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This contribution explores three thermodynamically-consistent damage phase-field formulations for rate-dependent dynamic fracture in viscoelastic materials. By means of a numerical study on a uniform displacement strip benchmark, the formulations and modelling assumptions are compared, and the corresponding limiting crack-tip speeds are discussed. In essence, in addition to recalling the existing phase-field model for viscoelastic materials, a damage phase-field formulation for rate-dependent toughness is introduced as a function of the damage-rate at the crack-tip and is contrasted to existing strain-rate dependent toughness models. Dynamic fracture simulations have demonstrated the significant role of rate dependency in suppressing crack branching and accelerating the crack propagation. The rate dependency is analysed through two main mechanisms: (i) the viscous dissipation, which can promote fracture, and (ii) an increase in the energy required to evolve a crack, through rate-dependent toughness models. Depending on the specific choice of parameters, the numerical simulations show crack propagation at speeds that exceed the theoretical limit depicted by the Rayleigh wave speed. Indeed, these high speeds are attributed to the viscoelastic and viscoelastic-like (observed in the case of strain-rate dependent fracture toughness) stiffening at the crack-tip, which translates to faster running surface waves and enables supersonic crack-speeds; a never-seen-before result in damage phase-field simulations.

Introduction

Viscoelastic materials such as polymers, gels, metals and alloys play a vital role in various engineering and practical applications. Their widespread use in fields like biomechanics, materials processing, and structural design makes them highly relevant in modern-day technology and innovation. Of course, understanding how such materials fail and elaborating on how to prevent their failure is particularly important to design safer and more reliable structures.

Viscoelastic materials are commonly recognised for their time-dependent mechanical behaviour. For instance, when a viscoelastic structure is subject to a constant load, the material continues to gradually deform over time (creep or relaxation). As the material deforms, higher stress concentrations can develop in localised areas, which can eventually result in the structure's failure. Of course, the time-dependency of the viscoelastic materials translates to a mechanical behaviour that is also rate-dependent; this implies that their deformation and response to loading vary with the velocity of the loading [START_REF] D'amico | Moving cracks in viscoelastic materials: Temperature and energy-release-rate measurements[END_REF]. So, besides the quasi-static failure of viscoelastic materials, dynamic fracture is particularly of relevant interest, especially in impact and high-speed events. In such cases, inertial effects are prominent, and the rate at which the structure is loaded directly influences the amount of stored energy and the amount of energy that can be dissipated by the viscous effects, thus modifying its fracture behaviour. Accordingly, modelling of fracture in such rate-dependent materials is of increasing interest.

The inclusion of inertial effects (dyamic fracture) introduces the notion of limiting crack-tip speeds. It is widely known that crack propagation is theoretically limited to the Rayleigh wave speed (𝑐 𝑅 ), although such speed is hardly achieved in real-life applications and numerical simulations [START_REF] Ramulu | Dynamic crack curving-A photoelastic evaluation[END_REF][START_REF] Streit | An experimental investigation of crack-path directional stability: A photoelastic and experimental study on the effect of crack-tip stress biaxiality with respect to directional stability and fracture toughness of Mode I crack extension[END_REF][START_REF] Fineberg | Instability in dynamic fracture[END_REF][START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF][START_REF] Liu | Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model[END_REF][START_REF] Pham | Experimental validation of a phase-field model for fracture[END_REF][START_REF] Ren | An explicit phase field method for brittle dynamic fracture[END_REF][START_REF] Eid | Crack branching at low tip speeds: spilling the T[END_REF]. Indeed, cracks were shown to become unstable and branch at 40% -60% of the Rayleigh wave-speed. The experimental works of Corre et al. [START_REF] Corre | Experimental full field analysis for dynamic fracture of elastomer membranes[END_REF] and Morishita et al. [START_REF] Morishita | Velocity transition in the crack growth dynamics of filled elastomers: Contributions of nonlinear viscoelasticity[END_REF] reveal that there are instances where the crack-tip speed exceeds the Rayleigh wave speed under high imposed stretches in polymeric elastomers. Earlier experimental works on the fracture of elastomer membranes [START_REF] Gent | The effect of strain upon the velocity of sound and the velocity of free retraction for natural rubber[END_REF][START_REF] Stevenson | On the bursting of a balloon[END_REF] also report such phenomena, and they attribute those high crack-tip speeds to an increase in the stiffness of the material in the vicinity of the crack tip, either because of viscoelastic effects or the hyperelastic stiffening.

Kamasamudram et al. [START_REF] Kamasamudram | The role played by viscoelasticity in the bulk material during the propagation of a dynamic crack in elastomers[END_REF] attribute these observations to the viscoelastic stiffening of the material by simulating the experiments found in Corre et al. [START_REF] Corre | Experimental full field analysis for dynamic fracture of elastomer membranes[END_REF]. However, the analysis was done without explicitly modelling crack-propagation, and the crack speeds were implicitly imposed on the geometry as boundary conditions for the numerical simulations.

Since the 20th century, efforts have been devoted to model rate-dependent fracture in viscoelastic materials. Knauss [START_REF] Knauss | A review of fracture in viscoelastic materials[END_REF] provides a comprehensive 50-year review on theories developed to understand fracture in viscoelastic materials. Thouless et al. [START_REF] Thouless | A damage model of creep crack growth in polycrystals[END_REF], for instance, were among the first to describe a generalisation of linear elastic fracture mechanics to add rate dependence to the fracture process. Schapery et al. [START_REF] Schapery | Correspondence principles and a generalizedJ integral for large deformation and fracture analysis of viscoelastic media[END_REF], were the first to extend the traditional J-integral method used in linear elastic fracture mechanics to account for viscoelastic strains. Besides the theoretical methods [START_REF] Knauss | A review of fracture in viscoelastic materials[END_REF][START_REF] Schapery | Correspondence principles and a generalizedJ integral for large deformation and fracture analysis of viscoelastic media[END_REF][START_REF] Kroon | Steady-state crack growth in rubber-like solids[END_REF], many numerical techniques for simulating crack initiation and propagation have been developed in recent decades. Between others, Zhang et al. [START_REF] Zhang | Numerical study on deformations in a cracked viscoelastic body with the extended finite element method[END_REF] investigated viscoelasticity with the extended finite element approach [START_REF] Moes | A finite element method for crack growth without remeshing[END_REF], Bažant et al. [START_REF] Bažant | Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling[END_REF] formulated a time-dependent generalisation of the cohesive crack model [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF], and Yoon and Allen [START_REF] Yoon | Damage dependent constitutive behavior and energy release rate for a cohesive zone in a thermoviscoelastic solid[END_REF] developed a cohesive zone model applicable to viscoelastic materials. Further, through the continuum damage mechanics approach [START_REF] Kachanov | Introduction to continuum damage mechanics[END_REF], rate dependence was introduced to the local and non-local damage models [START_REF] Wolff | A non-local continuum damage approach to model dynamic crack branching[END_REF][START_REF] Abdullah | Continuum damage modeling of dynamic crack velocity, branching, and energy dissipation in brittle materials[END_REF] to investigate the dynamic crack behaviour.

More recently, the damage phase-field approach to fracture has proven to be a powerful tool for the prediction of crack phenomena. In fact, it has several advantages over traditional fracture mechanics methods, including the ability to capture complex crack patterns, handle crack nucleation and propagation in a unified manner, and account for material heterogeneity and anisotropy. The technique is also well-suited for simulating fracture in three-dimensional complex geometries.

The phase-field model was first introduced for fracture problems by Bourdin et al. [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF]. It is based on the variational formulation of Francfort and Marigo [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] of Griffith's theory [START_REF] Griffith | VI. The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london[END_REF]. And since the introduction of the phase-field model for fracture, it has encountered several developments and implementations. The method was employed to describe elasto-plastic [START_REF] Borden | A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects[END_REF][START_REF] Liu | Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model[END_REF][START_REF] Molnár | An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation[END_REF], thermo-elastic [START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF]; viscoelastic [START_REF] Schänzel | Phase field modeling of fracture in rubbery and glassy polymers at finite thermo-viscoelastic deformations[END_REF][START_REF] Shen | Fracture of viscoelastic solids modeled with a modified phase field method[END_REF][START_REF] Dammaß | A unified phase-field model of fracture in viscoelastic materials[END_REF][START_REF] Hai | A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials[END_REF], elasto-viscoplastic [START_REF] Shanthraj | Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture[END_REF], as well as highly heterogeneous materials [START_REF] Eid | Multiscale analysis of brittle failure in heterogeneous materials[END_REF][START_REF] Chen | FE2 methodology for discrete cohesive crack propagation in heterogenous materials[END_REF].

Regarding materials with rate-dependent behaviour, the rate dependency can either occur in the bulk, through viscoelastic effects for instance, or at the crack-tip via a rate dependency of the fracture toughness [START_REF] Bažant | Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling[END_REF]. A first proposal for a phase-field fracture model in viscoelastic solids was put forward by Schänzel [START_REF] Schänzel | Phase field modeling of fracture in rubbery and glassy polymers at finite thermo-viscoelastic deformations[END_REF]. Subsequently, Shen et al. [START_REF] Shen | Fracture of viscoelastic solids modeled with a modified phase field method[END_REF] developed a phase-field model for viscoelastic solids by defining the driving force as a combination of the elastic energy and a portion of the dissipated viscous energy, based on experimental findings [START_REF] D'amico | Moving cracks in viscoelastic materials: Temperature and energy-release-rate measurements[END_REF][START_REF] Tsunoda | Effect of materials variables on the tear behaviour of a non-crystallising elastomer[END_REF][START_REF] Carbone | Crack motion in viscoelastic solids: the role of the flash temperature[END_REF]. Loew et al. [START_REF] Loew | Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification[END_REF] considered a finite linear viscoelastic material model in which the non-equilibrium part of the stored strain energy and the accumulated viscous dissipation are indistinguishable. Dammaß et al. [START_REF] Dammaß | A unified phase-field model of fracture in viscoelastic materials[END_REF] describe a two-way coupling between damage and viscous effects, leading to a unified and thermodynamically-consistent phase-field model for fracture in viscoelastic materials. Besides, motivated by experimental findings regarding the evolution of the fracture toughness with the crack-tip speed [START_REF] Kanninen | Advanced fracture mechanics[END_REF][START_REF] Dally | On the uniqueness of the stress intensity factor-crack velocity relationship[END_REF], Miehe et al. [START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF] studied a strain rate-dependent resistance against fracture and Yin et al. [START_REF] Yin | Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method[END_REF] formulated the fracture toughness as a function of the strain rate -a feature that is readily applicable even in a pure elastic body. Various attempts have been made to propose different functions that relate the fracture toughness to the strain rates [START_REF] Gamonpilas | Determination of large deformation and fracture behaviour of starch gels from conventional and wire cutting experiments[END_REF][START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF][START_REF] Dammaß | Phase-field modelling and analysis of rate-dependent fracture phenomena at finite deformation[END_REF]. Alternatively, and in the same spirit, we suggest a novel damage-rate dependent toughness formulation.

Apart from the elementary dynamic simulations of crack branching by Hai et al. and Yin et al. in their introductory papers [START_REF] Hai | A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials[END_REF][START_REF] Yin | Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method[END_REF], previous works based on the phase-field modelling of fracture have only tackled quasi-static simulations of monotonic loading, creep, relaxation, and cyclic loading, without accounting for inertial effects. By doing so, the potential role of the inertial effects in governing the fracture behaviour is neglected. As mentioned by Molnár et al. [START_REF] Molnár | An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation[END_REF], in dynamic fracture, the surplus of released energy at the crack-tip can be transformed into kinetic energy. The difference between this additional released energy and the fracture toughness of the material determines how much energy becomes available as kinetic energy. The extra kinetic energy governs the velocity at which the crack propagates and equivalently, it governs the overall fracture behaviour. That being the case, taking into account inertial effects is undoubtedly a crucial step to appropriately analyse rate-dependent and velocity-dependent fracture phenomena from one side, and to thoroughly compare the different modelling assumptions, from the other.

Within this challenging context, this contribution explores three thermodynamically-consistent damage phase-field formulations for rate-dependent fracture in viscoelastic materials. The formulations are applied to analyse dynamic fracture with the inertial effects taken into account. The three rate-dependent formulations are implemented into the Abaqus/Standard UEL phase-field model from Molnár et al. [START_REF] Molnár | An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation[END_REF]. And by means of a numerical study of dynamic fracture in a uniform displacement strip configuration [START_REF] Nilsson | Crack propagation experiments on strip specimens[END_REF][START_REF] Freund | Dynamic fracture mechanics[END_REF][START_REF] Zhou | Study on the macroscopic behavior and the microscopic process of dynamic crack propagation[END_REF][START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF], the modelling assumptions are compared, and the corresponding limiting crack-tip speeds are discussed.

The paper is organised as follows: A brief overview of the approximation of a crack topology by the phase-field model is given along with the governing equations in Section 2. Subsequently, the three phase-field formulations are exhibited in Sections 2.1, 2.2 and 2.3 for the viscoelastic bulk, strain-rate and damage-rate dependent toughness respectively. Section 3 discusses the rate-dependent fracture simulation, while Section 4 compares the characteristics of the various rate-dependent formulations with regards to the limiting crack-tip speeds. Finally, Section 5 elaborates on the effective stiffening phenomena in rate-dependent materials.

Methods

This section portrays the underlying mathematical and physical description of the phase-field approach to model fracture in rate-dependent material. We begin by recalling the basic principles of thermodynamics that will be convenient when formulating the phase-field model for rate-dependent fracture. The classical phase-field formulation of brittle fracture in rate-independent materials and the related energy functional are then presented. Afterwards, the formulation is progressively expanded to incorporate the necessary rate-dependent components.

The thermodynamic principles [START_REF] Borgnakke | Fundamentals of thermodynamics[END_REF] surrounding the formulation of rate-dependent phase-field models for fracture can be summarised as follows: A thermodynamic system is the ensemble of particles that interact with their surrounding by exchanging mass, heat and mechanical work. Here, we only focus on the closed systems, i.e., a system that does not exchange mass with its surrounding. A reversible process is one that can be exactly retraced along the same path by reversing the changes applied. Elastic deformation is a great example of this reversibility, for if an object undergoes elastic deformation and the applied forces are removed, it returns to its original shape without any permanent changes. Conversely, an irreversible process cannot be reversed by simply reversing the changes applied. A meaningful example of irreversebility is the fracturing phenomenon, where the separation of crack surfaces that usually involves the breaking of atomic or molecular bonds within the material cannot be reversed. Lastly, a dissipative process typically involves loss of energy to the surrounding environment. Viscous dissipation is a pertinent illustration of energy dissipation, as it refers to the conversion of mechanical energy into heat, that is lost (dissipated) into the surrounding.

When it comes to modelling viscoelastic materials, there are two different approaches: single-potential models and double-potential models. These approaches are used to describe the behavior of viscoelastic materials in different ways. Single-potential models simplify the description of viscoelastic behavior by using a single potential to represent both the elastic and viscous components; such models are advantageous because they are simpler and computationally less demanding compared to double-potential models. In 1975, Halphen and Nguyen [START_REF] Halphen | Sur les matériaux standard généralisés[END_REF] introduced the theory of generalised standard materials (sometimes denoted as standard dissipative materials), the theory suggests that the constitutive behaviour of different types of materials can be derived from a pair of scalar functions that fully characterise their material behaviour. These scalar function are known as thermodynamic potentials: the free energy potential (Ψ) and the dissipation potential (Φ).

The free energy potential, specifically, represents the energy that is stored within the system and that has the ability to produce work. It accounts for both the usable energy that is available to produce work, e.g., elastic strain energy, and the energy that can be converted into other form, while being maintained within the system. On the other hand, the dissipative energy potential refers to the energy that is dissipated or lost from the system. This energy is typically associated with irreversible processes, such as viscous dissipation, a form of energy that cannot be recovered nor reused.

In this paper, the double-potential approach (free and dissipative) will be considered in the developments of the formulations to ensure a thermodynamically-consistent coupling between the phase-field damage and the rate-dependent effects. As we will show, this formulation enables to control the energy transfer between the damage and the mechanical problem, i.e., it enables the control of the quantity of the viscous energy that is assumed to promote fracture [START_REF] Tsunoda | Effect of materials variables on the tear behaviour of a non-crystallising elastomer[END_REF][START_REF] Dammaß | A unified phase-field model of fracture in viscoelastic materials[END_REF], and the quantity of dissipated (lost) energy (more details about the coupling can be found in Section 2.1).

Phase-field damage model

The principal idea of the phase-field formulation of fracture is the introduction of a diffuse crack topology. The phase-field method diffuses the sharp crack (Γ) into the volume (Ω) of the solid, circumventing the numerical problems associated with the propagating discontinuity (the crack set).

The theoretical crack-surface (discontinuity) is approximated by a function Γ 𝑙 𝑐 written in terms of a crack surface density (𝛾 𝑙 𝑐 ) that is a function of a length scale (𝑙 𝑐 ) (for the regularisation) and a continuous damage field (𝑑) :

Γ 𝑙 𝑐 = ∫ Ω 𝛾 𝑙 𝑐 (𝑑, ∇𝑑)𝑑𝑉 (1) 
The continuous damage phase-field variable describes the material's damage state. In the intact region of the material, 𝑑 takes the value of 0, while in the smeared crack (of width 𝑙 𝑐 ), 0 < 𝑑 ≤ 1. Refer to Figure 1 for a two-dimensional illustration of this notion of regularisation of the crack by the length scale (𝑙 𝑐 ) through the crack surface density function 𝛾 𝑙 𝑐 .

Various expressions of the crack-density function 𝛾 𝑙 𝑐 as a function of the damage phase-field variable 𝑑 can be found in the literature. In this paper, we adopt the linear formulation (AT1):

𝛾 𝑙 𝑐 = 3 8𝑙 𝑐 (𝑑 + 𝑙 2 𝑐 ∇𝑑 ⋅ ∇𝑑) (2) 
The adoption of the AT1 formulation guarantees an ideally linear elastic response up to the limiting stress. This is a necessary feature for conducting a thorough analysis of the phase-field model in conjunction with the various rate-dependent components.

The fracture energy can be expressed as a function of the damage variable as:

Ψ 𝑓 ≃ 𝑔 𝑐 𝛾 𝑙 𝑐 (𝑑, ∇𝑑) (3) 
where 𝑔 𝑐 is the critical energy release rate, which corresponds to the amount of energy necessary to open a unit fracture surface. In the following, we will refer to it as the fracture toughness. Note that in the case of phase-field modelling of fracture, the fracture energy Ψ 𝑓 is not considered a dissipative energy, indeed, it is typically considered as a form of free irreversible energy, in the sense that it is an energy that kept stored in the system within the damage band (irreversible) and not lost to the surroundings. The regularisation process herein considered results in the need to calculate the elastic strain-energy density (Ψ 𝑒 ) across the entire deteriorated body. To accomplish this, an energetic degradation function (𝑔(𝑑)) is introduced. This function relates mechanical fields (such as strain energy and stress) to the damage phase-field (𝑑), and is inspired by principles from damage mechanics. The specific form of the degradation function used in this study is 𝑔(𝑑) = (1 -𝑑) 2 . The elastic strain-energy density Ψ 𝑒 becomes a function of the damage-field through the degradation function 𝑔(𝑑):

Ψ 𝑒 (𝜀, 𝑑) = 𝑔(𝑑) Ψ𝑒 (𝜀) (4) 
where Ψ𝑒 (𝜀) represents the 'intact' strain-energy density and 𝜀 represents the strain tensor.

Remark 1. Classically, a unilateral contact condition is imposed by splitting the elastic strain energy into a positive part Ψ𝑒 (𝜀) + associated to damage and a part Ψ𝑒 (𝜀) -which does not activate damage. The strain energy is rewritten as Ψ 𝑒 (𝜀, 𝑑) = 𝑔(𝑑) Ψ+ 𝑒 (𝑢) + Ψ-𝑒 (𝜀). The appropriate formulation for the split has been the subject of numerous studies [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF][START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF]. The configuration investigated within this paper is primarily tensile-stress dominant and no crack closure is expected. For that, either the negative part is included or not, the results and conclusions are equivalent. With that in mind, we include the negative part all along and write the elastic strain-energy density following Equation 4as:

Ψ 𝑒 (𝜀, 𝑑) = 𝑔(𝑑) Ψ𝑒 (𝜀).
The free (stored) energy of a fractured elastic solid is additively decomposed into two parts, the elastic strain energy and the fracture energy:

Ψ(𝜀, 𝑑) ⏟⏟⏟ free (stored) = Ψ 𝑒 (𝜀, 𝑑) ⏟⏟⏟ reversible + Ψ 𝑓 (𝑑, ∇𝑑) ⏟⏞⏞⏞ ⏟⏞⏞⏞ ⏟ irreversible = 𝑔(𝑑) Ψ𝑒 (𝜀) + 𝑔 𝑐 𝛾 𝑙 𝑐 (𝑑, ∇𝑑) (5) 
And for the complete elasto-dynamic problem, the energy functional involves the following Lagrangian function :

∫ Ω ℒ (𝑢, 𝑑)𝑑Ω = ∫ Ω 𝒦 ( u) ⏟ ⏟ ⏟ kinetic 𝑑Ω -∫ Ω Ψ(𝜀, 𝑑) ⏟⏟⏟ f ree (stored) 𝑑Ω ( 6 
)
where 𝒦 corresponds to the kinetic energy 𝒦 ( u) = 1 2 𝜌 u𝑇 u, with 𝜌 the mass density of the material and u its velocity, the time derivative 𝑑𝑢 𝑑𝑡 of the displacement 𝑢. For problems where unstable crack propagation is present, the static monolithic solution tends to become numerically unstable [START_REF] Molnár | An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation[END_REF]. To have a stable implicit formulation, a staggered solution [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF] for the phase-field fracture was proposed, so the two subproblems (mechanical and phase-field) can be independently solved:

𝛿ℒ (𝑢, 𝑑) = 0 ⇔ U 0 𝜕ℒ 𝜕𝑢 𝛿𝑢 + U 0 𝜕ℒ 𝜕𝑑 𝛿𝑑 ∀𝛿𝑢, ∀𝛿𝑑 (7) 
The notation 0 𝑥 signifies that 𝑥 cancels to zero. This permits taking the variation of both energies to write the corresponding Eulerian equations (strong form) for the displacement problem:

𝜕ℒ 𝜕𝑢 = 0 ∀𝛿𝑢 → ∇ ⋅ 𝜎 -𝜌 ü = 0 in Ω (8a) 𝜎 ⋅ 𝑛 = 𝐹 𝑁𝑒 on 𝜕Ω 𝑁𝑒 (8b) 𝑢 = 𝑢 𝐷𝑖 on 𝜕Ω 𝐷𝑖 (8c)
and for the phase-field problem, where only the free energy (driving force) is tyically considered:

𝜕Ψ 𝜕𝑑 = 0 ∀𝛿𝑑 → 𝜕𝑔(𝑑) 𝜕𝑑 Ψ𝑒 + 𝑔 𝑐 𝜕𝛾 𝑙 𝑐 𝜕𝑑 = -2(1 -𝑑) Ψ𝑒 + 𝑔 𝑐 3 8𝑙 𝑐 (1 -2𝑙 2 𝑐 Δ𝑑) = 0 in Ω (9a) ∇𝑑 ⋅ 𝑛 = 0 on 𝜕Ω (9b) ḋ ≥ 0 in Ω (9c)
while ensuring damage irreversibility by the bound constrained optimisation algorithm [START_REF] Molnár | Thermodynamically consistent linear-gradient damage model in abaqus[END_REF]. ü is the acceleration of the material. 𝜎 is the Cauchy stress tensor, 𝑛 is the unit normal. 𝐹 𝑁𝑒 corresponds to the forces applied to the boundary 𝜕Ω 𝑁𝑒 , 𝑢 𝐷𝑖 corresponds to the imposed displacements on the boundary 𝜕Ω 𝐷𝑖 (Figure 1). All implementation details with spatial and temporal discretisation can be found in reference [START_REF] Molnár | Thermodynamically consistent linear-gradient damage model in abaqus[END_REF].

The total mechanical dissipation of an isothermal process, should be non-negative and can be written from the Clausius-Duhem inequality as:

Ḋ = 𝜎 ∶ ε -Ψ ≥ 0 = 𝜎 ∶ ε - ( 𝜕Ψ 𝜕𝜀 ∶ ε + & & & & b 0, f rom Equation (9a) 𝜕Ψ 𝜕𝑑 ḋ) = ( 𝜎 - 𝜕Ψ 𝜕𝜀 ) ⏟⏞⏞⏞⏟⏞⏞⏞⏟ 0 ∶ ε ≥ 0 (10) 
The 'over-dot' ( ̇) denotes the time derivative 𝑑 𝑑𝑡 . Although the damage is irreversible, in the context of the phase-field problem, intrinsic mechanical dissipation is absent; as the material is damaged, the energy is stored in the system as a fracture (surface) energy and not dissipated into its surroundings.

From Equation 10, the Cauchy stress is written as:

𝜎 = 𝜕Ψ 𝜕𝜀 = 𝜕Ψ 𝑒 𝜕𝜀 + U 0 𝜕Ψ 𝑓 𝜕𝜀 = 𝑔(𝑑) 𝜕 Ψ𝑒 𝜕𝜀 ( 11 
)
After showcasing the classical rate-independent phase-field model of fracture, rate-dependent ingredients are added to the problem towards a thorough rate-dependent damage phase-field formulation. It is considered that the rate dependency in a damaging material can either occur in the bulk, through viscoelastic effects for instance, or at the crack-tip via a rate dependency of the fracture toughness.

For each subsequent model, the total free energy, the internal energy production, the updated expression of the stresses, the strong form of the phase-field problem and the thermodynamic consistency of the model are progressively detailed.

Viscoelasticity

In case of viscoelastic materials, the energy dissipation mechanism at the vicinity of a crack has two main contributions [START_REF] Shen | Fracture of viscoelastic solids modeled with a modified phase field method[END_REF]: the processes advancing the crack in the fracture process zone (the innermost closest region to the crack tip), and the viscous dissipation in the bulk. The viscous dissipation in the bulk stems from the irreversible processes in the viscous material and refer to the actual loss of energy. It usually manifests by a generation of heat. It can be related to a dissipative potential (Φ) that represents the potential for energy loss due to the viscous effects in the material [START_REF] Halphen | Sur les matériaux standard généralisés[END_REF][START_REF] Lemaître | Mechanics of solid materials[END_REF]. Mehrmashhadi et al. investigated the role played by the local heating around the crack-tip with peridynamics on the dynamic behaviour of PMMA [START_REF] Mehrmashhadi | Uncovering the dynamic fracture behavior of pmma with peridynamics: The importance of softening at the crack tip[END_REF] -a synthetic polymer that exhibits a viscoelastic behaviour [START_REF] Capodagli | Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: a test of time-temperature superposition[END_REF][START_REF] Seghir | A Novel Image-based Ultrasonic Test to Map Material Mechanical Properties at High Strain-rates[END_REF]. However, their investigation does not consider a strain-rate dependent viscoelastic model although it takes into account heating at the crack-tip generated by the vciscous dissipation.

Experimental evidence shows that resistance against failure of many rate-dependent materials decreases with temperature [START_REF] Tsunoda | Effect of materials variables on the tear behaviour of a non-crystallising elastomer[END_REF]. In viscoelastic materials, mechanical energy can be released through relaxation mechanisms [START_REF] Lemaître | Mechanics of solid materials[END_REF]. This means that a portion of the strain energy that has been stored in the material can convert into heat, resulting in an increase in temperature. Hence, viscous dissipation can be assumed to promote fracture. Certain papers [START_REF] Shen | Fracture of viscoelastic solids modeled with a modified phase field method[END_REF][START_REF] Dammaß | A unified phase-field model of fracture in viscoelastic materials[END_REF] incorporate the effects of viscous dissipation as heat into the free energy in order to promote fracture. This is achieved by introducing a factor 𝜁 that represents the portion of viscous energy that ultimately promotes fracture. This approach provides a phenomenological account of the role of heat in viscoelastic dissipation as a promoter of fracture. The viscous energy can be split into two parts, one that is assumed to be a free energy, which corresponds to the portion that promotes fracture, and one that is dissipated (lost) to the surrounding, which corresponds to the portion that can neither be recovered nor produce work:

Ψ 𝑣 ( ε, 𝑑) ⏟⏞ ⏟⏞ ⏟ viscous energy = 𝜁 Ψ 𝑣 ( ε, 𝑑) ⏟⏞⏞ ⏟⏞⏞ ⏟ free (irreversible) + (1 -𝜁 )Ψ 𝑣 ( u, 𝑑) ⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟ dissipative (irreversible) = 𝜁 𝑔(𝑑) Ψ𝑣 ( ε) + (1 -𝜁 )𝑔(𝑑) Ψ𝑣 ( ε) ( 12 
)
Ψ𝑣 corresponds to the intact viscous energy density, which can take any suitable form based on the considered model. It is assumed that both viscous and elastic properties are equivalently affected by damage, and both are degraded by the same degradation function 𝑔(𝑑), through which the coupling between the phase-field problem and the viscoelastic effects is possible. Ψ 𝑣 = 𝑔(𝑑) Ψ𝑣 ( u, 𝑑) can be understood as the viscous dissipation that has been accumulated in the presence of fracture [START_REF] Dammaß | A unified phase-field model of fracture in viscoelastic materials[END_REF]. When 𝜁 = 0, mechanical energy is lost in the bulk, and the effects of viscous dissipation do not foster fracture. On the other hand, when 𝜁 = 1, all of the viscous heat that is dissipated in the vicinity of the crack contributes to the softening of the material, and thus promotes damage formation. The total free energy density of the phase-field problem in a viscoelastic material is written as [START_REF] Dammaß | A unified phase-field model of fracture in viscoelastic materials[END_REF]:

Ψ(𝜀, ε, 𝑑) ⏟⏞⏞ ⏟⏞⏞ ⏟ free (stored) = Ψ 𝑒 (𝜀, 𝑑) ⏟⏟⏟ reversible + 𝜁 Ψ 𝑣 ( ε, 𝑑) ⏟⏞⏞ ⏟⏞⏞ ⏟ irreversible + Ψ 𝑓 (𝑑, ∇𝑑) ⏟⏞⏞⏞ ⏟⏞⏞⏞ ⏟ irreversible = 𝑔(𝑑) Ψ𝑒 (𝜀, 𝑑) + 𝜁 𝑔(𝑑) Ψ𝑣 ( ε) + 𝑔 𝑐 𝛾 𝑙 𝑐 ( 13 
)
When it comes to modelling viscoelastic materials, often, significant differences in the response between spheric and deviatoric deformations are generally observed [START_REF] Lemaître | Mechanics of solid materials[END_REF][START_REF] Tschoegl | The Phenomenological Theory of Linear Viscoelastic Behavior[END_REF]. In this paper, and in accordance with Luo et al. [START_REF] Luo | Continuum constitutive laws to describe acoustic attenuation in glasses[END_REF], a Kelvin-Voigt approach is employed to analyse the spheric portion of the stress-strain behavior, as shown in Figure 2(a), and a Maxwell-like model is utilised for the deviatoric part of the stress-strain behavior, as illustrated in Figure 2(b). This approach is grounded in the assumption that the viscous flow generated by the deviatoric component will be constrained by the solid's elasticity. And it is supported by the observation that the hydrostatic component primarily results in a delayed response without causing significant macroscopic flow, as described in references [START_REF] Luo | Continuum constitutive laws to describe acoustic attenuation in glasses[END_REF][START_REF] Kaliske | Formulation and implementation of three-dimensional viscoelasticity at small and finite strains[END_REF]. In addition to the complete split between spheric and deviatoric components [START_REF] Luo | Continuum constitutive laws to describe acoustic attenuation in glasses[END_REF], this formulation displays another intriguing structure: a complete split between the elastic and the viscous components 1 :

𝐾 𝑑 𝜀 ℎ𝑦𝑑 𝑒 𝜎 ℎ𝑦𝑑 𝑒 𝜂 𝑑 𝜀 ℎ𝑦𝑑 𝑣 𝜎 ℎ𝑦𝑑 𝑣 (a) Kelvin-Voigt model (hydrostatic) 𝐾 𝑠 𝜀 𝑑𝑒𝑣 𝑒 𝜎 𝑒 𝐾 𝑠1 𝜀 𝑑𝑒𝑣 1𝑒 𝜎 𝑑𝑒𝑣 1𝑒 𝜂 𝑠 𝜀 𝑑𝑒𝑣 𝑣 𝜎 𝑑𝑒𝑣 𝑣 (b) Standard-linear model (deviatoric)
𝜀 = 𝜀 ℎ𝑦𝑑 + 𝜀 𝑑𝑒𝑣 (14a) 𝜎 = 𝜎 ℎ𝑦𝑑 + 𝜎 𝑑𝑒𝑣 (14b) 𝜎 ℎ𝑦𝑑 = 𝜎 ℎ𝑦𝑑 𝑒 + 𝜎 ℎ𝑦𝑑 𝑣 (14c) 𝜎 𝑑𝑒𝑣 = 𝜎 𝑑𝑒𝑣 𝑒 + 𝜎 𝑑𝑒𝑣 𝑣 , which gives: (14d) 𝜎 = 𝜎 ℎ𝑦𝑑 𝑒 + 𝜎 𝑑𝑒𝑣 𝑒 ⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟ elastic + 𝜎 ℎ𝑦𝑑 𝑣 + 𝜎 𝑑𝑒𝑣 𝑣 ⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟ viscous (14e) 
And the stresses can be formulated through a complete separation from both the elastic strain energy and the viscous energy as:

𝜎 𝑒 = 𝜕Ψ 𝑒 𝜕𝜀 = 𝜕Ψ 𝑒 𝜕𝜀 𝑒 = 𝑔(𝑑) 𝜕 Ψ𝑒 𝜕𝜀 (15a) 𝜎 𝑣 = 𝜕Ψ 𝑣 𝜕𝜀 = 𝜕Ψ 𝑣 𝜕𝜀 𝑣 = 𝑔(𝑑) 𝜕 Ψ𝑣 𝜕𝜀 (15b)
The superscript ℎ𝑦𝑑 corresponds to the hydrostatic stress 𝜎 and strain 𝜖 tensors. The superscript 𝑑𝑒𝑣 corresponds to the deviatoric stresses and strains. The subscripts 𝑒 and 𝑣 correspond to the elastic/viscous parts of the strains and stresses.

This structure will greatly improve the implementation of the energy-based rate-dependent phase-field method, as it allows for the clear separation of different energies based on their hydrostatic/deviatoric components, as well as whether they are dissipative or free energies.

The total dissipated viscous energy Ψ𝑣 at time 𝑡, which has been accumulated in the absence of fracture (intact), takes the following form as a function of the undamaged viscous stresses and strains:

Ψ𝑣 (𝑡) = ∫ 𝑡 -∞ σ𝑣 ∶ ε𝑣 𝑑𝜏 = ∫ 𝑡 𝑛 -∞ σ𝑣 ∶ ε𝑣 𝑑𝜏 + ∫ 𝑡 𝑡 𝑛 σ𝑣 ∶ ε𝑣 𝑑𝜏 = Ψ𝑣 (𝑡 𝑛 ) + ∫ 𝑡 𝑡 𝑛 σ𝑣 ∶ 𝑑𝜀 𝑣 𝑑𝜏 𝑑𝜏 (16)
After introducing the general expression of the free energy in a viscoelastic solid (Equation ( 13)) and elaborating on the impact of the choice of the viscoelastic model on the separation of the elastic and viscous energies, we give the strong form for the phase-field problem similarly to Equation (8a):

𝜕Ψ 𝜕𝑑 = 𝜕𝑔(𝑑) 𝜕𝑑 Ψ𝑒 + 𝜁 𝜕𝑔(𝑑) 𝜕𝑑 Ψ𝑣 + 𝑔 𝑐 𝜕𝛾 𝑙 𝑐 𝜕𝑑 = -2(1 -𝑑)( Ψ𝑒 + 𝜁 Ψ𝑣 ) + 𝑔 𝑐 3 8𝑙 𝑐 (1 -2𝑙 2 𝑐 Δ𝑑) = 0 in Ω (17a) ∇𝑑 ⋅ 𝑛 = 0 on 𝜕Ω (17b) ḋ ≥ 0 in Ω (17c)
The dissipation is written from the Clausius-Duhem inequality as:

Ḋ = 𝜎 ∶ ε -Ψ ≥ 0 = (𝜎 𝑒 + 𝜎 𝑣 ) ∶ ε - ( 𝜕Ψ 𝜕𝜀 ∶ ε + & & & & b 0, f rom Equation (17a) 𝜕Ψ 𝜕𝑑 ḋ) = ( 𝜎 𝑒 - 𝜕Ψ 𝑒 𝜕𝜀 ) ⏟⏞⏞⏞⏞⏞ ⏟⏞⏞⏞⏞⏞ ⏟ 0 ∶ ε + ( 𝜎 𝑣 -𝜁 𝜕Ψ 𝑣 𝜕𝜀 ) ∶ ε = (𝜎 𝑣 -𝜁 𝜎 𝑣 ) ∶ ε𝑣 = (1 -𝜁 )𝜎 𝑣 ∶ ε𝑣 ≥ 0 (18) 
𝜎 𝑣 ∶ ε𝑣 corresponds to the dissipation rate in the presence of damage, so naturally 𝜎 𝑣 ∶ ε𝑣 ≥ 0. The above inequality stands for 𝜁 ∈ [0, 1]. And the thermodynamics consistency of such model is fulfilled. Following the discussion of the phase-field formulation for viscoelastic materials, i.e., rate-dependency in the bulk, the next section focuses on the development of a phase-field model that incorporates a rate dependency of the fracture toughness for a rate-independent (elastic) bulk. First, the notion of the rate-dependency of the fracture toughness is previewed.

Strain-rate dependent fracture toughness

It was postulated theoretically [START_REF] Kanninen | Advanced fracture mechanics[END_REF][START_REF] Dally | On the uniqueness of the stress intensity factor-crack velocity relationship[END_REF] and observed experimentally [START_REF] Fineberg | Instability in the propagation of fast cracks[END_REF][START_REF] Bischoff | Compressive behaviour of concrete at high strain rates[END_REF] that the fracture toughness of most materials (even brittle ones) increases when the crack accelerates. This strain-rate effect is also commonly found in civil engineering structures and in polymeric materials. In the latter, the rate-dependent effects can be explained by the following: when fast loading is applied, the external energy required to break the material is higher, since the chemical bonds of the chains have to break (orange links in Figure 3(a)). In contrast, for slow loading, the chain segments can rearrange and torn out of the matrix which requires a lower level of energy in order to be broken (blue chains in Figure 3(a)) [START_REF] Shen | Fracture of viscoelastic solids modeled with a modified phase field method[END_REF][START_REF] Dammaß | Phase-field modelling and analysis of rate-dependent fracture phenomena at finite deformation[END_REF]. For instance, Sharon et al. [START_REF] Sharon | Energy dissipation in dynamic fracture[END_REF] report a strong increase of the fracture energy with the crack velocity in PMMA. They show that fracture energy ranges from approximately 1000 J/m 2 at a crack-tip velocity 𝑣 𝑐 = 0.2𝑐 𝑅 up to 8000 J/m 2 at 𝑣 𝑐 = 0.68𝑐 𝑅 . Quasi-static experiments on PMMA usually report values of fracture energy in the range of 300 -400 J/m 2 [START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF]. This highlights the fact that dynamic behaviour of such materials is indeed complex, and that rate-dependency is a necessity to accurately model their behaviour.

Approaches considering crack-velocity-dependent fracture toughness, that assume that fracture toughness would increase accordingly to the tip speed are available [START_REF] Kanninen | Advanced fracture mechanics[END_REF][START_REF] Özenç | Approaches to model failure of materials by configurational mechanics: theory and numerics[END_REF]. However, the uniqueness of the relation between crack velocity and the fracture toughness is questionable [START_REF] Dally | On the uniqueness of the stress intensity factor-crack velocity relationship[END_REF]. Yet, there is still no consensus on the manner. For instance, Özenç [START_REF] Özenç | Approaches to model failure of materials by configurational mechanics: theory and numerics[END_REF] implements the following expression for discrete crack approximation:

𝑔 𝑐 = 𝑔 𝑐0 [ 1 + ( 𝑣 𝑐 𝑐 ∞ ) 𝛽 ] (19) 
Here, 𝑔 𝑐0 is the quasi-static value of the fracture toughness, 𝑐 ∞ is a reference crack propagation velocity. 𝑐 ∞ can be taken equal to the theoretically limiting Rayleigh wave-speed 𝑐 𝑅 . 𝛽 is an amplification factor whose influence is illustrated in Figure 3(b). When using the phase-field continuous method instead of discrete crack approximations, obtaining and measuring the instantaneous crack-propagation velocity is challenging. This is because the crack is represented by a damage band of finite width, making it difficult to determine the exact crack-tip positions. Inaccurate predictions of crack-tip positions can then lead to incorrect velocity calculations, particularly for dynamic fracture. But most importantly, how could the material know locally, how should the toughness be modified based on a globally observed/measured quantity (𝑣 𝑐 )?

The consideration of a strain-rate dependent toughness seemed a flexible and natural choice by Yin et al. [START_REF] Yin | Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method[END_REF]. The availability of the deformation rate in continuous simulations, and the observations that link the strain-rates around the crack-tip to post-processed crack-tip speeds, allows accounting for the crack-velocity-dependent fracture toughness through a strain-rate dependency. In the following, we tackle the phase-field formulation of fracture in an elastic material with strain-rate dependent toughness. Yin et al. [START_REF] Yin | Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method[END_REF] assume that fracture toughness would quadratically increase accordingly to the rate of the strain tensor and that the static fracture toughness would be recovered at small strain-rates. The instantaneous toughness is written as [START_REF] Yin | Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method[END_REF]:

𝑔 𝑐 ( ε) = 𝑔 𝑐0 (1 + 𝜏 2 𝜀 ε ∶ ε) (20)
where 𝜏 𝜀 is a characteristic time that would specify the amount of the strain-rate dependency of the fracture toughness. Unlike in reference [START_REF] Yin | Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method[END_REF], here, it is assumed that the rate-dependent fracture toughness depends on the rate of the strain independently on whether it is a compressive or a tensile rate, since the configuration to be analysed here is primarily tensile-stress dominant and no crack closure is modeled. Moreover, if the material is in compression, a modification of the fracture toughness 𝑔 𝑐 would have no effect on its behaviour, since the spectral split of the strain energy would prohibit damaging. Yin et al. [START_REF] Yin | Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method[END_REF] also add a degradation function that multiplies 𝜏 𝜀 to basically prevent an increase of the fracture toughness in the damaged regions. However, it is believed that the degradation of the material limits the strain-rates in the damaged regions and naturally prevents the undesired increase in the fracture toughness in the already-damaged region. Of course, the consideration of a quadratic model (Equation ( 20)) does not guarantee a higher limit on the toughness which may not be accurate according to some experimental findings [START_REF] Gamonpilas | Determination of large deformation and fracture behaviour of starch gels from conventional and wire cutting experiments[END_REF]. Knowingly, multiple efforts were made to suggest different functions relating the fracture toughness to the strain-rate with the sigmoid-shaped function proposed by Miehe et al. [START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[END_REF] and followed by Dammaß et al. [START_REF] Dammaß | Phase-field modelling and analysis of rate-dependent fracture phenomena at finite deformation[END_REF]. However, this adds to the complexity of the implementation. We will be restricted to the used of the strain-rate dependency of the toughness as given in Equation [START_REF] D'amico | Moving cracks in viscoelastic materials: Temperature and energy-release-rate measurements[END_REF].

The incorporation of strain-rate dependency of the fracture toughness into the phase-field model of fracture yields the following expression for total free energy:

Ψ(𝜀, ε, 𝑑) ⏟⏞⏞ ⏟⏞⏞ ⏟ free (stored) = Ψ 𝑒 (𝜀, 𝑑) ⏟⏟⏟ reversible + Ψ 𝑓 ( ε, 𝑑, ∇𝑑) ⏟⏞⏞⏞⏞⏞ ⏟⏞⏞⏞⏞⏞ ⏟ irreversible =𝑔(𝑑) Ψ𝑒 (𝜀) + 𝑔 𝑐 ( ε)𝛾 𝑙 𝑐 =𝑔(𝑑) Ψ𝑒 (𝜀) + 𝑔 𝑐0 (1 + 𝜏 2 𝜀 ε ∶ ε)𝛾 𝑙 𝑐 (21) 
We give the strong form for the phase-field problem of fracture in an elastic material with strain-rate dependent toughness:

𝜕Ψ 𝜕𝑑 = 𝜕𝑔(𝑑) 𝜕𝑑 Ψ𝑒 + 𝑔 𝑐 𝜕𝛾 𝑙 𝑐 𝜕𝑑 = -2(1 -𝑑) Ψ𝑒 + 𝑔 𝑐0 (1 + 𝜏 2 𝜀 ε ∶ ε) 3 8𝑙 𝑐 (1 -2𝑙 2 𝑐 Δ𝑑) = 0 in Ω (22a) ∇𝑑 ⋅ 𝑛 = 0 on 𝜕Ω (22b) ḋ ≥ 0 in Ω (22c)
Here, the fracture energy term encloses a strain dependency, more specifically, a strain-rate dependency. A linear approximation of the temporal discretisation yields the following strain rates:

ε(𝑡 = 𝑡 𝑛+1 ) ≃ 𝜀(𝑡 𝑛+1 ) -𝜀(𝑡 𝑛 ) Δ𝑡 (23) 
From here, the rate of internal dissipation can be approximated within an infinitesimal time step Δ𝑡, with the consideration of an additional internal variable corresponding to the strain-rate tensor at a previous time step. It reads:

Ḋ = 𝜎 ∶ ε -Ψ ≥ 0 ≃𝜎 ∶ ε - ( 𝜕Ψ 𝜕𝜀(𝑡 𝑛+1 ) ∶ ε(𝑡 𝑛+1 ) + 𝜕Ψ 𝜕𝜀(𝑡 𝑛 ) ∶ ε(𝑡 𝑛 ) + 0, f rom Equation (22a) 𝜕Ψ 𝜕𝑑 ḋ) = ( 𝜎 - ( 𝜕Ψ 𝑒 𝜕𝜀(𝑡 𝑛+1 ) + 𝜕Ψ 𝑓 𝜕𝜀(𝑡 𝑛+1 ) ) ) ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ 0 ∶ ε(𝑡 𝑛+1 ) - 𝜕Ψ 𝑓 𝜕𝜀(𝑡 𝑛 ) ∶ ε(𝑡 𝑛 ) (24) 
Evaluating the total Cauchy stress from Equation ( 24) gives a viscous-like stress term that contributes to the total stresses:

𝜎 = 𝜕Ψ 𝑒 𝜕𝜀(𝑡 𝑛+1 ) + 𝜕Ψ 𝑓 𝜕𝜀(𝑡 𝑛+1 ) = 𝑔(𝑑) 𝜕 Ψ𝑒 𝜕𝜀 + 𝜕𝑔 𝑐 ( ε) 𝜕𝜀 𝛾 𝑙 𝑐 = 𝑔(𝑑) 𝜕 Ψ𝑒 𝜕𝜀 + 𝜕[𝑔 𝑐0 (1 + 𝜏 2 𝜀 ε ∶ ε)] 𝜕𝜀 𝛾 𝑙 𝑐 = 𝑔(𝑑) 𝜕 Ψ𝑒 𝜕𝜀 + 𝑔 𝑐0 𝜏 2 𝜀 𝛾 𝑙 𝑐 𝜕( ε ∶ ε) 𝜕𝜀 = 𝜎 𝑒 + 𝜎 𝑓 ( 25 
)
𝜎 𝑓 is the viscous-like stress term contributing to the total stresses and inherent to the strain-rate-dependency of the toughness, it can be rewritten as:

𝜎 𝑓 = 𝑔 𝑐0 𝜏 2 𝜀 𝛾 𝑙 𝑐 𝜕( ε ∶ ε) 𝜕𝜀 = 𝑔 𝑐0 𝜏 2 𝜀 𝛾 𝑙 𝑐 𝜕( ε ∶ ε) 𝜕 ε ∶ 𝜕 ε 𝜕𝜀 = 𝑔 𝑐0 𝜏 2 𝜀 𝛾 𝑙 𝑐 2 ε ∶ 𝜕 ε 𝜕𝜀 (26)
Following the linear approximation of the temporal discretisation, the viscous-like stress 𝜎 𝑓 can be approximated by:

𝜎 𝑓 =𝑔 𝑐0 𝜏 2 𝜀 𝛾 𝑙 𝑐 2 ε ∶ 𝜕 ε 𝜕𝜀 ≃𝑔 𝑐0 𝜏 2 𝜀 𝛾 𝑙 𝑐 2 ε 1 Δ𝑡 (27) 
And the additional term in the dissipation in Equation ( 24) reads:

Ḋ = - 𝜕Ψ 𝑓 𝜕𝜀(𝑡 𝑛 ) ε(𝑡 𝑛 ) = 𝑔 𝑐0 𝜏 2 𝜀 𝛾 𝑙 𝑐 1 Δ𝑡 2 ε(𝑡 𝑛+1 ) ∶ ε(𝑡 𝑛 ) ≃ 𝑔 𝑐0 𝜏 2 𝜀 𝛾 𝑙 𝑐 1 Δ𝑡 2 ε(𝑡 𝑛+1 ) ∶ ε(𝑡 𝑛+1 ) ≥ 0 (28) 
This thermodynamically-consistent dissipation rate is related to the viscous-like strains inherent to the strain-rate dependency of the toughness in the phase-field model. Next, we describe the formulation of the phase-field model of fracture in an elastic material with damage-rate dependent toughness.

Damage-rate dependent fracture toughness

Alternatively to the strain-rate dependent toughness model, we propose a model that relates the fracture toughness to the rate of damage at the crack-tip. The motivation behind this choice is discussed later, in Section 3.1. A linear model is proposed to link the toughness around the crack tip to the damage rate:

𝑔 𝑐 ( ḋ) = 𝑔 𝑐0 (1 + 𝜏 𝑑 ḋ) ( 29 
)
Here, 𝜏 𝑑 relates to a characteristic time that determines the amount of damage-rate-dependency of the fracture toughness. As the damage converges to the value 𝑑 = 1, its rate tends to zero and the static value of the toughness should be recovered. At the crack-tip, the damage rate is found to increase linearly with the crack-tip velocity, while a quadratic evolution is observed for the strain-rates as a function of the crack-tip velocity (Section 3.1). Further, we note that, unlike the strain rates, the damage rates around the crack tip do not decline as the crack widens (Section 3.1); this further demonstrates the robustness of such a formulation -as compared to a strain-rate dependent toughness formulation-to account for the crack-velocity-dependency of the fracture.

The incorporation of damage-rate dependency of the fracture toughness into the phase-field model of fracture yields the following expression for total free energy:

Ψ(𝜀, 𝑑) ⏟⏟⏟ free (stored) = Ψ 𝑒 (𝜀, 𝑑) ⏟⏟⏟ reversible + Ψ 𝑓 ( ḋ, 𝑑, ∇𝑑) ⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟ irreversible = 𝑔(𝑑) Ψ𝑒 (𝜀, 𝑑) + 𝑔 𝑐 ( ḋ)𝛾 𝑙 𝑐 = 𝑔(𝑑) Ψ𝑒 (𝜀, 𝑑) + 𝑔 𝑐0 (1 + 𝜏 𝑑 ḋ)𝛾 𝑙 𝑐 (30)
The strong form for the phase-field problem for an elastic material with a damage-rate dependent fracture toughness reads:

𝜕Ψ 𝜕𝑑 = 𝜕𝑔(𝑑) 𝜕𝑑 Ψ𝑒 + 𝑔 𝑐 𝜕𝛾 𝑙 𝑐 𝜕𝑑 + 𝜕𝑔 𝑐 𝜕𝑑 𝛾 𝑙 𝑐 = -2(1 -𝑑) Ψ𝑒 + 𝑔 𝑐0 (1 + 𝜏 𝑑 ḋ) 3 8𝑙 𝑐 (1 -2𝑙 2 𝑐 Δ𝑑) + 𝑔 𝑐0 𝜏 𝑑 d ḋ 3 8𝑙 𝑐 (𝑑 + 𝑙 2 𝑐 ∇𝑑 ⋅ ∇𝑑) = 0 in Ω (31a) ∇𝑑 ⋅ 𝑛 = 0 on 𝜕Ω (31b) ḋ ≥ 0 in Ω (31c)
Following the linear approximation of the temporal discretisation, the following damage rates can be yielded:

ḋ(𝑡 = 𝑡 𝑛+1 ) ≃ 𝑑(𝑡 𝑛+1 ) -𝑑(𝑡 𝑛 ) Δ𝑡 (32) 
And the rate of internal dissipation can be approximated within an infinitesimal time step Δ𝑡 with the consideration of an additional internal variable corresponding to the damage variable at a previous time step (𝑡 𝑛 ). The dissipation reads:

Ḋ = 𝜎 ∶ ε -Ψ ≥ 0 = 𝜎 ∶ ε - ( 𝜕Ψ 𝜕𝜀(𝑡 𝑛+1 ) ε(𝑡 𝑛+1 ) + 𝜕Ψ 𝜕𝑑(𝑡 𝑛 ) ḋ(𝑡 𝑛 ) + $ $ $ $ $ $ $ $ X 0, f rom Equation (31a) 𝜕Ψ 𝜕𝑑(𝑡 𝑛+1 ) ḋ(𝑡 𝑛+1 ) ) = ( 𝜎 - 𝜕Ψ 𝑒 𝜕𝜀(𝑡 𝑛+1 ) ) ⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟ 0 ∶ ε(𝑡 𝑛+1 ) - 𝜕Ψ 𝑓 𝜕𝑑(𝑡 𝑛 ) ḋ(𝑡 𝑛 ) (33) 
The additional dissipation term is related to the damage-rate dependency of the fracture toughness appears:

Ḋ = - 𝜕Ψ 𝑓 𝜕𝑑(𝑡 𝑛 ) ḋ(𝑡 𝑛 ) = 𝑔 𝑐0 𝜏 𝑑 𝛾 𝑙 𝑐 Δ𝑡 ḋ(𝑡 𝑛 ) ≃ 𝑔 𝑐0 𝜏 𝑑 𝛾 𝑙 𝑐 Δ𝑡 ḋ(𝑡 𝑛+1 ) ≥ 0 (34) 
Remark 2. When considering rate-dependent toughness, and if a viscoelastic bulk is to be considered, the total dissipation is the summation of the dissipation related to the viscous strains (viscoelastic dissipation -Equation ( 18)) and the dissipation related to the rate dependent toughness -Equations [START_REF] Gent | The effect of strain upon the velocity of sound and the velocity of free retraction for natural rubber[END_REF] or [START_REF] Hilber | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF].

Crack-tip velocities in rate-dependent materials

We conduct a numerical study on the dynamic fracture response of various rate-dependent materials on a uniform displacement strip configuration [START_REF] Freund | Dynamic fracture mechanics[END_REF][START_REF] Zhou | Study on the macroscopic behavior and the microscopic process of dynamic crack propagation[END_REF][START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF]. The implementation was carried out in Abaqus [START_REF] Molnár | 2D and 3D abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[END_REF][START_REF] Molnár | Thermodynamically consistent linear-gradient damage model in abaqus[END_REF].

The uniform displacement strip draws inspiration from the earlier studies of references [START_REF] Nilsson | Crack propagation experiments on strip specimens[END_REF][START_REF] Freund | Dynamic fracture mechanics[END_REF], which involved a steady crack growing at a velocity 𝑣 𝑐 in a homogeneous and isotropic elastic thin strip of width 2𝐻. In these studies, the edges of the strip were subjected to a uniform normal displacement 𝑢 0 . The current configuration also incorporates the findings of recent experimental and numerical investigations by Corre et al. [START_REF] Corre | Experimental full field analysis for dynamic fracture of elastomer membranes[END_REF] and Kamasamudram et al. [START_REF] Kamasamudram | The role played by viscoelasticity in the bulk material during the propagation of a dynamic crack in elastomers[END_REF].

Here, only half the specimen will be modelled. The half-strip geometry and the applied boundary conditions are shown in Figure 4. The dimensions of the specimen are 𝐿 = 80 mm for length and 𝐻 = 20 mm for half-width. Unlike the procedure followed in references [START_REF] Corre | Experimental full field analysis for dynamic fracture of elastomer membranes[END_REF] and [START_REF] Kamasamudram | The role played by viscoelasticity in the bulk material during the propagation of a dynamic crack in elastomers[END_REF], our model has a pre-existing crack of length 𝑎 = 10 mm. This crack is represented both geometrically and through the imposed Dirichlet boundary condition 𝑑 = 1 (fully broken) on the initial crack surface. The specimen is pre-strained by applying uniform displacements 𝑢 0 in the vertical direction on the top surface, and the bottom surface is held fixed in the vertical direction (Figure 4). During the pre-strain step, the top is loaded statically (without the effect of inertia) to reach the target value 𝑢 0 ; the damaging is deactivated. In this step, the evolution of damage is disabled in order to model dynamic crack growth later on. If damage were to be applied during the static pre-stretch, the crack would initiate much earlier than the target value, due to the additional dissipation (energy release rate) required for dynamic crack propagation [START_REF] Freund | Dynamic fracture mechanics[END_REF][START_REF] Doitrand | Dynamic crack initiation assessment with the coupled criterion[END_REF]. After the target displacement is reached, the damage phase-field is activated and the crack initiates from the notch.

The specimen is discretised by 36 472 four-node bilinear plane-strain quadrilateral elements and the mesh is refined to a size ℎ 𝑚 = 0.1 mm in the region where the crack is expected to evolve. As mentioned by Bleyer et al. [START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF], the herein considered configuration closely resembles the infinite strip configuration [START_REF] Freund | Dynamic fracture mechanics[END_REF], in which a steady-state propagation occurs with a fracture energy equivalent to the initially stored strain-energy. This makes this configuration appropriate to analyse velocity-dependent and rate-dependent fracture phenomena. 

Rate-independent model

We first investigate the configuration with the classical rate-independent phase-field model. Table 1 resumes the overall model and material parameters considered in the rate-independent simulations. For an imposed displacement of 𝑢 0 = 0.0741 mm, the corresponding damage evolution and the crack-tip speed of the main crack are shown in Figure 5. The crack is initiated with a tip-speed of 𝑣 𝑐 = 400 m/s. Initially, an elastic energy (≃ 𝐸𝑢 2 0 𝐿∕𝐻) is stored in the system due to the static loading [START_REF] Freund | Dynamic fracture mechanics[END_REF][START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF]. Once the damage is activated, this energy is to be instantly released and a crack initiates with a non-null initial tip speed 𝑣 𝑐 = 400 m/s. This non-zero initial crack-tip velocity is also observed in a similar configuration reported in reference [START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF]. The profile of the phase-field crack starts to broaden as the tip speed reaches 𝑣 𝑐 = 500 m/s. The crack accelerates to a limiting velocity below the Rayleigh wave speed 𝑣 𝑐 = 640 m/s ≃ 0.72𝑐 𝑅 . A small drop in velocity is observed and sequentially an independent branch appears [START_REF] Abdullah | Continuum damage modeling of dynamic crack velocity, branching, and energy dissipation in brittle materials[END_REF][START_REF] Eid | Crack branching at low tip speeds: spilling the T[END_REF]. The velocity of the Rayleigh waves is given by Freund [START_REF] Freund | Dynamic fracture mechanics[END_REF] as:

𝑐 𝑅 = 𝑐 𝑠 0.862 + 1.14𝜈 1 + 𝜈 , ( 35 
)
where 𝑐 𝑠 is the shear wave-speed 𝑐 𝑠 = √ 𝐾 𝑠 ∕𝜌, and 𝐾 𝑠 is the shear modulus. The velocity limit herein obtained is in good correspondence with the theoretical limit related to the Rayleigh wave speed [START_REF] Yoffe | The moving griffith crack[END_REF][START_REF] Freund | Dynamic fracture mechanics[END_REF][START_REF] Ramulu | Dynamic crack curving-A photoelastic evaluation[END_REF][START_REF] Eid | Crack branching at low tip speeds: spilling the T[END_REF]. It is also in good correspondence with limiting velocities found in previous experimental studies [START_REF] Zhou | Study on the macroscopic behavior and the microscopic process of dynamic crack propagation[END_REF], phase-field simulations [START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF], and numerical investigations of the continuum damage models [START_REF] Wolff | A non-local continuum damage approach to model dynamic crack branching[END_REF][START_REF] Abdullah | Continuum damage modeling of dynamic crack velocity, branching, and energy dissipation in brittle materials[END_REF].

Remark 3. The crack-tip speed is computed by differentiating the positions of the crack tip in time. The position of the main crack tip is calculated as the largest extension in the horizontal direction of the iso-value of the nodal phase-field 𝑑 = 0.9. The crack-tip velocity hence corresponds to the horizontal component of the instantaneous velocity vector of the crack tip. As we focus on the limiting crack-tip velocities, only the main crack is followed in Sections 3.2, 3.3, 3. [START_REF] Bažant | Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling[END_REF] Since the strain and damage rates would constitute the main ingredients for the rate-dependent model of the fracture toughness (Sections 2.2 and 2.3), we investigate the evolution of these quantities around the crack-tip for different imposed displacements 𝑢 0 in the rate-independent configuration. More specifically, we analyse their evolution with the crack-tip velocity.

We report the maximum value of the rate of the largest principal strain (tensile) and the maximum value of the rate of the damage in a confined region of size 2 × 𝑙 𝑐 around the crack-tip. The evolution of the strain and the damage rates as a function of the crack-tip velocity at different imposed displacements are reported in Figure 6. It is noted that for an imposed displacement 0.05643 ≤ 𝑢 0 ≤ 0.06056 mm, a widening of the damage band is observed, for 𝑢 0 = 0.0741 mm, crack branching (preceded by crack widening) occurs.

For crack-tip speeds 0 ≤ 𝑣 𝑐 ≤ 500 m/s, a monotonic relationship is found between both the strain and damage rate on one side, and the crack-tip velocity on the other. A quadratic relationship is found between the strain rates and the crack-tip velocity, as shown in Figure 6(a), while a linear relationship is found between the damage rate and the crack-tip velocity, as shown in Figure 6(b). However, at high crack-tip speeds (𝑣 𝑐 > 500 m/s), none of these relationships stand. While the strain rates drop after reaching a maximum value around 𝑣 𝑐 = 500 m/s as the crack starts widening, the damage-rates continue with their monotonic evolution but at a slower rate. At the crack's limiting velocity at 𝑣 𝑐 = 640 m/s, both the strain and damage rates drop significantly.

We believe that as crack widening and crack branching (usually preceded by widening [START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF][START_REF] Eid | Crack branching at low tip speeds: spilling the T[END_REF]) occur, the strains are no longer localised at the tip, and as a consequence their rate would significantly drop as they become more diffused. This is exactly what is shown for 𝑢 0 = 0.0741 mm in Figures 5(a) and 6(a). Once the crack reaches a tip-speed of 𝑣 𝑐 = 500 m/s, which is around 𝑡 = 0.01 ms, we can see how the damage-band begins widening (Figure 5(a)) and parallelly, the rate of the strains begins to drop. However, this is not the case for the damage rates. If the strain-rate drops as the crack-tip speed reaches 𝑣 𝑐 = 500 m/s and the damage band widens, the damage-rate keeps increasing until the crack-tip velocity reaches its limiting value around 𝑣 𝑐 = 640 m/s before branching occurs. (a) (b)

Figure 6: The evolution of the strain and the damage rates around the crack tip as a function of the crack-tip velocity. A quadratic relationship is found between the strain rates and the tip velocities (a). A linear relationship is found between the damage rates and the tip velocities (b).

As per Bleyer et al. [START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF], crack branching can be viewed as a consequence of an excess of available energy flowing to the crack tip which cannot be dissipated by a single crack propagation. From here, we believe that the rate at which a crack surface is formed, as the widening of the crack occurs, need not to drop in order for the excess energy to be dissipated, equivalently, the damage-rate need not to drop, although a small decline can be expected especially as two crack-tips co-exist after the branching phenomenon (Figure 6).

To resume, unlike the strain rates, the damage rates around the crack tip do not decline as the crack widens. The formulation of a damage-rate dependent (linear) toughness model appears a flexible choice to carefully account for the crack-velocity-dependency of the fracture, of course besides the existing strain-rate dependent formulation [START_REF] Yin | Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method[END_REF].

Viscoelasticity

In order to discuss the consequences of the different rate-dependent modelling assumptions, multiple simulations are explored for the same imposed vertical displacement 𝑢 0 = 0.0741 mm. First, the effect of the viscoelasticity of the bulk is analysed (Section 3.2), by the effect of a strain-dependent (Section 3.3) and damage-dependent toughness (Section 3.4) with a rate-independent bulk. The results are compared to the rate-independent simulation (Section 3.1).

To perform the analysis on viscoelastic strips, we use the phase-field parameters listed in Table 1. For the viscoelastic model, the required shear and bulk moduli are the plane-strain equivalent moduli of the elastic properties (𝐸 and 𝜈) found in Table 1. Only the viscosity of the strips is altered, no rate-dependency of the toughness is considered. Materials with different relaxation times -0 (elastic) ≤ 𝜏 𝑣 ≤ 2.5 ⋅ 10 -4 ms -are analysed to put forth the role played by the viscosity of the bulk on the dynamic fracture behaviour. Both shear and bulk viscosities (𝜂 𝑠 and 𝜂 𝑑 ) are assumed to have equivalent values. To compare the influence of the viscous effects, the results are contrasted regarding the materials' relaxation times 𝜏 𝑣 = 𝜏 𝑣𝑑 . Only the viscoelastic properties that yielded the most compelling results are exhaustively reported (𝜏 𝑣 = 0, 10 -7 , 7.5 ⋅ 10 -6 , 8.75 ⋅ 10 -6 , 10 -5 , 7.5 ⋅ 10 -5 and 2.5 ⋅ 10 -5 ms).

Regarding the contribution of the viscoelastic dissipation in to the fracture process (through the factor 𝜁 ), the two most prominent cases are considered :

1. The heat produced by the viscous dissipation in the bulk does not promote fracture, i.e., 𝜁 = 0; the corresponding results are shown in Figure 7.

2. The heat produced by the viscous dissipation in the bulk does promote fracture and the entirety of the viscous energy will contribute to the fracture , i.e., 𝜁 = 1; the corresponding results are shown in Figure 8.

Viscoelasticity with 𝜁 = 0

Figure 7(a) shows the crack path in the fine-mesh region with respect to the characteristic time (𝜏 𝑣 ) for 𝜁 = 0. Generally, the main crack is initiated from the notch. A broadening of the damage-band is observed in the materials with the characteristic times 𝜏 𝑣 = 0, 10 -7 , 7.5 ⋅ 10 -6 , 8.75 ⋅ 10 -6 and 10 -5 ms. Crack branching occurs in the materials with the characteristic times 𝜏 𝑣 = 0, 10 -7 and 7.5 ⋅ 10 -6 ms. With the increase of the characteristic time of the material -through increasing the values of the viscous properties-both the crack widening and the crack branching phenomena appear after longer paths travelled by the initial cracks. Starting 𝜏 𝑣 around 8.75 ⋅ 10 -6 ms, although the widening of the damage-band still appears, the branching phenomenon is suppressed. As the viscosity is further increased, both the branching and the damage-band widening disappear. Furthermore, the final crack topology shows a shorter crack path.

Regarding the crack tip speeds shown in Figure 7(b), in all cases, the cracks are instantly initiated at different initial tip speeds 𝑣 𝑐 depending upon the viscous properties of the materials (the characteristic times). As the dynamic phase-field fracture is activated, and fracture is initiated at the notch, the strain-rates are the larger and so is the viscous dissipation. An increased value of 𝜏 𝑣 translates to an increase in the mechanical dissipation, and this is directly reflected on the initial crack-tip speeds.

The cracks then accelerate towards a plateau value. Both the acceleration and the plateau value are dependent on the viscoelastic parameters. The acceleration decreases as the energy valuable for the crack decreases, and this phenomenon is coherent with theoretical considerations for the similar configuration [START_REF] Freund | Dynamic fracture mechanics[END_REF]. In the cases where the crack branches, similar values of the plateau 𝑣 𝑐 ≃ 640 m/s are reached before the branching phenomenon. At 𝜏 𝑣 = 8.75 ⋅ 10 -6 and 10 -5 ms, after the first plateau, and as no branching occurs, the crack re-accelerates to reach a slightly higher plateau at 𝑣 𝑐 ≃ 670 m/s and surpasses the previously obtained velocity (≃ 640 m/s). As the viscosity is further increased, the values of the plateaus decrease. As the mechanical dissipation increases, a smaller value of the phase-field is perceived as the driving force (elastic strain-energy) decreases. In its turn, this decrease results in a slower crack, thus, lowering the possibility of branching around the widened region of the damage-band. This explains the longer distance the crack needed to propagate before widening/branching with significant viscosities 𝜏 𝑣 . It also explains the total suppression of the branching as the tip speeds decrease with the further increase of the viscosities. 

Viscoelasticity with 𝜁 = 1

Figure 8(a) shows the crack path in the fine-mesh region with respect to the characteristic time of the viscoelastic material in which the viscous dissipation in the bulk promotes fracture in its entirety (𝜁 = 1). Generally, the main crack is instantly initiated from the notch. A broadening of the damage-band is observed in the materials with the characteristic times 𝜏 𝑣 = 0, 10 7 , 7.5 ⋅ 10 -6 , 8.75 ⋅ 10 -6 and 10 -5 ms. Unlike in the case where 𝜁 = 0, here it is assumed that the viscous dissipation does promote fracture. This assumption directly translates to the fracture phenomena observed in the simulations, as crack branching occurs in the materials with the characteristic times 𝜏 𝑣 = 0, 10 -7 , 7.5 ⋅ 10 -6 but also at 𝜏 𝑣 = 8.75 ⋅ 10 -6 ms, which was not the case for 𝜁 = 0. Indeed, a viscous contribution to fracture can essentially trigger a branching that is not predicted in viscoelastic materials if only strain energy is assumed to drive fracture [START_REF] Shen | Fracture of viscoelastic solids modeled with a modified phase field method[END_REF]. Similarly to the case 𝜁 = 0, with the increase of the characteristic time of the material, both the crack widening and the crack branching appear only after the crack had travelled longer paths. At 𝜏 𝑣 around 10 -5 ms, the branching phenomenon is suppressed even though the damage-band appears to broaden. As the viscosity is further increased, in addition to the suppression of the branching and the damage-band widening, the final crack path shows a shorter crack path.

Regarding the crack tip speeds shown in Figure 8(b), in all cases, the cracks is initiated at initial tip speeds 𝑣 𝑐 that depend upon the viscoelastic properties of the materials. The crack then accelerates towards a plateau value. Both the acceleration and the plateau value are dependent on the viscoelastic parameters and hence the viscous dissipation at the notch and in the bulk. The acceleration decreases as the energy valuable for the crack decreases, and this phenomenon is coherent with theoretical considerations for the similar configuration [START_REF] Freund | Dynamic fracture mechanics[END_REF]. In the cases in which the crack-branches, similar values of the plateau 𝑣 𝑐 ≃ 640 m/s are reached before branching. This value is similar to the one observed in the rate-independent simulation and in the viscoelastic case where 𝜁 = 0. At 𝜏 𝑣 = 10 -5 ms, after the plateau, and as no branching occurs, the crack re-accelerates to reach a slightly higher value of 𝑣 𝑐 ≃ 670 m/s and surpasses the previous attained velocity (≃ 640 m/s). As the viscosity in the bulk is further increased, the plateaus values also decrease; however, their values are slightly higher than the ones reached in the case of 𝜁 = 0. This can be explained by the following: the higher the viscous effects, the more mechanical energy is dissipated and the larger the driving force is for the fracture through the factor 𝜁 .

To resume, the simulations show how the viscoelasticity of the bulk highly influences the dynamic behaviour of fracture. Whether the viscous dissipation promotes fracture or not, the influence of viscoelasticity in suppressing the crack-branching and potentially accelerating the crack tip were put forth. And since the damaging process depends on the available free energy, the viscous dissipation is shown to play a major role in the dynamic fracture process. 

Strain-rate dependent fracture toughness

To analyse the influence of the strain-rate dependent toughness on the dynamic crack propagation, a rate-independent (elastic) bulk is considered. The material properties and phase-field parameters are the same as the ones found in Table 1. Regarding the rate-dependent fracture toughness, static value 𝑔 𝑐0 is considered to be equal to the fracture toughness of the rate-independent material from Table 1, so: 𝑔 𝑐0 = 500 J/m 2 . Simulations are explored for the same imposed vertical displacement 𝑢 0 = 0.0741 mm. In this example we analyse materials with varying levels of rate-dependent toughness, ranging from a minimum of 𝜏 𝜖 = 0 ms (rate-independent) to a maximum of ≤ 3.2 ⋅ 10 -3 ms (for details, see Equation 20 in Section 2.3).

Only the characteristic times that yielded the most compelling results are exhaustively reported (𝜏 𝜀 = 0, 10 -4 , 3.162 ⋅ 10 -4 , 7.071 ⋅ 10 -6 , 10 -3 , 2.236 ⋅ 10 -3 and 3.162 ⋅ 10 -3 ms).

Figure 9(a) shows the crack path in the fine-mesh region with respect to the characteristic time 𝜏 𝜀 . A clear broadening of the damage-band is observed in the materials with the characteristic times 𝜏 𝜀 = 0, 10 -4 , 3.162 ⋅ 10 -4 and 7.071 ⋅ 10 -4 ms. Even for the larger characteristic times 𝜏 𝜀 = 10 -3 , 2.236 ⋅ 10 -3 and 3.162 ⋅ 10 -3 ms, the damage-band is wider than 2𝑙 𝑐 which was not the case in the viscoelastic materials (Section 3.2). Crack branching occurs in the materials with the characteristic times 𝜏 𝜀 = 0, 10 -4 and 3.162 ⋅ 10 -4 ms. As the characteristic time of the material increases, the rate-dependency of its fracture toughness 𝑔 𝑐 also increases. This leads to crack widening and branching phenomena occurring after only the cracks have traveled longer distances. At 𝜏 𝜀 around 7.071 ⋅ 10 -3 ms, although the widening of the damage-band still appears, the branching phenomenon is suppressed. As the rate-dependency of the toughness is further increased through 𝜏 𝜀 , the suppression of the branching occurs as well as a shorter crack is observed.

Regarding the crack tip speeds shown in Figure 9(b), in all cases, the crack appears to be instantly initiated with an initial tip speed that depends upon the rate-dependency of the fracture toughness. As mentioned previously, the strain-rates are the larger at the notch and so is the fracture toughness 𝑔 𝑐 . This directly influences the initial crack-tip speeds. For small characteristic times 𝜏 𝜀 , the cracks accelerate towards a plateau value. Both the acceleration and the plateau values are dependent on 𝜏 𝜀 . In the cases where the crack branches, similar values of the plateau 𝑣 𝑐 ≃ 640 m/s are reached before branching. At 𝜏 𝜀 = 7.071 ⋅ 10 -3 ms, after the plateau, and as no branching occurs, the crack re-accelerates to reach a slightly higher value of 𝑣 𝑐 ≃ 640 m/s and surpasses the value of 0.72𝑐 𝑅 . For larger 𝜏 𝜀 , no acceleration of the crack appears; instead, the crack conserves its initial tip-speed which is dependent on 𝜏 𝜀 . An increased value of 𝜏 𝜀 increases the toughness 𝑔 𝑐 of the material and hence increases amount of energy necessary to evolve a crack for the same strain-rates. This directly translates to a smaller value of the phase-field for the same driving force. This in its turn results in a lower possibility of branching.

In Figure 9(c), the evolution of the toughness at the crack-tip is reported for different characteristic times 𝜏 𝜀 . The fracture toughness at the crack-tip is determined as the maximum value of 𝑔 𝑐 ( ε) (Equation 20) in a confined region of size 2 × 𝑙 𝑐 around the crack-tip. Of course, larger values of 𝑔 𝑐 are expected for larger 𝜏 𝜀 . Observing the cases in which the crack widens without branching (𝜏 𝜀 = 7.071 ⋅ 10 -4 , 10 -3 , 2.236 ⋅ 10 -3 and 3.162 ⋅ 10 -3 ), the influence of the widening on lowering the strain-rates (Section 3.1) directly impacts the evolution of the toughness: a decline in 𝑔 𝑐 is first observed as the crack widens and then 𝑔 𝑐 slightly increases as the crack tightens (Figures 9(a) and 9(c)). Plus, at the case in which the crack re-accelerates after widening, the fracture toughness 𝑔 𝑐 appears to increase as the crack re-accelerates, since the strain-rates at the crack-tip increase at the crack tightens which is subsequently transferred to the values of 𝑔 𝑐 . In the cases where the crack decelerates (𝜏 𝜀 = 3.162 ⋅ 10 -3 ms), the toughness drops from an initially higher values to its respective plateau.

To resume, the simulations demonstrate how the strain-rate formulation of the fracture toughness highly influences the dynamic behaviour of fracture. The influence of the strain-rate dependency of the fracture toughness in suppressing the crack-branching and potentially accelerating the crack tip is put forth. The evolution of the strain-rates as the crack widens and their direct impact on the evolution of the fracture toughness are highlighted. The strain-rate dependency of the fracture toughness is shown to play a major role in the dynamic fracture process. 

Damage-rate dependent fracture toughness

To analyse the influence of the damage-rate dependent toughness on the dynamic crack propagation, a purely elastic bulk is considered. The material properties and phase-field parameters are the same as the ones found in Table 1. Simulations are explored for the same imposed vertical displacement 𝑢 0 = 0.0741 mm. Materials with different damage-rate-dependent toughness (0 -rate-independent toughness≤ 𝜏 𝑑 ≤ 10 -4 ms) are analysed. It is recalled that 𝜏 𝑑 corresponds to the amount of the dependency of the toughness to the damage-rate. Only the characteristic times that yielded the most compelling results are exhaustively reported (𝜏 𝑑 = 0, 10 -6 , 4 ⋅ 10 -6 , 5 ⋅ 10 -6 , 2.225 ⋅ 10 -5 , 2.275 ⋅ 10 -5 and 2.288 ⋅ 10 -5 ms).

Figure 10(a) shows the crack path in the fine-mesh region with respect to the characteristic time 𝜏 𝑑 . A clear broadening of the damage-band is observed in the materials with the characteristic times 𝜏 𝑑 = 0, 10 -6 , 4 ⋅ 10 -6 and 5 ⋅ 10 -6 ms. Crack branching occurs in the materials with the characteristic times 𝜏 𝑑 = 0, 10 -6 and 4 ⋅ 10 -6 ms. As the characteristic time of the material increases, the rate-dependency of its toughness 𝑔 𝑐 also increases. This leads to crack widening and branching phenomena to occurr after the cracks have traveled longer distances. At 𝜏 𝑑 around 5 ⋅ 10 -6 ms, although the widening of the damage-band still appears, the branching phenomenon is suppressed. As the rate-dependency of the toughness is further increased through 𝜏 𝑑 , in addition to the suppression of the branching and the widening, a shorter crack is observed, even for small variations of 𝜏 𝑑 .

Regarding the crack tip speeds shown in Figure 10(b), in all cases, the crack appears to be instantly initiated at initial tip speeds 𝑣 𝑐 that depend upon the the characteristic time 𝜏 𝑑 of the materials. Except for the largest value 𝜏 𝑑 = 2.288 ⋅ 10 -5 ms, the crack accelerates towards a plateau value. If the acceleration is dependent on 𝜏 𝑑 , even for large 𝜏 𝑑 , the plateau 𝑣 𝑐 remains fairly high at around 𝑣 𝑐 = 500 m/s, unlike in the viscoelastic materials and elastic materials with strain-rate dependent simulations where the plateau value gradually decreases with the characteristic time. For 𝜏 𝑑 = 2.288 ⋅ 10 -5 ms, the crack decelerates from its initial value and oscillates between 0 ≤ 𝑣 𝑐 ≤ 10 m/s. In the cases where the crack-branches, similar values of the plateau 𝑣 𝑐 ≃ 640 m/s are reached before branching. At 𝜏 𝑑 = 5 ⋅ 10 -6 ms, after the plateau, and as no branching occurs, the crack re-accelerates to reach a slightly higher value of 𝑣 𝑐 ≃ 660 m/s and surpasses the value of 0.72𝑐 𝑅 . An increased value of 𝜏 𝑑 increases the toughness 𝑔 𝑐 and hence increases amount of energy necessary to evolve a crack for the same damage-rates, this directly translates to a smaller value of the phase-field for the same driving force, which in its turn results in a lower possibility of the establishment of two spatially separated crack tips around the widened region of the damage-band.

In Figure 10(c), the evolution of the toughness at the crack-tip is reported for different characteristic times 𝜏 𝑑 . The fracture toughness at the crack-tip is determined as the maximum value of 𝑔 𝑐 ( ḋ) (Equation 29) in a confined region of size 2 × 𝑙 𝑐 around the crack-tip. Of course, larger values of the fracture toughness 𝑔 𝑐 are expected for larger rate-dependencies 𝜏 𝑑 . For each 𝜏 𝑑 , the toughness rapidly reaches a plateau. At the case in which the crack re-accelerates after widening, the fracture toughness 𝑔 𝑐 appears to increase. As the crack re-accelerates, the damage-rates at the crack-tip increase and this increase is subsequently transferred to the values of the toughness 𝑔 𝑐 . At the larger rate dependency (𝜏 𝑑 = 2.225 ⋅ 10 -5 and 2.275 ⋅ 10 -5 ms) at which the cracks slowly accelerate to reach the plateaus around 𝑣 𝑐 = 500 m/s, the evolution of the toughness 𝑔 𝑐 at the crack tip is similar. In the case where the crack oscillates (𝜏 𝑑 = 2.288 ⋅ 10 -5 ms), the toughness drops from an initial value to its static value, as the crack stops since no more free energy is available for dynamic propagation.

To resume, the simulations demonstrate how the damage-rate formulation of the fracture toughness highly influences the dynamic behaviour of fracture. The influence of the damage-rate dependency of the fracture toughness in suppressing the crack-branching and slightly potentially accelerating the crack tip is put forth. The damage-rate dependency of the fracture toughness is shown to play a major role in the dynamic fracture process. 4 Crack-tip velocity vs. characteristic time After putting forth the numerical simulation results of the different modelling assumptions for rate-dependent phase-field of fracture, we superpose the obtained limiting tip velocities as a function of the models' characteristic times: 𝜏 𝑣 , 𝜏 𝜀 or 𝜏 𝑑 in Figure 11.

Basically, at low rate-dependency of the different modelling assumptions, the limiting tip-speed is not impacted until the point where the crack branching is suppressed. Here, the limiting tip speed increases slightly above 𝑣 𝑐 = 0.72𝑐 𝑅 . When branching is suppressed, a single crack would propagate straight, and this can actually explain this increase in the crack velocity as compared to the branching cracks case. With an increase in rate-dependency, either the energy dissipated by the material increases, or amount of energy necessary to evolve a crack increase for the same total available energy. In any case, this leads to the suppression of crack branching and a reduction in the limiting speed, causing the crack to travel a shorter distance.

For the viscoelastic materials, independently of the contribution of the viscous energy in promoting fracture(𝜁 ), and from the purely elastic bulk of the material up to the point where viscous dissipation suppress branching, the limiting speeds are relatively similar.

As higher viscosities are taken into consideration, the assumption regarding the viscous dissipation and its contribution to fracture promotion (i.e., 𝜁 = 1 or 𝜁 = 0) becomes more significant in determining the limiting crack-tip speeds. This is because the dissipated energy, which is attributed to the viscosity of the material, increases, the former being a promoter of fracture thourgh 𝜁 .

In the simulations involving strain-rate dependent toughness, larger characteristic times are needed to affect crack propagation compared to the viscoelastic (and damage-rate dependent formulations). We believe that this difference is due to the quadratic formulation used for the strain-rate dependent toughness, which is different from the linear assumption made for the damage-rate.

For the damage-rate dependent toughness, surprisingly, the drop in the limiting speed as a function the damagedependency (𝜏 𝑑 ) is much steeper. In fact, as seen in the previous section, the plateau reached after an initially accelerating crack is fairly high with the minimum value at around 𝑣 𝑐 = 500 m/s. However a gradual increase of 𝜏 𝑑 does not translate to a gradual decrease of the acceleration of the crack or the gradual lowering of the plateau, but it directly translates to a deceleration of the crack speed below 𝑣 𝑐 = 100 m/s. 

Effective stiffening in rate-dependent materials

After presenting the influence of different modelling assumptions on the rate-dependent fracture, we explore the influence of the stiffening phenomenon observed in viscoelastic materials [START_REF] Seghir | A Novel Image-based Ultrasonic Test to Map Material Mechanical Properties at High Strain-rates[END_REF] on the fracture behaviour. For instance, it is well known that the behaviour of PMMA is viscoelastic. However, it is possible to model its behaviour by considering a higher elastic stiffness for dynamic analysis as compared to quasi-static simulations [START_REF] Grégoire | Dynamic crack propagation under mixed-mode loading-comparison between experiments and X-FEM simulations[END_REF][START_REF] Eid | Crack branching at low tip speeds: spilling the T[END_REF].

In this section we analyse the stiffening of the rate-dependent materials. Further, we look into whether the ratedependent phase-field models are able to replicate fracture at speeds higher than the expected limitation around 0.75𝑐 𝑅 found in similar configurations [START_REF] Zhou | Study on the macroscopic behavior and the microscopic process of dynamic crack propagation[END_REF].

In order to achieve this goal, we will take into account the three modeling assumptions, which involve simulating uniform displacement strips using four arbitrary materials that exhibit high rate-dependencies. Higher pre-strain are considered with imposed displacement 0.0741 ≤ 𝑢 0 ≤ 0.1995 mm. As seen in reference [START_REF] Bleyer | Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms[END_REF], larger pre-strains directly affect the initial crack-tip velocity, its acceleration, its plateau and the possible branching phenomena.

The phase-field parameters and material properties are similar to the ones found in Table 1. The rate-dependent parameters for the different materials are as follow:

1. Viscoelastic material -𝜏 𝑣 = 5 ⋅ 10 -3 ms with 𝜁 = 0 2. Viscoelastic material -𝜏 𝑣 = 5 ⋅ 10 -3 ms with 𝜁 = 1 3. Elastic material with strain-rate dependent fracture toughness -𝜏 𝜀 = 10 -2 ms 4. Elastic material with damage-rate dependent fracture toughness -𝜏 𝑑 = 5 ⋅ 10 -5 ms As seen in the previous sections, higher rate-dependencies directly affect the dynamic fracture behaviour. The high rate-dependencies herein considered ensure the suppression of branching even for high pre-strains. Hence, a single crack tip can be followed throughout the fracture process.

Only the maximum crack-tip velocity for each simulation is noted. The evolution of the maximum tip speed as a function of the loadings 𝑢 0 is plotted in Figure 12 for the different materials. At a loading of 𝑢 0 = 0.0741 mm, the cracks slightly advances at a speed lower than 50 m/s. As the pre-strain is increased, the maximum obtained crack-tip speed increases.

For both viscoelastic models, the crack-speeds are indeed higher than 𝑐 𝑅 = 900 m/s (computed from the material properties in Table1). In the case where 𝜁 = 1 (the dissipated viscous energy promotes fracture), it is clear how this supplementary driving force is reflected on the limiting speed that is between 120% and 300% higher than the speed of the crack in the case where 𝜁 = 0. For the strain-rate-dependent toughness, it is observed that the crack-tip reaches a maximum speed 𝑣 𝑐 = 966 m/s ≥ 𝑐 𝑅 = 900 m/s at the larger considered pre-strain (𝑢 0 = 0.1995 mm). For the damage-rate-dependent toughness, the crack speed is limited by the Rayleigh wave-speed 𝑐 𝑅 = 900 m/s.

How can one explain the crack-tip velocities that exceed the Rayleigh wave speed ? We believe that a stiffening phenomenon in the crack-tip region occurs and is responsible of these faster-running cracks. This idea was previously explored in elastomers [START_REF] Corre | Experimental full field analysis for dynamic fracture of elastomer membranes[END_REF][START_REF] Kamasamudram | The role played by viscoelasticity in the bulk material during the propagation of a dynamic crack in elastomers[END_REF]. In fact, as the material becomes stiffer, the speed of the Rayleigh waves in the stiffened region becomes higher. And a higher Rayleigh wave speed allows faster-running cracks [START_REF] Atkinson | The flow of energy into the tip of a moving crack[END_REF].

To further elaborate on this idea, we investigate the apparent stiffness of the material in a confined region in front of the crack. At the crack-tip (Figure 13), the effective elastic moduli are computed from the stress-strain couples obtained from damage the phase-field simulations following the method proposed in reference [START_REF] Eid | Multiscale analysis of brittle failure in heterogeneous materials[END_REF]. In fact, the stiffness is analysed at a single data point (𝑃 ef f ) at a distance 𝑙 𝑐 in front of the crack, where we compute the average stress and strain tensors in a confined region of size 𝑙 𝑐 centered at 𝑃 ef f . crack stiffening analysis region The obtained strain and stress couples provide and evaluation of the nine components of the effective stiffness tensor representative of the effective elastic behaviour at the crack tip (more specifically at 𝑃 ef f ). From the overall stiffness tensor, and by assuming plane-strain conditions and isotropic elasticity, effective Young's modulus (𝐸 ef f ) and Poisson's ratio (𝜈 ef f ) can be computed.

The effective Young's modulus and Poisson's ratio at the crack-tip of the two viscoelastic materials are reported in Figures 14 and15 (for 𝜁 = 0 and 𝜁 = 1 respectively). In both cases, it is clear how the viscous effects at the crack tip enable the stiffening of the material. The effective Young's modulus at the crack-tip ranges from the static value of 3 GPa to about 6.5 GPa at the highest pre-strains. We mention that the values herein found are reasonably in accordance with mechanical properties identified for PMMA at high strain rates in reference [START_REF] Seghir | A Novel Image-based Ultrasonic Test to Map Material Mechanical Properties at High Strain-rates[END_REF]. Seghir et al. [START_REF] Seghir | A Novel Image-based Ultrasonic Test to Map Material Mechanical Properties at High Strain-rates[END_REF] find the static value of the quasi-static reference material properties for PMMA to be 𝐸 = 2.9 ± 0.1 GPa, and at high strain rates, the modulus is found to approaches 6 GPa.

The effective Young's modulus and Poisson's ratio at the crack-tip (𝐸 ef f and 𝜈 ef f respectively) of the elastic material, which fracture toughness is strain-rate dependent, are reported in Figure 16. Indeed, a viscous-like stiffening in front of the crack tip is observed. The effective Young's modulus at the crack-tip ranges from the static value of 3 GPa to about 4 GPa at the highest pre-strains. This viscous-like stiffening is actually the fruit of the additional term in the stress that comes from the strain-rate dependent toughness, see Equation 26 in Section 2.2. Although the characteristic time 𝜏 𝜀 = 10 -2 ms of this material is larger than the characteristic time of the considered viscoelastic materials 𝜏 𝑣 = 5 ⋅ 10 -3 ms, the stiffening at the crack-tip is much less prominent.This is easily explained by the fact that the strain-rate dependency of the toughness yields an additional stress term that only appears in the damaged region and that is absent in the intact region. In viscoelastic materials, the viscous stresses are present both in the bulk and in the damaged region of the material.

The effective Young modulus and Poisson ratio at the crack-tip (𝐸 ef f and 𝜈 ef f respectively) of the elastic material which fracture toughness is damage-rate dependent are reported in Figure 17; as expected no hardening at the crack-tip occurs and the limiting speed is indeed 𝑐 𝑅 = 900 m/s.

The highest values of the Rayleigh wave-speeds at the crack-tip (the Rayleigh wave-speeds being computed following Freund's Equation 35 considering the effective elastic moduli 𝐸 ef f and 𝜈 ef f from Figures 14,[START_REF] Corre | Experimental full field analysis for dynamic fracture of elastomer membranes[END_REF]16 and 17), are reported in Table 2 for the four materials and at different pre-strain values.

Indeed, in all cases, the reported speeds of Rayleigh waves at the crack-tip speeds are always higher than the crack-tip speeds recorded in the simulations. In fact, the literature predicts that the flow of energy into a crack-tip falls to zero when the crack runs at the Rayleigh velocity 𝑐 𝑅 [START_REF] Atkinson | The flow of energy into the tip of a moving crack[END_REF][START_REF] Broberg | How fast can a crack go?[END_REF]. This limits the crack-tip velocity to the Rayleigh wave speed 𝑐 𝑅 . Plus, the emergence of stiffening phenomena in the crack-tip region in rate-dependent materials increases the velocities of the elastic waves locally. The particular increase in the speed of the Rayleigh waves makes it that the flow of energy to the crack is no longer null, enabling thus the faster-running cracks.

Conclusion

This paper revisits the advancements on the rate-dependent phase-field models for fracture and suggests a novel damage-rate dependent formulation for the fracture toughness. By means of a numerical study on a uniform displacement strip benchmark, the formulations and modelling assumptions are contrasted and the corresponding limiting crack speeds are discussed.

The first formulation [START_REF] Shen | Fracture of viscoelastic solids modeled with a modified phase field method[END_REF][START_REF] Dammaß | A unified phase-field model of fracture in viscoelastic materials[END_REF] is characterised by the addition to the pseudo-energy functional of the phase-field problem (free energy and fracture dissipation) a contribution which is related to the viscous dissipation. The viscous dissipation is assumed to promote fracture through a parameter 𝜁 . The parameter 𝜁 can take any value between 𝜁 = 0 (viscous dissipation does not promote fracture) and 𝜁 = 1 (the entirety of the heat produced by the viscous dissipation promotes fracture). The model is based on experimental evidence that shows how the resistance to fracture of many rate-dependent materials decreases as the temperature increases, from one side, and how the viscoelastic dissipation leads to a raise in the temperature of the material from the other. The second model [START_REF] Yin | Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method[END_REF] is characterised by the introduction of a strain-rate dependent toughness 𝑔 𝑐 ( ε). It is based on experimental evidence that indicates a strong relationship between the rate of strains and the material's resistance against fracture. Alternatively, in the same spirit, we suggested a damage-rate dependent toughness formulation enabling an upper limit on the rate-dependent toughness 𝑔 𝑐 .

Simulation quantitatively evidence the influence of rate-dependency on the dynamic crack behaviour:

1. Crack branching observed in rate-dependent simulation at a fixed pre-strain can be suppressed with the different modelling assumptions of rate dependency.

2. With the increase of the rate-dependency, and as the branching phenomenon persists, the limiting speeds are unsurprisingly similar for the different models.

3. As the crack branching is omitted, cracks may advance at higher tip speeds, dependently on the rate-dependencies 4. A gradual increase in the rate-dependencies of the viscoelastic materials and materials with strain-rate-dependent toughness gradually modify the dynamic crack behaviour.

5. Even a gradual increase in the damage-rate-dependency of the toughness can translate to abrupt changes in the behaviour of the cracks.

Additionally, we explained the increase of limiting velocity with the local stiffening of the materials. Indeed, depending on the specific choice of parameters, our simulations show crack-tip speeds that exceed 𝑐 𝑅 in viscoelastic materials (whether the viscous dissipation is assumed to promote fracture or not) and in elastic materials with strainrate-dependent toughness: these high speeds are attributed to the viscoelastic and viscoelastic-like stiffening quantified at the front of the cracks. In fact, the stiffening phenomenon translates to faster-running surface-waves which in its turn enables faster running cracks. It is noted that the crack-tip speeds are consistently lower than the effective surface-wave speeds, i.e., the Rayleigh wave speeds in the stiffened region at the crack tip. Future work will focus on the comparison of those model predictions and experimental data to further assess the modelling choices. Besides, we believe that combining the viscoelastic model with damage-rate dependency of the toughness, and accurately calibrating the damage-rate dependence 𝜏 𝑑 for the actual experiments, may enable the reproduction of intermittent cracking behaviour observed in PMMA [START_REF] Heinzmann | Experimental investigation of the alternate recurrence of quasi-static and dynamic crack propagation in PMMA[END_REF].

A Constitutive modelling of the viscoelastic bulk

This appendix overviews the full constitutive modelling of the intact viscoelastic bulk following the work of Luo et al. [START_REF] Luo | Continuum constitutive laws to describe acoustic attenuation in glasses[END_REF]. As mentioned in Section 2.1, a Kelvin-Voigt approach is employed to analyse the spheric portion of the stress-strain behavior (Figure 2(a)), and a Maxwell-like model is utilised for the deviatoric part of the stress-strain behavior (Figure 2(b)).

The hydrostatic stress-strain relation at time 𝑡 can then be expressed as:

σℎ𝑦𝑑 (𝑡) = 𝐾 𝑑 [𝜀 ℎ𝑦𝑑 (𝑡) + 𝜏 𝑣𝑑 εℎ𝑦𝑑 (𝑡)] (36) 
where 𝜏 𝑣𝑑 = 𝜂 𝑑 ∕𝐾 𝑑 is the bulk relaxation time, 𝜂 𝑑 is the bulk viscosity and 𝐾 𝑑 is the bulk modulus. The superscript ℎ𝑦𝑑 correspond the hydrostatic stresses σ and strains 𝜖. 

where 𝜏 𝑣𝑠 = 𝜂 𝑠 ∕𝐾 𝑠 is the shear relaxation time, 𝜂 𝑠 is the shear viscosity and 𝐾 𝑠 is the shear modulus. The superscript 𝑑𝑒𝑣 corresponds to the deviatoric stresses and strains. To obtain the overall stress-strain expressions, the time-domain expressions Equations [START_REF] Kachanov | Introduction to continuum damage mechanics[END_REF] and [START_REF] Kaliske | Formulation and implementation of three-dimensional viscoelasticity at small and finite strains[END_REF] have to be solved. Here, the stresses functions of the strains are directly exposed, the detailed derivations can be found in reference [START_REF] Luo | Continuum constitutive laws to describe acoustic attenuation in glasses[END_REF]:

σ(𝑡) = 𝐸 1 -2𝜈
[𝜀 ℎ𝑦𝑑 (𝑡) + 𝜏 𝑣𝑑 εℎ𝑦𝑑 (𝑡)] + 𝐸 1 + 𝜈 𝜀 𝑑𝑒𝑣 (𝑡) + ℎ(𝑡) [START_REF] Kamasamudram | The role played by viscoelasticity in the bulk material during the propagation of a dynamic crack in elastomers[END_REF] where ℎ(𝑡) is to be defined by a recurrence relation following:

ℎ(𝑡) = exp ( - 𝑡 𝑡 𝑛 𝜏 𝑣𝑠 ) ℎ(𝑡 𝑛 ) + 𝐸 1 + 𝜈 ∫ 𝑡 𝑡 𝑛 exp ( - 𝑡 -𝑡 ′ 𝜏 𝑣𝑠 ) ε𝑑𝑒𝑣 (𝑡)𝑑𝑡 ′ ( 39 
)
where 𝐸 is Young's Modulus and 𝜈 Poisson's ratio and 𝑡 𝑛 is any moment before 𝑡. In addition to the full separation of the deviatoric and hydrostatic parts, this formulation displays an intriguing structure: a complete split between the elastic properties and the viscous components, so one can write : 

σℎ𝑦𝑑 𝑒 (𝑡) = 𝐸 1 -2𝜈 𝜀 ℎ𝑦𝑑 (𝑡) (40a 
The subscripts 𝑒 and 𝑣 correspond to the elastic/viscous parts of the strains and stresses.
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 1 Figure 1: Regularised representation of a crack in a two-dimensional case, sharp crack (left) and regularised representation through phase-field (right). 𝑁𝑒 and 𝐷𝑖 subscripts stand for Neumann and Dirichlet boundary conditions respectively.

Figure 2 :

 2 Figure 2: Illustration of the viscoelastic model of the bulk: (a) Kelvin-Voigt model for the hydrostatic part and (b) Standard linear model for the deviatoric part.
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 3 Figure 3: Rate-dependent toughness: the underlying mechanisms (a) in polymers and the influence of the amplification factor (b) -Equation (19).
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 4 Figure 4: Half-strip geometry (top) and applied boundary conditions (bottom) for the uniform displacement strip.

  (a) Fracture patterns at different time steps (b) Crack-tip speed of the main branch

Figure 5 :

 5 Figure 5: Uniform displacement strip results (imposed vertical displacement 𝑢 0 = 0.0741 mm) for rate-independent the material.

Figure 7 :

 7 Figure 7: Viscoelastic materials with different characteristic times 𝜏 𝑣 and 𝜁 = 0: uniform displacement strip results at 𝑢 0 = 0.0741 mm.
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 8 Figure 8: Viscoelastic materials with different characteristic times 𝜏 𝑣 and 𝜁 = 1: uniform displacement strip results at 𝑢 0 = 0.0741 mm.

  (a) Fracture patterns (b) Crack-tip velocities (c) Toughness at the crack-tip

Figure 9 :

 9 Figure 9: Elastic materials with strain-rate dependent fracture toughness (𝜏 𝜀 ): uniform displacement strip results at 𝑢 0 = 0.0741 mm.

  (a) Fracture patterns (b) Crack-tip velocities (c) Toughness at the crack-tip

Figure 10 :

 10 Figure 10: Elastic materials with damage-rate dependent fracture toughness (𝜏 𝑑 ): uniform displacement strip results at 𝑢 0 = 0.0741 mm.

Figure 11 :

 11 Figure 11: Influence of the models' characteristic time (𝜏 𝑣 ) on the maximum crack-tip speed (imposed vertical displacement 𝑢 0 = 0.0741 mm).
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 12 Figure 12: Maximum crack-tip velocities at multiple loadings.

Figure 13 :

 13 Figure 13: Stiffening analysis at the crack-tip in rate-dependent materials.

Figure 14 :

 14 Figure 14: Effective stiffening at the crack-tip in the viscoelastic material with 𝜁 = 0.

Figure 15 :

 15 Figure 15: Effective stiffening at the crack-tip in the viscoelastic material with 𝜁 = 1.

Figure 16 :

 16 Figure16: Effective stiffening at the crack-tip in the material with strain-rate dependent toughness.

Figure 17 :

 17 Figure 17: No stiffening at the crack-tip in the material with damage-rate dependent toughness.

  σ𝑑𝑒𝑣 (𝑡) + 𝜏 𝑣𝑠 ̇σ(𝑡) = 𝐾 𝑠 [𝜀 𝑑𝑒𝑣 (𝑡) + 2𝜏 𝑣𝑠 ε𝑑𝑒𝑣 (𝑡)]

Table 1 :

 1 . In the case of branching, the velocities of the branches are not reported. Overall damage phase-field model and material parameters for the rate-independent simulation.

	𝐸 (Young's Modulus)	3 GPa
	𝜈 (Poisson's ratio)	0.35
	𝜌 (Mass density)	1200 kg/m 3
	𝑔 𝑐 (Static fracture toughness) 500 J/m 2
	𝑙 𝑐 (Length-scale parameter)	400 𝜇m
	Crack density function	linear (AT1)
	Strain split	spectral decomposition
	Plane strain assumption	
	Time integration	implicit (HHT) [34]
	Δ𝑡 𝑐 (time step)	10 -5 ms
	ℎ 𝑚 (refined mesh size)	𝑙 𝑐 ∕4 = 100 𝜇m

Table 2 :

 2 Maximum effective Rayleigh wave speed 𝑐 𝑅 in front of the crack-tip in the different rate-dependent materials under different pre-strains.

Interested readers are referred to Appendix A for the full constitutive modelling of the viscoelastic bulk.
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