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A B S T R A C T
This contribution explores three thermodynamically-consistent damage phase-field formulations
for rate-dependent dynamic fracture in viscoelastic materials. By means of a numerical study
on a uniform displacement strip benchmark, the formulations and modelling assumptions are
compared, and the corresponding limiting crack-tip speeds are discussed. In essence, in addition
to recalling the existing phase-field model for viscoelastic materials, a damage phase-field
formulation for rate-dependent toughness is introduced as a function of the damage-rate at
the crack-tip and is contrasted to existing strain-rate dependent toughness models. Dynamic
fracture simulations have demonstrated the significant role of rate dependency in suppressing
crack branching and accelerating the crack propagation. The rate dependency is analysed through
two main mechanisms: (i) the viscous dissipation, which can promote fracture, and (ii) an increase
in the energy required to evolve a crack, through rate-dependent toughness models. Depending on
the specific choice of parameters, the numerical simulations show crack propagation at speeds that
exceed the theoretical limit depicted by the Rayleigh wave speed. Indeed, these high speeds are
attributed to the viscoelastic and viscoelastic-like (observed in the case of strain-rate dependent
fracture toughness) stiffening at the crack-tip, which translates to faster running surface waves and
enables supersonic crack-speeds; a never-seen-before result in damage phase-field simulations.

1 Introduction
Viscoelastic materials such as polymers, gels, metals and alloys play a vital role in various engineering and practical

applications. Their widespread use in fields like biomechanics, materials processing, and structural design makes
them highly relevant in modern-day technology and innovation. Of course, understanding how such materials fail and
elaborating on how to prevent their failure is particularly important to design safer and more reliable structures.

Viscoelastic materials are commonly recognised for their time-dependent mechanical behaviour. For instance, when
a viscoelastic structure is subject to a constant load, the material continues to gradually deform over time (creep or
relaxation). As the material deforms, higher stress concentrations can develop in localised areas, which can eventually
result in the structure’s failure. Of course, the time-dependency of the viscoelastic materials translates to a mechanical
behaviour that is also rate-dependent; this implies that their deformation and response to loading vary with the velocity
of the loading [20]. So, besides the quasi-static failure of viscoelastic materials, dynamic fracture is particularly of
relevant interest, especially in impact and high-speed events. In such cases, inertial effects are prominent, and the rate
at which the structure is loaded directly influences the amount of stored energy and the amount of energy that can be
dissipated by the viscous effects, thus modifying its fracture behaviour. Accordingly, modelling of fracture in such
rate-dependent materials is of increasing interest.

The inclusion of inertial effects (dyamic fracture) introduces the notion of limiting crack-tip speeds. It is widely
known that crack propagation is theoretically limited to the Rayleigh wave speed (𝑐𝑅), although such speed is hardly
achieved in real-life applications and numerical simulations [58, 67, 23, 7, 44, 57, 59, 22]. Indeed, cracks were shown
to become unstable and branch at 40% − 60% of the Rayleigh wave-speed. The experimental works of Corre et al.
[15] and Morishita et al. [54] reveal that there are instances where the crack-tip speed exceeds the Rayleigh wave
speed under high imposed stretches in polymeric elastomers. Earlier experimental works on the fracture of elastomer
membranes [28, 66] also report such phenomena, and they attribute those high crack-tip speeds to an increase in the
stiffness of the material in the vicinity of the crack tip, either because of viscoelastic effects or the hyperelastic stiffening.
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Kamasamudram et al. [38] attribute these observations to the viscoelastic stiffening of the material by simulating the
experiments found in Corre et al. [15]. However, the analysis was done without explicitly modelling crack-propagation,
and the crack speeds were implicitly imposed on the geometry as boundary conditions for the numerical simulations.

Since the 20th century, efforts have been devoted to model rate-dependent fracture in viscoelastic materials. Knauss
[40] provides a comprehensive 50-year review on theories developed to understand fracture in viscoelastic materials.
Thouless et al. [68], for instance, were among the first to describe a generalisation of linear elastic fracture mechanics to
add rate dependence to the fracture process. Schapery et al. [61], were the first to extend the traditional J-integral method
used in linear elastic fracture mechanics to account for viscoelastic strains. Besides the theoretical methods [40, 61, 41],
many numerical techniques for simulating crack initiation and propagation have been developed in recent decades.
Between others, Zhang et al. [75] investigated viscoelasticity with the extended finite element approach [50], Bažant et
al. [4] formulated a time-dependent generalisation of the cohesive crack model [35], and Yoon and Allen [74] developed
a cohesive zone model applicable to viscoelastic materials. Further, through the continuum damage mechanics approach
[36], rate dependence was introduced to the local and non-local damage models [71, 1] to investigate the dynamic crack
behaviour.

More recently, the damage phase-field approach to fracture has proven to be a powerful tool for the prediction of
crack phenomena. In fact, it has several advantages over traditional fracture mechanics methods, including the ability to
capture complex crack patterns, handle crack nucleation and propagation in a unified manner, and account for material
heterogeneity and anisotropy. The technique is also well-suited for simulating fracture in three-dimensional complex
geometries.

The phase-field model was first introduced for fracture problems by Bourdin et al. [10]. It is based on the variational
formulation of Francfort and Marigo [25] of Griffith’s theory [30]. And since the introduction of the phase-field model
for fracture, it has encountered several developments and implementations. The method was employed to describe
elasto-plastic [8, 43, 53], thermo-elastic [49]; viscoelastic [60, 65, 18, 31], elasto-viscoplastic [63], as well as highly
heterogeneous materials [21, 14].

Regarding materials with rate-dependent behaviour, the rate dependency can either occur in the bulk, through
viscoelastic effects for instance, or at the crack-tip via a rate dependency of the fracture toughness [4]. A first proposal
for a phase-field fracture model in viscoelastic solids was put forward by Schänzel [60]. Subsequently, Shen et al. [65]
developed a phase-field model for viscoelastic solids by defining the driving force as a combination of the elastic
energy and a portion of the dissipated viscous energy, based on experimental findings [20, 70, 13]. Loew et al.[45]
considered a finite linear viscoelastic material model in which the non-equilibrium part of the stored strain energy and
the accumulated viscous dissipation are indistinguishable. Dammaß et al. [18] describe a two-way coupling between
damage and viscous effects, leading to a unified and thermodynamically-consistent phase-field model for fracture in
viscoelastic materials. Besides, motivated by experimental findings regarding the evolution of the fracture toughness
with the crack-tip speed [39, 16], Miehe et al. [49] studied a strain rate-dependent resistance against fracture and Yin et
al. [72] formulated the fracture toughness as a function of the strain rate - a feature that is readily applicable even in a
pure elastic body. Various attempts have been made to propose different functions that relate the fracture toughness to
the strain rates [27, 49, 17]. Alternatively, and in the same spirit, we suggest a novel damage-rate dependent toughness
formulation.

Apart from the elementary dynamic simulations of crack branching by Hai et al. and Yin et al. in their introductory
papers [31, 72], previous works based on the phase-field modelling of fracture have only tackled quasi-static simulations
of monotonic loading, creep, relaxation, and cyclic loading, without accounting for inertial effects. By doing so, the
potential role of the inertial effects in governing the fracture behaviour is neglected. As mentioned by Molnár et al.
[53], in dynamic fracture, the surplus of released energy at the crack-tip can be transformed into kinetic energy. The
difference between this additional released energy and the fracture toughness of the material determines how much
energy becomes available as kinetic energy. The extra kinetic energy governs the velocity at which the crack propagates
and equivalently, it governs the overall fracture behaviour. That being the case, taking into account inertial effects is
undoubtedly a crucial step to appropriately analyse rate-dependent and velocity-dependent fracture phenomena from
one side, and to thoroughly compare the different modelling assumptions, from the other.

Within this challenging context, this contribution explores three thermodynamically-consistent damage phase-field
formulations for rate-dependent fracture in viscoelastic materials. The formulations are applied to analyse dynamic
fracture with the inertial effects taken into account. The three rate-dependent formulations are implemented into the
Abaqus/Standard UEL phase-field model from Molnár et al. [53]. And by means of a numerical study of dynamic
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fracture in a uniform displacement strip configuration [55, 26, 76, 7], the modelling assumptions are compared, and the
corresponding limiting crack-tip speeds are discussed.

The paper is organised as follows: A brief overview of the approximation of a crack topology by the phase-field
model is given along with the governing equations in Section 2. Subsequently, the three phase-field formulations
are exhibited in Sections 2.1, 2.2 and 2.3 for the viscoelastic bulk, strain-rate and damage-rate dependent toughness
respectively. Section 3 discusses the rate-dependent fracture simulation, while Section 4 compares the characteristics of
the various rate-dependent formulations with regards to the limiting crack-tip speeds. Finally, Section 5 elaborates on
the effective stiffening phenomena in rate-dependent materials.

2 Methods
This section portrays the underlying mathematical and physical description of the phase-field approach to model

fracture in rate-dependent material. We begin by recalling the basic principles of thermodynamics that will be convenient
when formulating the phase-field model for rate-dependent fracture. The classical phase-field formulation of brittle
fracture in rate-independent materials and the related energy functional are then presented. Afterwards, the formulation
is progressively expanded to incorporate the necessary rate-dependent components.

The thermodynamic principles [9] surrounding the formulation of rate-dependent phase-field models for fracture
can be summarised as follows: A thermodynamic system is the ensemble of particles that interact with their surrounding
by exchanging mass, heat and mechanical work. Here, we only focus on the closed systems, i.e., a system that does not
exchange mass with its surrounding. A reversible process is one that can be exactly retraced along the same path by
reversing the changes applied. Elastic deformation is a great example of this reversibility, for if an object undergoes
elastic deformation and the applied forces are removed, it returns to its original shape without any permanent changes.
Conversely, an irreversible process cannot be reversed by simply reversing the changes applied. A meaningful example
of irreversebility is the fracturing phenomenon, where the separation of crack surfaces that usually involves the breaking
of atomic or molecular bonds within the material cannot be reversed. Lastly, a dissipative process typically involves
loss of energy to the surrounding environment. Viscous dissipation is a pertinent illustration of energy dissipation, as it
refers to the conversion of mechanical energy into heat, that is lost (dissipated) into the surrounding.

When it comes to modelling viscoelastic materials, there are two different approaches: single-potential models
and double-potential models. These approaches are used to describe the behavior of viscoelastic materials in different
ways. Single-potential models simplify the description of viscoelastic behavior by using a single potential to represent
both the elastic and viscous components; such models are advantageous because they are simpler and computationally
less demanding compared to double-potential models. In 1975, Halphen and Nguyen [32] introduced the theory of
generalised standard materials (sometimes denoted as standard dissipative materials), the theory suggests that the
constitutive behaviour of different types of materials can be derived from a pair of scalar functions that fully characterise
their material behaviour. These scalar function are known as thermodynamic potentials: the free energy potential (Ψ)
and the dissipation potential (Φ).

The free energy potential, specifically, represents the energy that is stored within the system and that has the ability
to produce work. It accounts for both the usable energy that is available to produce work, e.g., elastic strain energy,
and the energy that can be converted into other form, while being maintained within the system. On the other hand,
the dissipative energy potential refers to the energy that is dissipated or lost from the system. This energy is typically
associated with irreversible processes, such as viscous dissipation, a form of energy that cannot be recovered nor reused.

In this paper, the double-potential approach (free and dissipative) will be considered in the developments of the
formulations to ensure a thermodynamically-consistent coupling between the phase-field damage and the rate-dependent
effects. As we will show, this formulation enables to control the energy transfer between the damage and the mechanical
problem, i.e., it enables the control of the quantity of the viscous energy that is assumed to promote fracture [70, 18],
and the quantity of dissipated (lost) energy (more details about the coupling can be found in Section 2.1).
2.0 Phase-field damage model

The principal idea of the phase-field formulation of fracture is the introduction of a diffuse crack topology. The
phase-field method diffuses the sharp crack (Γ) into the volume (Ω) of the solid, circumventing the numerical problems
associated with the propagating discontinuity (the crack set).
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The theoretical crack-surface (discontinuity) is approximated by a function Γ𝑙𝑐 written in terms of a crack surface
density (𝛾𝑙𝑐 ) that is a function of a length scale (𝑙𝑐) (for the regularisation) and a continuous damage field (𝑑) :

Γ𝑙𝑐 = ∫Ω
𝛾𝑙𝑐 (𝑑,∇𝑑)𝑑𝑉 (1)

The continuous damage phase-field variable describes the material’s damage state. In the intact region of the material,
𝑑 takes the value of 0, while in the smeared crack (of width 𝑙𝑐), 0 < 𝑑 ≤ 1. Refer to Figure 1 for a two-dimensional
illustration of this notion of regularisation of the crack by the length scale (𝑙𝑐) through the crack surface density function
𝛾𝑙𝑐 . Various expressions of the crack-density function 𝛾𝑙𝑐 as a function of the damage phase-field variable 𝑑 can be
found in the literature. In this paper, we adopt the linear formulation (AT1):

𝛾𝑙𝑐 =
3
8𝑙𝑐

(𝑑 + 𝑙2𝑐∇𝑑 ⋅ ∇𝑑) (2)

The adoption of the AT1 formulation guarantees an ideally linear elastic response up to the limiting stress. This
is a necessary feature for conducting a thorough analysis of the phase-field model in conjunction with the various
rate-dependent components.

The fracture energy can be expressed as a function of the damage variable as:
Ψ𝑓 ≃ 𝑔𝑐𝛾𝑙𝑐 (𝑑,∇𝑑) (3)

where 𝑔𝑐 is the critical energy release rate, which corresponds to the amount of energy necessary to open a unit fracture
surface. In the following, we will refer to it as the fracture toughness.

Note that in the case of phase-field modelling of fracture, the fracture energy Ψ𝑓 is not considered a dissipative
energy, indeed, it is typically considered as a form of free irreversible energy, in the sense that it is an energy that kept
stored in the system within the damage band (irreversible) and not lost to the surroundings.

Figure 1: Regularised representation of a crack in a two-dimensional case, sharp crack (left) and regularised representation
through phase-field (right). 𝑁𝑒 and 𝐷𝑖 subscripts stand for Neumann and Dirichlet boundary conditions respectively.

The regularisation process herein considered results in the need to calculate the elastic strain-energy density (Ψ𝑒)across the entire deteriorated body. To accomplish this, an energetic degradation function (𝑔(𝑑)) is introduced. This
function relates mechanical fields (such as strain energy and stress) to the damage phase-field (𝑑), and is inspired by
principles from damage mechanics. The specific form of the degradation function used in this study is 𝑔(𝑑) = (1 − 𝑑)2.
The elastic strain-energy density Ψ𝑒 becomes a function of the damage-field through the degradation function 𝑔(𝑑):

Ψ𝑒(𝜀, 𝑑) = 𝑔(𝑑)Ψ̄𝑒(𝜀) (4)
where Ψ̄𝑒(𝜀) represents the ’intact’ strain-energy density and 𝜀 represents the strain tensor.
Elie Eid et al.: Preprint submitted to Elsevier Page 4 of 32
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Remark 1. Classically, a unilateral contact condition is imposed by splitting the elastic strain energy into a positive
part Ψ̄𝑒(𝜀)+ associated to damage and a part Ψ̄𝑒(𝜀)− which does not activate damage. The strain energy is rewritten
as Ψ𝑒(𝜀, 𝑑) = 𝑔(𝑑)Ψ̄+

𝑒 (𝑢) + Ψ̄−
𝑒 (𝜀). The appropriate formulation for the split has been the subject of numerous studies

[2, 48]. The configuration investigated within this paper is primarily tensile-stress dominant and no crack closure is
expected. For that, either the negative part is included or not, the results and conclusions are equivalent. With that
in mind, we include the negative part all along and write the elastic strain-energy density following Equation 4 as:
Ψ𝑒(𝜀, 𝑑) = 𝑔(𝑑)Ψ̄𝑒(𝜀).

The free (stored) energy of a fractured elastic solid is additively decomposed into two parts, the elastic strain energy
and the fracture energy:

Ψ(𝜀, 𝑑)
⏟⏟⏟

f ree (stored)

= Ψ𝑒(𝜀, 𝑑)
⏟⏟⏟
reversible

+Ψ𝑓 (𝑑,∇𝑑)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
irreversible

= 𝑔(𝑑)Ψ̄𝑒(𝜀) + 𝑔𝑐𝛾𝑙𝑐 (𝑑,∇𝑑)

(5)

And for the complete elasto-dynamic problem, the energy functional involves the following Lagrangian function :

∫Ω
ℒ (𝑢, 𝑑)𝑑Ω = ∫Ω

𝒦 (�̇�)
⏟⏟⏟
kinetic

𝑑Ω − ∫Ω
Ψ(𝜀, 𝑑)
⏟⏟⏟

f ree (stored)

𝑑Ω (6)

where 𝒦 corresponds to the kinetic energy 𝒦 (�̇�) = 1
2𝜌�̇�

𝑇 �̇�, with 𝜌 the mass density of the material and �̇� its velocity,
the time derivative 𝑑𝑢

𝑑𝑡 of the displacement 𝑢.
For problems where unstable crack propagation is present, the static monolithic solution tends to become numerically

unstable [53]. To have a stable implicit formulation, a staggered solution [48] for the phase-field fracture was proposed,
so the two subproblems (mechanical and phase-field) can be independently solved:

𝛿ℒ (𝑢, 𝑑) = 0 ⇔
�
�
�7
0

𝜕ℒ
𝜕𝑢

𝛿𝑢 +
�
�
�7
0

𝜕ℒ
𝜕𝑑

𝛿𝑑 ∀𝛿𝑢,∀𝛿𝑑 (7)

The notation ��
0

𝑥 signifies that 𝑥 cancels to zero.
This permits taking the variation of both energies to write the corresponding Eulerian equations (strong form) for

the displacement problem:
𝜕ℒ
𝜕𝑢

= 0 ∀𝛿𝑢 → ∇ ⋅ 𝜎 − 𝜌�̈� = 0 in Ω (8a)
𝜎 ⋅ 𝑛 = 𝐹𝑁𝑒 on 𝜕Ω𝑁𝑒 (8b)
𝑢 = 𝑢𝐷𝑖 on 𝜕Ω𝐷𝑖 (8c)

and for the phase-field problem, where only the free energy (driving force) is tyically considered:
𝜕Ψ
𝜕𝑑

= 0 ∀𝛿𝑑 →
𝜕𝑔(𝑑)
𝜕𝑑

Ψ̄𝑒 + 𝑔𝑐
𝜕𝛾𝑙𝑐
𝜕𝑑

= −2(1 − 𝑑)Ψ̄𝑒 + 𝑔𝑐
3
8𝑙𝑐

(1 − 2𝑙2𝑐Δ𝑑) = 0 in Ω (9a)
∇𝑑 ⋅ 𝑛 = 0 on 𝜕Ω (9b)
�̇� ≥ 0 in Ω (9c)

while ensuring damage irreversibility by the bound constrained optimisation algorithm [52]. �̈� is the acceleration of the
material. 𝜎 is the Cauchy stress tensor, 𝑛 is the unit normal. 𝐹𝑁𝑒 corresponds to the forces applied to the boundary
𝜕Ω𝑁𝑒, 𝑢𝐷𝑖 corresponds to the imposed displacements on the boundary 𝜕Ω𝐷𝑖 (Figure 1). All implementation details
with spatial and temporal discretisation can be found in reference [52].
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The total mechanical dissipation of an isothermal process, should be non-negative and can be written from the
Clausius-Duhem inequality as:

�̇� = 𝜎 ∶ �̇� − Ψ̇ ≥ 0

= 𝜎 ∶ �̇� −
(𝜕Ψ
𝜕𝜀

∶ �̇� +
�

�
��>

0, f rom Equation (9a)
𝜕Ψ
𝜕𝑑

�̇�
)

=
(

𝜎 − 𝜕Ψ
𝜕𝜀

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
0

∶ �̇� ≥ 0

(10)

The ’over-dot’ ( ̇ ) denotes the time derivative 𝑑
𝑑𝑡 . Although the damage is irreversible, in the context of the phase-field

problem, intrinsic mechanical dissipation is absent; as the material is damaged, the energy is stored in the system as a
fracture (surface) energy and not dissipated into its surroundings.

From Equation 10, the Cauchy stress is written as:

𝜎 = 𝜕Ψ
𝜕𝜀

=
𝜕Ψ𝑒
𝜕𝜀

+
�
�
�7
0

𝜕Ψ𝑓

𝜕𝜀
= 𝑔(𝑑)

𝜕Ψ̄𝑒
𝜕𝜀

(11)
After showcasing the classical rate-independent phase-field model of fracture, rate-dependent ingredients are

added to the problem towards a thorough rate-dependent damage phase-field formulation. It is considered that the rate
dependency in a damaging material can either occur in the bulk, through viscoelastic effects for instance, or at the
crack-tip via a rate dependency of the fracture toughness.

For each subsequent model, the total free energy, the internal energy production, the updated expression of the
stresses, the strong form of the phase-field problem and the thermodynamic consistency of the model are progressively
detailed.
2.1 Viscoelasticity

In case of viscoelastic materials, the energy dissipation mechanism at the vicinity of a crack has two main
contributions [65]: the processes advancing the crack in the fracture process zone (the innermost closest region
to the crack tip), and the viscous dissipation in the bulk. The viscous dissipation in the bulk stems from the irreversible
processes in the viscous material and refer to the actual loss of energy. It usually manifests by a generation of heat. It
can be related to a dissipative potential (Φ) that represents the potential for energy loss due to the viscous effects in
the material [32, 42]. Mehrmashhadi et al. investigated the role played by the local heating around the crack-tip with
peridynamics on the dynamic behaviour of PMMA [47] – a synthetic polymer that exhibits a viscoelastic behaviour
[12, 62]. However, their investigation does not consider a strain-rate dependent viscoelastic model although it takes into
account heating at the crack-tip generated by the vciscous dissipation.

Experimental evidence shows that resistance against failure of many rate-dependent materials decreases with
temperature [70]. In viscoelastic materials, mechanical energy can be released through relaxation mechanisms [42].
This means that a portion of the strain energy that has been stored in the material can convert into heat, resulting in
an increase in temperature. Hence, viscous dissipation can be assumed to promote fracture. Certain papers [65, 18]
incorporate the effects of viscous dissipation as heat into the free energy in order to promote fracture. This is achieved
by introducing a factor 𝜁 that represents the portion of viscous energy that ultimately promotes fracture. This approach
provides a phenomenological account of the role of heat in viscoelastic dissipation as a promoter of fracture. The
viscous energy can be split into two parts, one that is assumed to be a free energy, which corresponds to the portion that
promotes fracture, and one that is dissipated (lost) to the surrounding, which corresponds to the portion that can neither
be recovered nor produce work:

Ψ𝑣(�̇�, 𝑑)
⏟⏞⏟⏞⏟

viscous energy

= 𝜁Ψ𝑣(�̇�, 𝑑)
⏟⏞⏞⏟⏞⏞⏟

f ree (irreversible)

+ (1 − 𝜁 )Ψ𝑣(�̇�, 𝑑)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

dissipative (irreversible)

= 𝜁𝑔(𝑑)Ψ̄𝑣(�̇�) + (1 − 𝜁 )𝑔(𝑑)Ψ̄𝑣(�̇�)

(12)

Ψ̄𝑣 corresponds to the intact viscous energy density, which can take any suitable form based on the considered model.
It is assumed that both viscous and elastic properties are equivalently affected by damage, and both are degraded by
Elie Eid et al.: Preprint submitted to Elsevier Page 6 of 32
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the same degradation function 𝑔(𝑑), through which the coupling between the phase-field problem and the viscoelastic
effects is possible. Ψ𝑣 = 𝑔(𝑑)Ψ̄𝑣(�̇�, 𝑑) can be understood as the viscous dissipation that has been accumulated in the
presence of fracture [18]. When 𝜁 = 0, mechanical energy is lost in the bulk, and the effects of viscous dissipation do
not foster fracture. On the other hand, when 𝜁 = 1, all of the viscous heat that is dissipated in the vicinity of the crack
contributes to the softening of the material, and thus promotes damage formation.

The total free energy density of the phase-field problem in a viscoelastic material is written as [18]:
Ψ(𝜀, �̇�, 𝑑)
⏟⏞⏞⏟⏞⏞⏟
f ree (stored)

= Ψ𝑒(𝜀, 𝑑)
⏟⏟⏟
reversible

+ 𝜁Ψ𝑣(�̇�, 𝑑)
⏟⏞⏞⏟⏞⏞⏟
irreversible

+Ψ𝑓 (𝑑,∇𝑑)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
irreversible

= 𝑔(𝑑)Ψ̄𝑒(𝜀, 𝑑) + 𝜁𝑔(𝑑)Ψ̄𝑣(�̇�) + 𝑔𝑐𝛾𝑙𝑐

(13)

When it comes to modelling viscoelastic materials, often, significant differences in the response between spheric
and deviatoric deformations are generally observed [42, 69]. In this paper, and in accordance with Luo et al. [46], a
Kelvin-Voigt approach is employed to analyse the spheric portion of the stress-strain behavior, as shown in Figure
2(a), and a Maxwell-like model is utilised for the deviatoric part of the stress-strain behavior, as illustrated in Figure
2(b). This approach is grounded in the assumption that the viscous flow generated by the deviatoric component will be
constrained by the solid’s elasticity. And it is supported by the observation that the hydrostatic component primarily
results in a delayed response without causing significant macroscopic flow, as described in references [46, 37].

𝐾𝑑 𝜀ℎ𝑦𝑑𝑒 𝜎ℎ𝑦𝑑
𝑒

𝜂𝑑 𝜀ℎ𝑦𝑑𝑣 𝜎ℎ𝑦𝑑
𝑣

(a) Kelvin-Voigt model (hydrostatic)

𝐾𝑠 𝜀𝑑𝑒𝑣𝑒 𝜎𝑒

𝐾𝑠1 𝜀𝑑𝑒𝑣1𝑒 𝜎𝑑𝑒𝑣
1𝑒

𝜂𝑠 𝜀𝑑𝑒𝑣𝑣 𝜎𝑑𝑒𝑣
𝑣

(b) Standard-linear model (deviatoric)
Figure 2: Illustration of the viscoelastic model of the bulk: (a) Kelvin-Voigt model for the hydrostatic part and (b) Standard
linear model for the deviatoric part.

In addition to the complete split between spheric and deviatoric components [46], this formulation displays another
intriguing structure: a complete split between the elastic and the viscous components 1 :

𝜀 = 𝜀ℎ𝑦𝑑 + 𝜀𝑑𝑒𝑣 (14a)
𝜎 = 𝜎ℎ𝑦𝑑 + 𝜎𝑑𝑒𝑣 (14b)

𝜎ℎ𝑦𝑑 = 𝜎ℎ𝑦𝑑𝑒 + 𝜎ℎ𝑦𝑑𝑣 (14c)
𝜎𝑑𝑒𝑣 = 𝜎𝑑𝑒𝑣𝑒 + 𝜎𝑑𝑒𝑣𝑣 , which gives: (14d)

𝜎 = 𝜎ℎ𝑦𝑑𝑒 + 𝜎𝑑𝑒𝑣𝑒
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

elastic

+ 𝜎ℎ𝑦𝑑𝑣 + 𝜎𝑑𝑒𝑣𝑣
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

viscous

(14e)

And the stresses can be formulated through a complete separation from both the elastic strain energy and the viscous
energy as:

𝜎𝑒 =
𝜕Ψ𝑒
𝜕𝜀

=
𝜕Ψ𝑒
𝜕𝜀𝑒

= 𝑔(𝑑)
𝜕Ψ̄𝑒
𝜕𝜀

(15a)

𝜎𝑣 =
𝜕Ψ𝑣
𝜕𝜀

=
𝜕Ψ𝑣
𝜕𝜀𝑣

= 𝑔(𝑑)
𝜕Ψ̄𝑣
𝜕𝜀

(15b)

The superscript ℎ𝑦𝑑 corresponds to the hydrostatic stress 𝜎 and strain 𝜖 tensors. The superscript 𝑑𝑒𝑣 corresponds to the
deviatoric stresses and strains. The subscripts 𝑒 and 𝑣 correspond to the elastic/viscous parts of the strains and stresses.

1Interested readers are referred to Appendix A for the full constitutive modelling of the viscoelastic bulk.
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This structure will greatly improve the implementation of the energy-based rate-dependent phase-field method, as it
allows for the clear separation of different energies based on their hydrostatic/deviatoric components, as well as whether
they are dissipative or free energies.

The total dissipated viscous energy Ψ̄𝑣 at time 𝑡, which has been accumulated in the absence of fracture (intact),
takes the following form as a function of the undamaged viscous stresses and strains:

Ψ̄𝑣(𝑡) = ∫

𝑡

−∞
�̄�𝑣 ∶ �̇�𝑣𝑑𝜏 = ∫

𝑡𝑛

−∞
�̄�𝑣 ∶ �̇�𝑣𝑑𝜏 + ∫

𝑡

𝑡𝑛
�̄�𝑣 ∶ �̇�𝑣𝑑𝜏

= Ψ̄𝑣(𝑡𝑛) + ∫

𝑡

𝑡𝑛
�̄�𝑣 ∶

𝑑𝜀𝑣
𝑑𝜏

𝑑𝜏
(16)

After introducing the general expression of the free energy in a viscoelastic solid (Equation (13)) and elaborating on
the impact of the choice of the viscoelastic model on the separation of the elastic and viscous energies, we give the
strong form for the phase-field problem similarly to Equation (8a):

𝜕Ψ
𝜕𝑑

=
𝜕𝑔(𝑑)
𝜕𝑑

Ψ̄𝑒 + 𝜁
𝜕𝑔(𝑑)
𝜕𝑑

Ψ̄𝑣 + 𝑔𝑐
𝜕𝛾𝑙𝑐
𝜕𝑑

= −2(1 − 𝑑)(Ψ̄𝑒 + 𝜁Ψ̄𝑣) + 𝑔𝑐
3
8𝑙𝑐

(1 − 2𝑙2𝑐Δ𝑑) = 0 in Ω (17a)
∇𝑑 ⋅ 𝑛 = 0 on 𝜕Ω (17b)
�̇� ≥ 0 in Ω (17c)

The dissipation is written from the Clausius-Duhem inequality as:
�̇� = 𝜎 ∶ �̇� − Ψ̇ ≥ 0

= (𝜎𝑒 + 𝜎𝑣) ∶ �̇� −
(𝜕Ψ
𝜕𝜀

∶ �̇� +
�
�

��>
0, f rom Equation (17a)

𝜕Ψ
𝜕𝑑

�̇�
)

=
(

𝜎𝑒 −
𝜕Ψ𝑒
𝜕𝜀

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
0

∶ �̇� +
(

𝜎𝑣 − 𝜁
𝜕Ψ𝑣
𝜕𝜀

)

∶ �̇�

= (𝜎𝑣 − 𝜁𝜎𝑣) ∶ �̇�𝑣
= (1 − 𝜁 )𝜎𝑣 ∶ �̇�𝑣 ≥ 0

(18)

𝜎𝑣 ∶ �̇�𝑣 corresponds to the dissipation rate in the presence of damage, so naturally 𝜎𝑣 ∶ �̇�𝑣 ≥ 0. The above inequality
stands for 𝜁 ∈ [0, 1]. And the thermodynamics consistency of such model is fulfilled.

Following the discussion of the phase-field formulation for viscoelastic materials, i.e., rate-dependency in the bulk,
the next section focuses on the development of a phase-field model that incorporates a rate dependency of the fracture
toughness for a rate-independent (elastic) bulk. First, the notion of the rate-dependency of the fracture toughness is
previewed.
2.2 Strain-rate dependent fracture toughness

It was postulated theoretically [39, 16] and observed experimentally [24, 5] that the fracture toughness of most
materials (even brittle ones) increases when the crack accelerates. This strain-rate effect is also commonly found in
civil engineering structures and in polymeric materials. In the latter, the rate-dependent effects can be explained by the
following: when fast loading is applied, the external energy required to break the material is higher, since the chemical
bonds of the chains have to break (orange links in Figure 3(a)). In contrast, for slow loading, the chain segments can
rearrange and torn out of the matrix which requires a lower level of energy in order to be broken (blue chains in Figure
3(a)) [65, 17]. For instance, Sharon et al. [64] report a strong increase of the fracture energy with the crack velocity in
PMMA. They show that fracture energy ranges from approximately 1000 J/m2 at a crack-tip velocity 𝑣𝑐 = 0.2𝑐𝑅 up to
8000 J/m2 at 𝑣𝑐 = 0.68𝑐𝑅. Quasi-static experiments on PMMA usually report values of fracture energy in the range
of 300 − 400 J/m2 [6]. This highlights the fact that dynamic behaviour of such materials is indeed complex, and that
rate-dependency is a necessity to accurately model their behaviour.

Approaches considering crack-velocity-dependent fracture toughness, that assume that fracture toughness would
increase accordingly to the tip speed are available [39, 56]. However, the uniqueness of the relation between crack
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Equilibrium state Slow deformation Fast deformation

(a) Underlying mechanisms of the rate-dependent toughness in polymers

(b) Influence of the amplification factor on the rate-
dependent toughness

Figure 3: Rate-dependent toughness: the underlying mechanisms (a) in polymers and the influence of the amplification
factor (b) – Equation (19).

velocity and the fracture toughness is questionable [16]. Yet, there is still no consensus on the manner. For instance,
Özenç [56] implements the following expression for discrete crack approximation:

𝑔𝑐 = 𝑔𝑐0

[

1 + (
𝑣𝑐
𝑐∞

)𝛽
]

(19)

Here, 𝑔𝑐0 is the quasi-static value of the fracture toughness, 𝑐∞ is a reference crack propagation velocity. 𝑐∞ can be taken
equal to the theoretically limiting Rayleigh wave-speed 𝑐𝑅. 𝛽 is an amplification factor whose influence is illustrated in
Figure 3(b).

When using the phase-field continuous method instead of discrete crack approximations, obtaining and measuring
the instantaneous crack-propagation velocity is challenging. This is because the crack is represented by a damage band
of finite width, making it difficult to determine the exact crack-tip positions. Inaccurate predictions of crack-tip positions
can then lead to incorrect velocity calculations, particularly for dynamic fracture. But most importantly, how could the
material know locally, how should the toughness be modified based on a globally observed/measured quantity (𝑣𝑐)?The consideration of a strain-rate dependent toughness seemed a flexible and natural choice by Yin et al. [72]. The
availability of the deformation rate in continuous simulations, and the observations that link the strain-rates around the
crack-tip to post-processed crack-tip speeds, allows accounting for the crack-velocity-dependent fracture toughness
Elie Eid et al.: Preprint submitted to Elsevier Page 9 of 32
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through a strain-rate dependency. In the following, we tackle the phase-field formulation of fracture in an elastic material
with strain-rate dependent toughness.

Yin et al. [72] assume that fracture toughness would quadratically increase accordingly to the rate of the strain
tensor and that the static fracture toughness would be recovered at small strain-rates. The instantaneous toughness is
written as [72]:

𝑔𝑐(�̇�) = 𝑔𝑐0(1 + 𝜏2𝜀 �̇� ∶ �̇�) (20)
where 𝜏𝜀 is a characteristic time that would specify the amount of the strain-rate dependency of the fracture toughness.
Unlike in reference [72], here, it is assumed that the rate-dependent fracture toughness depends on the rate of the strain
independently on whether it is a compressive or a tensile rate, since the configuration to be analysed here is primarily
tensile-stress dominant and no crack closure is modeled. Moreover, if the material is in compression, a modification
of the fracture toughness 𝑔𝑐 would have no effect on its behaviour, since the spectral split of the strain energy would
prohibit damaging. Yin et al. [72] also add a degradation function that multiplies 𝜏𝜀 to basically prevent an increase
of the fracture toughness in the damaged regions. However, it is believed that the degradation of the material limits
the strain-rates in the damaged regions and naturally prevents the undesired increase in the fracture toughness in the
already-damaged region. Of course, the consideration of a quadratic model (Equation (20)) does not guarantee a higher
limit on the toughness which may not be accurate according to some experimental findings [27]. Knowingly, multiple
efforts were made to suggest different functions relating the fracture toughness to the strain-rate with the sigmoid-shaped
function proposed by Miehe et al. [49] and followed by Dammaß et al. [17]. However, this adds to the complexity of the
implementation. We will be restricted to the used of the strain-rate dependency of the toughness as given in Equation
(20).

The incorporation of strain-rate dependency of the fracture toughness into the phase-field model of fracture yields
the following expression for total free energy:

Ψ(𝜀, �̇�, 𝑑)
⏟⏞⏞⏟⏞⏞⏟
f ree (stored)

=Ψ𝑒(𝜀, 𝑑)
⏟⏟⏟
reversible

+Ψ𝑓 (�̇�, 𝑑,∇𝑑)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

irreversible

=𝑔(𝑑)Ψ̄𝑒(𝜀) + 𝑔𝑐(�̇�)𝛾𝑙𝑐
=𝑔(𝑑)Ψ̄𝑒(𝜀) + 𝑔𝑐0(1 + 𝜏2𝜀 �̇� ∶ �̇�)𝛾𝑙𝑐

(21)

We give the strong form for the phase-field problem of fracture in an elastic material with strain-rate dependent
toughness:

𝜕Ψ
𝜕𝑑

=
𝜕𝑔(𝑑)
𝜕𝑑

Ψ̄𝑒 + 𝑔𝑐
𝜕𝛾𝑙𝑐
𝜕𝑑

= −2(1 − 𝑑)Ψ̄𝑒 + 𝑔𝑐0(1 + 𝜏2𝜀 �̇� ∶ �̇�) 3
8𝑙𝑐

(1 − 2𝑙2𝑐Δ𝑑) = 0 in Ω (22a)
∇𝑑 ⋅ 𝑛 = 0 on 𝜕Ω (22b)
�̇� ≥ 0 in Ω (22c)

Here, the fracture energy term encloses a strain dependency, more specifically, a strain-rate dependency. A linear
approximation of the temporal discretisation yields the following strain rates:

�̇�(𝑡 = 𝑡𝑛+1) ≃
𝜀(𝑡𝑛+1) − 𝜀(𝑡𝑛)

Δ𝑡
(23)

From here, the rate of internal dissipation can be approximated within an infinitesimal time stepΔ𝑡, with the consideration
of an additional internal variable corresponding to the strain-rate tensor at a previous time step. It reads:

�̇� = 𝜎 ∶ �̇� − Ψ̇ ≥ 0

≃𝜎 ∶ �̇� −

(

𝜕Ψ
𝜕𝜀(𝑡𝑛+1)

∶ �̇�(𝑡𝑛+1) +
𝜕Ψ

𝜕𝜀(𝑡𝑛)
∶ �̇�(𝑡𝑛) +

�
���

0, f rom Equation (22a)
𝜕Ψ
𝜕𝑑

�̇�

)

=

(

𝜎 −
( 𝜕Ψ𝑒
𝜕𝜀(𝑡𝑛+1)

+
𝜕Ψ𝑓

𝜕𝜀(𝑡𝑛+1)

)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
0

∶ �̇�(𝑡𝑛+1) −
𝜕Ψ𝑓

𝜕𝜀(𝑡𝑛)
∶ �̇�(𝑡𝑛)

(24)
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Evaluating the total Cauchy stress from Equation (24) gives a viscous-like stress term that contributes to the total
stresses:

𝜎 =
𝜕Ψ𝑒

𝜕𝜀(𝑡𝑛+1)
+

𝜕Ψ𝑓

𝜕𝜀(𝑡𝑛+1)

= 𝑔(𝑑)
𝜕Ψ̄𝑒
𝜕𝜀

+
𝜕𝑔𝑐(�̇�)
𝜕𝜀

𝛾𝑙𝑐

= 𝑔(𝑑)
𝜕Ψ̄𝑒
𝜕𝜀

+
𝜕[𝑔𝑐0(1 + 𝜏2𝜀 �̇� ∶ �̇�)]

𝜕𝜀
𝛾𝑙𝑐

= 𝑔(𝑑)
𝜕Ψ̄𝑒
𝜕𝜀

+ 𝑔𝑐0𝜏
2
𝜀 𝛾𝑙𝑐

𝜕(�̇� ∶ �̇�)
𝜕𝜀

= 𝜎𝑒 + 𝜎𝑓

(25)

𝜎𝑓 is the viscous-like stress term contributing to the total stresses and inherent to the strain-rate-dependency of the
toughness, it can be rewritten as:

𝜎𝑓 = 𝑔𝑐0𝜏
2
𝜀 𝛾𝑙𝑐

𝜕(�̇� ∶ �̇�)
𝜕𝜀

= 𝑔𝑐0𝜏
2
𝜀 𝛾𝑙𝑐

𝜕(�̇� ∶ �̇�)
𝜕�̇�

∶ 𝜕�̇�
𝜕𝜀

= 𝑔𝑐0𝜏
2
𝜀 𝛾𝑙𝑐2�̇� ∶ 𝜕�̇�

𝜕𝜀

(26)

Following the linear approximation of the temporal discretisation, the viscous-like stress 𝜎𝑓 can be approximated by:

𝜎𝑓 =𝑔𝑐0𝜏2𝜀 𝛾𝑙𝑐2�̇� ∶ 𝜕�̇�
𝜕𝜀

≃𝑔𝑐0𝜏2𝜀 𝛾𝑙𝑐2�̇�
1
Δ𝑡

(27)

And the additional term in the dissipation in Equation (24) reads:

�̇� = −
𝜕Ψ𝑓

𝜕𝜀(𝑡𝑛)
�̇�(𝑡𝑛) = 𝑔𝑐0𝜏

2
𝜀 𝛾𝑙𝑐

1
Δ𝑡

2�̇�(𝑡𝑛+1) ∶ �̇�(𝑡𝑛)

≃ 𝑔𝑐0𝜏
2
𝜀 𝛾𝑙𝑐

1
Δ𝑡

2�̇�(𝑡𝑛+1) ∶ �̇�(𝑡𝑛+1) ≥ 0
(28)

This thermodynamically-consistent dissipation rate is related to the viscous-like strains inherent to the strain-rate
dependency of the toughness in the phase-field model. Next, we describe the formulation of the phase-field model of
fracture in an elastic material with damage-rate dependent toughness.
2.3 Damage-rate dependent fracture toughness

Alternatively to the strain-rate dependent toughness model, we propose a model that relates the fracture toughness
to the rate of damage at the crack-tip. The motivation behind this choice is discussed later, in Section 3.1. A linear
model is proposed to link the toughness around the crack tip to the damage rate:

𝑔𝑐(�̇�) = 𝑔𝑐0(1 + 𝜏𝑑 �̇�) (29)
Here, 𝜏𝑑 relates to a characteristic time that determines the amount of damage-rate-dependency of the fracture

toughness. As the damage converges to the value 𝑑 = 1, its rate tends to zero and the static value of the toughness
should be recovered. At the crack-tip, the damage rate is found to increase linearly with the crack-tip velocity, while
a quadratic evolution is observed for the strain-rates as a function of the crack-tip velocity (Section 3.1). Further, we
note that, unlike the strain rates, the damage rates around the crack tip do not decline as the crack widens (Section
3.1); this further demonstrates the robustness of such a formulation –as compared to a strain-rate dependent toughness
formulation– to account for the crack-velocity-dependency of the fracture.
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The incorporation of damage-rate dependency of the fracture toughness into the phase-field model of fracture yields
the following expression for total free energy:

Ψ(𝜀, 𝑑)
⏟⏟⏟

f ree (stored)

= Ψ𝑒(𝜀, 𝑑)
⏟⏟⏟
reversible

+Ψ𝑓 (�̇�, 𝑑,∇𝑑)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

irreversible

= 𝑔(𝑑)Ψ̄𝑒(𝜀, 𝑑) + 𝑔𝑐(�̇�)𝛾𝑙𝑐
= 𝑔(𝑑)Ψ̄𝑒(𝜀, 𝑑) + 𝑔𝑐0(1 + 𝜏𝑑 �̇�)𝛾𝑙𝑐

(30)

The strong form for the phase-field problem for an elastic material with a damage-rate dependent fracture toughness
reads:

𝜕Ψ
𝜕𝑑

=
𝜕𝑔(𝑑)
𝜕𝑑

Ψ̄𝑒 + 𝑔𝑐
𝜕𝛾𝑙𝑐
𝜕𝑑

+
𝜕𝑔𝑐
𝜕𝑑

𝛾𝑙𝑐

= −2(1 − 𝑑)Ψ̄𝑒 + 𝑔𝑐0(1 + 𝜏𝑑 �̇�)
3
8𝑙𝑐

(1 − 2𝑙2𝑐Δ𝑑) + 𝑔𝑐0𝜏𝑑
𝑑
�̇�

3
8𝑙𝑐

(𝑑 + 𝑙2𝑐∇𝑑 ⋅ ∇𝑑) = 0 in Ω
(31a)

∇𝑑 ⋅ 𝑛 = 0 on 𝜕Ω (31b)
�̇� ≥ 0 in Ω (31c)

Following the linear approximation of the temporal discretisation, the following damage rates can be yielded:

�̇�(𝑡 = 𝑡𝑛+1) ≃
𝑑(𝑡𝑛+1) − 𝑑(𝑡𝑛)

Δ𝑡
(32)

And the rate of internal dissipation can be approximated within an infinitesimal time step Δ𝑡 with the consideration of
an additional internal variable corresponding to the damage variable at a previous time step (𝑡𝑛). The dissipation reads:

�̇� = 𝜎 ∶ �̇� − Ψ̇ ≥ 0

= 𝜎 ∶ �̇� −

(

𝜕Ψ
𝜕𝜀(𝑡𝑛+1)

�̇�(𝑡𝑛+1) +
𝜕Ψ

𝜕𝑑(𝑡𝑛)
�̇�(𝑡𝑛) +��������:0, f rom Equation (31a)𝜕Ψ

𝜕𝑑(𝑡𝑛+1)
�̇�(𝑡𝑛+1)

)

=
(

𝜎 −
𝜕Ψ𝑒
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(33)

The additional dissipation term is related to the damage-rate dependency of the fracture toughness appears:

�̇� = −
𝜕Ψ𝑓

𝜕𝑑(𝑡𝑛)
�̇�(𝑡𝑛) = 𝑔𝑐0

𝜏𝑑𝛾𝑙𝑐
Δ𝑡

�̇�(𝑡𝑛)

≃ 𝑔𝑐0
𝜏𝑑𝛾𝑙𝑐
Δ𝑡

�̇�(𝑡𝑛+1) ≥ 0
(34)

Remark 2. When considering rate-dependent toughness, and if a viscoelastic bulk is to be considered, the total
dissipation is the summation of the dissipation related to the viscous strains (viscoelastic dissipation – Equation (18))
and the dissipation related to the rate dependent toughness – Equations (28) or (34).

3 Crack-tip velocities in rate-dependent materials
We conduct a numerical study on the dynamic fracture response of various rate-dependent materials on a uniform

displacement strip configuration [26, 76, 7]. The implementation was carried out in Abaqus [51, 52].
The uniform displacement strip draws inspiration from the earlier studies of references [55, 26], which involved a

steady crack growing at a velocity 𝑣𝑐 in a homogeneous and isotropic elastic thin strip of width 2𝐻 . In these studies,
the edges of the strip were subjected to a uniform normal displacement 𝑢0. The current configuration also incorporates
the findings of recent experimental and numerical investigations by Corre et al. [15] and Kamasamudram et al. [38].
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Here, only half the specimen will be modelled. The half-strip geometry and the applied boundary conditions are
shown in Figure 4. The dimensions of the specimen are 𝐿 = 80 mm for length and 𝐻 = 20 mm for half-width. Unlike
the procedure followed in references [15] and [38], our model has a pre-existing crack of length 𝑎 = 10 mm. This crack
is represented both geometrically and through the imposed Dirichlet boundary condition 𝑑 = 1 (fully broken) on the
initial crack surface. The specimen is pre-strained by applying uniform displacements 𝑢0 in the vertical direction on the
top surface, and the bottom surface is held fixed in the vertical direction (Figure 4). During the pre-strain step, the top is
loaded statically (without the effect of inertia) to reach the target value 𝑢0; the damaging is deactivated. In this step,
the evolution of damage is disabled in order to model dynamic crack growth later on. If damage were to be applied
during the static pre-stretch, the crack would initiate much earlier than the target value, due to the additional dissipation
(energy release rate) required for dynamic crack propagation [26, 19]. After the target displacement is reached, the
damage phase-field is activated and the crack initiates from the notch.

The specimen is discretised by 36 472 four-node bilinear plane-strain quadrilateral elements and the mesh is refined
to a size ℎ𝑚 = 0.1 mm in the region where the crack is expected to evolve. As mentioned by Bleyer et al. [7], the herein
considered configuration closely resembles the infinite strip configuration [26], in which a steady-state propagation
occurs with a fracture energy equivalent to the initially stored strain-energy. This makes this configuration appropriate
to analyse velocity-dependent and rate-dependent fracture phenomena.

80 mm

10 mm

20 m
m

notch

Figure 4: Half-strip geometry (top) and applied boundary conditions (bottom) for the uniform displacement strip.

3.1 Rate-independent model
We first investigate the configuration with the classical rate-independent phase-field model. Table 1 resumes the

overall model and material parameters considered in the rate-independent simulations. For an imposed displacement of
𝑢0 = 0.0741 mm, the corresponding damage evolution and the crack-tip speed of the main crack are shown in Figure 5.
The crack is initiated with a tip-speed of 𝑣𝑐 = 400 m/s. Initially, an elastic energy (≃ 𝐸𝑢20𝐿∕𝐻) is stored in the system
due to the static loading [26, 7]. Once the damage is activated, this energy is to be instantly released and a crack initiates
with a non-null initial tip speed 𝑣𝑐 = 400 m/s. This non-zero initial crack-tip velocity is also observed in a similar
configuration reported in reference [7]. The profile of the phase-field crack starts to broaden as the tip speed reaches
𝑣𝑐 = 500 m/s. The crack accelerates to a limiting velocity below the Rayleigh wave speed 𝑣𝑐 = 640 m/s ≃ 0.72𝑐𝑅. A
small drop in velocity is observed and sequentially an independent branch appears [1, 22]. The velocity of the Rayleigh
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waves is given by Freund [26] as:
𝑐𝑅 = 𝑐𝑠

0.862 + 1.14𝜈
1 + 𝜈

, (35)
where 𝑐𝑠 is the shear wave-speed 𝑐𝑠 =

√

𝐾𝑠∕𝜌, and 𝐾𝑠 is the shear modulus. The velocity limit herein obtained is in
good correspondence with the theoretical limit related to the Rayleigh wave speed [73, 26, 58, 22]. It is also in good
correspondence with limiting velocities found in previous experimental studies [76], phase-field simulations [7], and
numerical investigations of the continuum damage models [71, 1].
Remark 3. The crack-tip speed is computed by differentiating the positions of the crack tip in time. The position of the
main crack tip is calculated as the largest extension in the horizontal direction of the iso-value of the nodal phase-field
𝑑 = 0.9. The crack-tip velocity hence corresponds to the horizontal component of the instantaneous velocity vector of
the crack tip. As we focus on the limiting crack-tip velocities, only the main crack is followed in Sections 3.2, 3.3, 3.4. In
the case of branching, the velocities of the branches are not reported.

𝐸 (Young’s Modulus) 3 GPa
𝜈 (Poisson’s ratio) 0.35
𝜌 (Mass density) 1200 kg/m3

𝑔𝑐 (Static fracture toughness) 500 J/m2

𝑙𝑐 (Length-scale parameter) 400 𝜇m
Crack density function linear (AT1)
Strain split spectral decomposition
Plane strain assumption
Time integration implicit (HHT) [34]
Δ𝑡𝑐 (time step) 10−5 ms
ℎ𝑚 (refined mesh size) 𝑙𝑐∕4 = 100 𝜇m

Table 1: Overall damage phase-field model and material parameters for the rate-independent simulation.

Since the strain and damage rates would constitute the main ingredients for the rate-dependent model of the fracture
toughness (Sections 2.2 and 2.3), we investigate the evolution of these quantities around the crack-tip for different
imposed displacements 𝑢0 in the rate-independent configuration. More specifically, we analyse their evolution with the
crack-tip velocity.

We report the maximum value of the rate of the largest principal strain (tensile) and the maximum value of the rate
of the damage in a confined region of size 2 × 𝑙𝑐 around the crack-tip. The evolution of the strain and the damage rates
as a function of the crack-tip velocity at different imposed displacements are reported in Figure 6. It is noted that for an
imposed displacement 0.05643 ≤ 𝑢0 ≤ 0.06056 mm, a widening of the damage band is observed, for 𝑢0 = 0.0741 mm,
crack branching (preceded by crack widening) occurs.

For crack-tip speeds 0 ≤ 𝑣𝑐 ≤ 500 m/s, a monotonic relationship is found between both the strain and damage rate
on one side, and the crack-tip velocity on the other. A quadratic relationship is found between the strain rates and the
crack-tip velocity, as shown in Figure 6(a), while a linear relationship is found between the damage rate and the crack-tip
velocity, as shown in Figure 6(b). However, at high crack-tip speeds (𝑣𝑐 > 500 m/s), none of these relationships stand.
While the strain rates drop after reaching a maximum value around 𝑣𝑐 = 500 m/s as the crack starts widening, the
damage-rates continue with their monotonic evolution but at a slower rate. At the crack’s limiting velocity at 𝑣𝑐 = 640
m/s, both the strain and damage rates drop significantly.

We believe that as crack widening and crack branching (usually preceded by widening [7, 22]) occur, the strains are
no longer localised at the tip, and as a consequence their rate would significantly drop as they become more diffused.
This is exactly what is shown for 𝑢0 = 0.0741 mm in Figures 5(a) and 6(a). Once the crack reaches a tip-speed of
𝑣𝑐 = 500 m/s, which is around 𝑡 = 0.01 ms, we can see how the damage-band begins widening (Figure 5(a)) and
parallelly, the rate of the strains begins to drop. However, this is not the case for the damage rates. If the strain-rate
drops as the crack-tip speed reaches 𝑣𝑐 = 500 m/s and the damage band widens, the damage-rate keeps increasing until
the crack-tip velocity reaches its limiting value around 𝑣𝑐 = 640 m/s before branching occurs.
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(a) Fracture patterns at different time steps (b) Crack-tip speed of the main branch
Figure 5: Uniform displacement strip results (imposed vertical displacement 𝑢0 = 0.0741 mm) for rate-independent the
material.

(a) (b)
Figure 6: The evolution of the strain and the damage rates around the crack tip as a function of the crack-tip velocity. A
quadratic relationship is found between the strain rates and the tip velocities (a). A linear relationship is found between the
damage rates and the tip velocities (b).

As per Bleyer et al. [7], crack branching can be viewed as a consequence of an excess of available energy flowing to
the crack tip which cannot be dissipated by a single crack propagation. From here, we believe that the rate at which
a crack surface is formed, as the widening of the crack occurs, need not to drop in order for the excess energy to be
dissipated, equivalently, the damage-rate need not to drop, although a small decline can be expected especially as two
crack-tips co-exist after the branching phenomenon (Figure 6).
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To resume, unlike the strain rates, the damage rates around the crack tip do not decline as the crack widens. The
formulation of a damage-rate dependent (linear) toughness model appears a flexible choice to carefully account for the
crack-velocity-dependency of the fracture, of course besides the existing strain-rate dependent formulation [72].
3.2 Viscoelasticity

In order to discuss the consequences of the different rate-dependent modelling assumptions, multiple simulations are
explored for the same imposed vertical displacement 𝑢0 = 0.0741 mm. First, the effect of the viscoelasticity of the bulk
is analysed (Section 3.2), followed by the effect of a strain-dependent (Section 3.3) and damage-dependent toughness
(Section 3.4) with a rate-independent bulk. The results are compared to the rate-independent simulation (Section 3.1).

To perform the analysis on viscoelastic strips, we use the phase-field parameters listed in Table 1. For the viscoelastic
model, the required shear and bulk moduli are the plane-strain equivalent moduli of the elastic properties (𝐸 and 𝜈)
found in Table 1. Only the viscosity of the strips is altered, no rate-dependency of the toughness is considered. Materials
with different relaxation times – 0 (elastic) ≤ 𝜏𝑣 ≤ 2.5 ⋅ 10−4 ms – are analysed to put forth the role played by the
viscosity of the bulk on the dynamic fracture behaviour. Both shear and bulk viscosities (𝜂𝑠 and 𝜂𝑑) are assumed to have
equivalent values. To compare the influence of the viscous effects, the results are contrasted regarding the materials’
relaxation times 𝜏𝑣 = 𝜏𝑣𝑑 . Only the viscoelastic properties that yielded the most compelling results are exhaustively
reported (𝜏𝑣 = 0, 10−7, 7.5 ⋅ 10−6, 8.75 ⋅ 10−6, 10−5, 7.5 ⋅ 10−5 and 2.5 ⋅ 10−5 ms).

Regarding the contribution of the viscoelastic dissipation in to the fracture process (through the factor 𝜁), the two
most prominent cases are considered :

1. The heat produced by the viscous dissipation in the bulk does not promote fracture, i.e., 𝜁 = 0; the corresponding
results are shown in Figure 7.

2. The heat produced by the viscous dissipation in the bulk does promote fracture and the entirety of the viscous
energy will contribute to the fracture , i.e., 𝜁 = 1; the corresponding results are shown in Figure 8.

3.2.1 Viscoelasticity with 𝜁 = 0
Figure 7(a) shows the crack path in the fine-mesh region with respect to the characteristic time (𝜏𝑣) for 𝜁 = 0.

Generally, the main crack is initiated from the notch. A broadening of the damage-band is observed in the materials
with the characteristic times 𝜏𝑣 = 0, 10−7, 7.5 ⋅ 10−6, 8.75 ⋅ 10−6 and 10−5 ms. Crack branching occurs in the materials
with the characteristic times 𝜏𝑣 = 0, 10−7 and 7.5 ⋅ 10−6 ms. With the increase of the characteristic time of the material
–through increasing the values of the viscous properties– both the crack widening and the crack branching phenomena
appear after longer paths travelled by the initial cracks. Starting 𝜏𝑣 around 8.75 ⋅ 10−6 ms, although the widening of the
damage-band still appears, the branching phenomenon is suppressed. As the viscosity is further increased, both the
branching and the damage-band widening disappear. Furthermore, the final crack topology shows a shorter crack path.

Regarding the crack tip speeds shown in Figure 7(b), in all cases, the cracks are instantly initiated at different
initial tip speeds 𝑣𝑐 depending upon the viscous properties of the materials (the characteristic times). As the dynamic
phase-field fracture is activated, and fracture is initiated at the notch, the strain-rates are the larger and so is the viscous
dissipation. An increased value of 𝜏𝑣 translates to an increase in the mechanical dissipation, and this is directly reflected
on the initial crack-tip speeds.

The cracks then accelerate towards a plateau value. Both the acceleration and the plateau value are dependent on the
viscoelastic parameters. The acceleration decreases as the energy valuable for the crack decreases, and this phenomenon
is coherent with theoretical considerations for the similar configuration [26]. In the cases where the crack branches,
similar values of the plateau 𝑣𝑐 ≃ 640 m/s are reached before the branching phenomenon. At 𝜏𝑣 = 8.75 ⋅ 10−6 and
10−5 ms, after the first plateau, and as no branching occurs, the crack re-accelerates to reach a slightly higher plateau at
𝑣𝑐 ≃ 670 m/s and surpasses the previously obtained velocity (≃ 640 m/s). As the viscosity is further increased, the
values of the plateaus decrease. As the mechanical dissipation increases, a smaller value of the phase-field is perceived
as the driving force (elastic strain-energy) decreases. In its turn, this decrease results in a slower crack, thus, lowering
the possibility of branching around the widened region of the damage-band. This explains the longer distance the crack
needed to propagate before widening/branching with significant viscosities 𝜏𝑣. It also explains the total suppression of
the branching as the tip speeds decrease with the further increase of the viscosities.
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(a) Fracture patterns

(b) Crack-tip velocities

Figure 7: Viscoelastic materials with different characteristic times 𝜏𝑣 and 𝜁 = 0: uniform displacement strip results at
𝑢0 = 0.0741 mm.
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3.2.2 Viscoelasticity with 𝜁 = 1
Figure 8(a) shows the crack path in the fine-mesh region with respect to the characteristic time of the viscoelastic

material in which the viscous dissipation in the bulk promotes fracture in its entirety (𝜁 = 1). Generally, the main crack
is instantly initiated from the notch. A broadening of the damage-band is observed in the materials with the characteristic
times 𝜏𝑣 = 0, 107, 7.5 ⋅ 10−6, 8.75 ⋅ 10−6 and 10−5 ms. Unlike in the case where 𝜁 = 0, here it is assumed that the
viscous dissipation does promote fracture. This assumption directly translates to the fracture phenomena observed in the
simulations, as crack branching occurs in the materials with the characteristic times 𝜏𝑣 = 0, 10−7, 7.5 ⋅ 10−6 but also at
𝜏𝑣 = 8.75 ⋅10−6 ms, which was not the case for 𝜁 = 0. Indeed, a viscous contribution to fracture can essentially trigger a
branching that is not predicted in viscoelastic materials if only strain energy is assumed to drive fracture [65]. Similarly
to the case 𝜁 = 0, with the increase of the characteristic time of the material, both the crack widening and the crack
branching appear only after the crack had travelled longer paths. At 𝜏𝑣 around 10−5 ms, the branching phenomenon is
suppressed even though the damage-band appears to broaden. As the viscosity is further increased, in addition to the
suppression of the branching and the damage-band widening, the final crack path shows a shorter crack path.

Regarding the crack tip speeds shown in Figure 8(b), in all cases, the cracks is initiated at initial tip speeds 𝑣𝑐 that
depend upon the viscoelastic properties of the materials. The crack then accelerates towards a plateau value. Both the
acceleration and the plateau value are dependent on the viscoelastic parameters and hence the viscous dissipation at the
notch and in the bulk. The acceleration decreases as the energy valuable for the crack decreases, and this phenomenon
is coherent with theoretical considerations for the similar configuration [26]. In the cases in which the crack-branches,
similar values of the plateau 𝑣𝑐 ≃ 640 m/s are reached before branching. This value is similar to the one observed in the
rate-independent simulation and in the viscoelastic case where 𝜁 = 0. At 𝜏𝑣 = 10−5 ms, after the plateau, and as no
branching occurs, the crack re-accelerates to reach a slightly higher value of 𝑣𝑐 ≃ 670 m/s and surpasses the previous
attained velocity (≃ 640 m/s). As the viscosity in the bulk is further increased, the plateaus values also decrease;
however, their values are slightly higher than the ones reached in the case of 𝜁 = 0. This can be explained by the
following: the higher the viscous effects, the more mechanical energy is dissipated and the larger the driving force is for
the fracture through the factor 𝜁 .

To resume, the simulations show how the viscoelasticity of the bulk highly influences the dynamic behaviour of
fracture. Whether the viscous dissipation promotes fracture or not, the influence of viscoelasticity in suppressing the
crack-branching and potentially accelerating the crack tip were put forth. And since the damaging process depends on
the available free energy, the viscous dissipation is shown to play a major role in the dynamic fracture process.
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(a) Fracture patterns

(b) Crack-tip velocities

Figure 8: Viscoelastic materials with different characteristic times 𝜏𝑣 and 𝜁 = 1: uniform displacement strip results at
𝑢0 = 0.0741 mm.
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3.3 Strain-rate dependent fracture toughness
To analyse the influence of the strain-rate dependent toughness on the dynamic crack propagation, a rate-independent

(elastic) bulk is considered. The material properties and phase-field parameters are the same as the ones found in Table 1.
Regarding the rate-dependent fracture toughness, its static value 𝑔𝑐0 is considered to be equal to the fracture toughness
of the rate-independent material from Table 1, so: 𝑔𝑐0 = 500 J/m2. Simulations are explored for the same imposed
vertical displacement 𝑢0 = 0.0741 mm. In this example we analyse materials with varying levels of rate-dependent
toughness, ranging from a minimum of 𝜏𝜖 = 0 ms (rate-independent) to a maximum of ≤ 3.2 ⋅ 10−3 ms (for details, see
Equation 20 in Section 2.3).

Only the characteristic times that yielded the most compelling results are exhaustively reported (𝜏𝜀 = 0, 10−4,
3.162 ⋅ 10−4, 7.071 ⋅ 10−6, 10−3, 2.236 ⋅ 10−3 and 3.162 ⋅ 10−3 ms).

Figure 9(a) shows the crack path in the fine-mesh region with respect to the characteristic time 𝜏𝜀. A clear broadening
of the damage-band is observed in the materials with the characteristic times 𝜏𝜀 = 0, 10−4, 3.162 ⋅10−4 and 7.071 ⋅10−4
ms. Even for the larger characteristic times 𝜏𝜀 = 10−3, 2.236 ⋅ 10−3 and 3.162 ⋅ 10−3 ms, the damage-band is wider
than 2𝑙𝑐 which was not the case in the viscoelastic materials (Section 3.2). Crack branching occurs in the materials
with the characteristic times 𝜏𝜀 = 0, 10−4 and 3.162 ⋅ 10−4 ms. As the characteristic time of the material increases, the
rate-dependency of its fracture toughness 𝑔𝑐 also increases. This leads to crack widening and branching phenomena
occurring after only the cracks have traveled longer distances. At 𝜏𝜀 around 7.071 ⋅ 10−3 ms, although the widening of
the damage-band still appears, the branching phenomenon is suppressed. As the rate-dependency of the toughness is
further increased through 𝜏𝜀, the suppression of the branching occurs as well as a shorter crack is observed.

Regarding the crack tip speeds shown in Figure 9(b), in all cases, the crack appears to be instantly initiated with
an initial tip speed that depends upon the rate-dependency of the fracture toughness. As mentioned previously, the
strain-rates are the larger at the notch and so is the fracture toughness 𝑔𝑐 . This directly influences the initial crack-tip
speeds. For small characteristic times 𝜏𝜀, the cracks accelerate towards a plateau value. Both the acceleration and the
plateau values are dependent on 𝜏𝜀. In the cases where the crack branches, similar values of the plateau 𝑣𝑐 ≃ 640 m/s are
reached before branching. At 𝜏𝜀 = 7.071 ⋅10−3 ms, after the plateau, and as no branching occurs, the crack re-accelerates
to reach a slightly higher value of 𝑣𝑐 ≃ 640 m/s and surpasses the value of 0.72𝑐𝑅. For larger 𝜏𝜀, no acceleration of
the crack appears; instead, the crack conserves its initial tip-speed which is dependent on 𝜏𝜀. An increased value of 𝜏𝜀increases the toughness 𝑔𝑐 of the material and hence increases amount of energy necessary to evolve a crack for the
same strain-rates. This directly translates to a smaller value of the phase-field for the same driving force. This in its turn
results in a lower possibility of branching.

In Figure 9(c), the evolution of the toughness at the crack-tip is reported for different characteristic times 𝜏𝜀. The
fracture toughness at the crack-tip is determined as the maximum value of 𝑔𝑐(�̇�) (Equation 20) in a confined region
of size 2 × 𝑙𝑐 around the crack-tip. Of course, larger values of 𝑔𝑐 are expected for larger 𝜏𝜀. Observing the cases in
which the crack widens without branching (𝜏𝜀 = 7.071 ⋅ 10−4, 10−3, 2.236 ⋅ 10−3 and 3.162 ⋅ 10−3), the influence of the
widening on lowering the strain-rates (Section 3.1) directly impacts the evolution of the toughness: a decline in 𝑔𝑐 is
first observed as the crack widens and then 𝑔𝑐 slightly increases as the crack tightens (Figures 9(a) and 9(c)). Plus, at
the case in which the crack re-accelerates after widening, the fracture toughness 𝑔𝑐 appears to increase as the crack
re-accelerates, since the strain-rates at the crack-tip increase at the crack tightens which is subsequently transferred to
the values of 𝑔𝑐 . In the cases where the crack decelerates (𝜏𝜀 = 3.162 ⋅ 10−3 ms), the toughness drops from an initially
higher values to its respective plateau.

To resume, the simulations demonstrate how the strain-rate formulation of the fracture toughness highly influences
the dynamic behaviour of fracture. The influence of the strain-rate dependency of the fracture toughness in suppressing
the crack-branching and potentially accelerating the crack tip is put forth. The evolution of the strain-rates as the crack
widens and their direct impact on the evolution of the fracture toughness are highlighted. The strain-rate dependency of
the fracture toughness is shown to play a major role in the dynamic fracture process.
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(a) Fracture patterns

(b) Crack-tip velocities (c) Toughness at the crack-tip
Figure 9: Elastic materials with strain-rate dependent fracture toughness (𝜏𝜀): uniform displacement strip results at
𝑢0 = 0.0741 mm.
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3.4 Damage-rate dependent fracture toughness
To analyse the influence of the damage-rate dependent toughness on the dynamic crack propagation, a purely

elastic bulk is considered. The material properties and phase-field parameters are the same as the ones found in Table
1. Simulations are explored for the same imposed vertical displacement 𝑢0 = 0.0741 mm. Materials with different
damage-rate-dependent toughness (0 –rate-independent toughness≤ 𝜏𝑑 ≤ 10−4 ms) are analysed. It is recalled that 𝜏𝑑corresponds to the amount of the dependency of the toughness to the damage-rate. Only the characteristic times that
yielded the most compelling results are exhaustively reported (𝜏𝑑 = 0, 10−6, 4 ⋅10−6, 5 ⋅10−6, 2.225 ⋅10−5, 2.275 ⋅10−5
and 2.288 ⋅ 10−5 ms).

Figure 10(a) shows the crack path in the fine-mesh region with respect to the characteristic time 𝜏𝑑 . A clear
broadening of the damage-band is observed in the materials with the characteristic times 𝜏𝑑 = 0, 10−6, 4 ⋅ 10−6 and
5 ⋅ 10−6 ms. Crack branching occurs in the materials with the characteristic times 𝜏𝑑 = 0, 10−6 and 4 ⋅ 10−6 ms. As
the characteristic time of the material increases, the rate-dependency of its toughness 𝑔𝑐 also increases. This leads
to crack widening and branching phenomena to occurr after the cracks have traveled longer distances. At 𝜏𝑑 around
5 ⋅ 10−6 ms, although the widening of the damage-band still appears, the branching phenomenon is suppressed. As the
rate-dependency of the toughness is further increased through 𝜏𝑑 , in addition to the suppression of the branching and
the widening, a shorter crack is observed, even for small variations of 𝜏𝑑 .

Regarding the crack tip speeds shown in Figure 10(b), in all cases, the crack appears to be instantly initiated
at initial tip speeds 𝑣𝑐 that depend upon the the characteristic time 𝜏𝑑 of the materials. Except for the largest value
𝜏𝑑 = 2.288 ⋅ 10−5 ms, the crack accelerates towards a plateau value. If the acceleration is dependent on 𝜏𝑑 , even for
large 𝜏𝑑 , the plateau 𝑣𝑐 remains fairly high at around 𝑣𝑐 = 500 m/s, unlike in the viscoelastic materials and elastic
materials with strain-rate dependent simulations where the plateau value gradually decreases with the characteristic
time. For 𝜏𝑑 = 2.288 ⋅ 10−5 ms, the crack decelerates from its initial value and oscillates between 0 ≤ 𝑣𝑐 ≤ 10 m/s.
In the cases where the crack-branches, similar values of the plateau 𝑣𝑐 ≃ 640 m/s are reached before branching. At
𝜏𝑑 = 5 ⋅ 10−6 ms, after the plateau, and as no branching occurs, the crack re-accelerates to reach a slightly higher value
of 𝑣𝑐 ≃ 660 m/s and surpasses the value of 0.72𝑐𝑅. An increased value of 𝜏𝑑 increases the toughness 𝑔𝑐 and hence
increases amount of energy necessary to evolve a crack for the same damage-rates, this directly translates to a smaller
value of the phase-field for the same driving force, which in its turn results in a lower possibility of the establishment of
two spatially separated crack tips around the widened region of the damage-band.

In Figure 10(c), the evolution of the toughness at the crack-tip is reported for different characteristic times 𝜏𝑑 .
The fracture toughness at the crack-tip is determined as the maximum value of 𝑔𝑐(�̇�) (Equation 29) in a confined
region of size 2 × 𝑙𝑐 around the crack-tip. Of course, larger values of the fracture toughness 𝑔𝑐 are expected for larger
rate-dependencies 𝜏𝑑 . For each 𝜏𝑑 , the toughness rapidly reaches a plateau. At the case in which the crack re-accelerates
after widening, the fracture toughness 𝑔𝑐 appears to increase. As the crack re-accelerates, the damage-rates at the
crack-tip increase and this increase is subsequently transferred to the values of the toughness 𝑔𝑐 . At the larger rate
dependency (𝜏𝑑 = 2.225 ⋅ 10−5 and 2.275 ⋅ 10−5 ms) at which the cracks slowly accelerate to reach the plateaus around
𝑣𝑐 = 500 m/s, the evolution of the toughness 𝑔𝑐 at the crack tip is similar. In the case where the crack oscillates
(𝜏𝑑 = 2.288 ⋅ 10−5 ms), the toughness drops from an initial value to its static value, as the crack stops since no more
free energy is available for dynamic propagation.

To resume, the simulations demonstrate how the damage-rate formulation of the fracture toughness highly influences
the dynamic behaviour of fracture. The influence of the damage-rate dependency of the fracture toughness in suppressing
the crack-branching and slightly potentially accelerating the crack tip is put forth. The damage-rate dependency of the
fracture toughness is shown to play a major role in the dynamic fracture process.
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(a) Fracture patterns

(b) Crack-tip velocities (c) Toughness at the crack-tip
Figure 10: Elastic materials with damage-rate dependent fracture toughness (𝜏𝑑): uniform displacement strip results at
𝑢0 = 0.0741 mm.
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4 Crack-tip velocity vs. characteristic time
After putting forth the numerical simulation results of the different modelling assumptions for rate-dependent

phase-field of fracture, we superpose the obtained limiting tip velocities as a function of the models’ characteristic
times: 𝜏𝑣, 𝜏𝜀 or 𝜏𝑑 in Figure 11.

Basically, at low rate-dependency of the different modelling assumptions, the limiting tip-speed is not impacted until
the point where the crack branching is suppressed. Here, the limiting tip speed increases slightly above 𝑣𝑐 = 0.72𝑐𝑅.
When branching is suppressed, a single crack would propagate straight, and this can actually explain this increase in
the crack velocity as compared to the branching cracks case. With an increase in rate-dependency, either the energy
dissipated by the material increases, or amount of energy necessary to evolve a crack increase for the same total available
energy. In any case, this leads to the suppression of crack branching and a reduction in the limiting speed, causing the
crack to travel a shorter distance.

For the viscoelastic materials, independently of the contribution of the viscous energy in promoting fracture(𝜁 ), and
from the purely elastic bulk of the material up to the point where viscous dissipation suppress branching, the limiting
speeds are relatively similar.

As higher viscosities are taken into consideration, the assumption regarding the viscous dissipation and its
contribution to fracture promotion (i.e., 𝜁 = 1 or 𝜁 = 0) becomes more significant in determining the limiting
crack-tip speeds. This is because the dissipated energy, which is attributed to the viscosity of the material, increases, the
former being a promoter of fracture thourgh 𝜁 .

In the simulations involving strain-rate dependent toughness, larger characteristic times are needed to affect crack
propagation compared to the viscoelastic (and damage-rate dependent formulations). We believe that this difference
is due to the quadratic formulation used for the strain-rate dependent toughness, which is different from the linear
assumption made for the damage-rate.

For the damage-rate dependent toughness, surprisingly, the drop in the limiting speed as a function the damage-
dependency (𝜏𝑑) is much steeper. In fact, as seen in the previous section, the plateau reached after an initially accelerating
crack is fairly high with the minimum value at around 𝑣𝑐 = 500 m/s. However a gradual increase of 𝜏𝑑 does not translate
to a gradual decrease of the acceleration of the crack or the gradual lowering of the plateau, but it directly translates to a
deceleration of the crack speed below 𝑣𝑐 = 100 m/s.
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Figure 11: Influence of the models’ characteristic time (𝜏𝑣) on the maximum crack-tip speed (imposed vertical displacement
𝑢0 = 0.0741 mm).

5 Effective stiffening in rate-dependent materials
After presenting the influence of different modelling assumptions on the rate-dependent fracture, we explore the

influence of the stiffening phenomenon observed in viscoelastic materials [62] on the fracture behaviour. For instance, it
is well known that the behaviour of PMMA is viscoelastic. However, it is possible to model its behaviour by considering
a higher elastic stiffness for dynamic analysis as compared to quasi-static simulations [29, 22].
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In this section we analyse the stiffening of the rate-dependent materials. Further, we look into whether the rate-
dependent phase-field models are able to replicate fracture at speeds higher than the expected limitation around 0.75𝑐𝑅found in similar configurations [76].

In order to achieve this goal, we will take into account the three modeling assumptions, which involve simulating
uniform displacement strips using four arbitrary materials that exhibit high rate-dependencies. Higher pre-strain are
considered with imposed displacement 0.0741 ≤ 𝑢0 ≤ 0.1995 mm. As seen in reference [7], larger pre-strains directly
affect the initial crack-tip velocity, its acceleration, its plateau and the possible branching phenomena.

The phase-field parameters and material properties are similar to the ones found in Table 1. The rate-dependent
parameters for the different materials are as follow:

1. Viscoelastic material – 𝜏𝑣 = 5 ⋅ 10−3 ms with 𝜁 = 0

2. Viscoelastic material – 𝜏𝑣 = 5 ⋅ 10−3 ms with 𝜁 = 1

3. Elastic material with strain-rate dependent fracture toughness – 𝜏𝜀 = 10−2 ms
4. Elastic material with damage-rate dependent fracture toughness – 𝜏𝑑 = 5 ⋅ 10−5 ms
As seen in the previous sections, higher rate-dependencies directly affect the dynamic fracture behaviour. The high

rate-dependencies herein considered ensure the suppression of branching even for high pre-strains. Hence, a single
crack tip can be followed throughout the fracture process.

Only the maximum crack-tip velocity for each simulation is noted. The evolution of the maximum tip speed as
a function of the loadings 𝑢0 is plotted in Figure 12 for the different materials. At a loading of 𝑢0 = 0.0741 mm, the
cracks slightly advances at a speed lower than 50 m/s. As the pre-strain is increased, the maximum obtained crack-tip
speed increases.

For both viscoelastic models, the crack-speeds are indeed higher than 𝑐𝑅 = 900 m/s (computed from the material
properties in Table1). In the case where 𝜁 = 1 (the dissipated viscous energy promotes fracture), it is clear how this
supplementary driving force is reflected on the limiting speed that is between 120% and 300% higher than the speed of
the crack in the case where 𝜁 = 0. For the strain-rate-dependent toughness, it is observed that the crack-tip reaches
a maximum speed 𝑣𝑐 = 966 m/s ≥ 𝑐𝑅 = 900 m/s at the larger considered pre-strain (𝑢0 = 0.1995 mm). For the
damage-rate-dependent toughness, the crack speed is limited by the Rayleigh wave-speed 𝑐𝑅 = 900 m/s.

How can one explain the crack-tip velocities that exceed the Rayleigh wave speed ? We believe that a stiffening
phenomenon in the crack-tip region occurs and is responsible of these faster-running cracks. This idea was previously
explored in elastomers [15, 38]. In fact, as the material becomes stiffer, the speed of the Rayleigh waves in the stiffened
region becomes higher. And a higher Rayleigh wave speed allows faster-running cracks [3].

To further elaborate on this idea, we investigate the apparent stiffness of the material in a confined region in front
of the crack. At the crack-tip (Figure 13), the effective elastic moduli are computed from the stress-strain couples

Figure 12: Maximum crack-tip velocities at multiple loadings.

obtained from damage the phase-field simulations following the method proposed in reference [21]. In fact, the stiffness
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is analysed at a single data point (𝑃eff ) at a distance 𝑙𝑐 in front of the crack, where we compute the average stress and
strain tensors in a confined region of size 𝑙𝑐 centered at 𝑃eff .

crack

stiffening analysis 
region

Figure 13: Stiffening analysis at the crack-tip in rate-dependent materials.

The obtained strain and stress couples provide and evaluation of the nine components of the effective stiffness tensor
representative of the effective elastic behaviour at the crack tip (more specifically at 𝑃eff ). From the overall stiffness
tensor, and by assuming plane-strain conditions and isotropic elasticity, effective Young’s modulus (𝐸eff ) and Poisson’s
ratio (𝜈eff ) can be computed.

The effective Young’s modulus and Poisson’s ratio at the crack-tip of the two viscoelastic materials are reported in
Figures 14 and 15 (for 𝜁 = 0 and 𝜁 = 1 respectively). In both cases, it is clear how the viscous effects at the crack tip
enable the stiffening of the material. The effective Young’s modulus at the crack-tip ranges from the static value of 3
GPa to about 6.5 GPa at the highest pre-strains. We mention that the values herein found are reasonably in accordance
with mechanical properties identified for PMMA at high strain rates in reference [62]. Seghir et al. [62] find the static
value of the quasi-static reference material properties for PMMA to be 𝐸 = 2.9 ± 0.1 GPa, and at high strain rates, the
modulus is found to approaches 6 GPa.

The effective Young’s modulus and Poisson’s ratio at the crack-tip (𝐸eff and 𝜈eff respectively) of the elastic material,
which fracture toughness is strain-rate dependent, are reported in Figure 16. Indeed, a viscous-like stiffening in front
of the crack tip is observed. The effective Young’s modulus at the crack-tip ranges from the static value of 3 GPa to
about 4 GPa at the highest pre-strains. This viscous-like stiffening is actually the fruit of the additional term in the
stress that comes from the strain-rate dependent toughness, see Equation 26 in Section 2.2. Although the characteristic
time 𝜏𝜀 = 10−2 ms of this material is larger than the characteristic time of the considered viscoelastic materials
𝜏𝑣 = 5 ⋅ 10−3 ms, the stiffening at the crack-tip is much less prominent.This is easily explained by the fact that the
strain-rate dependency of the toughness yields an additional stress term that only appears in the damaged region and
that is absent in the intact region. In viscoelastic materials, the viscous stresses are present both in the bulk and in the
damaged region of the material.

The effective Young modulus and Poisson ratio at the crack-tip (𝐸eff and 𝜈eff respectively) of the elastic material
which fracture toughness is damage-rate dependent are reported in Figure 17; as expected no hardening at the crack-tip
occurs and the limiting speed is indeed 𝑐𝑅 = 900 m/s.

The highest values of the Rayleigh wave-speeds at the crack-tip (the Rayleigh wave-speeds being computed following
Freund’s Equation 35 considering the effective elastic moduli 𝐸eff and 𝜈eff from Figures 14, 15, 16 and 17), are reported
in Table 2 for the four materials and at different pre-strain values.

Indeed, in all cases, the reported speeds of Rayleigh waves at the crack-tip speeds are always higher than the crack-tip
speeds recorded in the simulations. In fact, the literature predicts that the flow of energy into a crack-tip falls to zero
when the crack runs at the Rayleigh velocity 𝑐𝑅 [3, 11]. This limits the crack-tip velocity to the Rayleigh wave speed 𝑐𝑅.
Plus, the emergence of stiffening phenomena in the crack-tip region in rate-dependent materials increases the velocities
of the elastic waves locally. The particular increase in the speed of the Rayleigh waves makes it that the flow of energy
to the crack is no longer null, enabling thus the faster-running cracks.

6 Conclusion
This paper revisits the advancements on the rate-dependent phase-field models for fracture and suggests a novel

damage-rate dependent formulation for the fracture toughness. By means of a numerical study on a uniform displacement
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Figure 14: Effective stiffening at the crack-tip in the viscoelastic material with 𝜁 = 0.
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Figure 15: Effective stiffening at the crack-tip in the viscoelastic material with 𝜁 = 1.
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Figure 16: Effective stiffening at the crack-tip in the material with strain-rate dependent toughness.

strip benchmark, the formulations and modelling assumptions are contrasted and the corresponding limiting crack
speeds are discussed.

The first formulation [65, 18] is characterised by the addition to the pseudo-energy functional of the phase-field
problem (free energy and fracture dissipation) a contribution which is related to the viscous dissipation. The viscous
dissipation is assumed to promote fracture through a parameter 𝜁 . The parameter 𝜁 can take any value between 𝜁 = 0
(viscous dissipation does not promote fracture) and 𝜁 = 1 (the entirety of the heat produced by the viscous dissipation
promotes fracture). The model is based on experimental evidence that shows how the resistance to fracture of many
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Figure 17: No stiffening at the crack-tip in the material with damage-rate dependent toughness.

Maximum 𝑐𝑅 at the crack-tip

Rate dependency
pre-strain 𝑢0 (mm) 0.0741 0.114 0.1425 0.171 0.1995

Viscoelastic material – 𝜏𝑣 = 5 ⋅ 10−3 ms, 𝜁 = 0 998 m/s 1277 m/s 1380 m/s 1425 m/s 1422 m/s
Viscoelastic material – 𝜏𝑣 = 5 ⋅ 10−3 ms, 𝜁 = 1 1024 m/s 1419 m/s 1444 m/s 1443 m/s 1410 m/s
Strain-rate dependent toughness – 𝜏𝜀 = 10−2 ms 903 m/s 962 m/s 957 m/s 1016 m/s 1036 m/s
Damage-rate dependent toughness – 𝜏𝑑 = 5 ⋅ 10−5 ms 900 m/s 900 m/s 900 m/s 900 m/s 900 m/s

Table 2: Maximum effective Rayleigh wave speed 𝑐𝑅 in front of the crack-tip in the different rate-dependent materials
under different pre-strains.

rate-dependent materials decreases as the temperature increases, from one side, and how the viscoelastic dissipation
leads to a raise in the temperature of the material from the other.

The second model [72] is characterised by the introduction of a strain-rate dependent toughness 𝑔𝑐(�̇�). It is based
on experimental evidence that indicates a strong relationship between the rate of strains and the material’s resistance
against fracture. Alternatively, in the same spirit, we suggested a damage-rate dependent toughness formulation enabling
an upper limit on the rate-dependent toughness 𝑔𝑐 .Simulation quantitatively evidence the influence of rate-dependency on the dynamic crack behaviour:

1. Crack branching observed in rate-dependent simulation at a fixed pre-strain can be suppressed with the different
modelling assumptions of rate dependency.

2. With the increase of the rate-dependency, and as the branching phenomenon persists, the limiting speeds are
unsurprisingly similar for the different models.

3. As the crack branching is omitted, cracks may advance at higher tip speeds, dependently on the rate-dependencies
4. A gradual increase in the rate-dependencies of the viscoelastic materials and materials with strain-rate-dependent

toughness gradually modify the dynamic crack behaviour.
5. Even a gradual increase in the damage-rate-dependency of the toughness can translate to abrupt changes in the

behaviour of the cracks.
Additionally, we explained the increase of limiting velocity with the local stiffening of the materials. Indeed,

depending on the specific choice of parameters, our simulations show crack-tip speeds that exceed 𝑐𝑅 in viscoelastic
materials (whether the viscous dissipation is assumed to promote fracture or not) and in elastic materials with strain-
rate-dependent toughness: these high speeds are attributed to the viscoelastic and viscoelastic-like stiffening quantified
at the front of the cracks. In fact, the stiffening phenomenon translates to faster-running surface-waves which in its turn
enables faster running cracks. It is noted that the crack-tip speeds are consistently lower than the effective surface-wave
speeds, i.e., the Rayleigh wave speeds in the stiffened region at the crack tip.
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Future work will focus on the comparison of those model predictions and experimental data to further assess
the modelling choices. Besides, we believe that combining the viscoelastic model with damage-rate dependency of
the toughness, and accurately calibrating the damage-rate dependence 𝜏𝑑 for the actual experiments, may enable the
reproduction of intermittent cracking behaviour observed in PMMA [33].
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A Constitutive modelling of the viscoelastic bulk
This appendix overviews the full constitutive modelling of the intact viscoelastic bulk following the work of Luo

et al. [46]. As mentioned in Section 2.1, a Kelvin-Voigt approach is employed to analyse the spheric portion of the
stress-strain behavior (Figure 2(a)), and a Maxwell-like model is utilised for the deviatoric part of the stress-strain
behavior (Figure 2(b)).

The hydrostatic stress-strain relation at time 𝑡 can then be expressed as:
�̄�ℎ𝑦𝑑(𝑡) = 𝐾𝑑[𝜀ℎ𝑦𝑑(𝑡) + 𝜏𝑣𝑑 �̇�

ℎ𝑦𝑑(𝑡)] (36)
where 𝜏𝑣𝑑 = 𝜂𝑑∕𝐾𝑑 is the bulk relaxation time, 𝜂𝑑 is the bulk viscosity and 𝐾𝑑 is the bulk modulus. The superscript
ℎ𝑦𝑑 correspond the hydrostatic stresses �̄� and strains 𝜖.

�̄�𝑑𝑒𝑣(𝑡) + 𝜏𝑣𝑠 ̇̄𝜎(𝑡) = 𝐾𝑠[𝜀𝑑𝑒𝑣(𝑡) + 2𝜏𝑣𝑠�̇�𝑑𝑒𝑣(𝑡)] (37)
where 𝜏𝑣𝑠 = 𝜂𝑠∕𝐾𝑠 is the shear relaxation time, 𝜂𝑠 is the shear viscosity and 𝐾𝑠 is the shear modulus. The superscript
𝑑𝑒𝑣 corresponds to the deviatoric stresses and strains. To obtain the overall stress-strain expressions, the time-domain
expressions Equations (36) and (37) have to be solved. Here, the stresses functions of the strains are directly exposed,
the detailed derivations can be found in reference [46]:

�̄�(𝑡) = 𝐸
1 − 2𝜈

[𝜀ℎ𝑦𝑑(𝑡) + 𝜏𝑣𝑑 �̇�
ℎ𝑦𝑑(𝑡)] + 𝐸

1 + 𝜈
𝜀𝑑𝑒𝑣(𝑡) + ℎ(𝑡) (38)

where ℎ(𝑡) is to be defined by a recurrence relation following:

ℎ(𝑡) = exp
(

−
𝑡 − 𝑡𝑛
𝜏𝑣𝑠

)

ℎ(𝑡𝑛) +
𝐸

1 + 𝜈 ∫

𝑡

𝑡𝑛
exp

(

− 𝑡 − 𝑡′

𝜏𝑣𝑠

)

�̇�𝑑𝑒𝑣(𝑡)𝑑𝑡′ (39)

where 𝐸 is Young’s Modulus and 𝜈 Poisson’s ratio and 𝑡𝑛 is any moment before 𝑡. In addition to the full separation
of the deviatoric and hydrostatic parts, this formulation displays an intriguing structure: a complete split between the
elastic properties and the viscous components, so one can write :

�̄�ℎ𝑦𝑑𝑒 (𝑡) = 𝐸
1 − 2𝜈

𝜀ℎ𝑦𝑑(𝑡) (40a)
�̄�ℎ𝑦𝑑𝑣 (𝑡) = 𝐸

1 − 2𝜈
𝜏𝑣𝑑 �̇�

ℎ𝑦𝑑(𝑡) (40b)
�̄�𝑑𝑒𝑣𝑒 (𝑡) = 𝐸

1 + 𝜈
𝜀𝑑𝑒𝑣(𝑡) (40c)

�̄�𝑑𝑒𝑣𝑣 (𝑡) = exp
(

−
𝑡 − 𝑡𝑛
𝜏𝑣𝑠

)

ℎ(𝑡𝑛) +
𝐸

1 + 𝜈 ∫

𝑡

𝑡𝑛
exp

(

− 𝑡 − 𝑡′

𝜏𝑣𝑠

)

�̇�𝑑𝑒𝑣(𝑡)𝑑𝑡′ (40d)

The subscripts 𝑒 and 𝑣 correspond to the elastic/viscous parts of the strains and stresses.
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