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Introduction 

Since the discovery that the neuronal action potential is due to a sequential activation of voltage-

dependent Na+ and K+ conductance (Hodgkin and Huxley, 1952a), Sir Alan Hodgkin and Sir Andrew 

Huxley proposed a set of differential equations (Hodgkin and Huxley, 1952b) that started modern 

computational neuroscience (Moore, 2010). Later, the cable theory adapted to neuronal compartments 

(Rall, 1962) allowed the first computer models of neurons (see, for example, Traub and llinas, 1979 or 

Traub, 1982). Among the tools and languages that were developed in the last decades in order to 

efficiently simulate individual neuron behaviours, the NEURON programming language represents a 

critical step in the progress of computational neuroscience (Hines and Carnevale, 1997), but other 

languages such as GENESIS (Bower and Beeman, 2007) and NeuroML (Gleeson et al., 2010) are also 

used to perform virtual experiments. In parallel, the need of a neuron properties database was fulfilled by 

NeuronDB (Mirsky et al., 1998), which was followed by the model database ModelDB (McDougal et al., 

2017). Thus, realistic models of neurons and synapses can be assembled to simulate large scale 

networks (Markram et al., 2015) or they can be used to inspire artificial networks (Chavlis and Poirazi, 

2021). More realistic models of neurons can be further developed by constraining the parameters of the 

model to more detailed experimental datasets using optimisation procedures (Van Geit et al., 2008; 

Iavarone et al., 2019; Bologna et al., 2022). Following this direction, neuronal computational tools can be 

eventually used to derive biophysical models of native ion channels from experimental observations 

(Cannon and D’Alessandro, 2006). The optimisation of ion channel parameters, however, is typically 

performed using patch clamp recordings in voltage clamp mode. This approach is limited by the fact that 

the ionic current measured only at the site where the membrane potential (Vm) is clamped is in general 

the summation of components originating from different cellular regions where Vm has different values 

(Williams and Mitchell, 2008). An alternative approach is to use ultrafast imaging recordings (at 50-200 

µs time resolution) of physiological ion concentrations that are capable of resolving native Ca2+ currents 

(Jafaari et al., 2014; Jaafari and Canepari, 2016) or Na+ currents (Filipis and Canepari, 2021). In this 

case, ionic currents are measured at the site of origin where the variable physiological Vm can be 

measured, using voltage sensitive dyes, at the same time scale (Popovic et al., 2015). The contribution 

of individual channel types can be eventually estimated using highly selective inhibitors or boosters 

available for many ion channels, in particular molecules derived from toxins (Israel et al., 2018). This 

Opinion article is aimed at sharing our recent experience on using NEURON simulations to unravel the 

native behaviour of ion channels from multiple ultrafast imaging recording in individual neurons in brain 

slices. This work not only allowed the measurement of ionic currents, but also extraction of the mutual 

functional interactions among diverse ion channels shaping the kinetics of physiological signals. Yet, the 

success of this approach is contingent not only upon the parameters of the model that can be 

experimentally assessed, but also upon those that cannot. Thus, we focus here on the critical aspects 

that must be addressed when working with novel rich experimental datasets that are becoming available 

from the use of state-of-the-art imaging techniques.   

 

The challenge of going from neurons to ion channels 



The process of building realistic neuron models starts always from two sets of experimental 

information: (1) the knowledge of which ion channels and other molecules (ion pumps, buffers, etc.) are 

involved in the measured signals; and (2) a collection of physiological Vm signals which is sufficiently 

detailed to constrain the parameters of the model. For ion channels, the biophysical behaviour of the 

model can be initially established from experiments where the channel is expressed in a host system. 

Each channel can be modelled as deterministic (Petousakis et al., 2022) or stochastic (Goldwyn et al., 

2011) Hodgkin-Huxley function. From this background, the modeler can optimise the parameters of ion 

channels and of the other molecules so that the results of the computer simulation match the set of 

experimental Vm signals. When using electrodes, however, the consistency between experiments and 

simulations is limited to the site(s) of the electrode(s), whereas Vm imaging can significantly reduce this 

limitation allowing assessing multi-compartment models. In addition, ultrafast Ca2+ or Na+ imaging can 

provide direct evidence on the activation of Ca2+ or Na+ channels respectively. Finally, the use of 

selective inhibitors or boosters of individual ion channel types allows direct assessment of the targeted 

channel. The accuracy of a neuron model can be therefore linked to the number of different experimental 

tests used to constrain it. Typically, a model based on ultrafast Vm and ion imaging recordings can be 

built starting from an existing model developed on electrodes measurements, where original and 

possibly additional parameters are further optimised on the richest set of experimental evidence. The 

result of this procedure is a more accurate model that not only reproduces the physiological Vm signals, 

but also the individual ionic currents of each channel type as well as the synergistic interactions of ion 

channels. To achieve a realistic ion channel function, however, some technical challenges must be taken 

into consideration to establish whether the approach may or may not work in each specific case. In 

general, when constraining the model on a cellular compartment, one should distinguish the case in 

which a constant signal is injected into a compartment, and the more common case in which the input 

itself is a variable (Fig.1A). In the first case, which is normally a simplified approximation, the input signal 

from the first compartment regulates the conductance producing an output signal in the second 

compartment, but the input is not affected by a pharmacological manipulation. In the second case, the 

input signal generated in the first compartment is also affected by the pharmacological manipulation. 

Clearly, whereas in the first case the optimisation can be performed at the level of a single compartment, 

in the second case it must be performed at the level of the multi-compartment system. The two following 

examples from our recent research, where automated optimisation algorithms were not used, are 

representative of the two different cases.  

 

Two examples from recent research 

An example of simplified single compartment model (case I in Fig.1A), which was capable of 

extracting the behaviour of native ion channels, was obtained for the dendrites of the cerebellar Purkinje 

neuron (PN) (Ait Ouares et al., 2019). As shown in Fig.1B, a dendritic segment of the size from which Vm 

and Ca2+ signals could be obtained at 200 µs temporal resolution with high signal-to-noise ratio (SNR). 

The segment was modelled as single compartment with 6 types of ion channels and various Ca2+ 

sequestration mechanisms, starting from an existing model available in the literature (Anwar et al., 

2012). Vm and Ca2+ transients elicited by the climbing fibre (CF) stimulation were recorded at two 



different states: first by injecting current through a somatic patch clamp pipette to hold the initial Vm at 

hyperpolarised (hyp) state and then at depolarised (dep) state. Then, 5 of the 6 channels in the model 

(one at the time) were inhibited by local application of selective blockers. This way, in agreement with the 

assumption that the CF Vm input originating near the soma was not affected, the parameters of the ion 

channels were constrained by the dataset that included the blockade of individual channels. The result 

was a realistic reconstruction of the underlying ionic currents, in particular of the Ca2+ current mediated 

by T-type channels and of the K+ current mediated by A-type channels, that prevent the full activation of 

P/Q-type Ca2+ channels at hyperpolarised state, but that are inactivated at depolarised state allowing the 

generation of dendritic Ca2+ spikes mediated by P/Q-type Ca2+ channels. An example of multi-

compartment model (case II in Fig.1A) was obtained from the study of the generation of the AP in the 

axon initial segment (AIS) of the neocortical layer-5 (L5) pyramidal neuron (Filipis et al., 2023). As shown 

in Fig.1C, the 40-µm long AIS was divided into 40 compartments with non-uniform ion channel 

distribution and the model was built from an existing model available in the literature (Hallermann et al., 

2012). Vm, Na+, and Ca2+ transients associated with the AP, elicited by the injection of a somatic current 

pulse, were recorded at 100 µs temporal resolution along the AIS. A fraction of Nav1.2 Na+ channels was 

inhibited using a partially selective blocker and other full blockers were utilised to test diverse voltage-

gated Ca2+ channels and SK and BK Ca2+-activated K+ channels. Since signals with sufficient signal-to-

noise ratio could be obtained only by averaging fluorescence over 5 µm long sites, the parameters of the 

ion channels (including their spatial distribution) were constrained on a distal (dist) site and on a proximal 

(prox) site of the channels only. The model could reproduce the Vm, Na+, and Ca2+ transients unravelling 

the functional interaction between Nav1.2 and BK channels, but given the multi-compartmental nature of 

the problem, the estimate of the native ion currents in each compartment was less accurate than in the 

first example.          

       

Discussion 

The two examples analysed above represent a promising beginning towards the use of computational 

tools to extrapolate native physiological ionic currents from ultrafast Vm, Na+, and Ca2+ recordings. This is 

crucial because the same ion channel can behave in a different manner in two distinct native contexts 

where it physically interacts with other molecules and only a measurement during a physiological signal 

can be informative of its realistic behaviour. In the first system that we analysed, where the problem was 

addressed with a single compartment model, the accuracy of the ionic currents obtained from computer 

stimulation was remarkably high. From our experience, we suggest a possible pathway necessary to 

improve this approach. On the experimental side, Vm and ion transients can be obtained from more 

compartments and with more pharmacological assessments of individual channels. On the 

computational side, the use of sophisticated optimisation procedures to build models from multiple 

experimental data (Nandi et al., 2022) can be combined with stepwise neuron model fitting procedures 

(Mäki-Marttunen et al., 2018) to exploit this novel experimental information. Our opinion is that this is a 

worth-doing effort because of its enormous potential impact on the understanding of functional ion 

channel organisation and potentially of dysfunctions caused by channelopathies.                                                        
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Figure Legend 

FIGURE 1. Two examples of neuron models built from experimental ultrafast ion and Vm imaging data. 

(A) Diagram of the two cases where a signal s1 from compartment c1 is transmitted to compartment c2 

to generate a signal s1. In case I, only s2 changes after a pharmacological manipulation; in case II, both 

s1 and s2 change after a pharmacological manipulation. (B) Single-compartment model of dendritic 

response to climbing fibre (CF) stimulation in cerebellar Purkinje neurons reported in Ait Ouares et al. 

(2019). The model reproduces the dendritic Vm and Ca2+ transients associated with CF activation when 

the initial Vm was hold at hyperpolarised state (hyp, blue traces) or at depolarised state (dep, red traces). 

The currents of P/Q-type VGCCs, T-type VGCCs and A-type VGKCs in the two states are obtained from 

the computer stimulations. (C) Multi-compartment model (40 compartments of 1 µm length each, dotted 

line) of AP generation in the AIS of a L5 pyramidal neuron reported in Filipis et al. (2023). The model, 

where critical ion channels are unevenly distributed along the AIS, reproduces the Vm, Na+ and Ca2+ 

transients during AP generation at a proximal site (1, prox) and at a distal site (2, dist) of the AIS.  

 


