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In many signal processing applications, conducting a coherent integration over the whole observation duration is not possible due to uncontrolled phase evolutions. In such a case one may refer to Post Detection Integration that consists in wisely combine shorter time integration outputs. In this paper, we propose a new detector that improves the state of art ones. Compared with the GLRT from which it is derived, it consists in a closed-form expression. Moreover, it is based on a simple linear phase assumption and can be used, by the way, in a wide area of applications.

I. INTRODUCTION

Most wireless systems are subject to propagation delays that affect the received signal. These possible time varying delays have to be estimated and/or compensated to reach the nominal performance, such as in communication synchronization for instance. Estimating the propagation delay is also at the core of Radar or Global Navigation Satellites Systems (GNSS) to obtain the positioning information. Such time-varying delays are usually modelled using a first order approximation leading to a constant frequency shift, namely the Doppler effect. As a consequence, in all these applications, the first processing step consists in detecting a delayed and frequency shifted known signal among noise. When the noise is assumed to be additive and Gaussian, the standard solution amounts to match filtering the received signal with delayed and frequency-shifted replicas of the known transmitted signal, and to compare the resulting squared-modulus with a threshold. Although rather computationally expensive, this so-called coherent processing is widely used in most wireless applications. Modern adaptations of these systems need to detect very lowpower signals among noise. Indeed, in Spread-Spectrum communications (SS) [START_REF] Jeong | Differentially coherent combining for slot synchronization in inter-cell asynchronous DS/SS systems[END_REF], in High-Sensitivity GNSS (HS-GNSS) [START_REF] Kong | High sensitivity and fast acquisition signal processing techniques for GNSS receivers: From fundamentals to state-of-the-art GNSS acquisition technologies[END_REF] for indoor or Remote sensing (GNSS-R) applications [START_REF] Wang | Differential coherent algorithm based on fast navigation-bit correction for airborne GNSS-R software receivers[END_REF], [START_REF] Pastina | Maritime moving target long time integration for gnss-based passive bistatic radar[END_REF] or just to improve the performance of radar systems, the processing gain has to be increased. The simplest way to enhance this gain consists in extending the integration time. Nevertheless, this duration cannot be increased without limit, due to the presence of mismatches with respect to the firstorder phase model. Indeed, frequency offsets, clock instabilities, or propagation artefacts increase the difference between the actual phase signal and the presumed one. Even if the phase remains stable, long coherent integration times require an accurate Doppler frequency search that is incompatible with Benjamin Gigleux is with ONERA Information Processing and Systems Branch Toulouse, France. Email: benjamin.gigleux@onera.fr. Franc ¸ois Vincent, Olivier Besson and Eric Chaumette are with ISAE SUPAERO, Toulouse, France. Email: francois.vincent@isae-supaero.fr, olivier.besson@isae-supaero.fr, eric.chaumette@isae-supaero.fr. This work was partially supported by the DGA/AID project 2021.65.0070. the performance and the memory of standard hardware [START_REF] Elders-Boll | Efficient differentially coherent code/doppler acquisition of weak GPS signals[END_REF], [START_REF] Kong | High sensitivity and fast acquisition signal processing techniques for GNSS receivers: From fundamentals to state-of-the-art GNSS acquisition technologies[END_REF]. In such a situation, the solution consists in splitting the total integration time into shorter intervals, more likely to be compliant with usual assumptions about the phase. These multiple post-integration samples are then combined to decide if a signal is present or not. This so-called Post-Detection Integration (PDI) is traditionally realized using a simple addition of the squared-modulus of the post-integration samples. This Non-Coherent PDI (NC-PDI) is robust with respect to phase mismatches but suffers from so-called squaring losses. Indeed such a non-linear operation before summation reduces the Signal to Noise Ratio (SNR) gain [START_REF] Cassian | The squaring-loss paradox[END_REF] with respect to an ideal in-phase addition, namely a Coherent PDI (C0-PDI). In the radar domain, the so-called Track-Before-Detect (TBD) solutions aim to recover the coherent gain over long integration times, for more general target trajectories [START_REF] Mallick | Integrated Tracking, Classification, and Sensor Management: Theory and Applications, Track-Before-Detect Techniques[END_REF]. In fact, NC-PDI amounts to assuming an uncorrelated random phase between PDI samples, whereas C0-PDI considers a constant phase between them. These two simplified hypotheses are actually the extreme cases of real life behaviours. Indeed, the phase variation being related to physical phenomena, such as small range variation or clock drift, it mostly exhibits a random but correlated time-evolution during the integration duration. For instance, this low-pass random phase evolution is described by the popular Swerling cases I and III in the radar domain [START_REF] Swerling | Probability of detection for fluctuating targets[END_REF]. The existence of a correlation often present in the phase of the post-integration samples led to the derivation of more appropriate PDI techniques compared to NC-PDI or C0-PDI [START_REF] Kong | High sensitivity and fast acquisition signal processing techniques for GNSS receivers: From fundamentals to state-of-the-art GNSS acquisition technologies[END_REF]. Among these techniques, the Differential PDI (D-PDI) has first emerged in the radar community [START_REF] Selin | Detection of coherent radar returns of unknown doppler shift[END_REF], before spreading in the communication [START_REF] Zarrabizadeh | A differentially coherent PN code acquisition receiver for CDMA systems[END_REF] and the GNSS [START_REF] Elders-Boll | Efficient differentially coherent code/doppler acquisition of weak GPS signals[END_REF], [START_REF] O'driscoll | Performance analysis of the parallel acquisition of weak GPS signals[END_REF] communities. The main idea behind the D-PDI is to exploit the above-mentioned correlation between two successive samples through the correlation function, whereas the noise is assumed uncorrelated. The performance of such a PDI technique has been studied in [START_REF] Villanti | Differential post detection integration techniques for robust code acquisition[END_REF], [START_REF] Esteves | Sensitivity characterization of differential detectors for acquisition of weak GNSS signals[END_REF]. The D-PDI gives rise to many modified PDI schemes [START_REF] Jeong | Fast slot synchronization for intercell asynchronous DS/CDMA systems[END_REF], [START_REF] Ta | Partial differential postcorrelation processing for GPS L2C signal acquisition[END_REF], [START_REF] Jayaram | Noncoherent integration for signal detection: Analysis under model uncertainties[END_REF], [START_REF] Lohan | Analysis of generalized post-detection integration techniques for the acquisition with pilot signals in high sensitivity-galileo receivers[END_REF], in combining it with the standard NC-PDI for instance [START_REF] Gómez-Casco | Non-coherent acquisition techniques for highsensitivity GNSS receivers[END_REF], [START_REF] Gómez-Casco | Optimal post-detection integration techniques for the reacquisition of weak GNSS signals[END_REF]. One of the most popular technique is the Generalized PDI (G-PDI) [START_REF] Corazza | Generalized and average likelihood ratio testing for post detection integration[END_REF] as it is theoretically linked to the Generalized Likelihood Ratio Test (GLRT). It is shown to be the sum of the D-PDI and the NC-PDI with an appropriate weighting. The rationale behind this formulation is a first-order model for the post-integration phase mismatch. Indeed, modelling this phase evolution as a frequency offset through a moderate duration seems to be a relevant solution. Indeed, it is both related to the ground truth [START_REF] Jayaram | Noncoherent integration for signal detection: Analysis under model uncertainties[END_REF] (clock offset, residual frequency bias estimation from the coherent stage, ...) and it allows to derive simple expressions for the GLRT. In this paper, starting from a frequency offset mismatch after the coherent integration stage and improving the derivations from [START_REF] Corazza | Generalized and average likelihood ratio testing for post detection integration[END_REF], we derive a PDI expression which is asymptotically equivalent to the GLRT. This closed-form expression is shown to be a modified version of the G-PDI, with improved weightings between the NC-PDI and the generalized D-PDI. This new PDI detector is shown to outperform the popular schemes, in realistic situations where a correlated random phase mismatch occurs.

II. AN ASYMPTOTIC GLRT APPROXIMATION A. Signal Model

In this paper, we consider post-coherent integration samples, and we want to combine these multiple complex observations to decide whether a signal is present in the data or not. More precisely, we consider N complex samples and we want to choose between the two following hypotheses:

H 0 : x(n) = b(n) n = 0, ..., (N -1) (1) 
H 1 : x(n) = A e iφ(n) + b(n) n = 0, ..., (N -1) with b = [b(0)...b(N -1)] T ∼ CN (0, σ 2 I
) being the residual post-integration noise, and φ(n) describing the unknown phase evolution between the post-integration samples. It has to be noticed that we assume a constant amplitude A. It is a standard assumption as the main degradation in the PDI performance is related to the phase variations φ(n). This phase variation is usually random, but as explained in the introduction, we approximate it with a frequency offset for the following derivations [START_REF] Diez | A simple expression for the optimization of spread-spectrum code acquisition detectors operating in the presence of carrier-frequency offset[END_REF], [START_REF] Ta | Partial differential postcorrelation processing for GPS L2C signal acquisition[END_REF], [START_REF] Ta | Combined GPS L1C/A and L2C signal acquisition architectures leveraging differential combination[END_REF], [START_REF] Corazza | Generalized and average likelihood ratio testing for post detection integration[END_REF], [START_REF] Esteves | Sensitivity characterization of differential detectors for acquisition of weak GNSS signals[END_REF] :

φ(n) = (nω 0 + φ) n = 0, ..., (N -1) (2) 
where ω 0 is the unknown pulsation offset and φ an unknown initial phase.

B. GLRT

The GLRT for such a standard model only depends on ω 0 and corresponds to maximizing the periodogram. It is the extension of the simpler coherent detector C0-PDI and we name it C-PDI. It simply consists in comparing

max ω N -1 n=0 x(n)e -inω 2 (3)
to a threshold to decide between H 0 and H 1 . Following the same decomposition of the GLRT criterion as in [START_REF] Corazza | Generalized and average likelihood ratio testing for post detection integration[END_REF], we can write

C(ω) = N -1 n=0 x(n)e -i nω 2 (4) = N -1 n=0 N -1 m=0 x(n)x * (m)e -i (n-m)ω = N -1 n=0 |x(n)| 2 + 2Re N -1 k=1 N -k-1 n=0 x(n) * x(n + k)e -i kω = N -1 n=0 |x(n)| 2 + 2Re N -1 k=1 Rx (k)e -i kω where Rx (k) = n=N -k-1 n=0 (x * (n)x(n + k))
is the notnormalized sample correlation function of the data, and Re[.] stands for the real part. Maximizing this last expression with respect to ω requires computationally expensive algorithms, as C(ω) is highly nonlinear. Nevertheless, we show here-after how to derive an asymptotically equivalent expression of C(ω) allowing an easier maximization.

C. Coarse GLRT Approximation -The G-PDI

Following the same path as the Extended Invariance Principle (EXIP) [START_REF] Stoica | On reparametrization of loss functions used in estimation and the invariance principle[END_REF], we consider a re-parametrization of C(ω) using a larger parameter space. More precisely, we consider a mapping from ω ∈ [-π π] to a larger (N -1)-dimensional unknown vector ω = g(ω) leading to a computationally simpler maximization. Indeed, modifying C(ω) as follows

C ω (ω) = N -1 n=0 |x(n)| 2 + 2Re N -1 k=1 Rx (k)e -i kω k (5) 
where

ω = ω 1 . . . ω N -1 T and C(ω) = C ω (g(ω))
with g(ω) = ω1, where 1 is the (N -1) vector of 1, the maximization of C ω (ω) leads to

max ω∈R N -1 C ω (ω) = N -1 n=0 |x(n)| 2 + 2 N -1 k=1 | Rx (k)| (6) 
where the maximum is obtained for

ωk = 1 k ∠ Rx (k) k = 0, ..., (N -1) (7) 
This coarse approximation of the GLRT, relaxing the relationship between the different ωk , provides a simple expression for the detector. Expression ( 6) is shown to be the G-PDI [START_REF] Corazza | Generalized and average likelihood ratio testing for post detection integration[END_REF]. Nevertheless, this simple solution is not fully related to the signal model ( 1) and ( 2), as the different ωk do not have any ground truth, because the link between them (i.e. they should all be the same) has been broken by the re-parametrization.

D. Fine GLRT Approximation

In order to restore this relationship and improve the matching to the GLRT (3), we consider the following secondorder Taylor series expansion of C ω (ω) around ω = ω1 . . . ωN-1 T , namely

C(ω) = C ω (ω1) C ω ( ω) + ( ω -ω1) T ∂C ω (ω) ∂ω ω + 1 2 ( ω -ω1) T ∂ 2 C ω (ω) ∂ω∂ω T ω ( ω -ω1) (8) 
where ∂Cω(ω) ∂ω ω = 0 because ω maximizes C ω (ω), and

∂ 2 Cω(ω) ∂ω∂ω T ω is shown to be ∂ 2 C ω (ω) ∂ω∂ω T ω = -diag 2k 2 | Rx (k)| k=1,...,(N -1) ∆ = -2Q (9) 
where we define the diagonal matrix Q. Thereby

C(ω) C ω ( ω) -( ω -ω1) T Q ( ω -ω1) (10) 
where C ω ( ω) is the G-PDI, as shown here-above. Thereby, the GLRT criterion to be maximized with respect to ω is approximately equal to the constant G-PDI, minus a quadratic correction of ω. When the SNR increases, all ωk tend toward the actual value of ω, namely ω 0 and ( ω -ω1) vanishes, leading to the asymptotically equivalence of the two expressions. Now, maximizing C(ω) amounts to minimizing

( ω -ω1) T Q ( ω -ω1), namely max ω C(ω) C ω ( ω) -min ω ( ω -ω1) T Q ( ω -ω1) (11)
The solution of this weighted least-square problem is straightforward, and we obtain an asymptotic equivalent closed-form expression of the GLRT, namely

max ω C(ω) C ω ( ω) -( ω -ω1) T Q ( ω -ω1) (12) 
where

ω = 1 T Q ω 1 T Q1 (13) 
Substituting the G-PDI expression from eq. ( 6), and using expression [START_REF] Selin | Detection of coherent radar returns of unknown doppler shift[END_REF] for Q, we obtain the final formulation of the proposed Frequency Offset Removal PDI (FOR-PDI) scheme.

max ω C(ω) N -1 n=0 |x(n)| 2 + N -1 k=1 | Rx (k)|(2 -k 2 (ω k -ω) 2 ) (14) 
where we recall that

ωk = 1 k ∠ Rx (k)
and

ω = N -1 k=1 k| Rx (k)|∠ Rx (k) N -1 k=1 k 2 | Rx (k)| (15) 
from eq. ( 13).

E. Insights

First of all, the proposed detector is closed-form, unlike the GLRT, from which it has been derived. It doesn't need any computationally expensive maximization. Then, alike the general expression of the G-PDI [START_REF] Corazza | Generalized and average likelihood ratio testing for post detection integration[END_REF], the proposed improved PDI is also the weighted sum of the NC-PDI, namely

N -1 n=0 |x(n)| 2 = | Rx (0)|,
and the generalized D-PDI, namely | Rx (k)| for k = 1, ..., (N -1), but here the weights also depend on the data. When the SNR is very high, both G-PDI and FOR-PDI tend toward the GLRT (C-PDI), as all ωk and ω are equal to ω 0 . Nevertheless, in the more interesting and challenging situation where the SNR decreases, FOR-PDI reduces the weight associated with | Rx (k)| with respect to the difference between the corresponding pulsation estimation ωk and the final estimated pulsation ω. This corrective term can be seen as a sort of control of the coherence of the phase of Rx (k) in the detection process. If this phase is far from the expected one, the contribution of | Rx (k)|, in the detection process, will be reduced in order to preserve the coherent gain.

Moreover, it has to be noted that the pulsation offset ω 0 should be small in order to avoid phase ambiguities in eq. [START_REF] Mallick | Integrated Tracking, Classification, and Sensor Management: Theory and Applications, Track-Before-Detect Techniques[END_REF]. Indeed, if kω 0 exceeds 2π, ∠R x (k) will be wrapped, and both ωk and ω corrupted. This issue restricts the admissible range for ω 0 , except if unwrapping techniques are used. This last point will be discussed in section III, in view of the performance of the proposed detector. Furthermore, from eq. ( 14), we can see that the influence of the proposed correction with respect to the G-PDI is all the more significant than k 2 increases. Indeed, this is related to the fact that the estimation of ω 0 from ∠ Rx (k) is more relevant when k increases, because the useful information part, namely k.ω 0 increases faster than the noise. Nevertheless, similarly to the G-PDI, it is possible to reduce the maximum index of k in the sum of expression [START_REF] O'driscoll | Performance analysis of the parallel acquisition of weak GPS signals[END_REF], and define FOR-PDI(K) as

N -1 n=0 |x(n)| 2 + K k=1 | Rx (k)|(2 -k 2 (ω k -ω) 2 ) (16)
Especially, in [START_REF] Corazza | Generalized and average likelihood ratio testing for post detection integration[END_REF], the authors focus on the case where only Rx ( 1) is considered, namely G-PDI(1) = NC-PDI +2| Rx (1)|.

By the way, we can observe that FOR-PDI(1) and G-PDI( 1) are the same.

The reduction of the sum to only K terms has two advantages. First, it reduces, even more, the computational complexity with respect to the GLRT. Second, it allows to extend the range of the admissible pulsation offset ω 0 , as the above-mentioned phase wrapping problems are alleviated when K decreases. However, the price to be paid is a performance decay when K decreases, as will be shown in section III.

To finish with, Table I gives an overview of the different PDI schemes addressed in this paper and sum-up their existing relationships.

III. NUMERICAL ASSESSMENT In order to assess the validity of the proposed FOR-PDI, we compare its performance with the different PDI algorithms presented in Table I. To this end, we consider N = 100 post coherent correlation samples with a Signal to Noise Ratio of SN R = -10 dB. In a first series of simulation (Fig. 1 and2), we assume that the phase evolution exactly follows the linear model [START_REF] Kong | High sensitivity and fast acquisition signal processing techniques for GNSS receivers: From fundamentals to state-of-the-art GNSS acquisition technologies[END_REF]. We compare the Receiver Operating Characteristic (ROC) of the different PDI schemes, namely we make vary the threshold and plot the detection probability P d with respect to the false alarm probability P f a . The maximization

of the C-PDI = max ω N -1 n=0 x(n)e -inω 2
is conducted using a uniform sampling of the ω axis, i.e. a Discrete Fourier Transform (DFT), with two different grid sizes, namely N and 4N . The first one is the standard grid search based on a Fast Fourier Transform (FFT), whereas the second one uses a 4N -length zero-padding technique to improve the maximum resolution.

In Fig. 1, we use all available Rx (k) from k = 1 to 

(n) = Ae iφ(n)
Corresponding GLRT Relationship to the NC-PDI NC-PDI φ(n) uncorrelated and φ(n) ∼ U (0, 2π)

N -1 n=0 |x(n)| 2 =NC-PDI C0-PDI φ(n) = φ 0 | N -1 n=0 x(n)| 2 =C0-PDI C0-PDI = NC-PDI +2 N -1 k=1 Re[ Rx(k)] C-PDI φ(n) = nω 0 + φ max ω N -1 n=0 x(n)e -inω 2 =C-PDI G-PDI G-PDI = NC-PDI +2 N -1 k=1 | Rx(k)| FOR-PDI FOR-PDI = NC-PDI + N -1 k=1 | Rx(k)|(2 -k 2 (ω k -ω) 2 ) where ωk = 1 k ∠ Rx(k) and ω = N -1 k=1 k| Rx(k)|∠ Rx(k) N -1 k=1 k 2 | Rx(k)|
N -1, in both G-PDI (eq. ( 6)) and FOR-PDI (eq. ( 14)). As a consequence, we choose a small value for the unknown pulsation offset, namely ω 0 = 0.02 rad/s. First of all, depending on the size of the zero-padding of the DFT, the C-PDI has quite similar performance with the full G-PDI; slightly worse when no zero-padding is used, and slightly better in the other case. These two detectors exhibit largely better performance than the G-PDI(1), the D-PDI, and the NC-PDI, which produce similar results. This observation seems consistent, as both C-PDI and G-PDI are accurately matching the model at hand. More surprising, the proposed FOR-PDI demonstrates a large improvement compared with these two GLRT-based schemes, namely C-PDI and G-PDI.

The gain can reach more than 2 decades of P f a for a given P d . The price to be paid to get this unusual improvement compared with the benchmark GLRT is to consider a small pulsation offset ω 0 in model ( 2), as previously noticed. To finish, the simple coherent detector that does not take into account any phase rotation between the samples, namely C0-PDI, exhibits also very good performances, near the FOR-PDI. In fact, ω 0 being little, the phase rotation does not degrade a lot this basic coherent summation. Now, in Fig. 2, we decrease the maximum index in both G-PDI and FOR-PDI calculation, namely G-PDI(K) and FOR-PDI(K) with K = 20, and we choose a higher value for ω 0 , namely ω 0 = 0.1. As a consequence, the C0-PDI does not preserve its performance with such a higher phase rotation and performance dramatically degrades, and becomes worse than all other schemes. On the other hand, the performances of both G-PDI and FOR-PDI remain approximately the same, despite the sum reduction, and the proposed detector still demonstrates a large improvement. This is a striking point as the proposed scheme outperforms the GLRT while being computationally lighter. Moreover, the model at hand being one of the most general signal processing model, this detector should be a solution of choice in a lot of applications.

As noted in the introduction, a pure linear model for the phase evolution of the post integration samples is not fully realistic. Thereby, we now add a stochastic phase mismatch on the linear model. More precisely, we consider an uncorrelated phase perturbation uniformly distributed over [0 2π], and we apply a sliding window averaging on 5 successive samples. An example of such a mismatch is represented on Fig. 3. Based on this kind of mismatches, we compared the ROC of the different PDI schemes on Fig. 4.

In this case, we choose ω 0 = 0.05, K = 20 and SN R = -8 dB. Comparing with Fig. 2, we can see that the proposed detector still maintains a large improvement compared to the other detectors. This observation validate a kind of robustness of the proposed scheme with respect to phase mismatche evolutions. IV. CONCLUSIONS In this paper, we focused on detection using post coherent integration samples. Starting from a popular frequency offset model, we derived a closed-from detector that is asymptotically equivalent to the GLRT. This new detector is shown to be the sum of the noncoherent detector plus a weighted sum of differential detectors. This new formulation is more accurate than the G-PDI scheme. Numerical simulations assessed the benefits of such a new detector especially when the unknown frequency is small. This new detector should be a solution of choice when long integration is required, but also in a wide range of applications where the popular single frequency model is used.
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 1234 Fig. 1. Receiver Operating Characteristic under an ideal linear phase model (N = 100, ω 0 = 0.02, SN R = -10 dB)