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Robust estimation with missing values for elliptical distributions

In this chapter, we tackle the problem of robust estimation of the mean and the covariance matrix when the data contains missing values. Classical estimation methods either assume a multivariate Gaussian distribution, or suppose an unstructured covariance matrix. However, in many applications, the signal is not well described by a Gaussian model, and very often the data can be efficiently approximated by a low-rank model, inducing a low-rank structure on the covariance matrix which naturally accounts for the underlying signal subspace. By making the most of both 𝑖) robustness to non-Gaussianity and 𝑖𝑖) low-rank structure, this chapters reviews various robust estimation procedures based mainly on the expectation-maximization algorithm which leverages the observed-data likelihood function, where the signal heterogeneity is accounted for through a deterministic scale parameter. Furthermore, the proposed algorithms are designed to handle various patterns of missing values. At the end of the chapter, the performances of the proposed procedures are illustrated on simulated data sets with missing values. We share a link to a code repository for fully reproducible experiments.

Introduction

The problem of missing data in statistical signal processing has been addressed a long time ago. In 1932, Wilks [START_REF] Wilks | Moments and distributions of estimates of population parameters from fragmentary samples[END_REF] obtained efficient estimators for the parameters of a normal bivariate distribution when the data contains missing values. This work was extended to the multivariate case by Lord [START_REF] Lord | Estimation of parameters from incomplete data[END_REF] in 1955. Since the early 1970's, the literature in missing data has flourished with the development of computational capacity, leading to major developments in statistical signal processing and its related fields, as statistical inference [START_REF] Schafer | Analysis of incomplete multivariate data[END_REF][START_REF] Little | Statistical analysis with missing data[END_REF] and data analysis [START_REF] Benzécri | L'analyse des données[END_REF][START_REF] Van Buuren | Flexible imputation of missing data[END_REF]. Missing data is everywhere, and it extends to extremely broad applications, as, to name a few, remote sensing [START_REF] Shen | Missing information reconstruction of remote sensing data: A technical review[END_REF], longitudinal studies [START_REF] Graham | Missing data analysis: Making it work in the real world[END_REF], direction-of-arrival estimation [START_REF] Larsson | High-resolution direction finding: the missing data case[END_REF], ecological statistics [START_REF] Nakagawa | Missing inaction: the dangers of ignoring missing data[END_REF], chemometrics [START_REF] Walczak | Dealing with missing data : Part I[END_REF] or political science [START_REF] King | Analyzing incomplete political science data: An alternative algorithm for multiple imputation[END_REF].

Statistical parameter estimation, which is a core subject in signal processing and machine learning, has witnessed particular efforts focusing in the case of incomplete data. One popular approach is to rely on maximum likelihood (ML) estimation with a prior assumption on the probability distribution of the data. Within this framework, the expectation-maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] is a convenient iterative procedure to obtain ML estimates when the ML of the unknown parameters θ would be easier if the latent (missing) variables z is assumed known.

Very often, the frameworks using the EM algorithm with missing values assume independent and identically distributed (iid) samples drawn from the Gaussian distribution [START_REF] Jamshidian | An EM algorithm for ML factor analysis with missing data[END_REF][START_REF] Liu | Efficient ML estimation of the multivariate normal distribution from incomplete data[END_REF][START_REF] Schneider | Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values[END_REF][START_REF] Lounici | High-dimensional covariance matrix estimation with missing observations[END_REF][START_REF] Städler | Pattern alternating maximization algorithm for missing data in high-dimensional problems[END_REF][START_REF] Aubry | Structured covariance matrix estimation with missing-(complex) data for radar applications via expectation-maximization[END_REF]. Nevertheless, the Gaussian assumption is not realistic in a plethora of signal processing applications, e.g., in high resolution sensing systems, non-homogeneous environments or in the possible presence of outliers [START_REF] Theiler | Characterizing non-Gaussian clutter and detecting weak gaseous plumes in hyperspectral imagery[END_REF][START_REF] Greco | Statistical analysis of high-resolution SAR ground clutter data[END_REF][START_REF] Pascal | Covariance structure maximumlikelihood estimates in compound Gaussian noise: Existence and algorithm analysis[END_REF][START_REF] Formont | Statistical classification for heterogeneous polarimetric SAR images[END_REF][START_REF] Zhang | MIMO radar target localization and performance evaluation under SIRP clutter[END_REF][START_REF] Ollier | Robust distributed calibration of radio interferometers with direction dependent distortions[END_REF][START_REF] Meriaux | Robust estimation of structured scatter matrices in (mis) matched models[END_REF][START_REF] Abdallah | Bayesian signal subspace estimation with compound gaussian sources[END_REF]. To overcome these limitations (which also stand for incomplete data), extensive efforts have been put into the development of robust estimation algorithms by considering data drawn from alternative distributions within the real elliptical symmetric (RES) family, as the Student's 𝑡-distribution [START_REF] Little | Robust estimation of the mean and covariance matrix from data with missing values[END_REF][START_REF] Liu | Missing data imputation using the multivariate 𝑡-distribution[END_REF][START_REF] Liu | Regularized robust estimation of mean and covariance matrix for incomplete data[END_REF], the generalized elliptical symmetric (GES) distribution [START_REF] Frahm | A generalization of Tyler's M-estimators to the case of incomplete data[END_REF][START_REF] Frahm | M-estimation with incomplete and dependent multivariate data[END_REF] or the angular Gaussian (AG) distribution [START_REF] Mouret | A robust and flexible EM algorithm for mixtures of elliptical distributions with missing data[END_REF].

In addition to the data distribution, the structure of the unknown parameter is also of interest and can be exploited to obtain more efficient estimators. For example, models have been considered in which the covariance is assumed to have the structure

𝚺 = 𝜎 2 I + H, (1) 
where H is a symmetric positive definite (SPD) matrix of rank 𝑞 < 𝑚 and 𝜎 2 controls the noise power, a structure known as factor [START_REF] Ruppert | Statistics and data analysis for financial engineering[END_REF] or spiked model [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF]. Both models are closely related to signal subspace inference and principal component analysis (PCA), and to its probabilistic counterpart (PPCA) [START_REF] Tipping | Probabilistic principal component analysis[END_REF], which have recently been proven to be powerful tools to handle missing values [START_REF] Josse | Handling missing values in exploratory multivariate data analysis methods[END_REF][START_REF] Chen | Robust probabilistic PCA with missing data and contribution analysis for outlier detection[END_REF][START_REF] Ilin | Practical approaches to principal component analysis in the presence of missing values[END_REF][START_REF] Robin | Low-rank model with covariates for count data with missing values[END_REF].

With the previous points in mind, this chapter presents recent EM-based methods and algorithms that handle missing values in the context of 𝑖) robustness to non-Gaussianity and 𝑖𝑖) low-rank structure models. It is organized as follows: in section 2, we introduce key concepts and tools of missing-data theory which will be needed along the chapter; section 3 reviews existing methods to deal with missing values in the framework of parameter estimation, including the EM algorithm and its variants; section 4 presents robust estimation procedures with missing values, starting from a general EM for RES distributions to special cases of RES distributions; section 5 proposes a robust formulation of the PPCA model, from which closed-form expression of the statistical parameters are proposed; section 6 compares the performances of the estimators of section 4 with a robust multiple imputation procedure on simulated data with missing values; in conclusion, we provide in section 7 promising perspectives in robust estimation with missing data.

Tools for modelling missing data

In this section, key tools of missing-data theory are presented, from the concept of missing-data pattern to the one of missing-data mechanism. These concepts will accompany us throughout the chapter. Before that, we need to introduce general and missing data notations.

General notation

In this chapter, 𝑥 denotes a scalar quantity, x indicates a vector and X a matrix. The transpose, trace and determinant operators are denoted by 𝑇, tr and |.|, respectively. The rank of a matrix is indicated by rank(.). The 𝑖, 𝑗-th element of matrix X is represented by 𝑥 𝑖 𝑗 or (X) 𝑖, 𝑗 . The observations (or data) are denoted by matrix X ∈ R 𝑚×𝑛 , with, on its columns, the random variables (r.v.) x 𝑖 ∈ R 𝑚 , 𝑖 = 1, . . . , 𝑛. The set of 𝑚 × 𝑚 positive definite matrices is S ++ 𝑚 = {𝚺 ∈ S 𝑚 : ∀x ∈ R 𝑚 \{0}, x ⊤ 𝚺x > 0}. St 𝑚,𝑞 = {U ∈ R 𝑚×𝑞 : U ⊤ U = I 𝑞 } is the real Stiefel manifold of 𝑚 × 𝑞 orthogonal matrices. The set of positive semi-definite matrices of rank 𝑞 is expressed as S + 𝑚,𝑞 = {𝚺 ∈ S 𝑚 , 𝚺 ⪰ 0, rank(𝚺) = 𝑞}.

Missing-data notation

As X might include missing observations, it is necessary to design a model that takes into account data incompleteness. In most studies of missing data, it is common to partition X into its observed and missing components, which are denoted X (0) ∈ X (0) and X (1) ∈ X (1) , respectively. Here, X (0) and X (1) are subsets of the space of observations X. Similarly, the observed and missing elements of each vector x 𝑖 will be noted x (0) 𝑖 and x (1) 𝑖 , 𝑖 = 1 . . . , 𝑛. We will use notation 𝑂 cc for the set of indices 𝑖 corresponding to fully observed x 𝑖 , 𝑂 𝑖 for the set of indices 𝑗 for which 𝑥 𝑖 𝑗 is observed (similarly 𝑂 𝑗 for the set of indices 𝑖). Finally, 𝑂 refers to the set of tuples (𝑖, 𝑗) for which 𝑥 𝑖 𝑗 is observed.

Missing data model

Suppose iid samples (x 𝑖 ) 𝑛 𝑖=1 ∈ R 𝑚 drawn from a multivariate RES 𝑚 distribution parameterized by mean (location) vector µ ∈ R 𝑚 , covariance (scatter) matrix 𝚺 ∈ S ++ 𝑚 and density generator 𝑔. As we will see further in this chapter, the missing values x (1) 𝑖 in sample x 𝑖 can impede a direct estimation of some unknown parameter θ. For this purpose, it can be useful to extract the observed values x (0) 𝑖 from x 𝑖 . For example, in [START_REF] Aubry | Structured covariance matrix estimation with missing-(complex) data for radar applications via expectation-maximization[END_REF], x (0) 𝑖 are simply modeled using selection matrices:

x (0) 𝑖 = A 𝑖 x 𝑖 , 𝑖 = 1, . . . , 𝑛, (2) 
where A 𝑖 is the 𝑝 𝑖 × 𝑚 selection matrix constructed by extracting from the identity matrix the 𝑝 𝑖 ≤ 𝑚 rows corresponding to the observed variables at the 𝑖-th observation.

In this chapter, especially in the first part, it will also be useful to order each sample x 𝑖 by stacking x (0) 𝑖 and x (1) 𝑖 such that

x 𝑖 = P 𝑖 x 𝑖 = x (0) 𝑖 x (1) 𝑖 𝑇 , 𝑖 = 1, . . . , 𝑛, (3) 
where P 𝑖 is a 𝑚 ×𝑚 permutation matrix. This representation allows to clearly identify the observed and missing values and to a better interpretation of the calculus of their statistics. For example, the covariance matrix of x 𝑖 reads

𝚺 𝑖 = 𝚺 (00)
𝑖 𝚺 (10) 𝑖 𝚺 (01) 𝑖 𝚺 (11) 

𝑖 = P 𝑖 𝚺P 𝑇 𝑖 , 𝑖 = 1, . . . , 𝑛 (4) 
where 𝚺 (11) 𝑖 , 𝚺 (10) 

𝑖

, 𝚺 (00)

𝑖

represent adequate covariance matrices blocks, i.e., of the missing, missing and observed, and observed values, respectively. In the rest of the chapter, we omit the parenthesis in the superscripts of block covariances matrices: for example, 𝚺 (00) 𝑖 becomes 𝚺 00 𝑖 .

Missing data pattern

It is also useful to distinguish, for both practical and theoretical reasons, the missingdata pattern, i.e., the form of the indicator matrix R ∈ {0, 1} 𝑚×𝑛 which elements are defined by:

(R) 𝑖 𝑗 = 0 if 𝑥 𝑖 𝑗 is observed, 1 otherwise. ( 5 
)
Fig. 1 shows possible missing data patterns in the case of multivariate data. In the following, we give some short examples for each of these patterns (we refer interested readers to the book of Little and Rubin [START_REF] Little | Statistical analysis with missing data[END_REF], where further developments on the patterns are provided with a rich collection of examples):

• Univariate or multivariate patterns happen when one or multiple variables are partly missing from a reference and unique time instant. This is the case when one or multiple sensors stop to operate at the same time and never record again; • In contrast, a pattern is named monotone if the incomplete data can be sorted in such a way that the 𝑗th variable is at least as observed as the ( 𝑗 -1)th variable for 𝑗 = 2, 3, . . . , 𝑚 [START_REF] Liu | Missing data imputation using the multivariate 𝑡-distribution[END_REF]. Similarly to the last example, multiple sensors may stop to function but at different times. This pattern has been extensively studied in longitudinal studies [START_REF] Little | Statistical analysis with missing data[END_REF], wireless communications [START_REF] Larsson | High-resolution direction finding: the missing data case[END_REF] or finance [START_REF] Liu | Regularized robust estimation of mean and covariance matrix for incomplete data[END_REF]; • File matching: this pattern ensures that all but one variables are at least observed for each observations. For example, when two univariate time series are fusioned to form a bivariate data set, with variable 1 observed from time 𝑡 1 to time 𝑡 2 and variable 2 observed from 𝑡 2 + 1 to 𝑡 3 ; • General or non-monotone pattern indicates that multiple blocs of data are missing across multiple variables. This can happen, for example, when multiple sensors temporary stop to operate at different times; • Random pattern: this pattern can be considered as a special form of general pattern, but with only individual missing observations, i.e., each observation has a unique random probability of being missing.

Missing data mechanism

Missing data patterns describe the shape of unobserved data but are ineffective to describe the relation between missing and observed values, i.e., the cause of missingness. In his seminal paper [START_REF] Rubin | Inference and missing data[END_REF] The concept of missing-data mechanism is defined using the conditional distribution 𝑓 (R|X, ϕ) of the missing-data pattern R given the full data X, parametrized by an unknown parameter ϕ. In the following, we give the classical definition of the missing-data mechanism, being certainly the most popular in the missing-data literature, including in the reference textbooks [START_REF] Little | Statistical analysis with missing data[END_REF] (first and second edition) and [START_REF] Schafer | Analysis of incomplete multivariate data[END_REF].

Definition (missing-data mechanism)

The missing-data mechanism is said

• Missing completely at random (MCAR) if 𝑓 (R|X, ϕ) = 𝑓 (R|ϕ), ∀ϕ ∈ 𝚽 • Missing at random (MAR) if 𝑓 (R|X, ϕ) = 𝑓 (R|X (0) , ϕ), ∀ϕ ∈ 𝚽
• Missing not at random (MNAR) if MCAR and MAR assumptions do not hold.

To put it simply, MCAR happens when the probability of a value being missing is independent of the data values; MAR means that the occurence of a missing value depends only on the observed values; MNAR when the probability of being missing depends (at least) on the values of missing variables, and possibly on the observed ones.

As pointed out in [START_REF] Seaman | What is meant by "missing at random[END_REF][START_REF] Sportisse | Handling heterogeneous and MNAR missing data in statistical learning frameworks: imputation based on low-rank models, online linear regression with sgd, and modelbased clustering[END_REF], it is worth noticing that the above definition has been subjected to debate because of the dependence between R and X (0) . A new definition was proposed by [START_REF] Little | Statistical analysis with missing data[END_REF], overcoming this ambiguity by using the random variables x (0) 𝑖 and x (1) 𝑖 instead of the data X (0) and X (1) . We limits ourselves to this brief discussion and leave interested readers in the causes of the debate to [START_REF] Seaman | What is meant by "missing at random[END_REF] and [START_REF] Little | Statistical analysis with missing data[END_REF].

Example 1: real-world scenario of missing-data mechanisms. Consider a sensor that measures atmospheric temperature. As it is placed outdoor, this device can fail due to unpredictable and/or random events (e.g., severe electrical activity, perturbations due to animals, etc.), which implies that the missing temperature values are unrelated to the observed, missing or any other variable. This setting is clearly MCAR. A MAR scenario would happen when the sensor fails due to an observed variable, such as humidity or precipitation. Finally, a MNAR setting1 would imply the unavailability of the temperature values because of the temperature itself which do not fall in the sensor range (e.g., too high or too cold).

A small tour of existing covariance estimation strategies with missing data

In this section, we shortly describe important families of methods in statistical estimation with missing values. This framework is one of the many flavors included in what is commonly called missing data analysis (MDA). When dealing with missing values, one might want to impute the missing values, i.e., replace them with an estimated guess, infer some parameters as the mean vector µ or the covariance matrix 𝚺, or classify (or predict) some outcomes from incomplete data (including labels in a supervised setting). Indeed, the presence of missing values makes the estimation of an unknown parameter θ non-trivial. For example, in the case of incomplete data following a multivariate Gaussian distribution, the sample covariance matrix (SCM) can have negative eigenvalues and can contain missing covariates [START_REF] Ilin | Practical approaches to principal component analysis in the presence of missing values[END_REF], especially with large portions of missing observations. To overcome this issue, many approaches are at hand, and we review some of them below.

Complete-case analysis

An ubiquitous strategy when faced with incomplete data is to simply discard the missing samples and analyze the remaining observed ones. As illustrated in Fig. 2(a), this would imply to remove the missing columns of the data matrix X. In parameter estimation, this is tantamount to estimate an "observed" version of an unknown parameter θ, denoted θ(0) , from only all available observations, i.e., using x 𝑖 , 𝑖 ∈ 𝑂 cc where 𝑂 cc is a subset of {1, . . . , 𝑛} containing the indices of fully observed samples. For example, the SCM can be computed using fully observed x 𝑖 which 1 More precisely a self-masked MNAR setting, i.e., when the unavailability of a missing variable only depends on the variable itself [START_REF] Mohan | On handling self-masking and other hard missing data problems[END_REF].

Contents yields

𝚺 cc = 1 |𝑂 cc | ∑︁ 𝑖 ∈𝑂 cc x 𝑖 -µ cc x 𝑖 -µ cc 𝑇 , (6) 
in which µ cc = (𝜇 1 , . . . , 𝜇 𝑖 ) 𝑇 is the sample mean of the observed sample x 𝑖 with 𝑖 ∈ 𝑂 cc . Alternatively, an element-wise estimator can be computed, leading to

( 𝚺 cc ) 𝑗,𝑘 = 1 |𝑂| ∑︁ 𝑖.∈𝑂 (𝑥 𝑖 𝑗 -( µ cc ) 𝑗 ) (𝑥 𝑖𝑘 -( µ cc ) 𝑘 ) 𝑇 , ( 7 
)
where 𝑂 is the set of indices corresponding to observed values 𝑥 𝑖. with "." being index 𝑗 or 𝑘, and where ( µ cc ) 𝑗 refers to the mean of the observed samples in variable 𝑗. Unlike estimator (6) which uses only fully observed samples, estimator [START_REF] Bhatia | Positive definite matrices[END_REF] uses all available observations such that no missing covariate is created. However, note that the use of this method should be considered carefully. The above estimators will tend to be biased if i) the quantity of missing data increases2, leading to a decreasing number of observed samples compared to the number of variables 𝑚, ii) the missing-data pattern is not random and iii) the mechanism is MAR or MNAR as the observed data is not a good representation of the complete data.

Imputation strategies

A second strategy consists first to impute the missing values in X and then estimate θc (letter "c" stands for complete) from the infilled (complete) data X c . There is a wide variety of imputation methods in the literature: most popular methods include mean imputation, multiple imputation, low-rank imputation and model-based imputation.

For an important review of imputation methods, interested readers should consult the book of S. Van Buuren [START_REF] Van Buuren | Flexible imputation of missing data[END_REF]. In the following, we only discuss the main advantages and drawbacks of mean and multiple imputation methods with regards to ML based methods.

Firstly, mean imputation consists in filling the missing values in variable 𝑥 𝑖 𝑗 of X by the mean of the observed values, ( µ cc ) 𝑗 . Despite its simple and computationallyefficient implementation, mean imputation cannot be performed in the case of a fully missing variable, as illustrated by Fig. 2(b). More importantly, it should be mentioned that this method induces important biases in estimators by distorting the data distribution.

A second imputation method is multiple imputation [START_REF] Rubin | Multiple imputation for nonresponse in surveys[END_REF]. The principle is the following: for a dataset X with missing values X (1) , 𝑆 imputed (or completed) datasets X 1 𝑐 , X 2 𝑐 , . . . , X 𝑆 𝑐 are generated. For example, the imputed dataset can be drawn 𝑆 times from a multivariate Gaussian distribution with mean µ cc and variance Var ( µ cc ). An estimation of θ is then computed from the combination (for example, the average) of the 𝑞 imputed datasets. By taking into account the variability of imputation, this strategy reduces the bias of the estimator θ.

Finally, model-based methods include parametric and non-parametric approaches: in the former, the imputation can be performed assuming a joint model for the data (X (0) , X (1) ) [START_REF] Van Buuren | Flexible imputation of missing data[END_REF]. In the latter, a common strategy is the impute using a distance between observations as in 𝑘-nearest neighbors [START_REF] Troyanskaya | Missing value estimation methods for dna microarrays[END_REF] or hot-decks procedures [START_REF] Andridge | A review of hot deck imputation for survey non-response[END_REF]. More recently, imputation methods based on deep learning and related techniques have been proposed, as deep convolutional neural networks [START_REF] Zhang | Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network[END_REF] and variational autoencoders [START_REF] Mattei | MIWAE: Deep generative modelling and imputation of incomplete data sets[END_REF].

Covariance completion

The principle of covariance completion is fairly simple: from an incomplete covariance matrix 𝚺 as in . 2(c), the goal is to find the best way to reconstruct its missing values [START_REF] Johnson | Matrix completion problems: a survey[END_REF]. The covariance matrix is possibly corrupted by noise, which often motivates the use of a low-rank model on its structure [START_REF] Candes | Matrix completion with noise[END_REF]. Furthermore, some studies assumed a SPD structure on the covariance matrix (see for example [START_REF] Bishop | Deterministic symmetric positive semidefinite matrix completion[END_REF] and the references therein). This structure opens many applications, as in the field of brain-computer interfaces, where the state-of-the-art methods for classification employ covariance matrices as statistical features, which are SPD matrices [START_REF] Rodrigues | A data imputation method for matrices in the symmetric positive definite manifold[END_REF].

X ∈ R m×n (a) X ∈ R m×n (b) Σ ∈ S ++ m (c)
Fig. 2: Illustration of different types of missing data: (a) missing samples/observations in the data matrix X, (b) missing variables in X introducing missing covariates in the covariance matrix 𝚺, (c) missing elements in 𝚺. Inspired from [START_REF] Yger | Geodesically-convex optimization for averaging partially observed covariance matrices[END_REF].

Likelihood-based estimation under ignorable missing-data mechanism

Likelihood formulation

Suppose a parameter vector θ which belongs to a family (or set) of parameters 𝚯 generating the data X. For example, in our case, the unknown parameter is the covariance matrix 𝚺 which belongs to S ++ 𝑚 , the set of SPD matrices. Suppose iid samples x 1 , . . . , x 𝑛 of 𝑛 observations forming X distributed according to 𝑓 (X|θ) with an unknown parameter θ. The likelihood function associated to X reads

𝐿(θ|X) = 𝑛 𝑖=1 𝑓 (x 𝑖 |θ). (8) 
To estimate θ from the data X, a common strategy relies on maximizing [START_REF] Bishop | Deterministic symmetric positive semidefinite matrix completion[END_REF]. The resulting estimator is the well-known ML estimator, which is generally (when it exists and it is unique) consistent in the asymptotic regime, under certain mild conditions. With missing values, the statistical estimation is conducted on the joint distribution of (X, R) denoted as 𝑓 (., .|θ, 𝜙), where θ ∈ 𝚯 and 𝜙 ∈ 𝚽 are the parameter of the data and the missing-data mechanism distributions, respectively. The full likelihood 𝐿 full under iid assumption is then defined as :

𝐿 full (θ, 𝜙|X, R) = 𝑛 𝑖=1 𝑓 (x 𝑖 , r 𝑖 |θ, 𝜙). (9) 
Since 𝐿 full involves missing values X (1) , it is not possible to directly compute [START_REF] Candes | Matrix completion with noise[END_REF]. We consider instead the full observed likelihood by integrating over the missing values:

𝐿 full,obs (θ, 𝜙|X (0) , R) = 𝑛 𝑖=1 ∫ X (1)
𝑓 (x (1) 𝑖 , x (0) 𝑖 , r 𝑖 |θ, 𝜙)𝑑x (1) 𝑖 .

As noted in [START_REF] Sportisse | Handling heterogeneous and MNAR missing data in statistical learning frameworks: imputation based on low-rank models, online linear regression with sgd, and modelbased clustering[END_REF], the form of ( 10) is rarely closed. However, as we will see in the next section, iterative methods such as the EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] can be used to compute the full observed likelihood. The missing-data mechanism is said ignorable if the statistical estimation of θ can be conducted by maximizing the observed likelihood

𝐿 ign (θ|X (0) ) = 𝑛 𝑖=1 ∫ X (1)
𝑓 (x (1) 𝑖 , x (0) 𝑖 |θ)𝑑x (1) 𝑖 [START_REF] Chen | Robust probabilistic PCA with missing data and contribution analysis for outlier detection[END_REF] instead of the full observed likelihood [START_REF] Celeux | The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem[END_REF]. Specifically, by using the fundamental rule for the joint probability of (X, R), the full observed likelihood can be rewritten as

𝐿 full,obs (θ, 𝜙|X (0) , R) = 𝑛 𝑖=1 ∫ X (1)
𝑓 (x (1) 𝑖 , x (0) 𝑖 |θ) 𝑓 (r 𝑖 |x (1) 𝑖 , x (0) 𝑖 , 𝜙)𝑑x (1) 𝑖 .

In this chapter, we assume that the missing-data mechanism is MAR, which means that data incompleteness depends on the observed values only, so that 𝑓 (r 𝑖 |x (1) 𝑖 , x (0) 𝑖 , 𝜙) = 𝑓 (r 𝑖 |x (0) 𝑖 , 𝜙) as stated in Definition 1. A handful of computation steps lead to the following expression for the full observed likelihood

𝐿 full, obs (θ, 𝜙|X (0) , R) = 𝑛 𝑖=1 ∫ X (1) 𝑓 (x (0) 𝑖 , x (1) 𝑖 |θ) 𝑓 (r 𝑖 |x (0) 𝑖 , 𝜙)𝑑x (1) 𝑖 = 𝑛 𝑖=1 𝑓 (r 𝑖 |x (0) 𝑖 , 𝜙) 𝑛 𝑖=1 ∫ X (1)
𝑓 (x (0) 𝑖 , x (1) 𝑖 |θ)𝑑x ( 1)

𝑖 = 𝑛 𝑖=1 𝑓 (r 𝑖 |x (0) 𝑖 , 𝜙)𝐿 ign (θ|X (0) ) ∝ 𝐿 ign (θ|X (0) ) (12) 
This factorization of the full observed likelihood is the second condition for the missing-data mechanism to be considered ignorable, condition one being the distinctness of the parameters θ and ϕ [START_REF] Little | Statistical analysis with missing data[END_REF]. In this chapter, we assume for simplicity that the missing-data mechanism is ignorable, i.e., the maximum likelihood estimation of θ can be conducted by maximizing the observed likelihood [START_REF] Chen | Robust probabilistic PCA with missing data and contribution analysis for outlier detection[END_REF], that is

θ ML = arg max θ∈𝚯 𝐿 ign (θ|X (0) ), (13) 
The form of the observed likelihood [START_REF] Chen | Robust probabilistic PCA with missing data and contribution analysis for outlier detection[END_REF] is not often closed since it requires the integration over missing data, which motivates the uses of iterative methods such as the EM algorithm. As we shall see in the next section, this technique provides a direct link between the ML estimation of θ from problem (13) and the ML estimation based on the so-called complete-data3 likelihood 𝐿 𝑐 (θ|X) [START_REF] Little | Statistical analysis with missing data[END_REF].

The expectation maximization algorithm as a way to handle missing data

The EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] is a widely employed iterative method for maximizing the full likelihood in incomplete data problems. The latter algorithm offers a formal and rigorous approach to the intuitive idea of filling-in missing values, except that it is not the missing values themselves that are filled, but the conditional expectation of the sufficient statistics in the (log)likelihood cost function. At step 𝑟 = 0, the algorithm starts with an initialization θ 𝑟=0 , which can be computed using a naive estimator of θ. Then, the following steps are repeated until convergence:

• E-step (Expectation): it consists in computing the so-called 𝑄-function, which is the conditional expectation of the complete-data log-likelihood conditioned to the observed data X (0) and the current estimate of the parameter θ 𝑟 . The latter reads (under iid assumption) :

𝑄(θ|θ 𝑟 ) = E X (1) |X (0) ,θ 𝑟 ℓ c (θ|X) (14) 
= ∑︁ 𝑖 ∫ X (1) log( 𝑓 (x (1) 𝑖 , x (0) 𝑖 |θ)) 𝑓 (x (1) 𝑖 |x (0) 𝑖 , θ 𝑟 )𝑑x (1) (15)

= ∑︁ 𝑖 E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 ℓ c (θ|x 𝑖 ) , (16) 
where

ℓ c (.|.) = log 𝐿 c (.|.
) is the complete-data log-likelihood. • M-step (Maximization): it updates the parameter by maximizing 𝑄 over θ:

θ 𝑟+1 = arg max θ∈𝚯 𝑄(θ|θ 𝑟 ).
The advantages of the EM include its simple implementation, a direct statistical interpretation of each step and, under general conditions, the guarantee that the sequence ℓ(θ 𝑟 |X (0) ) converges to a stationary values of ℓ(θ|X (0) ) if ℓ(θ|X (0) ) is bounded. However, an important drawback is that a large fraction of missing information4 leads to a slow rate of convergence. In fact, [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] found that for θ 𝑟 near a convergence value θ ★ ,

|θ 𝑟+1 -θ ★ | = 𝜆|θ 𝑟 -θ ★ |,
where 𝜆 is the fraction of missing information controlling the speed of convergence of the EM: the greater 𝜆, the slower the speed of convergence5.

Robust covariance matrix estimation under RES distribution

As discussed in the introduction, many issues emerge with the Gaussian assumption, especially concerning the robustness of likelihood-based estimators. To overcome these limitations, more general distributions have been considered, which are mainly encompassed by the RES distribution.The aim of this section is to present various robust EM-based estimation procedures of the covariance matrix under the presence of missing data. A general form of the EM for RES distributions is first introduced, along with its stochastic variations. Then, an estimation procedure for a special case of the RES distribution is proposed. Finally, the prior knowledge of a low-rank structure of the covariance matrix is also exploited during the parameter update at the M-step. In addition to this, we provide a simple EM procedure for the widely used Gaussian distribution in the Appendix.

A general EM algorithm for RES distribution with missing data

Using the assumptions and notations from the Chapter 1, we consider x ∼ RES 𝑚 (µ, 𝚺, 𝑔), leading to a pdf of the form 𝑓 (x|θ) = |𝚺| -1 2 𝑔 (xµ) 𝑇 𝚺 -1 (xµ) . In the missing-data case, the observed likelihood (under MAR or MCAR) is equivalent to

𝐿 (θ|X (0) ) = 𝑛 𝑖=1 𝑓 (x (0) 𝑖 |θ) (17) 
= 𝑛 𝑖=1 |𝚺 (0) 𝑖 | -1 2 𝑔 (x (0) 𝑖 -µ (0) 𝑖 ) 𝑇 (𝚺 (0) 𝑖 ) -1 (x (0) 𝑖 -µ (0) 𝑖 ) . (18) 
By contrast, the complete-data likelihood is defined as

𝐿 full,ign (θ|X) = 𝑛 𝑖=1 |𝚺| -1 2 𝑔 (x -µ) 𝑇 𝚺 -1 (x -µ) . (19) 
Then, a natural way to design the EM is

• Initialization: θ 𝑟=0 (using, e.g., an imputation method),

• E-step: computation of the surrogate function

𝑄(θ|θ 𝑟 ) = - 𝑛 2 log |𝚺| + E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 log 𝑔 (x -µ) 𝑇 𝚺 -1 (x -µ) , • M-step: θ 𝑟+1 = arg max θ∈𝚯 𝑄(θ|θ 𝑟 ).
Unfortunately, the computation of E x (1)

𝑖 |x (0) 𝑖 ,θ 𝑟 log 𝑔 (x -µ) 𝑇 𝚺 -1 (x -µ) is not always tractable6.
In case of intractable E-step, [START_REF] Celeux | The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem[END_REF] developed a stochastic EM (SEM), where an approximation of 𝑄(θ|θ 𝑟 ) is used instead of its true intractable value. Specifically, this alternative consists in sampling the missing value (x (1) 𝑖 ) 𝑟 𝑠 via the distribution of the missing random variables conditioned to the observed values, i.e., (x (1) 𝑖 ) 𝑟 𝑠 ∼ 𝑓 (x (1) 𝑖 |x (0) 𝑖 , θ 𝑟 ) with 𝑠 = 1. Then, the missing part of x 𝑖 is replaced by (x (1) 𝑖 ) 𝑟 𝑠 , which leads to the imputed version (x 𝑖 ) 𝑟 𝑠 . The SEM reads

θ 𝑟+1 SEM = arg max θ∈𝚯 - 𝑛 2 log |𝚺| + log 𝑔 ((x 𝑖 ) 𝑟 𝑠 -µ) 𝑇 𝚺 -1 ((x 𝑖 ) 𝑟 𝑠 -µ)
with 𝑠 = 1. At the M-step, θ 𝑟+1 is computed on the basis of the pseudo-completed data x 𝑟 . In order to enhance the performance of the SEM, [START_REF] Wei | A monte carlo implementation of the EM algorithm and the poor man's data augmentation algorithms[END_REF] proposed the so-called Monte-Carlo EM (MCEM). The latter is basically a SEM with several drawings, i.e., (x (1) 𝑖 ) 𝑟 𝑠 ∼ 𝑓 (x (1) 𝑖 |x (0) 𝑖 , θ 𝑟 ) with 𝑠 = 1, . . . , 𝑆. In our context, this reads

θ 𝑟+1 MCEM = arg max θ∈𝚯 - 𝑛 2 log |𝚺| + 1 𝑆 ∑︁ 𝑠 log 𝑔 ((x 𝑖 ) 𝑟 𝑠 -µ) 𝑇 𝚺 -1 ((x 𝑖 ) 𝑟 𝑠 -µ) .
The MCEM provides an alternative to the analytic computation of the integral in ( 14) by the numerical computation of a Monte Carlo approximation of this integral. This technique is accurate for large 𝑆 but suffers from a high computational cost.

A third approach, called the stochastic approximation EM (SAEM) [START_REF] B Delyon | Convergence of a stochastic approximation version of the EM algorithm[END_REF], consists in replacing the computation of the expectation by a Robbins-Monro type approximation [START_REF] Robbins | A stochastic approximation method[END_REF], which converges to the ML estimate under some general mild conditions. The E-step of the SAEM reads,

θ 𝑟+1 SAEM = arg max θ∈𝚯 (1-𝛾 𝑟 )𝑄(θ|θ 𝑟 -1 ) - 𝑛 2 log |𝚺| +log 𝑔 ((x 𝑖 ) 𝑟 1 -µ) 𝑇 𝚺 -1 ((x 𝑖 ) 𝑟 1 -µ)
where 𝛾 𝑟 is the step size which should be tuned adequately in order to guarantee the convergence of the SAEM [START_REF] B Delyon | Convergence of a stochastic approximation version of the EM algorithm[END_REF]. For an example on the derivation of the SEM, MCEM and SAEM, interested readers can consult [START_REF] Liu | Parameter estimation of heavy-tailed AR model with missing data via stochastic EM[END_REF][START_REF] Zhou | Student's 𝑡 VAR modeling with missing data via stochastic EM and Gibbs sampling[END_REF] in which stochastic EM algorithms have been designed for heavy-tailed autoregressive (AR) and vectors AR (VAR) models for incomplete 𝑡-distributed data. Note that in general, sampling (x (1) 𝑖 ) 𝑟 𝑠 is not trivial and may lead to heavy computational cost. In the following, we focus on a specific case of the RES for which the E-step admits a closed-form expression, leading to a deterministic EM scheme (i.e., avoiding the use of stochastic approximations). Specifically, we focus on the scaled Gaussian distributions.

Robust covariance estimation under scaled Gaussian distributions 4.2.1 Model setup and assumptions

As seen in the introduction, most of covariance matrix estimation methods with missing data use the Gaussian assumption, which can be inaccurate in a heterogeneous context or in the presence of outliers. The mixture of scaled Gaussian (MSG) distributions can tackle this issue by managing heavier tails, which offers a better fit to empirical data [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. Consider that the 𝑚-dimensional iid samples (x 𝑖 ) 𝑛 𝑖=1 ∈ R 𝑚 follows a zero-mean multivariate MSG distribution. Then it admits the stochastic representation

x 𝑖 = √ 𝜏 𝑖 n, (20) 
with:

• n ∼ R𝑁 (0, 𝚺), 𝚺 ∈ S ++ 𝑚 , • x 𝑖 |𝜏 𝑖 ∼ R𝑁 (0, 𝜏 𝑖 𝚺),
• 𝜏 ∈ R + : a positive scalar called the scale (or texture), which is deterministic and unknown.

Model ( 20) is entwined with the (sub)-class of compound Gaussian (CG) distributions, which assumes independence between the scale and n. The name MSG comes from the fact that (𝜏 𝑖 ) 𝑛 𝑖=1 are seen as scales settings of the Gaussian distribution. Considering deterministic scales instead of assuming a prior 𝑓 𝜏 has proven its convenience in terms of robustness to many classes of distributions and its flexibility in the presence of heterogeneous data [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF][START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF] (see, for example, the second reference for an application to synthetic aperture radar data).

We now focus on a EM formulation to estimate the vector of unknown parameters, which, in the case of the MSG distribution, becomes θ = [vec(𝚺), 𝜏 1 , . . . , 𝜏 𝑛 ] 𝑇 . The analogy with the Gaussian case using the EM algorithm is presented in the Appendix.

An EM algorithm for mixture of scaled Gaussian distributions

In the case of missing data, the complete log-likelihood function of model ( 20) is given by

ℓ c (θ| X) = -𝑛𝑚 log(𝜋) -𝑛 log |𝚺| -𝑚 𝑛 ∑︁ 𝑖=1 log 𝜏 𝑖 - 𝑛 ∑︁ 𝑖=1 x 𝑇 𝑖 𝜏 𝑖 𝚺 𝑖 -1 x 𝑖 , (21) 
where x 𝑖 is the permuted version of x 𝑖 as defined in [START_REF] Andridge | A review of hot deck imputation for survey non-response[END_REF]. Note that the replacement of deterministic textures by 1 for all 𝑖 in (21) leads to the complete log-likelihood function for the Gaussian distribution. In the following, a general procedure using the EM algorithm is derived with reference to the estimation problem [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. θ 𝑟 denotes the estimated parameter at iteration 𝑟.

• Initialization: at step 𝑟 = 0, the estimate 𝚺 𝑟=0 is initialized with Tyler's 𝑀estimator (see Chapter 1) from available observations in their full dimension 𝑚, denoted 𝚺 Tyl-obs . In our context, incomplete observations make the direct estimation of 𝜏 with the fixed point estimator impracticable: thus, as an initialization, all 𝜏 𝑟=0 𝑖 can be set to one.

• E-step: compute the conditional expectation of the complete log-likelihood (the so-called 𝑄-function) for each complete vector x 𝑖 , 𝑖 = 1, . . . , 𝑛:

𝑄 𝑖 (θ|θ 𝑟 ) = E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 ℓ c (θ| x 𝑖 ) = E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 -𝑚 log(𝜋) -log |𝚺| -𝑚 log 𝜏 𝑖 -x 𝑇 𝑖 𝜏 𝑖 𝚺 𝑖 -1 x 𝑖 . ( 22 
)
Due to the deterministic nature of the first three terms inside the expectation in [START_REF] Haardt | A robust and flexible EM algorithm for mixtures of elliptical distributions with missing data[END_REF], only the expectation of the last term shall be computed. A handful arrangements of the latter lead to

tr E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 x (0 ) 𝑖 x (0)𝑇 𝑖 x (0) 𝑖 x (1)𝑇 𝑖 x (1) 𝑖 x (0)𝑇 𝑖 x (1) 𝑖 x (1)𝑇 𝑖 𝜏 𝑖 𝚺 𝑖 -1 = 𝜏 -1 𝑖 tr B 𝑟 𝑖 𝚺 -1 𝑖 ,
where

B 𝑟 𝑖 = D 𝑟 𝑖 E 𝑟 𝑖 E 𝑟𝑇 𝑖 G 𝑟 𝑖
is a 𝑚 × 𝑚 matrix containing the expectations of the missing data with blocks given by

D 𝑟 𝑖 = E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 x (0) 𝑖 x (0)𝑇 𝑖 = x (0) 𝑖 x (0)𝑇 𝑖 ( 23 
)
E 𝑟 𝑖 = E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 x (0) 𝑖 x (1)𝑇 𝑖 = x (0) 𝑖 E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 x (1)𝑇 𝑖 ( 24 
)
G 𝑟 𝑖 = E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 x (1) 𝑖 x (1)𝑇 𝑖 . (25) 
B 𝑟 𝑖 contains the expectations of the sufficient statistics x (1) 𝑖 and x (1) 𝑖 x (1) 𝑇 𝑖 at step 𝑟 of the EM for the complete data X, which have a distribution from the regular exponential family [START_REF] Little | Statistical analysis with missing data[END_REF]. These quantities can be easily computed using a classical result in conditional distributions (see expressions ( 56)- [START_REF] Pascal | Covariance structure maximumlikelihood estimates in compound Gaussian noise: Existence and algorithm analysis[END_REF] in the Chapter 1 and Theorem 2.5.1 in [START_REF] Anderson | An Introduction to Multivariate Statistical Analysis[END_REF]). In the scaled Gaussian setting, the conditional distribution of x (1) 𝑖 |x (0)

𝑖 is still R𝑁 ( 𝜇 1|0 𝑖 , 𝚺 11|0 

𝑖

), but with conditional mean and covariance respectively given by

𝜇 1|0 𝑖 = 𝚺 10 𝑖 𝚺 00 𝑖 -1 x (0) 𝑖 ( 26 
)
𝚺 11|0 𝑖 = 𝜏 𝑖 𝚺 11 𝑖 -𝚺 10 𝑖 𝚺 00 𝑖 -1 𝚺 01 𝑖 . (27) 
Compared to the classical Gaussian case, the only change appears in the expression of the conditional covariance 𝚺 11|0 𝑖 , whereas the expression of 𝜇 1|0 𝑖 does not change because the scale term vanishes due to the application of its inverse. At the 𝑟-th iteration, the E-step of the EM algorithm consists in calculating

E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 x (1) 𝑖 = ( 𝜇 1|0 𝑖 ) 𝑟 (28) 
E x (1) 𝑖 |x (0)
𝑖 ,θ 𝑟 x (1) 𝑖 x (1) 

𝑇 𝑖 = 𝚺 11|0 𝑖 𝑟 + 𝜇 1|0 𝑖 𝑟 𝜇 1|0 𝑇 𝑖 𝑟 (29) 
• M-step: finally, θ 𝑟+1 is obtained as the solution of the following maximization problem:

max θ∈𝚯 𝑄(θ|θ 𝑟 ) subject to 𝚺 ⪰ 0 𝜏 𝑖 > 0, ∀𝑖 (30) 
where 𝑄(θ|θ 𝑟 ) = 𝑛 𝑖=1 𝑄 𝑖 (θ|θ 𝑟 ) is the total 𝑄-function due to the iid of the observations.

Lemma 1

The ML estimates 𝚺 and 𝜏 𝑖 of problem [START_REF] Kang | Rank-constrained maximum likelihood estimation of structured covariance matrices[END_REF] are given by the following closed-form expressions:

𝜏 𝑖 = tr B 𝑟 𝑖 Σ-1 𝑖 𝑝 for 𝑖 ∈ [1, 𝑛] (31) 
𝚺 = 𝑚 𝑛 𝑛 ∑︁ 𝑖=1 (C 𝑟 𝑖 ) 𝑇 tr C 𝑟 𝑖 𝚺 -1 Δ = H ( 𝚺) (32) 
with Σ𝑖 = P 𝑖 𝚺P 𝑇 𝑖 , C 𝑟 𝑖 = P 𝑇 𝑖 B 𝑟 𝑖 P 𝑖 and where H (•) is the fixed point equation. We restrain ourselves to the important steps of the proof, which only involves simples calculus and derivations operations, and we left interested readers to check its full version in [START_REF] Hippert-Ferrer | Robust low-rank covariance matrix estimation with a general pattern of missing values[END_REF]:

• The first step of the proof consist in properly rewriting the expection of the complete-data log-likelihood ( 21) for all observations, that is

E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 ℓ c (θ| X) ∝ -𝑛 log |𝚺| -𝑚 𝑛 ∑︁ 𝑖=1 log 𝜏 𝑖 - 𝑛 ∑︁ 𝑖=1 𝜏 -1 𝑖 tr B 𝑟 𝑖 𝚺 -1 𝑖 (33) 
where, as described before, the block matrix B 𝑟 𝑖 contains the expectation of the sufficient statistics x (1) 𝑖 x (1)𝑇

𝑖

to be computed at the E-step using (23); • The second step consist in deriving [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF] with respect to 𝜏 𝑖 , which requires trivial calculus and gives 𝜏 𝑖 ;

• Finally, ( 33) is updated by replacing 𝜏 𝑖 by 𝜏 𝑖 and differentiated w.r.t. 𝚺. A bit of work in arranging the terms gives the desired closed-form expression of the estimator 𝚺. • As it is clear that the expression of the estimator 𝚺 depends on itself, it can be updated using the fixed point algorithm 𝚺 𝑘+1 = H (𝚺 𝑘 ) where 𝑘 refers to the iteration index of the fixed point. This rule favorably applies in a 𝑛 > 𝑚 regime, which is the case here.

The complete estimation procedure of θ is given in Algorithm 1. The stopping condition of the EM algorithm is ensured by the evaluation of the quantity ||θ 𝑟+1θ 𝑟 || 

𝚺 𝑟=0 = 𝚺 Tyl-obs 𝜏 𝑟=0 = 1 𝑇 𝑁 2: repeat ⊲ EM loop, 𝑟 varies 3: E-step: 4: Compute E[x (1) 𝑖 ], E[x (0) 𝑖 x (1)𝑇 𝑖 ], E[x (1) 𝑖 x (1)𝑇 𝑖 ] for 𝑖 = 1, . . . ,
𝑟 ← 𝑟 + 1 12: until | |θ 𝑟+1 -θ 𝑟 | | 2 𝐹 converges
Note that at step 𝑟 = 0, the estimate 𝚺 𝑟=0 can be initialized with Tyler's 𝑀estimator from available observations in their full dimension 𝑚. As already pointed out, 𝜏 𝑟=0 𝑖 cannot be directly computed with the fixed point equation because of missing observations. For this reason, all scales are initialized to 1.

Handling robustness and low-rank structure

Until now, the structure exhibited by the covariance in the MSG model has not been exploited in the EM estimation procedure. This can be problematic when the sample support is low (𝑛 ≃ 𝑚) as the SCM is not a reliable estimate in this setup [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF]. In this context, a popular approach consists in imposing a low-rank structure on the covariance matrix. The resulting data is driven by an underlying low-dimensional linear model corrupted by an independent perturbation

x 𝑖 = √ 𝜏 𝑖 (Ws 𝑖 + ϵ 𝑖 ) ( 34 
)
where W is a rank-𝑞 factor loading matrix, s 𝑖 ∈ R 𝑞 and ϵ 𝑖 ∈ R 𝑚 are independent r.v. with s 𝑖 ∼ R𝑁 𝑚 (0, I) and ϵ 𝑖 ∼ R𝑁 𝑚 (0, 𝜎 2 I 𝑚 ). Following these probability assumptions, the covariance 𝚺 of x 𝑖 is

E[x 𝑖 x 𝑇 𝑖 ] = 𝜏 𝑖 E[Ws 𝑖 s 𝑇 𝑖 W 𝑇 + ϵ 𝑖 ϵ 𝑇 𝑖 ] = 𝜏 𝑖 (H + 𝜎 2 I 𝑚 )
with H = WW 𝑇 . This configuration is useful in a large variety of signal applications with a high dimensional setting (e.g., hyperspectral imagery, genomics or denoising) and is closely related to low-rank factor analysis [START_REF] Robertson | Maximum likelihood factor analysis with rank-deficient sample covariance matrices[END_REF], PPCA [START_REF] Tipping | Probabilistic principal component analysis[END_REF], and signal subspace estimation. The vector of unknown parameters is now θ = [vec(H), 𝜎 2 , 𝜏 1 , . . . , 𝜏 𝑛 ] 𝑇 . At the M-step of the algorithm, the maximization problem (30) becomes a low-rank estimation problem:

max θ∈𝚯 𝑄(θ|θ 𝑟 ) subject to 𝚺 = 𝜎 2 I 𝑚 + H rank(𝚺) = 𝑞 𝜎 > 0, 𝜏 𝑖 > 0, ∀𝑖. (35) 
The seminal work of [START_REF] Tipping | Probabilistic principal component analysis[END_REF] gives a general solution to this problem, which is recalled hereafter using the formulations of [START_REF] Kang | Rank-constrained maximum likelihood estimation of structured covariance matrices[END_REF][START_REF] Sun | Robust estimation of structured covariance matrix for heavytailed elliptical distributions[END_REF]. Let 𝚺 𝑟 EVD = 𝑚 𝑖=1 𝜆 𝑟 𝑖 u 𝑟 𝑖 u 𝑇𝑟 𝑖 be the eigenvalue decomposition of 𝚺 𝑟 at the 𝑟-th iteration of the EM algorithm, where

𝜆 𝑟 1 < • • • < 𝜆 𝑟
𝑚 are the eigenvalues of 𝚺 𝑟 and u 𝑟 1 , . . . , u 𝑟 𝑚 the corresponding eigenvectors. The closed-form solution of problem [START_REF] Little | Statistical analysis with missing data[END_REF] for 𝚺 and 𝜎 2 are then given by:

𝚺 = σ2 I 𝑚 + 𝑞 ∑︁ 𝑖=1 λ𝑖 u 𝑟 𝑖 u 𝑇𝑟 𝑖 (36) σ2 = 1 𝑚 -𝑟 𝑚 ∑︁ 𝑖=𝑞+1 𝜆 𝑟 𝑖 ( 37 
)
where λ𝑖 = 𝜆 𝑟 𝑖 -σ2 for 𝑖 = 1, . . . , 𝑞. Since the scales (𝜏 𝑖 ) 𝑛 𝑖=1 apply on 𝚺 and not on H, their estimation in [START_REF] King | Analyzing incomplete political science data: An alternative algorithm for multiple imputation[END_REF] remain the same with problem [START_REF] Little | Statistical analysis with missing data[END_REF]. The procedure to estimate all parameters under the low-rank factor model is given in Algorithm 2. It uses the same form than Algorithm 1 where equations ( 36)-( 37) are applied just after the fixed point algorithm to each newly estimated 𝚺 𝑟 𝑘+1 . Finally, note that standards convergence results of the majorization-minimization (MM) algorithm ensure the proof of monotonicity of the low-rank estimation algorithm [START_REF] Sun | Robust estimation of structured covariance matrix for heavytailed elliptical distributions[END_REF].
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Algorithm 2 EM-Tyl-LR: robust low-rank estimation of θ under MSG distribution with missing values.

Require: ( x 𝑖 ) 𝑛 𝑖=1 ∼ R𝑁 𝑚 (0, 𝜏 𝑖 𝚺) , (P 𝑖 ) 𝑛 𝑖=1 , rank 𝑞 < 𝑚 Ensure: 𝚺, ( 𝜏 𝑖 ) 𝑛 𝑖=1 1: Initialization:

𝚺 𝑟=0 = 𝚺 Tyl-obs 𝜏 𝑟=0 = 1 𝑇 𝑁 2: repeat ⊲ EM loop, 𝑟 varies 3:
E-step: 

4: Compute E[x (1) 𝑖 ], E[x (0) 𝑖 x (1)𝑇 𝑖 ], E[x (1) 𝑖 x (1)𝑇 𝑖 ] for 𝑖 = 1, . . . ,
𝑟 ← 𝑟 + 1 14: until | |θ 𝑟+1 -θ 𝑟 | | 2 𝐹 converges

Robust probabilistic component analysis with missing values

In many data sets, the relevant information often lies in a subspace of lower dimension than the space of observations. As many learning algorithms, principal component analysis (PCA) exploits this underlying structure by projecting the data into a lower dimensional linear subspace with minimal mean-square error.

Classical probabilistic component analysis

The initial formulations of PCA by Pearson (1901) and Hotelling (1933) were obtained without any assumption on the probabilistic model of the data, whereas, a probabilistic derivation of PCA within a density estimation framework was proposed by [START_REF] Tipping | Probabilistic principal component analysis[END_REF]:

x 𝑖 = Ws 𝑖 + µ + n 𝑖 ( 38 
)
where W is a 𝑚 × 𝑞 factor loading matrix with rank 𝑞, s 𝑖 are 𝑞 × 1 vectors of principal components, µ is the 𝑚 × 1 bias (or mean) vector and n 𝑖 is the noise term. Both principal components and noise are assumed normally distributed, i.e., s 𝑖 ∼ R𝑁 (0, I), n 𝑖 ∼ R𝑁 (0, 𝜎 2 I). The resulting covariance matrix for the observations involves a core that is low-rank, i.e., which lives in a subspace of dimension 𝑞 < 𝑚, and is of the form 𝚺 = H+ 𝜎 2 I, where H = WW 𝑇 belongs to the set of positive semidefinite matrices of rank 𝑞, denoted S ++ 𝑚,𝑞 . This has been formulated and studied in the seminal work by Tipping and Bishop in [START_REF] Tipping | Probabilistic principal component analysis[END_REF]. In this paper, the authors proposed an efficient EM algorithm to find the MLE of the model parameters, namely, W, µ and 𝜎 2 .

However, it is worth mentioning that a rotational ambiguity of the loading matrix remains: if O denotes an orthogonal rotational matrix and W ML the ML estimate of W, then W ML O remains the ML estimate. Generally, either a post processing is possible [START_REF] Tipping | Probabilistic principal component analysis[END_REF], or, the spanned subspace by the columns of W is of interest (i.e., the ML estimate of W 𝑇 W).

The surrogate EM function reads (under some mild conditions)

𝑄(θ|θ 𝑟 ) = E X (1) |X (0) ,θ 𝑟 ℓ 𝑐 (θ|X, S) = ∑︁ 𝑖 E X (1) |X (0) ,θ 𝑟 ℓ 𝑐 (θ|x 𝑖 , s 𝑖 ) , (39) 
where X and S are the 𝑚 × 𝑛 matrices having observed and latent variables on their columns, respectively. Almost ten years after the work of Tipping and Bishop, [START_REF] Ilin | Practical approaches to principal component analysis in the presence of missing values[END_REF] proposed a generalization to the case of MAR data, which appears relevant when applying PCA on sparse observations. In the following, we give the update rules of the EM algorithm as obtained in [START_REF] Ilin | Practical approaches to principal component analysis in the presence of missing values[END_REF]. Readers who are interested by the original EM formulations should refer to [START_REF] Tipping | Probabilistic principal component analysis[END_REF]. The E-step mainly consists in finding the conditional expectation of the latent variables s 𝑖 given the data and the current values of the model parameters. During the M-step, the parameters are updated using the following expressions:

𝚺 = 𝜎 2 𝜎 2 I + ∑︁ 𝑗 ∈𝑂 𝑖 w 𝑗 w 𝑇 𝑗 -1 (40) 
s𝑖 = (𝜎 2 ) -1 𝚺 ∑︁ 𝑗 ∈𝑂 𝑖 w 𝑗 (𝑥 𝑖 𝑗 -𝜇 𝑗 ), 𝑖 = 1, . . . , 𝑛 𝜇 𝑗 = 1 |𝑂 𝑗 | ∑︁ 𝑖 ∈𝑂 𝑗 (𝑥 𝑖 𝑗 -w 𝑇 𝑗 s𝑖 ) w 𝑗 = ∑︁ 𝑖 ∈𝑂 𝑗 [s 𝑖 s𝑇 𝑖 + 𝚺] -1 ∑︁ 𝑖 ∈𝑂 𝑗 s𝑖 (𝑥 𝑖 𝑗 -𝜇 𝑗 ), 𝑗 = 1, . . . , 𝑚 𝜎 2 = 1 𝑛 ∑︁ 𝑖, 𝑗 ∈𝑂 (𝑥 𝑖 𝑗 -w 𝑇 𝑗 s𝑖 -𝜇 𝑗 ) 2 + w 𝑇 𝑗 𝚺w 𝑗
As pointed out in [START_REF] Ilin | Practical approaches to principal component analysis in the presence of missing values[END_REF], the missing-data case leads to heavier computations since it requires to i) iteratively update 𝜇 𝑗 , ii) consider a different 𝚺 𝑖 for each s 𝑖 and iii) recompute the rows of W based only on those columns of s which contribute to the reconstruction of the observed values in the corresponding row of the data matrix. The proposed scheme is efficient in the case of Gaussian measurements but empirical results indicate a dramatic performance degradation in the case of a heavy-tailed Contents observations or in the presence of outliers. In the next section we overcome this by proposing a robust version of PPCA in the presence of missing data.

Robust probabilistic component analysis under mixed effects model

As explained in Section 1, modeling the noise component as RES or compound Gaussian leads (except in some specific cases7) to an intractable solution in the presence of missing data. In this case, one has to use a stochastic approximations, e.g., MCEM, SEM, SAEM, which might lead to heavy computational cost (see subsection 4.1 and 3.4.2 for more details). An interesting robust alternative modeling reads

x 𝑖 = √ 𝜏 𝑖 Ws 𝑖 + µ + n 𝑖 (41) 
in which s 𝑖 ∼ R𝑁 𝑚 (0, I), n 𝑖 ∼ R𝑁 𝑚 (0, 𝜎 2 I) and √ 𝜏 𝑖 are deterministic and unknown parameters leading to a tractable E-step. Depending on the value of √ 𝜏 𝑖 , the 𝑖-th sample could be downweighted in order to take into account the influence of a possible outlier. A general extension of the above model has been proposed in [START_REF] Hippert-Ferrer | Robust mean and covariance matrix estimation under heterogeneous mixed-effects model with missing values[END_REF], which reads

x 𝑗𝑖 = √ 𝜏 𝑗𝑖 W 𝑗 s 𝑗𝑖 + 𝑓 𝑗 (A 𝑗 , µ) + n 𝑗𝑖 𝑗 = 1, . . . , 𝑚, 𝑖 = 1, . . . , 𝑛 𝑗 (42) 
in which s 𝑗𝑖 ∼ R𝑁 𝑚 (0, I), n 𝑗𝑖 ∼ R𝑁 𝑚 (0, 𝜎 2 I). This extension has the advantage to include the possible presence of different groups or different individuals (indexed by 𝑗) within the dataset. Groups, or individuals, are described by a same global behavior (denoted by µ) but with different local variations (represented by s 𝑗𝑖 ). The total number of groups is denoted by 𝑚 whereas 𝑛 𝑗 denotes the sample number for the 𝑗-th group of dimension 𝑚 𝑗 , i.e., x 𝑗𝑖 ∈ R 𝑚 𝑗 . The common behavior µ (which is also the parameter of interest) is related to the design matrix A 𝑗 and the response function 𝑓 𝑗 (e.g., the 𝑗-th sub-array response in the case of large sensing systems [START_REF] Haardt | A robust and flexible EM algorithm for mixtures of elliptical distributions with missing data[END_REF]). Consequently, the spanned subspace for the 𝑗-th group reads W 𝑗 W 𝑇 𝑗 . Such modeling, widely used in the longitudinal data analysis, is referred as mixed effects model. In this model, the random and fixed effects are represented, respectively, by s 𝑗𝑖 and µ.

From the observation model ( 42), the unknown vector parameter is

θ = µ 𝑇 , ζ 𝑇 𝑗 𝑗 , 𝜏 𝑗𝑖 𝑗𝑖 𝑇 ,
where ζ 𝑗 is the concatenation of the non redundant elements in8 W 𝑗 .

7 Examples of these exceptions are the Gaussian case studied in [START_REF] Tipping | Probabilistic principal component analysis[END_REF] and [START_REF] Ilin | Practical approaches to principal component analysis in the presence of missing values[END_REF], the Student's 𝑡-distribution [START_REF] Chen | Robust probabilistic PCA with missing data and contribution analysis for outlier detection[END_REF] or under some relaxation hypothesis, e.g., [START_REF] Hippert-Ferrer | Robust mean and covariance matrix estimation under heterogeneous mixed-effects model with missing values[END_REF] and [START_REF] Mouret | A robust and flexible EM algorithm for mixtures of elliptical distributions with missing data[END_REF].

8 The estimation of W 𝑗 is known to present a rotational ambiguity as discussed above.

In order to tackle this problem using an EM-based algorithm, we define the complete data as Z = z 𝑗𝑖 𝑗𝑖 with z 𝑗𝑖 = x (0) 𝑗𝑖 𝑇 , x (1) 𝑗𝑖 𝑇 , s 𝑇 𝑗𝑖 𝑇 . Then, the complete log-likelihood reads (under some mild conditions)

𝑄(θ|θ 𝑟 ) = ∑︁ 𝑗𝑖 E z 𝑗𝑖 |x (0) 𝑗𝑖 ,θ 𝑟 ℓ 𝑐 (θ|z 𝑖 𝑗 ) = ∑︁ 𝑗𝑖 E x (1) 𝑗𝑖 |x (0) 𝑗𝑖 ,θ 𝑟 E s 𝑗𝑖 |x (0) 𝑗𝑖 ,x (1) 
𝑗𝑖 ,θ 𝑟 ℓ 𝑐 (θ|z 𝑖 𝑗 ) (43) The inner expectation and the outer expectation in [START_REF] Lounici | High-dimensional covariance matrix estimation with missing observations[END_REF] can be obtained from tower property for conditional Gaussian expectations (see, e.g., [START_REF] Anderson | An Introduction to Multivariate Statistical Analysis[END_REF]). Namely, it is easy to see that

x 𝑗𝑖 def = E z 𝑗𝑖 |x (0) 𝑗𝑖 ,θ 𝑟 x 𝑗𝑖 = x (0) 𝑗𝑖 𝑇
x (1) 𝑗𝑖 𝑇 𝑇

(44) =       x (0) 𝑗𝑖 𝑓 𝑗 (A 𝑗 , µ) (1) + 𝚺 (1) (0) 𝑗𝑖 𝚺 (1) (0) 𝑗𝑖 -1 x (0) 𝑗𝑖 -𝑓 𝑗 (A 𝑗 , µ) (0)       (45) and x 𝑗𝑖 x 𝑇 𝑗𝑖 def = E z 𝑗𝑖 |x (0) 𝑗𝑖 ,θ 𝑟 x 𝑗𝑖 x 𝑇 𝑗𝑖 =        x (0) 𝑗𝑖 x (0) 𝑗𝑖 𝑇 x (0) 𝑗𝑖 x (1) 
𝑗𝑖 𝑇

x (1) 𝑗𝑖 x (0)

𝑗𝑖 𝑇 𝚺 (1) (1) 𝑗𝑖 -𝚺 (1) (0) 𝑗𝑖 𝚺 (0) (0) 𝑗𝑖 -1 𝚺 (0) (1) 𝑗𝑖 + x (1) 𝑗𝑖 x (1) 𝑗𝑖 𝑇        (46) 
where the mean and the covariance matrix of x 𝑗𝑖 are decomposed as 𝑓 𝑗 (A 𝑗 , µ) = 𝑓 𝑗 (A 𝑗 , µ) (0) 𝑇 𝑓 𝑗 (A 𝑗 , µ) (1) 𝑇 𝑇 and 𝚺 𝑗𝑖 = 𝚺 (0) (0) 𝑗𝑖 𝚺 (0) (1) 𝑗𝑖 𝚺 (1) (0) 𝑗𝑖 𝚺 (1) (1)

𝑗𝑖

.

Then, the E-step consists in updating the following expectations (for the sake of clarity, the index related to the EM iteration number is omitted in the following. For example µ 𝑟 , W 𝑟 are denoted by µ and W, respectively):

r 𝑗𝑖 def = E z 𝑗𝑖 |x (0) 𝑗𝑖 ,θ 𝑟 x 𝑗𝑖 -𝑓 𝑗 (A 𝑗 , µ) = x 𝑗𝑖 -𝑓 𝑗 (A 𝑗 , µ) (47) 
r 𝑗𝑖 r 𝑇 𝑗𝑖 def = E z 𝑗𝑖 |x (0) 𝑗𝑖 ,θ 𝑟 r 𝑗𝑖 r 𝑇 𝑗𝑖 def = x 𝑗𝑖 x 𝑇 𝑗𝑖 + 𝑓 𝑗 (A 𝑗 , µ) 𝑓 𝑗 (A 𝑗 , µ) 𝑇 -2 x 𝑗𝑖 𝑓 𝑗 (A 𝑗 , µ) 𝑇 (48) 
s 𝑗𝑖 = E z 𝑗𝑖 |x (0) 𝑗𝑖 ,θ 𝑟 s 𝑗𝑖 def = √ 𝜏 𝑗𝑖 𝜎 2 V -1 𝑗𝑖 W 𝑗 r 𝑗𝑖 (49) 
r 𝑗𝑖 s 𝑇 𝑗𝑖 def = E z 𝑗𝑖 |x (0) 𝑗𝑖 ,θ 𝑟 r 𝑗𝑖 s 𝑇 𝑗𝑖 = √ 𝜏 𝑗𝑖 𝜎 2 r 𝑗𝑖 r 𝑇 𝑗𝑖 W 𝑗 (50) 
s 𝑗𝑖 s 𝑇 𝑗𝑖 def = E z 𝑗𝑖 |x (0) 𝑗𝑖 ,θ 𝑟 s 𝑗𝑖 s 𝑇 𝑗𝑖 = V -1 𝑗𝑖 + 𝜏 𝑗𝑖 𝜎 4 V -1 𝑗𝑖 W 𝑇 𝑗 r 𝑗𝑖 r 𝑇 𝑗𝑖 W 𝑗 V -1 𝑗𝑖 ( 51 
)
in which

V 𝑗𝑖 = I + 𝜏 𝑗𝑖 𝜎 2 W 𝑇 𝑗 W 𝑗 .
The M-step of the EM algorithm can be costly depending on the form of9 𝑓 𝑗 (.). Nevertheless, in the case of a linear model, i.e., 𝑓 𝑗 (A 𝑗 , µ) = A 𝑗 µ, the M-step is tractable10. Nevertheless, the EM algorithm is enhanced using one of its variant, the ECME algorithm. Instead of maximizing sequentially the surrogate function 𝑄(.) w.r.t. θ, the ECME maximizes the observed (incomplete) likelihood when it is possible and tractable. Specifically, the loading matrix, 𝜏 𝑗𝑖 and the mean vector are given as the maximization of the surrogate EM function, whereas, the noise power is estimated using the observed likelihood. Consequently, by plugging ( 47)-( 51) into [START_REF] Lounici | High-dimensional covariance matrix estimation with missing observations[END_REF] 

W 𝑗 = ∑︁ 𝑖 √ 𝜏 𝑗𝑖 r 𝑗𝑖 s 𝑇 𝑗𝑖 ∑︁ 𝑖 s 𝑗𝑖 s 𝑇 𝑗𝑖 -𝑇 (53) 
µ = ∑︁ 𝑗 A 𝑇 𝑗 ∑︁ 𝑖 𝚪 𝑗𝑖 A 𝑗 -1 ∑︁ 𝑗 A 𝑇 𝑗 ∑︁ 𝑖 𝚪 𝑗𝑖 x 𝑗𝑖 (54) 
in which

𝚪 𝑗𝑖 = 1 𝜎 2 I -W 𝑗 𝜏 𝑗𝑖 𝜎 2 I + W 𝑇 𝑗 W 𝑗 -1 W 𝑇 𝑗 .
9 Array signal processing modeling is an example of 𝑓 𝑗 (.) reading a the steering matrix of the 𝑗-th sub-array and the mean vector denotes the direction of arrivals [START_REF] Ollier | Joint ML calibration and DOA estimation with separated arrays[END_REF].

10 For example, this the case in an imaging context for which the design matrix A 𝑗 is a known linear operator that maps the image from the space domain to the visibility domain and the mean denotes the intensity vector [START_REF] Mhiri | A robust EM algorithm for radio interferometric imaging in the presence of outliers[END_REF].

A parallel scheme naturally appears from the above equations: the consensus step is enforced via the common mean and homogeneous noise power. It is worth mentioning that the update of the mean involves the inversion of a 𝑚 × 𝑚 matrix in classical robust multivariate covariance and mean estimators (in which 𝑚 = 𝑗 𝑚 𝑗 ). Nevertheless, the above scheme updates the mean locally by the inversion of a smaller matrix of size 𝑚 𝑗 × 𝑚 𝑗 matrix. Then, a consensus is made in the fusion center. This makes the above scheme method computationally efficient by enhancing the computational cost and avoiding a central processor overload. 

Numerical analysis under missing data

This section is dedicated to the numerical analysis of the aforementioned estimators in the context of scaled Gaussian distributions presented in subsection 4.2 and 1, 𝛽 = 1). The estimated covariance is then the mean of the 𝑆 Tyler's 𝑀-estimators computed from the 𝑆 imputed vectors:

𝚺 RMI = 1 𝑆 𝑆 ∑︁ 𝑗=1 𝚺 Tyl, 𝑗 = 𝑝 𝑛𝑆 𝑆 ∑︁ 𝑗=1 𝑛 ∑︁ 𝑖=1 x 𝑖 𝑗,𝑐 x 𝑇 𝑖 𝑗,𝑐 x 𝑖 𝑗,𝑐 𝚺 -1 Tyl, 𝑗 x 𝑇 𝑖 𝑗,𝑐
All these estimators are compared through the natural distance for the set of SPD matrices S ++ 𝑚 , which is || log(𝚺 -1 2 𝚺𝚺 -1 2 )|| [START_REF] Bhatia | Positive definite matrices[END_REF]. Figure 4 shows mean estimation errors in functions of the number of observations for three missing data patterns: monotone, general and random patterns. Overall, the EM-Tyl estimator outperforms other estimators, except when the number of observations is not sufficient and approaches 𝑚. In this case, the RMI estimator is more appropriate. Unsurprisingly, EM-Tyl, RMI and Tyl-obd reach Tyler's estimator on clairvoyant data as the missing data ratio decreases in large sample size. In the case of Gaussian estimators, the performances of the EM-SCM estimator are very close from those of the clairvoyant SCM. As expected, Tyl-obs and SCM-obs display poor performances when the missing data ratio increases.

Secondly, in the following, we consider the robust low-rank estimation under scaled Gaussian distributions presented in subsection 4.3. Namely, estimation errors for the low-rank factor model are illustrated in Figure 5 with rank 𝑞 = 5. Interestingly, accounting for the rank in the estimation procedure lowers the error for small number of observations 𝑛, i.e., the gap between the EM-Tyl estimator and robust multiple imputation diminishes compared to the full-rank case. When 𝑛 increases, it is clear that EM-Tyl and EM-SCM estimators outperform other estimators for MSG and Gaussian distributions, respectively. When the rank is known, the low-rank estimators will produce lower errors compared to full-rank estimators, as illustrated in Figure 6 for 𝑛 = 105.

Conclusion and perspectives

We have reviewed a series of robust methods based on the EM algorithms and its variants to estimate the statistical parameters of data drawn from classes of RES distributions with missing values. In addition to the robustness to non-Gaussian data, these methods take advantage of underlying low-rank structures, which has proven to characterize well many real datasets (see for example [START_REF] Goodman | On clutter rank observed by arbitrary arrays[END_REF] in radar processing or [START_REF] Udell | Why are big data matrices approximately low rank?[END_REF] in data science, and the references therein). The performances of the estimators in terms of estimation error have been illustrated12 under various missing-data patterns, showing the interested of both non-Gaussian and low-rank assumptions compared to robust multiple imputation, especially when the number of samples is large enough compared to 𝑚. In the following we present three perspectives closely linked to the subjects addressed in this chapter.

1.

Learning the scales with model-based deep neural networks. In subsection 4.2, the relaxation of model [START_REF] Graham | Missing data analysis: Making it work in the real world[END_REF] with a deterministic scale allows to derive statistics which are robust to many classes of distributions [START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF] and conveniently leads to closed-form expressions for parameters 𝚺 and τ at the M-step. An alternative strategy would be to assume an unknown prior distribution 𝑓 𝜏 on the scale, and learn the unknown density generator using recent model-based deep neural networks in a supervised fashion [START_REF] Diskin | Learning to estimate without bias[END_REF][START_REF] Diskin | A robust EM algorithm for radio interferometric imaging in the presence of outliers[END_REF][START_REF] Mhiri | Imagerie radio-interférométrique robuste par dépliement neuronal[END_REF]. The latter have been applied using fully observed data and extension to the case of possible presence of missing data is of interest.

Doubly robust probabilistic component analysis.

In this chapter, we have considered that the data was MCAR or MAR, so that 𝑓 (r 𝑖 |x 𝑖 , 𝜙) = 𝑓 (r 𝑖 |x (0) 𝑖 , 𝜙). The consequence is that maximizing the full observed likelihood is equivalent to maximizing the observed likelihood, as seen in [START_REF] Crawford | The atlas of AI: Power, politics, and the planetary costs of artificial intelligence[END_REF]. If the mechanism is MNAR, one has to deal with the expectation of 𝑓 R|X (r 𝑖 |x 𝑖 , 𝜙) during the E-step, which is clearly not tractable. A challenge would be to design a doubly robust algorithm to both data distribution and missing-data mechanism.

Machine learning with structured missingness

Very often, machine learning algorithms need complete data to work [START_REF] Nijman | Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review[END_REF]. Missing values can create errors at all levels of the analysis pipeline and lead to biased models which are not generalizable.

A challenge in statistical estimation with missing data is to efficiently exploit what [START_REF] Mitra | Learning from data with structured missingness[END_REF] called structured missingness, i.e., all possible combinations of the (possibly unknown) missing-data mechanisms and patterns in the data. To do so, ML algorithms should be designed by 1) exploring the geometry of mechanisms and patterns as both can capture multivariate relationships within the data, 2) explicitly modeling structured missingness using informative statistical priors on the mechanisms and patterns parameters, 3) better characterizing and understanding ethical implications of structured missingness, which can arise from socio-cultural biases during data extraction, analysis and/or interpretation (see [START_REF] Crawford | The atlas of AI: Power, politics, and the planetary costs of artificial intelligence[END_REF] for a extensive discussion of these biases in machine learning, especially in ground truth datasets).

where scalar 𝑝 𝑖 and matrix A 𝑖 are defined as in [START_REF] Anderson | An Introduction to Multivariate Statistical Analysis[END_REF]. By contrast, the complete-data log-likelihood ℓ c can be expressed by replacing x 𝑖 by its permuted version x 𝑖 as defined in (3):

ℓ c (θ| X) = -𝑛𝑚 log(𝜋) -𝑛 log |𝚺| - 𝑛 ∑︁ 𝑖=1 x 𝑇 𝑖 𝚺 -1 𝑖 x 𝑖 . (57) 
With reference to the estimation problem [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], the EM algorithm is as follows:

• Initialization: at step 𝑟 = 0 of the algorithm, initialize the covariance matrix 𝚺 (0) with the SCM computed from fully observed x 𝑖 , e.g., using equations ( 6) or [START_REF] Bhatia | Positive definite matrices[END_REF].

• E-step: for each observation 𝑖, compute the expectation of x (1) 𝑖 conditioned by the observed data x (0) 𝑖 and the estimation of the parameters at step 𝑟:

𝑄 𝑖 (θ|θ 𝑟 ) = E x (1) 𝑖 |x (0) 𝑖 ,θ 𝑟 ℓ 𝑐 (θ| x 𝑖 ) = tr B 𝑟 𝑖 𝚺 -1 𝑖 , (58) 
where B 𝑟 𝑖 contains the expected sufficient statistics as defined in ( 23)-( 24)-( 25). These expectations are computed using expressions [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF] and [START_REF] Josse | Handling missing values in exploratory multivariate data analysis methods[END_REF]. The conditional mean

𝜇 1|0

𝑖 and covariance 𝚺 11|0 𝑖 involved in these expressions remain the same, except that the scales need to be dropped from [START_REF] Johnson | Matrix completion problems: a survey[END_REF].

• M-step: resolve the following maximization problem:

θ 𝑟+1 = arg max θ∈𝚯 𝑄(θ|θ 𝑟 ) (59) 
where 𝑄(θ|θ 𝑟 ) = 𝑛 𝑖=1 𝑄 𝑖 (θ|θ 𝑟 ) is the total 𝑄-function due to the iid of the observations. Solving ( 59) is tantamount to solve 𝜕𝑄 (θ |θ 𝑟 ) 𝜕θ = 0. Fortunately, in this case, a closed-form expression for 𝚺 is found with simple derivation calculus:

𝚺 𝑟+1 = 1 𝑛 𝑛 ∑︁ 𝑖=1 P 𝑖 (B 𝑟 𝑖 ) 𝑇 P 𝑇 𝑖 , (60) 
where P 𝑖 , 𝑖 = 1, . . . , 𝑛 are the permutation matrices as defined in [START_REF] Andridge | A review of hot deck imputation for survey non-response[END_REF]. Notice that in the case of no missing values, P 𝑖 = I 𝑚 and B 𝑟 𝑖 = E[x 𝑖 x 𝑇 𝑖 ], which leads to the classical SCM. The following algorithm sums up this simple procedure. 
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 54 Fig. 4: Mean estimation error (500 experiments) as function of the number of samples 𝑛 for univariate (top), general (middle) and random (bottom) missing data patterns with 𝑚 = 15.
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 55 Fig. 5: Mean estimation error (500 experiments) as function of the number of samples 𝑛 for univariate (top), general (middle) and random (bottom) missing data patterns with a low-rank setting (𝑞 = 5) and 𝑚 = 15. 'LR' stands for low-rank.
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 6 Fig. 6: Mean estimation in the full rank (left) and low-rank (right) covariance model with 𝑛 = 105. Dashed lines separate robust estimators from estimators based on the Gaussian model.

Algorithm 3 Ensure: 𝚺 1 : 5 :

 315 EM-SCM: Estimation of 𝚺 under the Gaussian distribution with missing valuesRequire: ( x 𝑖 ) 𝑛 𝑖=1 ∼ R𝑁 𝑚 (0, 𝚺), (P 𝑖 ) 𝑛 𝑖=1 Initialization: compute 𝚺 𝑟=0 using (6) or (7) 2: repeat 3:E-step: compute E[x (1) 𝑖 ], E[x (0) 𝑖 x (1)𝑇 𝑖 ], E[x (1) 𝑖 x (1)𝑇𝑖] for 𝑖 = 1, . . . , 𝑛 using (26)-(29) 4: M-step: compute 𝚺 𝑟+1 = 1 𝑛 𝑛 𝑖=1 P 𝑖 (B 𝑟 𝑖 ) 𝑇 P 𝑇 𝑖 𝑟 ← 𝑟 + 1 6: until | |𝚺 𝑟+1 -𝚺 𝑟 | | 2 𝐹 converges

  Different types of missing data patterns in the case of multivariate data (white is observed, red/pink is missing). Note that the random pattern is a special case of the general pattern where each sample a has unique probability of being missing.
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	(a) Univariate	(b) Multivariate	(c) Monotone
	(d) File-matching	(e) General	(f) Random
	Fig. 1:		
		, D.B. Rubin proposed a classification of the

cause of missing data into three different categories, which he called missing-data mechanisms.

  2 𝐹 at each iteration, while the convergence of the fixed point algorithm relies on ||𝚺 𝑟 𝑘+1 -𝚺 𝑟 𝑘 || 2 𝐹 .

	Algorithm 1 EM-Tyl: robust estimation of θ under MSG distribution with missing
	values.

Require: ( x 𝑖 ) 𝑛 𝑖=1 ∼ R𝑁 𝑚 (0, 𝜏 𝑖 𝚺) , (P 𝑖 ) 𝑛 𝑖=1 Ensure: 𝚺, ( 𝜏 𝑖 ) 𝑛 𝑖=1 1: Initialization:

  , the M-step of the ECME reads

	√	𝜏 𝑗𝑖 =	tr s 𝑗𝑖 r 𝑇 𝑗𝑖 W 𝑗 tr( s 𝑗𝑖 s 𝑇 𝑗𝑖 W 𝑇 𝑗 W 𝑗 )	(52)
	𝜎 2 =	1 𝑗 𝑛 𝑗	𝑗 ∑︁	𝑖 ∑︁	tr 𝜏 𝑗𝑖 s 𝑗𝑖 s 𝑇 𝑗𝑖 W 𝑇 𝑗 W 𝑗 + r 𝑗𝑖 r 𝑇 𝑗𝑖 -2 √	𝜏 𝑗𝑖 tr s 𝑗𝑖 r 𝑇 𝑗𝑖 W 𝑗

  𝑗 and 𝚪 𝑗𝑖 . iii) The local summaries refer to 𝑖 𝚪 𝑗𝑖 and 𝜅 𝑗 = 𝑖 tr{𝜏 𝑗𝑖 s 𝑗𝑖 s 𝑇 𝑗𝑖 W 𝐻 𝑗 W 𝑗 + r 𝑇 𝑗𝑖 r 𝑗𝑖 -2 √ 𝜏 𝑖 𝑗 r 𝑇 𝑗𝑖 W 𝑗 s 𝑗𝑖 and finally iv) the global summaries represent the common parameters, i.e., µ and 𝜎 2 .

	x 𝑗𝑖 𝑖		
		Local E-step	
	Local	Local M-step	
	computation at the 𝑗-th	Local summaries	Fusion center
	group		
		Global estimates	
		repeat until convergence	
	W 𝑗 , 𝜏 𝑗𝑖 𝑖 𝑗		𝜎 2 , µ

Fig. 3: Parallel scheme of the robust PPCA, in which i) Local E-step updates r 𝑗𝑖 , x 𝑗𝑖 and x 𝑗𝑖 x 𝑇 𝑗𝑖 , whereas in the ii) Local M-step we update 𝜏 𝑗𝑖 , W

In[START_REF] Graham | Missing data analysis: Making it work in the real world[END_REF], authors discourage the use of complete-case analysis when the loss due to missing values exceed 5% of the data.

Recall that the observed-data (or incomplete) is X (0) and the complete-data is (X (0) , X[START_REF] Abdallah | Bayesian signal subspace estimation with compound gaussian sources[END_REF] ).

Missing information is not directly the quantity of missing data, but rather the fraction of information about θ that is missing in ℓ (θ |X). Strictly speaking, it is defined as the negative of the second derivative of the missing part of the complete-data log-likelihood w.r.t. θ (see section 8.4 of[START_REF] Little | Statistical analysis with missing data[END_REF]).

For a clear overview of the rate of convergence of the EM, which notably includes the expression of the fraction of missing information, see section 8.4.3 in[START_REF] Little | Statistical analysis with missing data[END_REF].

Examples of using deterministic EM-type algorithms applied to RES distributions with missing data deal in majority with the Gaussian (see[START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] and the Appendix), scaled Gaussian[START_REF] Hippert-Ferrer | Robust low-rank covariance matrix estimation with a general pattern of missing values[END_REF] and Student-𝑡[START_REF] Liu | ML estimation of the t distribution using EM and its extensions[END_REF] distributions. In these cases, we can expect to obtain closed-form expressions at the E-step under certain mild conditions.

We omit the comparison of the robust PPCA under missing data, since its gain versus classical schemes (discussed below) is similar to the gain of the robust EM algorithm for mixture of scaled Gaussian distributions in the presence of missing data versus classical schemes.

The code to reproduce the experiments is available at: https://github.com/ahippert/ em-scaled-gaussian
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subsection 4.311. The code to reproduce the following experiments is available at: https://github.com/ahippert/em-scaled-gaussian.

First, let us compare, through numerical simulation, the estimation performance of the estimator [START_REF] Larsson | High-resolution direction finding: the missing data case[END_REF] on simulated data (x 𝑖 ) 𝑛 𝑖=1 drawn from the zero-mean multivariate Gaussian and MSG distributions with covariance 𝚺. The main aim is to quantify the performance losses in regard to the missing data ratio and patterns in both full and low-rank scenario. To generate a covariance matrix admitting a low-rank structure (1), we compute

where U ∈ St 𝑚,𝑞 is the underlying signal subspace basis obtained from the eigenvalue decomposition of the low-rank covariance matrix H and 𝜎 is a free parameter corresponding to the signal-to-noise ratio. H admits a Toeplitz structure (H) 𝑖 𝑗 = 𝜌 |𝑖-𝑗 | , 𝑖, 𝑗 = 1, . . . , 𝑚, where 𝜌 = 0.7 and 𝑚 = 15. Scales (𝜏 𝑖 ) 𝑛 𝑖=1 are drawn from a Gamma distribution with shape parameter 𝛼 = 1 and scale parameter 𝛽 = 1 𝛼 . For the sake of the experiment, missing data are also simulated, which allows a full control on their ratio and pattern. Importantly, as the number of observations 𝑛increases in the comparison, the missing data ratio decreases. The following covariance estimators are considered for comparison:

EM estimators

The covariance matrix for the Gaussian distribution obtained from Algorithm 3 (see the Appendix), named 𝚺 EM-SCM and the covariance matrix for MSG distributions obtained from Algorithm 1, named 𝚺 EM-Tyl .

SCM estimators

The SCM from the clairvoyant data (without missing data) and the SCM 𝚺 (0) SCM estimated from the subset of fully observed vectors as defined in (6).

Tyler's M-estimators Tyler's M-estimator from the clairvoyant data as expressed in Eq. (97) of the Background Chapter and Tyler's M-estimator 𝚺 (0) Tyl from the subset of fully observed vectors (x 𝑖 ) 𝑖 ∈𝑂 .

Robust multiple imputation

We propose a robust version of multiple imputation [START_REF] Royston | Multiple imputation of missing values[END_REF][START_REF] Van Buuren | Flexible imputation of missing data[END_REF]: for each x 𝑖 with missing values x (1) 𝑖 , 𝑆 vectors with imputed (or completed) missing entries (x 𝑖1,𝑐 , x 𝑖2,𝑐 , . . . , x 𝑖𝑆,𝑐 ) (letter "c" stands for complete) are generated with missing values drawn from a MSG distribution:

x (1) 𝑖 𝑗,𝑐 ∼ R𝑁 (µ (0) 𝑖 𝑗 ,

where µ (0) 𝑖 𝑗 and σ (0) 𝑖 𝑗 are the mean and variance of the observed components of x 𝑖 𝑗 , and 𝜏 𝑖 𝑗 are the scales parameters drawn from a Gamma distribution 𝐺𝑎𝑚𝑚𝑎(𝛼 =

Appendix : The special case of the Gaussian distribution

As a particular case, we consider the widely used Gaussian distribution among the RES class. In this scope, the data is modeled as iid circular symmetric Gaussian random vectors with zero mean and unknown covariance matrix 𝚺, which we recall is denoted x ∼ R𝑁 𝑚 (0, 𝚺).

Suppose that (vec(𝚺)) = θ is the parameter vector to be estimated from the data x. The ML estimator θ ML (see ( 13)) given the observed data X (0) maximizes the observed-data log-likelihood ℓ ign . This function is given by ℓ ign (θ|X (0) ) = -