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Maximum Likelihood (ML) frequency estimation of a single tone in noise is known to be a computationally intensive task that does not cope with many real-time and embedded hardware architectures. Thereby, many sub-optimal techniques, based on approximations, have been proposed in the literature. In this paper, we show that the ML criterion can be solved directly, using an appropriate two-step procedure. The closedform solution is shown to be asymptotically equivalent to the ML. Moreover, its formulation is very close to the popular Fitz's expression, with a slight correction. Numerical simulations show that the proposed scheme is very close to the ML.

I. INTRODUCTION

The problem of estimating the frequency of a single tone in noise is a very old problem [START_REF] Prony | Essa: Experimentale et analytique[END_REF] which has received much attention in the literature since it is encountered in numerous digital applications like Radar, satellites navigation, and communications synchronization, to name a few. The standard approach consists in assuming the noise to be additive, white and Gaussian, and the unknown parameters of the single tone (amplitude A, phase φ and pulsation ω) as deterministic and unknown, namely x(n) = A e i(nω+φ) + b(n) n = 0, ..., (N -1)

with b = [b(0)...b(N -1)] T ∼ CN (0, σ 2 I) In such a model, the Maximum Likelihood (ML) estimation of ω simply consists in maximizing the periodogram of the signal [START_REF] Slepian | Estimation of signal parameters in the presence of noise[END_REF], [START_REF] Kelly | The detection of radar echoes in noise[END_REF]:

ωML = arg max ω N -1 n=0 x(n)e -inω 2 (2) 
Unfortunately this maximisation is a highly non-linear problem and a computationally intensive task that is hampered by the presence of local maxima. As a result, many suboptimal techniques have been derived to try to reach the ML performance while reducing the computing needs. In the literature, these techniques can be divided into four broad classes:

• ML-based techniques. Initiated by the work of Rife and Boorstyn [START_REF] Rife | Single tone parameter estimation from discrete-time observations[END_REF], this kind of methods simply consists in maximizing the ML criterion in two steps. A first coarse frequency estimation is usually conducted using a uniform sampling of the frequency axis, namely a Discrete Fourier Transform (DFT), taking advantage of the low cost Fast Fourier Transform (FFT) algorithm.
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Then, a refinement is used to approach the ML maximum [START_REF] Aboutanios | Estimating the parameters of sinusoids and decaying sinusoids in noise[END_REF], [START_REF] Jacobsen | Fast, accurate frequency estimators [dsp tips and tricks[END_REF], [START_REF] D'amico | Frequency estimation by interpolation of two fourier coefficients: Cramér-rao bound and maximum likelihood solution[END_REF]. One may notice that decreasing the FFT sampling spacing using zero-padding is not a relevant solution, as the variance of such a solution decreases as O(N -2 ), whereas the Cramer-Rao Bound (CRB) [START_REF] Rife | Single tone parameter estimation from discrete-time observations[END_REF] decreases as O(N -3 ). Moreover, zero-padding solutions need larger Look-Up Tables (LUTs) to store precise complex exponential values which is not consistent with simple hardware architectures. Among this class of techniques, some use closed-form solutions based on a few DFT samples near the DFT maximum [START_REF] Rife | Use of the discrete fourier transform in the measurement of frequencies and levels of tones[END_REF], [START_REF] Macleod | Fast nearly ml estimation of the parameters of real or complex single tones or resolved multiple tones[END_REF], [START_REF] Brown | An iterative algorithm for single-frequency estimation[END_REF], [START_REF] Quinn | Estimating frequency by interpolation using fourier coefficients[END_REF], [START_REF] Bertocco | Analysis of damped sinusoidal signals via a frequency-domain interpolation algorithm[END_REF], [START_REF] Candan | Analysis and further improvement of fine resolution frequency estimation method from three DFT samples[END_REF], [START_REF] Gigleux | Generalized frequency estimator with rational combination of three spectrum lines[END_REF] and others use iterative methods [START_REF] Olmo | Progressive refinement approach to MLE: an application to carrier frequency recovery[END_REF], [START_REF] Reisenfeld | A new algorithm for the estimation of the frequency of a complex exponential in additive gaussian noise[END_REF], [START_REF] Aboutanios | Iterative frequency estimation by interpolation on fourier coefficients[END_REF]. Nevertheless, even if all these techniques improve the computational load of the brute force ML, they involve using large Look Up Table (LUT) and need to find the largest DFT sample. These requirements are sometimes not compatible with low-cost hardware architectures.

• Zero-crossing techniques. Unlike the ML-based techniques, zero-crossing methods are very simple and intuitive schemes intended to preserve the computational burden. As name suggests, they simply consist in counting the number of zero-crossing of the signal for a given time interval [START_REF] Kay | A zero crossing-based spectrum analyzer[END_REF], [START_REF] Kedem | Spectral analysis and discrimination by zero-crossings[END_REF], [START_REF] Sreenivas | Zero-crossing based spectral analysis and svd spectral analysis for formant frequency estimation in noise[END_REF], [START_REF] Friedman | A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise[END_REF].

• Phase increment techniques. Initiated by Tretter [START_REF] Tretter | Estimating the frequency of a noisy sinusoid by linear regression[END_REF], this kind of techniques exploits only the phase of the data and fits it to a straight line. Nevertheless, in its basic formulation, a computational expensive phase unwrapping has to be conducted. Kay [START_REF] Kay | A fast and accurate single frequency estimator[END_REF] circumvents this problem by considering the phase difference between two successive samples. This so-called Weighted Phase Averager (WPA) solution is shown to reach the CRB, but has a high SNR threshold, namely it departs from the CRB for a rather high SNR (some 10 dB above that of the ML). This issue is due to a large phase noise increase when SNR decreases [START_REF] Kim | An improved single frequency estimator[END_REF]. In order to reduce this threshold, one may filter the data before calculating the phase [START_REF] Fowler | Extending the threshold and frequency range for phase-based frequency estimation[END_REF]. For instance, Kim & al. [24] propose to use an averaging filter, a solution which is improved in [START_REF] Xiao | A new effective single frequency estimator[END_REF]. This kind of methods is somehow alike to exchange the phase and the linear weighting operations. Actually, this kind of technique is close to the so-called Weighted Linear Predictor (WLP) already proposed in [START_REF] Kay | A fast and accurate single frequency estimator[END_REF] and improved in [START_REF] So | A generalized weighted linear predictor frequency estimation approach for a complex sinusoid[END_REF]. In addition to obtain a better threshold, the main advantage of considering weighting before computing the phase of the data, lies in its lower computational cost, as the phase operation has to be performed only once. More recently, phase increment techniques have also been extended to time intervals larger than one samples difference [START_REF] Rosnes | Frequency estimation of a single complex sinusoid using a generalized Kay estimator[END_REF], [START_REF] Palmer | Low-complexity frequency estimation using multiple disjoint pilot blocks in burst-mode communications[END_REF]. The performance of this kind of methods has been studied in [START_REF] Fu | Phase-based, time-domain estimation of the frequency and phase of a single sinusoid in AWGN-the role and applications of the additive observation phase noise model[END_REF].

• Auto-correlation-based techniques. As noticed hereabove, a possible solution to improve the phase-based solutions is to use a linear filter before computing the phase of the measurements. When a simple uniform weighting is used, this solution amounts to considering the phase of the autocorrelation function. Indeed, observing that the autocorrelation function of a single tone exhibits the same phase difference as for the data samples, a natural frequency estimate is simply ω = Rx [START_REF] Prony | Essa: Experimentale et analytique[END_REF] where

Rx (1) = 1 (N -1) n=N -2 n=0 (x * (n)x(n + 1)
) is the ML estimate of the correlation function, and is the phase operation. This intuitive estimation is the uniformly weighted version of the WLP [START_REF] Kay | A fast and accurate single frequency estimator[END_REF]. It can be noticed that unlike phased-based techniques, both the phase and the amplitude of the measurement are used to estimate the frequency. Obviously this simple kind of frequency estimation can be generalized to higher correlation lags, namely

ω = 1 k Rx (k) where Rx (k) = 1 (N -k) n=N -k-1 n=0 (x * (n)x(n + k))
. This so-called pulse-pair technique has first been introduced in [START_REF] Benham | Pulse pair estimation of doppler spectrum parameters[END_REF] and analysed in [START_REF] Lank | A semicoherent detection and doppler estimation statistic[END_REF], [START_REF] Abeysekera | Performance of pulse-pair method of doppler estimation[END_REF]. The main advantage of considering larger k is to reduce the impact of the noise on the measurement. Indeed, in Rx (k) , the useful deterministic part is proportional to k, namely kω while the noise level remains the same when k increases (as long as N >> k). In fact, Lank & al. [START_REF] Lank | A semicoherent detection and doppler estimation statistic[END_REF] proved that the optimal value of k is k = 2N 3 . The price to be paid is a possible wrapping of the phase of Rx (k). This is the main drawback of the autocorrelation-based techniques. As a consequence, one may adapt the value of k to the possible range of ω or should consider unwrapping techniques. To this end, many works tend to derive reduced computational cost autocorrelation-based unwrapping techniques [START_REF] Tufts | Simple, effective estimation of frequency based on prony's method[END_REF], [START_REF] Mengali | Data-aided frequency estimation for burst digital transmission[END_REF], [START_REF] Volker | Frequency estimation from proper sets of correlations[END_REF]. Another solution to prevent from using unwrapping techniques is to consider first the non-ambiguous Rx (1) measurement and then to refine the estimation using higher correlation lags. This kind of recursive technique has been used by Brown & al. with the so-called Iterative Linear Prediction (ILP) [START_REF] Brown | An iterative algorithm for single-frequency estimation[END_REF] or by Xiao [START_REF] Xiao | Autocorrelation-based algorithm for single-frequency estimation[END_REF].

These different kinds of frequency estimation techniques can be compared within 4 main criterion, namely

• asymptotic precision: do they reach the CRB?

• SNR threshold: do they depart from the CRB for a high SNR or do they remain close to the benchmark ML? • operating range with respect to w: do they preserve their precision over the full [-π π] range? • computational complexity: can they be implemented on a given hardware architecture? Hence, depending on the application, the choice of a method should be a trade-off between these criteria. As a conse-quence, in mobile communication systems, correlation-based algorithms are solutions of choice for synchronization. For instance, the Luise & Reggiannini (L&R) estimator [START_REF] Luise | Carrier frequency recovery in all-digital modems for burst-mode transmissions[END_REF] is used as a master frequency estimator [START_REF] Olmo | Progressive refinement approach to MLE: an application to carrier frequency recovery[END_REF]. Just like the L&R algorithm, many popular correlation-based algorithms tends to optimally combine the pulse-pair frequency estimations (ω k = Rx (k) ) [START_REF] Lovell | The statistical performance of some instantaneous frequency estimators[END_REF], [START_REF] Fitz | Further results in the fast estimation of a single frequency[END_REF], [START_REF] Luise | Carrier frequency recovery in all-digital modems for burst-mode transmissions[END_REF], [START_REF] Mengali | Data-aided frequency estimation for burst digital transmission[END_REF], [START_REF] Campobello | A novel low-complexity frequency estimation algorithm for industrial internet-of-things applications[END_REF]. Most of these closed-form algorithms consist in an appropriate weighting of the correlation function and phase extractions. Although they are quite close in their formulation, their weighs are slightly different. Among these schemes, Fitz and L&R algorithms are two of the most popular one.

ωF K = K k=1 k Rx (k) K k=1 k 2 (3) ωL&RK = 2 K k=1 Rx (k) K + 1 (4) 
where K < N is the maximum sample interval chosen for the estimation. It can be noticed that L&R is computationally simpler than Fitz, as the phase has to be computed only once.

In this paper, starting from the exact ML formulation and solving the maximization problem in two steps, we show that a matched correlation-based frequency estimation is asymptotically equivalent to the ML. This new estimation scheme has a standard weighting autocorrelation phase formulation, which is very close to Fitz estimator with only a slight correction. Numerical simulations show that the proposed algorithm is very close to the ML.

II. ML ALTERNATIVE SOLUTION

While many autocorrelation-based algorithms tends to solve the ML maximization problem taking the derivative and using some approximations adequate for small phase errors [START_REF] Fitz | Further results in the fast estimation of a single frequency[END_REF], [START_REF] Luise | Carrier frequency recovery in all-digital modems for burst-mode transmissions[END_REF], [START_REF] Fu | ML estimation of the frequency and phase in noise[END_REF], we directly consider the exact ML criterion, in this paper. Indeed, the ML criterion from eq. ( 2) can be rewritten as

C(ω) = N -1 n=0 x(n)e -i nω 2 (5) = N -1 n=0 N -1 m=0 x(n)x * (m)e -i (n-m)ω = N -1 n=0 |x(n)| 2 + 2Re N -1 k=1 N -k-1 n=0 x(n) * x(n + k)e -i kω = N -1 n=0 |x(n)| 2 + 2Re N -1 k=1 (N -k) Rx (k)e -i kω
where Re[.] stands for the real part. In order to simplify this maximization while keeping asymptotically the efficiency properties of the ML, we make use of the Extended Invariance Principle (EXIP) [START_REF] Stoica | On reparametrization of loss functions used in estimation and the invariance principle[END_REF].

A. The Extended Invariance Principle (EXIP)

The main idea behind EXIP is a re-parametrization of the criterion using a larger parameter space to get an intermediate closed-form solution, and then come-back to the initial parameter space using an appropriate least squares approach. This approach has been used in domains such as Radar [START_REF] Swindlehurst | Maximum likelihood methods in radar array signal processing[END_REF], [START_REF] Vincent | Estimating time-varying doa and doppler shift in radar array processing[END_REF], localisation [START_REF] Weiss | Direct position determination of narrowband radio frequency transmitters[END_REF], [START_REF] Amar | Localization of narrowband radio emitters based on doppler frequency shifts[END_REF] or satellite navigation [START_REF] Vincent | Asymptotically efficient gnss trilateration[END_REF]. It has to be noticed that, in this last domain, the standard solution used in every GPS receiver, where the user position is determined from an intermediate set of pseudo-ranges from the satellites is a direct application of this principle.

More precisely, the objective is to find a mapping from ω ∈ [-π π] to ω = g(ω) ∈ R M leading to a computationally simpler maximization. The point is to look for a solution in a larger space than the image space g([-π π]), namely :

ω = arg max ω∈R M C ω (ω) (6) 
where

C ω (g(ω)) = C(ω)
Then, the following Weighted Least Square (WLS) estimate of ω is shown to be asymptotically equivalent to ωML [START_REF] Stoica | On reparametrization of loss functions used in estimation and the invariance principle[END_REF] ω = arg min

ω∈[-π π] [ ω -g(ω)] T Q[ ω -g(ω)] (7) 
where two possible weighting matrices Q can be used, namely

Q = W = - ∂ 2 C ω (ω) ∂ω∂ω T |ω= ω (8) 
or

Q = E[W] (9) 
and the latter coincides with the Fisher Information Matrix (FIM) of the problem at hand. Expression ( 8) is directly derived from a Taylor series expansion of C ω around ω [START_REF] Stoica | On reparametrization of loss functions used in estimation and the invariance principle[END_REF], but the weighting matrix Q will thus depend on the data. Expression (9) [START_REF] Swindlehurst | Maximum likelihood methods in radar array signal processing[END_REF] fixes this issue and provides a more stable weighting matrix by taking the expectation.

B. An Asymptotically equivalent solution

The key point of this procedure is to find a mapping g(ω) leading to a simpler two-steps procedure than the original one, through relaxation of the original constraints. Observing eq. ( 5), it is obvious that choosing different frequencies for each index k leads to a simple closed-form solution. These intermediate frequencies estimations are nothing else than the well known pulse-pair estimations. Indeed, rewriting the ML criterion as

C(ω) = N -1 n=0 |x(n)| 2 + 2Re N -1 k=1 (N -k) Rx (k)e -i kω k (10)
where ω = ω 1 . . . ω N -1 T , we directly get

ωk = 1 k Rx (k) (11) 
These intermediate estimates, obtained in a larger space, are linked to the initial parameter by the simple mapping g(ω) = ω1, where 1 is the (N -1) vector of 1.

Then, EXIP provides the optimal way to use the intermediate estimates ŵk to refine the initial parameter estimation, namely

ω = arg min ω∈[-π π] [ ω -ω1] T Q[ ω -ω1] (12) 
From eq. ( 8) and ( 9), it is straight-forward to shown that

W = diag 2(N -k)k 2 | Rx (k)| k=1,...,(N -1)
, and

E[W] = diag 2(N -k)k 2 A 2 k=1,.
..,(N -1) respectively leading to the following closed-form expressions of

ω ω = N -1 k=1 (N -k)k| Rx (k)| Rx (k) N -1 k=1 (N -k)k 2 | Rx (k)| (13) 
and

ωE = N -1 k=1 (N -k)k Rx (k) N -1 k=1 (N -k)k 2 (14) 
These simple expressions are asymptotically equivalent to the ML estimate. Alike many of the autocorrelation-based algorithms, to preserve both the computational burden and the range of ω, we can restrict the weighted sum to the first values of k, namely k ≤ K < N , and obtain two suboptimal but simpler expressions :

ωK = K k=1 (N -k)k| Rx (k)| Rx (k) K k=1 (N -k)k 2 | Rx (k)| (15) ωEK 
= K k=1 (N -k)k Rx (k) K k=1 (N -k)k 2 (16) 
Observing eq. ( 3), we can see that this last expression is very close to that obtained by Fitz. The only difference is the presence of an additional (N -k) term in the weights. As a consequence, when choosing K N , the difference is small.

III. NUMERICAL ASSESSMENT

In order to assess the performance of the proposed algorithms, we now compare their performance to the state of the art correlation-based algorithm. Fitz's method [START_REF] Fitz | Further results in the fast estimation of a single frequency[END_REF] being the best of this kind of methods with respect to the SNR threshold, we compare to this benchmark. Moreover, in these comparisons, we add Kay's WPA algorithm [START_REF] Kay | A fast and accurate single frequency estimator[END_REF]. Furthermore, our experience is that the performance of the two proposed algorithms are very close, whatever the simulation parameters, with only a very slight improvement for ŵK compared with ŵEK when K is close to N . As a consequence, we choose to plot only the performance for ŵK . In the following plots, we compare the Mean Square Error (MSE) versus SNR, for two different values of number of samples N , a small one (N = 8) and a larger one (N = 128). Moreover, for the correlation-based methods, we vary the maximum number of correlation lags K in eq. ( 15) and ( 16), from 1 to (N -1). As a consequence, we choose a value of the unknown parameter ω 0 within the unambiguous range, namely -π/K < ω 0 < π/K. Doing so we avoid unwrapping techniques that may impact the comparison. It has to be noticed that if K = 1, both Fitz and the proposed methods are identical to the first pulse-pair frequency estimation, namely ω = Rx (1) . This last estimation is the only one that does not reach the CRB when SNR increases [START_REF] Lank | A semicoherent detection and doppler estimation statistic[END_REF].

In Fig. 1, we consider a small number of samples, N = 8. First of all, we can observe that whatever the value of K and unlike the ML and Kay's WPA, all correlation-based methods exhibit a very slow departure from the CRB. Indeed, in the no-information region, where the intermediate estimation are random variables over [-π π], the weighted sum present in the correlation-based algorithms brings-back the final estimation towards 0, which is close to the actual value of ω 0 , as -π/K < ω 0 < π/K. Moreover, we can observe that for such a small number of samples, all the methods, except Rx (1) , depart from the CRB in the same SNR range. Furthermore, the two correlation-based methods, namely Fitz and the proposed scheme, exhibit very close performance as soon as K < N/2 = 4. Obviously, in such a case, the two expressions give approximately the same result, as the corrective terms with respect to Fitz (i.e. (N -k)), have no significant influence. However, when K → N we can observe the benefits of using these correctives terms. Now, we consider a larger number of samples, namely N = 128, in Fig. 2. First of all, we can observe that the performance gap between the ML and the WPA is more noticeable. The correlation-based techniques remain very close to the benchmark ML, even if the slow departure from the CRB (already discussed here-above) makes it difficult to precisely point the SNR threshold. As already noticed in the first plot, the proposed methods exhibit very close performance to Fitz's algorithm. Once again, the performance is almost the same when K < N/2. However, the benefits of using appropriate weights derived from EXIP is more important when using the maximum number of intermediate estimations, namely K = N -1. We can notice that these last estimates are the only ones that are asymptotically equivalent to the ML. Furthermore, observing Fig. 3, which is simply a zoom of Fig. 2, we can see that Fitz's method degrades when K = N -1. This strange behaviour is certainly due to too large weights when k tends to N -1, which brings more noise than additional information, unlike for the proposed expressions.

IV. CONCLUSIONS

In this paper, we proposed a closed-form frequency estimation scheme that is asymptotically equivalent to the benchmark ML. Based on a two-step maximization of the ML criterion, we showed that this solution is a correlation-based method with a formulation very close to Fitz's popular expression. A slight correction allows to improve this last method when one wants to use all correlation samples.
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