%,0),
32" 2 3\ 02 v2B ) m3 6 vl my v JAM
(A.1)
2 2
DkT: T;ld)Z ¢7 \/§ 1 U1/307 \/; 1 39 O T == 2/37_2% gv2/3 . (AQ)
A3/ m3 2v/3 mj 3 f\[ VAV 3

The matrix H} appearing in the quadratic constraint (2.25) can be decomposed into 3 x 3
blocks in the configuration/momentum decomposition as follows:

H (k) Hyr
H, = A.
K ( H(;Er H,. |’ (A-3)

where only the configuration block is scale-dependent (note that Hy is symmetric hence the
two off-diagonal blocks are the transpose of each-other.) Each block can be read off from
eq. (2.17). The two diagonal blocks are symmetric and they are given by

2
my /3.1/3
35 (& +Vao) WE%U PV 0
m¢>\f13 A 1 (7 v M3 g2 Af22
Hyo(k)=| 5z tv"Ve Sagms (U2+2—4Plvzxs> 2 Yo Mk ,
A V287212 A1 Mg, g2
0 mzmgmMmk m7‘2131)1 % _811;2/3)
(A4)
and
21
_ 0 _mipl/3 0 A
H .= X . (A.5)
45 1/3
0 0 M2 2v
A Mg,

The off-diagonal block contains the couplings between configuration and momentum variables.
It is given by

0 0 0
22 V3 Te 9
Hyr= | “momz 1 o5 a0 (A.6)
0
0 0 5
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B Equations of motion for the perturbations

Vector notations allow us to write the dynamics of perturbations in a compact way. It should
however not hide its complexity. We thus here provide the explicit expressions of the set of
eight equations (2 constraints plus 6 Hamilton equations) compactly encoded in eqgs. (2.24)
and (2.26). The linear constraint equations read

1/3 2 2 M2
V3 2130 5 ”[%—V+M§I<k>] oy + Ma K s Te £ 5my + 0V 06 = 0

M2 V3 |12 2/3 V6 vl/3
(B.1)
and 1 1 5
3¢ + —=v'/30 (5 — V25 )— 23 (s 20m2) = 0. B.2
T ¢+\/§v 507 V267 \/gv (7?1+f7r2> 0 (B.2)
The Hamilton equations for the scalar-field perturbations are
5 Mo Loe V3o
0p = " ON+ N (vdm) 5 ,05/3(5’)/1 , (B.3)
) k2 V3
omgy = —vV 40N — mpkd Ny — N [1} (U2/3 + V7¢,¢> 0p + 2U1/3‘/’¢(5’yl] . (B.4)
For the isotropic gravitational perturbations, they are given by
: V3 2 N 0
5y, = —~——0*B305N — —0?/PkSN| — — (21}1/357r1 + 571) : (B.5)
' E V3 Mg, 2
. o3 (7 , k2 1,
2 (Lo _ /3
omy = 73 \ 02 V+ M —= 273 4] 2\/?:11 0kd N, (B.6)
N [‘31;1/3 (2 571 g |t g im - oMk
V3 o
Finally, for the anisotropic degrees of freedom, the Hamilton equations are
6yy = \f 2BESNy 4+ — N (4v1/3(57r2 + 9572) (B.7)
3 M2,
: MF2’1 k? 2 1/3
2 (m VMK 0 M2 K
N = 9 Pl I 4
* 3vl/3 (112 2 8 23 072 - Mgl(sm 6v2 v

C Gauge transformation of Hamilton equations

In eq. (2.19) we have treated 6N and 0 N7 as Lagrange multipliers, and as such they do not
appear in the reduced phase space considered in this work. Alternatively, the lapse N and shift
N can also be seen as belonging to the phase space. However, since the Hamiltonian (2.2)
does not involve their time derivative, their momenta identically vanish. Following Dirac’s
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method, one can introduce Lagrange multipliers and primary constraints in the action before
performing the Legendre transformation. One can then compute the equations of motion
for all the fields (including N and N?) and impose the primary constraints to be conserved
over til%e). This directly leads to the appearance of the secondary constraints S(&) + S§(®) = 0
and D

;0 + D = 0. Since secondary constraints are automatically conserved, one can
consider them as primary constraints from the beginning with N and N? their associated

(2
Lagrange multipliers. In this paper, we therefore follow this point of view and N and N*
are not treated as phase-space variables [48, 55].

Under this setting, time-evolution and gauge transformations do not commute. The
reason is that both are representations of the algebra of hypersurface deformation, i.e. time-
evolution of any phase-space function F' and gauge transformation of that function are both
generated by the scalar and diffeomorphism constraints which form an algebroid [72]. Because
gauge transformation and time-evolution are generated by the same set of non-commuting
constraints, this leads to the fact that the gauge transformation of the time-derivative of F
is not given by the time-derivative of the gauge transformation of F'. This was shown for
the specific case of cosmological perturbations in ref. [58], and here we prove this result in
full generality. We then apply it to cosmological perturbations, where we show that this
non-commutativity is related to the time evolution of the constraint vectors.

Let I' = (¢m, Vij; Tm, 77 ) denote any point in the phase space where (¢, T ) describes
any matter content (not necessarily a scalar field). The full Hamiltonian, generating both
evolution and gauge-transformations, is

C[N, Ni] = /d% [N S(T) + N D)) (C.1)

where S(I') and D(I") are the scalar and diffeomorphism constraints for gravity and matter.
Their expressions are not needed here. We denote the “smeared constraints” by S[A] =
[d32AS(T) and D[V = [d3zVID;(T), with A and V* any scalar and vector space-time
functions. The smeared constraints obey the following algebra of constraints:

{S[A1], S[Aa]} = D [37(A19;A0 — As0;M1)] (C.2)
{DVi], DIV31} = D [Vio,vi - Vio,vi] (C.3)
{DIVT],S[Al} = S [Via.A], (C.4)

which is no more than the representation of the algebra of hypersurface deformation (see e.g.
refs. [55, 72]).2° Time-evolution of any function defined on the phase space with no explicit
time dependence is given by its Poisson bracket with the full Hamiltonian, i.e.

(1) = {F (), S[N]+ DIN']}. (C.5)

?Note that in ref. [55], the Poisson bracket is defined as

R 3 OF 6G oG OF
{F.G} = My, /d ¢ (§7rij 0vi; 0wt 5%‘3') ’

{F,G}:/d3x(5F 5G  8G 5F)‘

while here we define it as

6’}/1‘]‘ (57‘(‘“ B (5’}/,‘3‘ 671‘”
This explain the slight difference in the algebra of constraints as compared to eq. (1.2.15) of ref. [55].
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Consider now a gauge transformation z# — z* + &*. In the Hamiltonian framework it
is generated by?0

Leoe(F) = {F SINE] + D[ii}} : (C.6)
We now consider the gauge transformation of F' as being defined by the Poisson bracket
Leoe(F) = {{F, S[N] + DIN']}, S[NE] + D[¢]}. (C.7)

We note that F is not strictly speaking a function on the phase space, since it may depend
on time explicitly, through the lapse and shift functions, hence the interpretation of the
above Poisson bracket as a Lie derivative should be taken with a grain of salt. Nevertheless,
we shall keep using the notation £§07§(F ) for the above Poisson bracket. Using the Jacobi
identities, it can be written as

Leog(F) = {F,{SIN] + D[N'], S[N¢] + D[¢']} }
+ {{F, SN’ + DI¢']}, S[N] + D[N']}. (C.8)

The first Poisson bracket can be simplified using the algebra of constraints (C.2)-(C.4). It
boils down to

{SIN]+ DIN'], S[NE"] + DI¢']} = S [N'9;(N¢®) — £0:N]

+D [Niajgi — 9N + N%Uajgo} . (C.9)
The first term in eq. (C.8) thus reads as the gauge transformation of F' along the vector field
¢, ie. {F, {S[N]+DIN'], S[N€’| + DI€']}} = Ly 5(F), with NE¥ = N'0;(N¢°) —€'0; N and
£i= NI9;Et — 19; Nt + N2y 9;€0, see eq. (C.6). The second term in eq. (C.8) is the Poisson
bracket of the Lie derivative of F' with the total Hamiltonian, i.e. {L¢o ¢(F), S[N] 4+ D[N']}.
It should however not be interpreted as the total time-derivative of Lo ¢(F). Indeed, the two
gauge-parameters are time-dependent in full-generality but they are not functions of the phase-
space variables. Hence their time evolution is totally arbitrary, i.e. it is not generated by taking

their Poisson bracket with the Hamiltonian, and E&O’g(F) is also explicitly time-dependent.
This Poisson bracket can still be related to d%ﬁgqg(F) by noting that

D Lo e(F) = - en (1) + {Leog(F), SIN) + DINY} (C.10)
where
;Tcgo,g(F) = {F S [;T (gUN)] +D [;T (5)} } =L, onen) o (F). (C.11)

Combining the above results, the commutator between gauge transformations and total
time-derivatives is thus given by one single Lie derivative, i.e.

dF d
Loe (G ) = Lo elF) = Lo (), ©12)

26Note that in the Hamiltonian framework £* has to be projected onto the vector orthogonal to the
hypersurface, i.e. n* = (1/N,—~N"/N), leading to Agx = n, " = NE°) and on the plane tangential to the
hypersurface using the projector L= 4, +n"n,, leading to Vgp =&t
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where the vector field (¢°,¢?) is

0o_go_ LONE 1 rin nedy ign] - LONE

=8 S = [NONE) — €aN] - 7 (C.13)
N T S . g oE

(=gt (‘Ti = N79;¢ — ¢J9;N' + N?249,¢" — T‘)ET' (C.14)

We stress that the above holds under the condition that F' is a function of the phase-space
variables only, and does not have any explicit time dependence. Otherwise, the total time-
derivatives should be replaced with Poisson brackets in eq. (C.12). This concludes the proof
that, in general, gauge transformation and time differentiation do not commute.

We now apply the above result to the case of cosmological perturbations, i.e. we replace
F by 6Z; in eq. (C.12),

- d . o
Leoe (5Z;) = g Leoe(0%p) = Leo((677). (C.15)

Let us evaluate each of the terms appearing in that expression separately. We first recall
that, within each Fourier subspace,

Lo (F) = {FNSY +igkDM}, (C.16)
see the discussion around eq. (2.32). When specified to F' = 0z}, this reduces to
Leo ¢(0%;) = NEXQ Sy + k& Q6 Dy, (C.17)

see eq. (2.33). This allows us to evaluate the second term in eq. (C.15). For the first
term, we can make use of the equations of motion (2.26) to replace 5'2’]3 by 5N(E)96§k +
kEON1(k)QsDy + 2NQsH k027 Its Poisson bracket with the constraints at first order is easily
obtained using eq. (C.17) and yields®”

Leoe (0%;) = 2NQeH , (NEQSy + ke Q6 Dy ) . (C.18)

Finally, the third term in eq. (C.15) follows from eq. (C.17) where ¢ is replaced with (,
leading to

Leo ¢ (67) = NC2 Sy + kG Dy, (C.19)
9 R -0 _
_ 0 0 k
= [Ngk — 5 (Ng,;.)} QS + k ( i ) Q4 Dy (C.20)

where we have used eqs. (C.13)-(C.14). The above expression needs to be evaluated at leading
order in CPT. Upon replacing N by N(7) + 5N(E, 7) and N by 5Ni(E,T), one finds that

27If N and 6N, were to be considered as phase-space variables, one would have to take into account their
gauge transformation in the Lie derivative, leading to

Leo g (5212) =2NQsH}, (Nf,%ﬂsgk + kfgﬂgﬁk)
+ (ﬁv - 5N) Q65 + k (57\7/1 - 6N1> Q6D

which matches the equation above (2.38). So time derivative and gauge transformation commute if one works
in the extended phase space which comprises N and dN; [46-48].
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§~0 is quadratic in perturbations and can thus be discarded, while fN = N2kv2/3¢0 — § at
leading order. Combining the above results, eq. (C.15) boils down to

ds - k2 - dD .
€Ny (dT’“ — 2NHQ%6S), + NUQ/ng> + £k (dT‘“ - 2NHk96Dk> =0. (C.21)

This must hold for all gauge parameters fg and &g, so

ds, _ k2 -

di — QNHkQGSk — NTQ/?’ Dk , (022)
dD q
Trk = 2NH Q6D . (C.23)

These two identities are consistent with those obtained in egs. (2.29)-(2.30), from the explicit
expression of gk, l_jk, and H, given in appendix A. Here we see that they are related to the
non-commutativity between gauge transformations and time differentiation.

D Hamiltonian in the physical basis

In this appendix, we derive the components of the Hamiltonian in the physical basis, denoted
(K] ab: The final results are gathered at the end of this appendix. For simplicity, we take
all the mass fiducial parameters to be equal to the Planck mass m; = my = mgy = My, but
we keep the conformal parameter A unspecified.

Useful properties. We write here again eq. (3.17),
[Kk]a,b = 2Ne¢, - (Hkéb) + €y - (Qﬁéb) =€y [VT <Q6€b)] , (Dl)

and recall that the Hamiltonian is symmetric [Ky],, = [Kkl,,. We give some additional

properties that may be useful in the following. For any vectors X , }7, one has

— —

X [Hy, Q)Y =Y -[H},, Q] X, (D.2)
X [Hy, Q)Y = QX - [Hy, Q6] QY , (D.3)
X [Hy, Q) QY =Y - [Hy,, Q6] QX . (D.4)
From eq. (D.1), one can see that

. . Ap ..

(K], = 2Né, - ([Hy, Qo] ef) - TD g, 9, (D.5)
P 1
—0qa,3

[K,1 = 2Ne, - ([Hy, Qe ) - 22 &, - &f

HS o~
:6a,4
As s As Ms(k)2 L oG
|28 _BSAS NHS (L F N e gd D.
l/\D LS AD Ao \wifE) | & (D-6)
:6(1,3
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Because of the results already obtained for [Ky], 5 and [K], , in egs. (3.18) and (3.19), and
using the fact that the Hamiltonian is symmetric, one can infer the following relations

Nef - ([Hy, )¢l ) = e (D.7)
Nég - ([Hy, ) ) = /% (D.8)
oNeS - (IHy. ) e9) = 2NF - ([Hy, ) 5)
As s As s ( k >2
— |28 088 NES(Z )| D.9
[)\D 1S AD Ap \wl/3 (D-9)

Nef - ([Hy, Qoléf) = B (D.10)
Nég - ([Hk, Q] 55) = —Zf, (D.11)
2NES - ([Hy, Q) éf) = 2Nef - ([Hy, Q) )
As  jis As s ( k )2
= |25 _BSAS NES (2 ). D.12
[)\D s Ap Ap \vl/3 ( )

One finally notes that, since [Ky]; o = [K¥]y;, one has
&5 ([Hi, Qlef) = éf - ([Hy, Q) ). (D.13)

Couplings with the gauge degrees of freedom. The couplings with gauge degrees of
freedom were computed in egs. (3.18) and (3.19). In particular, the only non-zero components
are the terms [Kyl, 3, [Kkly, and [Kj]; 4. These represent couplings between (Q1; 1),
(Q1; P2) and (Q2; P») respectively. Gauge degrees of freedom are therefore only coupled to
the constraints. This was to be expected, as it implies that only the constraints source their
own evolution which is equivalent to saying that the constraints are preserved on shell. In
appendix E, these couplings are gathered in the 2 x 2 matrix k.

Couplings with the constraints. We now consider the couplings with the constraints,
[Kk]aﬁ and [Kk’]a,l‘
freedom are coupled.

We have already established how constraints and gauge degrees of

Let us start by computing the coupling between the constraints and themselves. For
[Kk]o,m we have

[Kiloo = —2NAb Dy - ([Hy, Q6] Q6Dy,) - (D.14)

Then, using that &5 = AsDy, + MS§k7 one can rewrite [Kk]o,l as

A ~ .
(Ko, = ﬁ [Ktloo — 2Nushp Sy - [Hy , Q6] Q6 Dy, (D.15)
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and [Kyl,; as

As 2

[Kkh 1= 2/\ [Kk] )\2 [Kk] QNN% gk . [Hk y 96] Qﬁgk . (D16)

In appendix E, these three couplings are gathered in the matrix denoted k..

We then move on with the couplings between the constraints and the physical degrees
of freedom. We recall that € is given by the normalised projection of B onto the physical
plane P, i.e

" 1 _
eP = gy (B - Biéf — Bacf) (D.17)

where Ap is such that € is normalised.
For the first physical degree of freedom, one has

(Koo = 2NApel - ([Hy, Q] B) = AsB1 [Kily — AsB2 [Kily, ,  (D.18)
[Kily, = 2NApey - ([Hk , Q] é) ~ ApB1[Kilo; — AsB2 [Kil,; - (D.19)

Developing &5 - ([Hk , Q] é) and inserting [K]y o, the expression for [K]y boils down to

_As
o

—ApB2 (K] ; — 2N Appus Sk - ([Hk , Q] Qﬁé) : (D.20)

Kkl (IK K20+ A Bt Koo+ ApB2 [Kily1) — ApBi [Kilo,

For the second physical degree of freedom, one similarly obtains

[Kilys = —2NApel - [Hy, Q) B — 2)pB1 [Kily; — ApB2 (K, . (D.21)
(K1), 5 = —2NApéS - [Hy, Q6] B — 2\pB: [Kil, 4 — ApB1 Ky, - (D.22)

Developing 52(2 = Asﬁk + uggk, the last equation reduces to

A
Kkl 5 AZ (IKKos +2X8B1 Kty + ABz [Kily.a) — AsBi (Ko
—QABBQ [Kk]1’4—2N)\BMSSk- [Hk, Qﬁ]B (D23)

In appendix E, these four terms correspond to the entries of k. Alternatively, one could
compute them by rewriting [Kx|,, and [Kj], 5 as:

o 5 A
[Kk]aZ = )\Bé}L . <2NHkB + QGB) — 7E€a . 527) +)\B <32 _|_BC:U'5')
:6a’5 760,4
: Ap As  fis As
Ap{Bf+BE2 4 BS |22 228 N
+B{ 1+ o + by ‘o 1sAp 1/3 _,_/
_50,3
—2NApBfe, - ([Hy, Qoléf) — 2NAsBSe, - ([Hk, Qlef),  (D24)
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and

Ly
(Kl = —Anéa - (2NH6B = B) + 32 6 af - (B + 5§15 ) 6, o
B T wns T
=0a,2 =0a,1

) A A 1 A E\?]) .
—p {BlC+BC)\D +BS lki_fgg_Nﬁ <vl/3> Hea & . (D.25)

:511,0

Couplings with the physical degrees of freedom. We are left with the couplings
between physical degrees of freedom, corresponding to the entries of kp, in appendix E.
Those components were already computed in ref. [49], with which we check that the results
derived below are consistent.

For the self-coupling of the physical configuration degree of freedom, inserting eq. (D.17)
into eq. (D.1), one obtains

[Kilyy = 2NMEB - (HyB) — ANXE (Biéf + Bodf ) - ([Hy, 6] B)
2

+ A% (B1)? [Kiloo + A5 (B2)? [Kil 1 + 205B1 B2 [K g - (D.26)

Let us now observe that the term 55 ([H},, Q%] B) is also present in [Kk]po and in [Ky] o,
see egs. (D.18) and (D.19) respectively. The above formula can therefore be recast into

[Kklyy =2NALE - (Hké) —22pB1 [Kilgs — 238B1 [K},
- /\2B (Bl)2 [Kk]o,o - AQB (32)2 [Kkh,l - 2/\233132 [Kk]o,l : (D.27)

For the coupling between the physical configuration and its conjugated momentum,
one finds

[Kilys = —NXLB - [Hy, Q] B+ 2N} (Bief + Byéf) - ([Hy, Q6] B)
+2X% (31316 + B2Bzc> + A5 (B1)? [Kilos + A5 (B2)? [Kily 4
+ )‘233132 [Kk}o,z; ) (D-28)

and using the expressions obtained above for [Ky], 5 and [Kk]; 5, this can be written as

[Kilys = —NMLB - [Hy, Q] B+ 2)% (BB + BB
- /\2B (31)2 [Kk]o,?, - >‘2B (32)2 [Kk]1,4 - )\233132 [Kk]oA
— AgBi [Kk]0,5 — By [Kk]l,S . (D.QQ)

Finally, for the self-coupling of the physical momentum, one has
(K455 = 2N} (QGE) : (Hk Qﬁé) , (D.30)

and a direct calculation shows that this component simply reduces to A\%.
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Components of [Ky], ;. Combining and summarising the above results, one obtains
NN
[Kk]O,O = 12X\6 016 p11/3
x [AN74 + 200103 (A8 MRV — NMER2V + 202 MEu PV + 2)02312)
+ 2 (= ASE2 M2 03+ 8ACMEWY 4 1262 M0 + 10XV + 12M 0013V, )

HON Mg ¥V, (D.31)
As 1 Wg 1
(Ko, = bys [Kkloo — 2NpsAp [4)\2]\431”4/3‘/ - 47)\2(2)\2 k) myVg
MPl 2,4/3 1 v2/3 4 A2 9
2/\6k / Vi~ 4)\2M§1 . V'V, 2/\6‘ VioVio + 18M8 11/3
2
L X (A2 4 k2) LA S 41 0 X k49 X 28V
8MY v7/3 36MS, 1;5/3 4M2Z v 16ME SMS,™ vl/3
1 A2 2ME 1
iy 1/3& 1/39‘/2 00V Pl 5/30 o 5/30‘/2
i 3608, " 2ME,1 e saenz’ Vel
(D.32)

Ve o0V, m
ONZ 5760 T ANIMZ ' o

[Kilos = —ABi[Kilgg — AsB2 [Kily; + VNABAD <

22 TI'g A2 k2 T k2M§>1 5/6 A2 7T¢V Mél 32
+3M1§1 019/6 8M§1 p11/6 + M6 TV ¥ 6]\4§1 L7/6 + A6 0" Vs |
(D.33)
Ap
[Kklos = X (D.34)
D
As fis As us ( k )2
Kiloa =30~ usdp ™ NS \oim D.35
Bkl Ap  ps Ap Ap \vl/3) (D.35)
iy T
(Ktls = =2\sB1 [Kilos = A B2 (Ko + VNAsAD | =51 wiieg
4M§1 T A 7T¢9 ]\41,1 3/2
D.36
A wl/6g + AME, v5/6 + 23 Ve ( )
As 2% 2\2 wg A2 (18M% + 7k?)m)
Kkl =25 1Kkl = g Bk + Ntk | gy T T oo
2 A2 TV A216 KLYV BAZEZ 12 10k2v1/3v

TMZ P 3ME oA T SMZooB T 3MA o 18M6 /3 3

Moo k2 M} 8M;
V3 Pl 7/3v,2 OMpy 5/3 5/3 VZ
+ 9Ml§lv + 6 vPVE — 2 V+ )\2M§1 |4
2 M2 A2 (6MY + 6A2k2 + k)2
V2 )\2 k? V2 Pl 3v2v ¢
Tzt /\2( TRV F e v VeVeo T gap V3
2k2 5 NN+ R)TV AME T A
© 3 03 9MS, V7/3 A2 1/3 N2M2 vl/3
6 7T¢V 7T3)V¢ é 6
— A% D.37
M§1 v v + M§1W¢ i ( )
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A
[Kk]m = ﬁ ([Kk]og + ApBi1 [Kk]o,o + ApB2 [Kk}o,l) — ApBi [Kk]o,l
2)2 773) A2 (202 + k2)ﬂ'g

- 9MS v31/69 4M;‘;1 v23/69

— ApBa [Ki]y; + VNApps

27735 N A2 WgV 1 wg)V@ (
3v5/20  9ME v19/69  2XN2MZ v5/6 2>\2

K2+ 2)\2) VoV

K2 Mg 11/ L e My, 9/ AL
+ e, /V¢+W TV V4 St /V¢V¢¢>+8M 5720
B k2 eV N N o V? + L%”lﬂ)"% 27T¢V 5wyl (D.38)
4ME v11/69  9MSE v7/60 22 0 3f9 2MF2’1 Vv '
K, = 0, (D.39)
T ops’
A
[Kk] 5 )\Z ([Kk]o 5+ 2AB1 (K 3 + ApB2 [Ky], 4) A B [Kklo,q
A mVe o B3A m A (A4 RYm

— 2)\332 [KkhA + \/N)\B,us _M2

v11/69 QMlz)ll pl7/6 + 4]\4121 v3/2
M2 (20% — k)7 A mpV M
— - \/>7T Voot o3
23 v1/6 2MA 5/6 ¢V,
4 2
Bl = A3 | T Nk T N oV 1wV
2,2 B 3MA v14/392  8M2 v10/392 © 6ME v¥/302 A2 vl/39

o33 3/2v¢9] (D.41)

M2
+-2 v*/3 (k2 + 7)2/3‘/:@(]5)] —2ApBy [Kk]O,Q —2ApBy [Kkh,?

)\6

— Np (B1)? (Koo — AB (B2)? [Kk]y , — 2A5B1B2 [K4)y (D.42)
[Kk]2,3 =0, (D.43)
[K]ps =0, (D.44)

2

[Kilys =~ 2]\22 gois T 2)% (BlBlc + BQBQC) — A5 (B1)? [Kily s

- )\23 (32) [Kk]1,4 - )‘233132 [Kk]oA — ApbBi [Kk}o,s) — ApBs [Kk]m ,  (D.45)
K35 =0, (D.46)
K3, =0, (D.47)
[Kkl35=0, (D.48)
[Kk]4,4 =0, (D.49)
Kil,5 =0, (D.50)
(K55 = oy (D.51)
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E Dynamical basis

As explained in section 3, the use of the physical basis allows one to separate the physical
sector from the unphysical one at the kinematical level. However, at the dynamical level, the
Hamiltonian exhibits some couplings between the two sectors. Though a clear separation
of the physical sector from the unphysical one is effectively recovered providing that the
dynamics is solved on the surface of constraints [see egs. (3.27) and (3.28)], the gauge degrees
of freedom are not entirely decoupled from the physical degrees of freedom at the dynamical
level [see e.g. egs. (3.25) and (3.26)]. In practice this is sufficient since one is mainly interested
in the physical degrees of freedom. Yet, formal studies of first-class constrained systems
show that such a separation can be performed directly at the level of the Hamiltonian [3].
This is the topic of this appendix.
Consider n canonical pairs, (g, p") with the constrained Hamiltonian

H(qu,p") = h(qu, p") + X7 Co(qu, p") , (E.1)

where C, stands for m constraints. We assume that constraints are first class and preserved
through evolution. It is thus possible to perform a canonical transformation such that the
m new configuration variables are (), = C,. The m associated new momenta are denoted
P? and stand for the gauge degrees of freedom in the context of cosmological perturbations.
The remaining (n — m) canonical pairs are denoted (Q;, P') and correspond to the physical
degrees of freedom. Moreover, the canonical transformation can be chosen such that the
new Hamiltonian reads [3]

K(Qu, P*) = k(Qi, P') + A“Qq (E.2)

where k(Q;, P*) depends on the physical degrees of freedom only, and where the A,’s are
Lagrange multipliers whose specific choice fixes the specific values of the gauge degrees of
freedom P® (more precisely it fixes their time dependence). In this setup, physical and
unphysical degrees of freedom fully decouple, since the Hamiltonian is separable.

In this appendix, we explicitly construct the canonical transformation allowing for the
Hamiltonian of cosmological perturbations to be expressed in a form identical to the one
given in eq. (E.2), starting from the Hamiltonian expressed in the physical basis.

E.1 Reordering the phase space

Starting from eq. (3.12), we first re-order the phase space as I' = I'ynphys ® I'phys, where
Tunphys = {(Q1, Q2; P1, P2)} contains the unphysical degrees of freedom and I'phys = {(Z1; Z2) }
contains the physical ones. A vector in the full phase space is now

= (Ql(E)a Qa(k), Pi(K), Pa(k); Z1(K), ZQ(E))T, (E.3)

and the symplectic form is given by the direct sum €24 & Qo, that is:

0 I, 0
QepQ=]|-1I,0 0 . (E4)
0 0 Q
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The Hamiltonian (3.13) then reads

kec kcg kcp
K:/&E[M@mﬂﬁwm®@@H@4+% KL o o |zp,  (E5)
ki 0 kpp

where the nonvanishing blocks kcc, kcg, kcp and kpp can be found in appendix D (note that
all the vanishing blocks, kge = kg, = 0, come from the fact that gauge degrees of freedom
are solely coupled to the constraints). In the following, lower-case latin letters in boldface
format stand for 2 x 2 matrices.

In that ordering, a Hamiltonian of the form given by eq. (E.2) reads

00 O
K- / &k 3 [M(DQuF) + A3 (F)Qa(F) +cc] +ZH {00 0 |Z4.  (26)
00 kypp

where E’E stands for the new set of canonical variables and where the /~\M’s are new Lagrange
multipliers given by combinations of the old Lagrange multipliers only.

E.2 Canonical transformation

—
—

One seeks a linear canonical transformation, ;k = C7Z;, such that the new Hamiltonian has
the form given in eq. (E.6). Its shape is constrained using prescriptions at the kinematical
level, and prescriptions at the dynamical level.

Kinematical prescription. The matrix C' generating the canonical transformation has to
be symplectic. It is further constrained to ensure that the linear part of the new Hamiltonian
is only composed of the constraints and that the new physical degrees of freedom do not
receive any contribution from the gauge degrees of freedom. This requires C' to be of the form

m. 0 O
C=nm; b |, (E.7)
a 0 m,

where its different blocks have to satisfy

mgﬂgmp = QQ, (Eg)

mg = mc_1T7 (EQ)

mlb+a’Qym, =0, (E.10)

mIn —n"m.+a Qa =0, (E.11)

for C to be symplectic. We stress that the first condition simply states that m, belongs
to the symplectic group Sp(2,R).
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The inverse of C is obtained using blockwise inversion.?® It boils down to

1

m.,- 0 O
cCl'= a ml! g |, (E.12)
~ 0 mgl
where
a=-m} (n - bm;la) mo', (E.13)
B = —mCTbm;1 ) (E.14)
¥ = —m;lamgl , (E.15)

where we have inserted the expression of 4 in a and we have used eq. (E.9). Using the

remaining symplectic constraints we easily obtain that 8 = aTQ and a = —nT.

Dynamical prescription. Starting from eq. (E.12), the new Hamiltonian reads

Ecc kcg kcp
K= / EFL [RMEQ R + 83(F)Qa(F) +ec] + 7 | Ry 0 0 [Zp,  (B16)
key O Ky

where the new Lagrange multipliers and the new constraints are

Ap 1T Ap aml Ql m @1
() (t) o (B)n(g) o

and where the quadratic part is given by

ﬁ%c kcg Kcp ke keg kep 4o

x 0 0 |[=C'TEL 0 0o |CT'+C'T () (E.18)
~T ~

ko, 0 kg kCTp 0 kpp

The structure of K is similar to the one of K: its linear part is composed of the constraints
only, and its quadratic part has the same vanishing blocks as K. However, one can now tune
the matrix C such that K has the form given in eq. (E.6), which amounts to canceling the
blocks ECC, Ecg, and Ecp in the Hamiltonian kernel while the block Epp remains unconstrained.
We start by providing the expression of the non-vanishing block,
dm;!

Epp = m;lTkppmgl + mngﬂg dTp . (E.19)

28In practice, C is first partitionned as
As4 B
o 4,4 Bapo
C24 D32

where the subscripts give the dimension of each block. Block inversion requires to compute Dy é =m;!

» > and
A;}17 which can itself be inverted blockwise by partitioning it into four square blocks of dimension 2 x 2.
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Since my, € Sp(2,R) and kyp, is symmetric, this is just the usual canonical transformation,
internal to the 2-dimensional phase space of physical degrees of freedom. The new Hamiltonian
kernel of the physical degrees of freedom, Epp, is symmetric, and can otherwise assume any
form, depending on the choice of m,,.

Second, we consider the couplings between constraint and gauge degrees of freedom,
which are given by

d
foog = m ' T ( Z + kegm] ) : (E.20)

This block is set to zero by choosing m_ to be a non-singular solution of

T

dm
dTC + kegmq, = 0. (E.21)

In the following, we will denote by mgﬂ the matrices that are solutions of eq. (E.21). They read

1

1
~——— [a1 — f1H(7)] lovg — BoHy(7)]
mlyr)=| P Aol , (E.22)
ps(T) s (T)
where
g k \?

with a1, ag, f1 and By being four integration constants satisfying a8y — a1 # 0 for the
matrix to be invertible.?? We note that, in full generality, H), is defined up to an integration
constant that can be absorbed in the constants c,. This shows that the coupling between
constraint and gauge degrees of freedom can systematically be canceled out and this only
requires the knowledge of k.

Third, we turn our attention to the block leading to quadratic contributions of the
constraints, i.e. ECC. This block reads

kee = —mg  Thkegn® nk;CTng_l —m TRt 4 n(mc Dt (E.24)
where
r= m;lT (k:cc - kcpmgla - aTm 1Tk:T +a"m 1Tk:ppm;1a) m;l
+ m_lTaTmllew (jlit (m, lam_1). (E.25)

A simple case is an = f2 = 1 and a = $1 = 0, which gives an upper triangular matrix reading

R0
mCT = AD /l\D .
0 -
1%
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We now suppose that m. is chosen to cancel Ecg. By further using (mg') = —m_ 1 (me)m;!
and making use of eq. (E.21), one easily obtains that k.. is set equal to zero providing

that we choose n such that
AT 4 kegn® = mI v, (E.26)

where 7, stands for the expression (E.25) where m, has been replaced by ms.. The general
solution is easily built from the solutions of eq. (E.21). It is given by

ng () = mgy (T { / d7'rol(7 ] (E.27)

where m;rol is given by eq. (E.22). Because of the source matrix 7, the matrix ng, depends
on a and m;, € Sp(2,R) which have not been specified yet. However the above solution
exists irrespectively of the choice of these two matrices. This shows that canceling the terms
quadratic in the constraints is systematically feasible provided that the coupling between
constraints and gauge degrees of freedom is canceled at the same time.

Fourth, we consider the couplings between the constraints and the physical degrees of
freedom, which after a bit of algebra are given by

ke, = mc_1T [aTQQ — anglTﬂg(mp )+ kcgaTQQ — aTm 1T pp™p Ly kepmy, }

(E.28)

This block can be set to zero if the matrix a is solution of the following equation
a' +kegat +a” {m;lTﬂg(mp ) +m 1Tkppm;1 Q) = kcpmglﬂg. (E.29)
To solve the above, we write aT = mgolaT Since m;l;l is solution of eq. (E.21), it yields

the following differential equation for a,

a’ + aTkyp Qs = m | Tkepm 1, (E.30)

my,

where we further make use of eq. (E.19). The homogeneous equation, al + aTEprQ =0,
describes standard Hamiltonian dynamics since I::pp is symmetric. Hence it necessarily has
solutions given by matrices of the symplectic group Sp(2,R) (see e.g. ref. [4]). On denoting
apom(7) a solution of the homogeneous equation, the solutions of the inhomogeneous ones
are given by

sol |:/ dT msol kcpm 192uh1T( ) agom() (E31)

This finalises the proof that there exists a matrix a ensuring the couplings between the
constraints and the physical degrees of freedom to be set to zero. The cancellation of I~ccp is
thus always possible. The final solution depends on m,, € Sp(2,R) but the solution always
exists irrespectively of that choice. We note that despite of having used msg to find a solution
to I::Cp = 0, it is not required to cancel the couplings between constraints and gauge degrees of
freedom since the differential equation for a does not depend on m,. This is unlike canceling
I::CC for which we had to set m. to mg, in order to make the coupling between constraint
and gauge degrees of freedom vanish. This means that canceling the block I::Cp can be done
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independently of canceling the blocks ECC and I::Cg. However, it is worth mentioning that to
get the expression for a that cancels the couplings between the physical degrees of freedom
and the constraints, it is needed to solve the homogeneous part of eq. (E.30). Though we
have argued that such an equation has solutions, we have not shown any concrete example
of them (see the discussion below in section E.4).

We finally stress that the process of making Ecg, ﬁcc, and %Cp equal to zero can be done
irrespectively of the choice of the matrix m which only generates a canonical transformation
in the 2-dimensional sub-phase space of the physical degrees of freedom.

E.3 Kinematics

The canonical transformation generated by C' allows one to define a new set of basis vectors
on which solutions can be decomposed, and that we will call the dynamical basis. On denoting
its vectors by {Ua},ec(01,2,3,4,5y> the dynamical basis is related to the physical basis {€a} by

W=y [T s (E.32)

5
b=0

Although the physical basis is orthonormal, the matrix C' is not an orthogonal matrix. This
implies that the dynamical basis is not an orthonormal basis. As a consequence, the different
degrees of freedom in the dynamical basis cannot be extracted out of 62} by projecting it
onto the v;,’s. Instead, its components are given by

5

%] =Y1Cl, (6 6%). (E-33)

b=0

On denoting

Wy =) [Clav &, (E.34)
any solution is decomposed on the dynamical basis as
0% =Y (Wa - 65;) T (E.35)
a

Let us briefly discuss the new variables that are obtained by projecting 27 onto the
wW,’s. Using egs. (E.7) and (E.22), one can readily show that the new constraints are given

by Qu = wg - 0Z; where the two vectors 711'5 are
~C = AS _
w = BuSk + |ap+ By ne Hy )| Dg. (E.36)

These two vectors belong to the plane of constraints. However, since «, and 3, must satisfy
o189 — agfy # 1, it is not possible to find a choice of these four parameters such that e.g.
W = Dy and @W§ = Sy. The new Lagrange multipliers associated to these constraints are
b As

KRNy — [% + 8, (Hk 4 )} 5N, (E.37)
AD ps

(a1Bs — aafr) A, py
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For the new gauge degrees of freedom, the vectors are

2
1= 3 {[mad™], @8+
w=1

>C —1T T )
W ! Q'u/ - |:msol GSOlQQmp} ! G‘u/} . (E38)

} Ty

The first term guarantees that the new gauge degrees of freedom are canonically conjugated
to the new constraints. The second and third terms guarantee the constraints and the
physical degrees of freedom, respectively, to have vanishing contribution in the equations
of motion of the gauge degrees of freedom.

Finally, the physical degrees of freedom are obtained by projecting onto the follow-
ing vectors

2
_,Z'D = Z {[mp]uu’ 6_27 + [aSOI]MM’ é}f’} . (E39)
w=1

The first term corresponds to a canonical transformation internal to the 2-dimensional phase
space of physical degrees of freedom, while the second term ensures that constraints no longer
contribute to the dynamics of the physical degrees of freedom.

E.4 Equations of motion

The procedure detailed above leads to a Hamiltonian of the desired form (E.6), from which
the equations of motion for the new set of variables are easily deduced. They read

where p runs over 1, 2. The dynamical equations for the gauge degrees of freedom and the

physical degrees of freedom now hold whether one solves the entire system on the surface of

constraints or not. We further stress that the gauge degrees of freedom are no longer sourced

by the physical ones. Their time-derivatives are only determined by the Lagrange multipliers,

showing that these degrees of freedom are totally arbitrary and carry no physical information.
The unphysical sector is trivially solved and gives

Q,(7) = constant, (E.43)

which is zero if initial conditions are selected to lie on the surface of constraints, and

Pu(r) = Pulr) + [ drBulr). (B.44)

where ﬁ#(ﬁn) are arbitrary initial conditions for the gauge parameters. However, generic
solutions cannot be found for the physical sector since this is where all the nontrivial
dynamics enters.
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We finally mention that if two linearly independent solutions of the dynamical equations
of the physical degrees of freedom are found, one can built the fundamental matrix, wuppys,
which is solution of

uphys - QZEppuphys =0. (E45)

This is the same equation as the transpose of the homogeneous part of eq. (E.30), whose
solutions are needed to cancel the couplings between the physical degrees of freedom and the
constraints. As a consequence, finding the part of the canonical transformation that cancels
kcp is equivalent to (and as difficult as) solving for the physical degrees of freedom (Zl, Zg)

E.5 Discussion

Let us further compare the dynamical basis and the physical basis. Any solution can be
decomposed on the dynamical basis using eq. (E.35), in which two sets of vectors need to be
introduced, ¥, and w,. This has to be contrasted with the decomposition on the physical basis,

65 = (Cu-07;) Ca (E.46)

a

which relies on one set of vectors only, thanks to the orthonormality of the physical basis.
In that respect, the use of the physical basis is easier.

Obviously, the real advantage of the dynamical basis is at the level of the equations of
motion. However, this supposes that one is able to find the matrix ag,, which boils down to
a dynamical problem equivalent to solving for the physical degrees of freedom. In practice
then, the use of the dynamical basis does not really simplify the problem.

Nevertheless, it is still practlcally p0851ble to set a equal to the null matrix, making
kch = 0 but still ensuring that k:CC and kcg are vanishing. Fixing a = 0 leads to b= 0. In
this case the matrix C is the direct sum of two matrices, i.e. C = M y,phys & ™M, Where
my, € Sp(2,R) generates a canonical transformation in P, and M ynphys € Sp(4,R) generates

300ne might be tempted to look for a specific choice of mythat simplifies the resolution of eq. (E.30). Up
to our investigations, there is no such general choice for the matrix my. A first example consists in setting
myp = Iy. The equation of motion for a is then given by eq. (E.30) where Epp is replaced by kpp. Hence
solving for a is as complicated as solving for the dynamics of (Z1, Z2). A second example consists in choosing
my, such that

(mp') — Qakppm,, ' = 0.

We denote solutions of the above by m_ The differential equation driving a, eq. (E.29), then simplifies to

501
T T -1
a tkea =kopm, ,§22,

which is solved as
a”(r) =mI(r) [ / dr'm Tkepm L Q2| -

However, finding my, so1 is as complicated as finding anom when setting m, = I>.
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a canonical transformation in C ® G. This leads to the following equations of motion

M1 H
Z4 - (z
IS ~ Qs k ~ . E.49
(Zg) 2Rpp <Z2> ( )

First, this has to be compared with the equations of motion in the dynamical basis, egs. (E.40),
(E.41) and (E.42). The dynamics of the constraints remains unchanged but the gauge degrees
of freedom receive contributions from the physical ones. The dynamics of physical degrees of
freedom remains unaffected at the condition that it is solved on the surface of constraints
(which, we recall, is the meaning of the symbol “~”). Second, the above has to be compared
with the equations of motion (3.20) in the physical basis. Using the above compact notation,
we remind that they are given by

2

QN = Z [kcg]uu’ Q,U/7 (E5O)
w=1
Py~ —Ay — [kepl, 1 21 = [kepl,, 2 22, (E.51)

7 VA
1)~ ok . E.52

The dynamics of the constraints is now affected but it remains trivially solved. The gauge
degrees of freedom have a similar dynamics provided that they are now solved on the surface
of constraints. Finally, the physical degrees of freedom have an identical dynamics up to a
canonical transformation internal to the 2-dimensional phase space of physical degrees of
freedom. Indeed, it is possible to cast the equation of motion (E.52) in the form of eq. (E.49)
without changing the structure of eqs. (E.50) and (E.51), by introducing the canonical
transformation 2 — (I4 @ my)Z, which leaves the space of constraints and of gauge degrees
of freedom unchanged while the phase space of physical degrees of freedom is transformed
along the internal canonical transformation generated by mj, € Sp(2,R).

F Lagrange multipliers in the physical basis

Once the gauge is fixed, the Lagrange multipliers can be expressed as functions of the physical
degrees of freedom only. To this end, we decompose the gauge conditions, Gi - 6z = 0,
and eq. (4.26), on the physical basis. To lighten the calculation, we will directly work on
the surface of constraints. Hence the two relevant planes are the plane of gauge degrees of
freedom and the plane of physical degrees of freedom.

Let us first introduce the matrix made from the components of the gauge vectors in
the plane of physical degrees of freedom, i.e.

3. 5P .. 2P
G, — (Cfl G i‘g). (F.1)
GQ'el G2‘€2
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The two gauge conditions can be decomposed on the physical basis and further expressed
as an equality between vectors:

P Z1
~ F.2
G<P2>+GP<ZQ> 0. (F2)

where G is defined in eq. (4.24) and is built from the components of the gauge vectors in
the plane of gauge degrees of freedom. Since non-pathological gauges are considered here,
the matrix G is invertible. This yields

P _ z
(é) ~ -GG, (i) , (F.3)

which can be used to replace the gauge degrees of freedom by the physical degrees of freedom
in eq. (4.26).
Decomposing now the right-hand side of eq. (4.26) on the physical basis leads to

V.G - 0%
P2 ZQ

(s Pl . Zl
VT@méZ,;) ~ (G+GK1 —I—GpK2) ( ) + (Gp+GK3+GpK4) ( ) , (F4)

where the matrices K; read

K1), =é) - (V-&7), (F.5)
K], =éf - (V-el), (F.6)
[Ks),, =& - (V-&f), (F.7)
(K4, =l (v.e7). (F.8)

These matrices are easily related to the elements of the Hamiltonian in the physical basis and
we will use the notations introduced in section E. First, é’g = —Qﬁé;f, hence K is related
to the couplings between the constraints and the gauge degrees of freedom, i.e. K1 = —kcg.
Second, €5 = —Qe&F (which also leads to & = Q6€T), hence K is given by the couplings
between the gauge degrees of freedom and the physical degrees of freedom, which have been
shown to vanish, i.e. K9 = 0. Third, the matrix K3 is shown to be given by the couplings
between the constraints and the physical degrees of freedom, i.e. K3 = —kc;. Fourth, we
obtain that the last matrix is related to the couplings internal to the physical degrees of
freedom, ie. Ky = Qakpp.
Gathering the above results, it is straightforward to rewrite eq. (4.26) as

ON A
~ N F.
GLM<k5N1> <Z2>, (F.9)

N = (G = Gkey) G7'G, — (G + GpQokyy ) + Gy, (F.10)

where

We note that the above expression relating the Lagrange multipliers to the physical degrees
of freedom holds providing that the gauge is fixed.
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G Non-pathological synchronous gauge

In this appendix, we show how to define a non-pathological gauge in which d N and § Ny
are both vanishing. To this end, we start from eq. (4.27) and identify the conditions that
G and G, should satisfy to make IN = 0, which ensures that the two Lagrange multipliers
vanish on-shell. Since the matrices G and G, are built from the components on the gauge
vectors in the planes G and P respectively, they entirely define the two gauge vectors, hence
the gauge choice. We note that in this identification, it is needed to impose the matrix G
to be non-singular for the gauge to be non-pathological.
Sufficient conditions for IN to equal the null matrix are

G — Gkq, =0, (G.1)
Gy + Gk, = Gkeg. (G.2)

The first equation is easily solved and general solutions read

Gl =mi !, (G.3)

sol

T
where m

gauge is guaranteed to be non-pathological. We also note that Gs_o} can be interpreted as the

is non-singular (see appendix E).3! We stress that Gy is non-singular, hence the

fundamental matrix generating the homogeneous evolution of the gauge degrees of freedom,
i.e. egs. (3.23) and (3.24). The second equation is solved by first solving the homogeneous
problem which can be cast as

d -1

EGP — Qokpp, G, = 0. (G.4)
This equation is a Hamilton equation generated by the Hamiltonian Ky, hence it necessarily
has a non-singular solution in the group Sp(2,R). We note this solution G, hom and it is
no more than the fundamental matrix generating the dynamics of the physical degrees of

freedom. Then, the general solutions of eq. (G.2) are

Gp,sol = |:/ dT/Gsol(T/)kcg(T/) Gp7hom7 (G5)

which finalises the proof that one can set N = 0 with a non-singular G matrix.

As a consequence, the gauge defined by setting G and Gy, to be given by egs. (G.3)
and (G.5) is non-pathological and leads to 0N ~ 0 ~ JN;. In that sense, it can be dubbed as
synchronous. However, it is not a priori synchronised with the homogeneous and isotropic
FLRW space-time but rather a posteriori. Indeed, the Lagrange multipliers are now vanishing
on-shell, which is unlike the standard (and pathological way) of defining the synchronous
gauge by directly imposing 6 N = 0 = § N7 off-shell. The foliation is synchronised with the
FLRW background as a result of synchronising the gauge vectors with the dynamics of the
gauge degrees of freedom and the physical degrees of freedom through G, and Gy, o1, which

31We use the fact that if M is solution of dM /dT + A(T)M = 0, then M~ is solution of dM ™' /dr —
M~ A(7) = 0. Tt is straightforwardly shown by noting that dM ~'/dr = —M ~*(dM /dr)M ™. Similarly, if
M is solution of dM /dT + M A(t) = 0, then M ™" is solution of dM ™' /dT — A(T)M ™' = 0.

— 063 —



are given by solutions of the dynamical equations of the cosmological perturbations. Hence,
a non-pathological implementation of the synchronous gauge is primarily synchronised with
perturbative variables of the cosmological space-time, rather than with background variables.

It is worth noting that the above-defined gauge corresponds in fact to an entire class of
non-pathological synchronous gauges since the matrices G, and G, 501 are both defined up to
two constants of integration. Moreover, we have only exhibited a set of solutions which makes
N vanish but other solutions may exist, hence other non-pathological synchronous gauges.

Finally, though conceptually interesting, it is fair to say that the class of non-pathological
synchronous gauge defined above is likely to be of little practical use. Indeed, the full dynamics
of the physical degrees of freedom needs to be solved in order to define such gauges. Because
of this, it cannot be used to make the dynamics of cosmological perturbations easier to solve.

H Pathology of the uniform-expansion gauge

We show in this appendix four different implementations of the uniform-expansion gauge,
which are all pathological.

Implementation 1. Let us start with the common way of fixing the uniform-expansion
gauge. It is based on the expression given in eq. (5.23), which implies that imposing dv; = 0
and dN; = 0 as gauge conditions guarantees the perturbation of the integrated expansion
rate to be zero. In our language, it corresponds to

élzé’fs, égzﬁand)\:<00>. (Hl)

The second gauge condition is the same as the second condition in the Newtonian gauge.
Thus it leads to a vector Jo aligned with €2¢ . For time derivatives of the gauge degrees of
freedom to be removed, the projection of é'2¢ onto G has to be aligned with the projection of
5{75 onto G. However, the study of the spatially-flat gauge in section 5.1 showed that it is not

the case. Hence, the conditions §y; = 0 and 6 N7 = 0 lead to a pathological gauge.

Implementation 2. Alternatively, one can start from the Hamiltonian expression of the
perturbations of the integrated expansion rate given in eq. (5.21). As a consequence, imposing
SN = 0 = 0O as gauge conditions guarantees a vanishing dN;y;. Such a gauge is fixed
by introducing

élz_gé’fb—{—vl/‘%é’f, Gy =0 and A:(?S) (H.2)

The rank of A equals 1 and we write the second gauge condition as 6,2 07+ Jo- 55’5 = 0, where

< V31 4, 1
1= N gP_ _—gr H.
G's < 5 5273 1 s € | (H.3)
- v .
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A direct calculation shows that

Jy - (D) =0 and Jy - (Q6Si) = 1, (H.5)
as well as
G1 . (QGDk) =0 and Gl . (QGSk) = % [2 (’U) + MPI <U1/3> . (H6)

Consequently, the projection of G1 and J, onto the plane of gauge degrees of freedom are
aligned one with each other, and this implementation of the uniform-expansion gauge is free
of time-derivatives of the gauge degrees of freedom. Let us now turn to the matrix Gy which
has to be non-singular. Its first row is given by G- (2%6Sy) # 0 and Gy - (Q6Dy) = 0 and its
second row by the projections of 63’2 — Jo + &G4 onto the plane of gauge degrees of freedom.
Thus, this matrix is non-singular providing that (G - Ja + aG1) - (Dy) is not equal to
zero. However, a direct calculation shows that @"2 — Jo 4+ &G has a zero projection onto
QGEk and the matrix Gt is singular. This shows that implementing the uniform-expansion
gauge by imposing 6N = 0 = 00 leads to a pathological gauge.

Implementation 3. Another strategy consists in imposing OJN + NJO = 0 as a first gauge
condition to be complemented with another gauge condition. This condition has to be of the
form G - 0z = 0 otherwise the gauge is pathological. As a result, the uniform-expansion
gauge can be implemented introducing

5 NV3 0 ¢ 1/3 om 00
G22U2/3]\4§1<_461 +1}/€1> and A: @0 y (H?)

while the vector G is left unspecified. First, the time-derivative of the gauge degrees of
freedom have to be removed for the gauge to be non-pathological. The second gauge condition
leads to a derivative condition on the phase space where

- NV3 (6 V30?30 ,
r ) T 1/3 om
G2_1;2/i”]\41‘g’1(261_2 e ) (FL.8)
= 30 v o)
Jy= ——— @2, (H.9)
2M2 7y °

This gives a first constraint on the vector G since its projection onto the plane of gauge
degrees of freedom has to be aligned with the projection of Jo onto that same plane (note
that without loss of generality, we can choose these two projections to be equal). Second, the
matrix Gy has to be non-singular. Since G 1g has to be aligned with J;g, the first row of Gy
is proportional to the projections of é’éb onto the plane of gauge degrees of freedom. They read

o - (25) =2 and e - (D) = 0. (H.10)

Thus, the matrix Gy is not singular if C_j’g — jg + dC_jl has a non-zero projection onto

Q¢Dy,. However, a direct computation shows that Gj - (D)) = 0 and similarly for J
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and Gi. Hence, this implementation of the uniform-expansion gauge is also pathological.
Note that constraining the vector G to have a non-zero projection onto Q6l3k is necessary
for det(Grn) # 0. However, this means that the projection of G1 onto the plane of
gauge degrees of freedom is not aligned anymore with the projection of Jo onto G. As a
consequence, time-derivative of gauge degrees of freedom are not entirely removed and the
gauge remains pathological.

Implementation 4. Finally, let us stress that the above implementation assumes gauge
conditions such that Rank(\) = 1. Instead, one could start from a gauge with Rank(A) =0
and design the gauge vectors such that a vanishing integrated-expansion appears as a
dynamical consequences of the gauge conditions. For instance, we introduce the two following
gauge vectors

. 6
Gy = —Z€f+vl/3€f, (H.11)
62 = N_lvq—él + Ck(T)C_jl, (H.l?)

where Cj(7) can be any arbitrary function of time and scale. A direct calculation leads to

2 21.2
1 5 \/g 2/3 . 1 7T¢ 2 2 k S \/iMPIk s
N=VGr=—v"Veeg = 5\ ) TV Mol xm) | &0~ 525 &
\/g T —p U1/30 ST
5% oy (H.13)

Let us first show that perturbations of the integrated expansion rate equal zero in that gauge.
First, it is easily checked that the first gauge condition leads to §® = 0. Second, the perturbed
lapse function is obtained from eq. (4.26). Since Gy - (Q6Dy,) is vanishing, it boils down to

5N = [Gr- (5] (V.G -6z). (H.14)

The right-hand side of the above is proportional to N {ég —Cy (T)él} -0z, which is vanishing
once the gauge conditions are imposed. As a consequence, the perturbed lapse function equals
zero, which is here a dynamical consequence of the gauge choice rather than an imposed
gauge condition. Combined with §© = 0, this proves that ddNjy/dr = 0 and so is the
integrated-expansion rate. However, a direct calculation shows that Gy - (Q6ﬁk) = 0. Since
G is also orthogonal to (le—jk), the matrix G is singular and this implementation of
the uniform-expansion gauge is pathological too.
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