
Discovering and Exploiting Sparse Rewards in a
Learned Behavior Space

Giuseppe Paolo giuseppe.paolo@softbankrobotics.com
AI Lab, SoftBank Robotics Europe
Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR
Paris, France

Miranda Coninx miranda.coninx@sorbonne-universite.fr
Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR
Paris, France

Alban Laflaquière alaflaquiere@softbankrobotics.com
AI Lab, SoftBank Robotics Europe
Paris, France

Stephane Doncieux stephane.doncieux@sorbonne-universite.fr
Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR
Paris, France

Abstract
Learning optimal policies in sparse rewards settings is difficult as the learning agent has little
to no feedback on the quality of its actions. In these situations, a good strategy is to focus on
exploration, hopefully leading to the discovery of a reward signal to improve on. A learning
algorithm capable of dealing with this kind of settings has to be able to (1) explore possible
agent behaviors and (2) exploit any possible discovered reward. Exploration algorithms have
been proposed that require the definition of a low-dimension behavior space, in which the
behavior generated by the agent’s policy can be represented. The need to design a priori this
space such that it is worth exploring is a major limitation of these algorithms. In this work, we
introduce STAX, an algorithm designed to learn a behavior space on-the-fly and to explore it
while optimizing any reward discovered. It does so by separating the exploration and learning
of the behavior space from the exploitation of the reward through an alternating two-step
process. In the first step, STAX builds a repertoire of diverse policies while learning a low-
dimensional representation of the high-dimensional observations generated during the policies
evaluation. In the exploitation step, emitters optimize the performance of the discovered
rewarding solutions. Experiments conducted on three different sparse reward environments
show that STAX performs comparably to existing baselines while requiring much less prior
information about the task as it autonomously builds the behavior space it explores.

Keywords
Sparse Rewards, Novelty Search, Emitters, Evolutionary Algorithms, Quality Diversity

1 Introduction

For an embodied agent whose goal is to learn a policy capable of solving a task, situations of
sparse rewards can be difficult to deal with. The reason is that many policy-learning algorithms
work by optimizing a reward function providing feedback on the performances of the policy.
A well-designed reward function has to provide a reward often enough so the agent can know
how good each performed action is (Sutton and Barto, 2018). These kinds of rewards are called

©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

ar
X

iv
:2

11
1.

01
91

9v
2

 [
cs

.L
G

]
 2

6
Se

p
20

23

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

NO

 Evaluation Population Environment

O
bservations Selection

Exploration

YES
Reward

Autoencoder
Training

Exploitation

Bootstrap
Step

Emitter
Step

Scheduler

KK K K

Budget

K K K K

K

Autoencoder

Figure 1: STAX consists of an exploration and an exploitation process alternating thanks to a
scheduler. During exploration, the algorithm explores and learns a representation of the behavior
space through an AE trained online. Any discovered reward is then exploited in the exploitation
step through emitters.

dense rewards. On the contrary, in sparse rewards settings, this feedback is provided sparingly,
only after a given amount of time is passed or if a specific situation happens. In these situations,
it is difficult for a learning agent to evaluate how good a policy is and how appropriate each
action is to each situation. This can reduce the performance or even hinder the learning of a
good policy. An example of this can be a robotic arm learning how to pick an object. The
simplest way of rewarding the agent is to give the reward when the arm picks the object, while
designing a reward that could lead the arm to pick the object is very hard. For these reasons,
when reward feedback is not readily available, a good strategy is to focus on exploration, with
the goal of finding a reward in the future.

Following this strategy, the way exploration is performed becomes fundamental. Standard
Reinforcement Learning (RL) algorithms, as described by Sutton and Barto (2018), perform
exploration through random actions, a strategy that renders unlikely to find rewards if they are
sparse enough. This problem has been addressed with the introduction of different approaches,
based on both RL methods, Evolutionary Algorithms (EAs) or a mix of both (Sigaud, 2022).
Among them, Novelty Search (NS) is an EA that completely discards any performance
information, focusing solely on exploration by looking for a set of policies whose behaviors are
as different as possible (Lehman and Stanley, 2008). This is done in a hand-designed space, the
behavior space (B), in which the behavior of each one of the generated policies is represented
in order to evaluate their diversity. The development of NS has led to the birth of the evolution-
based divergent search family of algorithms, also known as Quality-Diversity (QD) (Pugh et al.,
2016; Cully and Demiris, 2017). These methods, in addition to focusing on pure exploration
through divergent search, can also optimize the performances of the discovered policies. This
grants a strong advantage over methods like NS that tend to produce low-performing solutions
with respect to the a posteriori evaluation on a rewarding task. Nonetheless, the exploration
abilities of these approaches, NS included, are often limited by the need to hand-design B.
While this allows the designer to define what aspects of the problem need to be explored, it
also increases the engineering cost of these methods while limiting the range of problems to
which they can be applied. To address this issue, researchers have introduced methods that can
autonomously learn B through representation learning approaches, thus reducing the amount
of prior information needed for the design of the representation itself (Liapis et al., 2013;

2 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

Paolo et al., 2020; Grillotti and Cully, 2022). Supporting this approach, Hagg et al. (2020)
have shown that autonomously learning B generates higher diversity of solutions compared to
hand-designed B. Notwithstanding the good results obtained by these methods, they are still
limited either by the discarding of reward-related information of NS (Liapis et al., 2013; Paolo
et al., 2020) or by the need to discretize the learned space (Grillotti and Cully, 2022).

In this paper, we introduce the STAX algorithm, a method that can perform exploration
in a search space that is autonomously learned at execution time, while also optimizing any
possible discovered reward. As with NS, this exploration is completely reward-agnostic, but
contrary to this method, once an area of the search space is discovered to contain a reward,
STAX performs a local search in this area with the goal to optimize the total obtained reward.
This optimization is performed through emitters, a concept introduced by Fontaine et al. (2020),
consisting of instances of reward-based EAs used to perform local search in an area of the
whole B. The idea of emitters was used in SparsE Reward Exploration via Novelty search and
Emitters (SERENE) (Paolo et al., 2021) to optimize any reward discovered during the search
performed by NS. At the same time, SERENE still relies on a hand-designed behavior space in
which to perform the search. STAX builds on SERENE by removing this requirement through
the use of an autoencoder (AE) to learn the behavior space online while performing the search
Grillotti and Cully (2022); Paolo et al. (2020).

SERENE augmented TAXONS (STAX) deals with sparse reward problems by separating
the exploration and the learning of the unknown search space from the exploitation of any
possible reward through an alternating two-step process. In the first step, the algorithm explores
the search space guided by the low-dimensional representation of the policies behavior given by
the AE. At the same time, this representation is learned by training the AE on the data collected
during the evaluation of the discovered policies. When rewards are found, they are exploited
in the second step through the use of emitters, in a way similar to SERENE (Paolo et al.,
2021). The clear separation between exploration and exploitation has many advantages. The
two processes often push the optimization in different directions: exploration requires trying
as many things as possible, while exploitation requires getting better at the things we already
know. Working on them separately, then allows doing both without degrading performances,
as it can happen in multi-objective approaches like NSGA-II (Paolo et al., 2021). Moreover, the
decoupling of exploration from exploitation enables using different strategies for either of the
two processes in a more modular approach.

To recap, STAX performs three main tasks: (1) learning a behavior space while (2)
exploring it, and (3) efficiently exploiting a reward once it is found. The method builds on NS
by adding an AE to learn a low dimensional representation of the search space. Moreover, the
reward is exploited through emitters to quickly improve on rewards. The advantages provided
by STAX are twofold: (1) it can deal with sparse rewards situations by discovering and quickly
optimizing the rewards, thanks to the separation of the exploration process from the exploitation
of the reward provided by the use of emitters; (2) by autonomously learning the B, it removes
the limitation of classical divergent-search approaches requiring a hand-designed space, thus
reducing the amount of prior information needed at design time. All of this allows STAX to
deal with sparse reward environments with minimum prior information required about the task
at design time.

The paper is organized as follows: Sec. 2 will present an overview of related work and
the methods on which STAX builds. The STAX method itself is detailed in Sec. 3, while the
experimental settings on which it has been tested are shown in Sec. 4. The obtained results are
shown and discussed in Sec. 5. The paper concludes with Sec. 6, in which possible extensions
and improvements are discussed.

Evolutionary Computation Volume x, Number x 3

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

2 Background and related work

This section presents an overview of other works on the sparse rewards problem, together with
an explanation of how NS and emitters work.

2.1 Sparse Reward
For many policy learning approaches, the reward function is fundamental: it is through this
function that the designer communicates to the learning agent what is the goal the policy
should solve (Sutton and Barto, 2018). If the reward signal is given sparingly, after a lot of
time, or only if certain conditions are met, the agent can often find itself in situations in which
no reward is present, thus with no signal to drive the learning. To address this issue, many
approaches have been proposed. Some of these approaches rely on reward shaping (Mataric,
1994; Ng et al., 1999), a technique consisting of augmenting the original reward function with
additional features that are supposed to provide the agent with better guidance in solving the
task (Hu et al., 2020; Berner et al., 2019; Trott et al., 2019). Another successful strategy is
the self-assigning of goals. This can be done either by using information from previously
encountered situations (Andrychowicz et al., 2017), or by using the representations of an
unsupervised learning algorithm over a distribution of possible targets (Nair et al., 2018).

A different approach is based on Intrinsic Motivation (IM) (Oudeyer and Kaplan, 2009;
Aubret et al., 2019), by having the agent generate its own learning signal, without the need
for any environmental reward. This can be obtained by estimating the novelty of a state by
considering how often that state has been visited (Bellemare et al., 2016; Burda et al., 2018).
The less novel a state is, the more the agent is pushed to go elsewhere, thus performing
more exploration. Goal-Exploration Processes (GEP) are another family of algorithms that
use the self-assignment of goals to foster exploration (Baranes and Oudeyer, 2013; Forestier
et al., 2022; Laversanne-Finot et al., 2018). Forestier et al. (2022) use this to first learn a
goal-parametrized policy and then use this policy to solve the given task. These approaches
have also been used with two-phase strategies to help separate the exploration process from the
exploitation of the possible discovered rewards Colas et al. (2018); Ecoffet et al. (2019).

Divergent-search algorithms are a family of EAs specifically designed to focus on
exploration, rendering them naturally suited to deal with sparse reward situations (Lehman and
Stanley, 2008; Cully and Demiris, 2017; Pugh et al., 2016). The first introduced method of this
family is NS, introduced by Lehman and Stanley (2008), which works by completely ignoring
any reward signal in order to generate a set of solutions as diverse as possible. Inspired by NS,
many other methods have been introduced that not only focus on the diversity of the solutions
but also optimize their performances with respect to a given objective. This gave rise to a new
family of methods called QD (Cully and Demiris, 2017; Pugh et al., 2016; Cully et al., 2015;
Eysenbach et al., 2018; Lehman and Stanley, 2011; Paolo et al., 2021; Mouret and Clune,
2015). Moreover, given the great exploration abilities provided by divergent-search algorithms,
some researchers combined them with RL methods to better deal with sparse reward situations
(Colas et al., 2018; Cideron et al., 2020).

2.2 Novelty Search
NS is an EA that drives the search by focusing on maximizing the diversity of a set of solutions
(Lehman and Stanley, 2008). To do this, the algorithm uses a metric called novelty, calculated
in an hand-designed behavior space B in which the behavior of each policy is represented. This
space, in the literature also called outcome space (Paolo, 2020), is at the heart of NS and needs
to be tailored to the problem at hand by using prior knowledge of the system and the task.

The algorithm works by evaluating each policy, parametrized by a set of parameters θi ∈ Θ,
on the system for T time-steps. During this evaluation, the system traverses a set of states st

4 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

generating a trajectory of traversed states τs = [s0, . . . , sT]. These states are observed by
the agent through some sensors, generating a corresponding trajectory of observations τO =
[o0, . . . , oT], where ot ∈ O is the, possibly partial, observation of state st. These observations
can be generated in different ways, depending on the setting. If the states are known, the agent
can directly work with them, in which case ot = st. In other situations, the state needs to be
observed through sensors, in which case ot would be a, possibly partial, representation of st. The
trajectory of observations τO is then used to extract the corresponding behavior descriptor bi ∈ B
of the policy θi through an observer function OB : O → B. The whole process is summarized
by using a behavior function ϕ : Θ→ B that directly maps a policy to its behavior descriptor:

ϕ(θi) = bi. (1)

Once the behavior descriptors of all the policies in a population have been calculated, the
novelty of a policy θi in the population can be obtained by measuring the average distance of
its behavior descriptor with respect to the descriptors of its k closest policies. The higher this
distance, the more novel the behavior of a policy is considered. The novelty η(θi) is calculated
through the following equation:

η(θi) =
1

|J |
∑
j∈J

dist(bi, bj) =
1

|J |
∑
j∈J

dist(ϕ(θi), ϕ(θj)) (2)

where J is the set of indexes of the k closest policies to θi in B.
At each generation, the novelty of the policies is calculated and the ones with the highest

novelty are selected to be part of the next generation population. At the same time NQ policies
are selected at each generation to be stored into an archive ANov. The function of the archive
is to keep track of the already explored areas of the search space, pushing the search towards
less visited areas. This is done by selecting the |J | policies used for the novelty calculation in
equation 2 not only from the current population but also from the archive.

2.3 Learning a behavior descriptor

At the core of many divergent search algorithms lies a hand-designed B. The need to
hand-design this space poses strong limitations for the application of these methods to various
problems in which the factors important for the exploration are not clear. To overcome this
problem, many approaches that use representation learning methods to learn a low-dimensional
representation of the behavior of the policy have been recently proposed (Paolo et al., 2020;
Cully, 2019; Liapis et al., 2013).

Cully (2019) uses the learned low-dimensional representation to describe the behavior
of the policy and select in which cell of the MAP-Elites grid the policy itself belongs. At
the same time, Task Agnostic eXploration of Outcome spaces through Novelty and Surprise
(TAXONS) (Paolo et al., 2020) selects the policies not only based on the novelty calculated
through the learned low-dimensional representation but also on the reconstruction error of the
AE through a metric called surprise (Gaier et al., 2019). The idea behind this is that the higher
the reconstruction error, the less often a behavior has been seen, thus the more novel it is. This
is similar to the approaches introduced by Burda et al. (2018) and Salehi et al. (2021). STAX
uses TAXONS to learn the low-dimensional representation of the behavior of a policy during
the exploration phase, thus removing the need to hand-design B. At the same time, rather than
selecting the policies according to only one of the two metrics, novelty or surprise, as done
by TAXONS, it uses the NSGA-II Multi-Objective optimization (MOO) approach (Deb et al.,
2002) to combine both objectives and select the policies at each generation.

Evolutionary Computation Volume x, Number x 5

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

2.4 Emitters
Among QD algorithms worth of notice are approaches using emitters. Introduced by Fontaine
et al. (2020) and later used by Cully (2021) and Paolo et al. (2021), emitters are instances
of local-search reward-based EAs instantiated during the global search performed by another
EA, allowing the quick exploration of a small area of the search space while optimizing
on the reward. There is no limitation on the kind of algorithm to use as an emitter. In the
work from Fontaine et al. (2020), the CMA-ME algorithm uses MAP-Elites in conjunction
with estimation-of-distribution emitters. The algorithm works by sampling a policy θi from
the MAP-Elites archive and using it to initialize the population of an emitter Ei, which is
then evaluated until a termination condition is met. The policies discovered are added to the
MAP-Elites archive according to a given addition strategy. Once an emitter is terminated,
another policy θj is selected from the MAP-Elites archive to initialize another emitter. The
cycle is repeated until the whole evaluation budget is depleted.

Another method using emitters is SERENE. Introduced by Paolo et al. (2021), the algo-
rithm is based on NS and targets explicitly sparse rewards problems. Contrary to CMA-ME,
SERENE works through an alternating two-stage process, one performing exploration, the
other exploiting the found rewards. Exploration is done through NS over the hand-designed
B. Once a reward is discovered, it is exploited in the exploitation step when emitters are
launched over the rewarding area of the search space BR ⊆ B. This two-steps process allows
the algorithm to easily deal with sparse rewards settings in which, while the search can be
global, the optimization of the reward has to be local around the rewarding policy.

The method introduced in this work augments SERENE with the ability to autonomously
learn B through a strategy similar to TAXONS (Paolo et al., 2020). In the next sections we will
detail how STAX works and how, by taking advantage of emitters and the unsupervised learning
of the behavior space, it is possible to quickly explore an unknown search space while efficiently
optimizing any possible discovered reward.

3 Method

STAX deals with sparse rewards settings by separating the search process into two alternating
sub-processes: one performing exploration of the search space and another performing
exploitation of any discovered reward. The algorithm starts with the exploration phase and
then the two processes are alternated through a meta-scheduler. The task of the meta-scheduler
is to split the total evaluation budget Bud in small chunks of size KBud and assign them to
either one of the two sub-processes. In the exploration phase, STAX learns a B from high
dimensional observations of the environment through an AE, and explores it. Meanwhile,
during the exploitation phase, the discovered rewarding policies are optimized through emitters,
instances of local-search reward-based optimization algorithms. Note that, while in this work
we use an elitist EA, any kind of optimization algorithm can be used as emitter. Once the
whole evaluation budget Bud is depleted, the algorithm returns two collection of policies: the
novelty archive ANov, containing the diverse-behavior policies found during the exploration
phase, and the reward archive ARew, containing the reward-optimized policies found during
the exploitation phase. The whole process is designed in a way that allows the discovery of
different high-reward policies with minimal prior information about the task.

There are two aspects of STAX that are worth highlighting: the autonomous learning
and exploration of the behavior space and the optimization of the reward through emitters.
Autonomously learning the B allows to reduce the amount of prior information needed to solve
the task by removing the need to hand-design B. This is achieved by learning a low-dimensional
representation of this space through an AE, directly from high-dimensional observations
collected during the policy evaluation, in a fashion similar to TAXONS (Paolo et al., 2020).

6 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

Algorithm 1: STAX
INPUT: evaluation budget Bud, budget chunk size KBud, population size M , emitter

population size ME , offspring per policy m, mutation parameter σ, number of
policies added to novelty archive Q, AE training interval TI , randomly initialized
AE, number of bootstrap generations λ;

RESULT: Novelty archive ANov, rewarding archive ARew, trained AE;
ANov = ∅, ARew = ∅, QEm = ∅, QCand Nov = ∅, QCand Em = ∅, D = 0, TIC = 0;
Sample initial population Γ0;
Split Bud in chunks of size KBud;
while Bud not depleted do

if Γ0 then
Eval(θi), ∀θi ∈ Γ0; \\Evaluate initial population
bi = ψ(θi) ∈ B, ∀θi ∈ Γ0; \\Calculate behavior descriptor

Exploration(KBud, m, σ, ANov, QCand Em, Γg , Q, AE); \\Alg. 2
TIC = TIC + 1; \\Increase training interval counter
/* Update autoencoder and descriptors */
if TIC == TI then

DS = Extract Dataset(ANov, ARew, Γg , Γm
g);

Train Autoencoder(AE, DS);
Update Descriptors(AE, Γg , Γm

g , ANov, ARew, QEm, QCand Nov, QCand Em);
TI = TI + 1;
TIC = 0;

/* If rewarding policies have been found */
if QCand Em! = ∅ or QEm! = ∅ then

Exploitation(KBud, QCand Em, λ, m, QEm, ANov, ARew, ME); \\Alg. 3

The search is then driven by using the information extracted by the AE from the observations
collected during the evaluations of the policies. The encoder part of the AE can in fact be
used as observation function and its latent feature space F as B. The behavior descriptor of a
policy is obtained by sampling multiple high-dimensional observations along its trajectory and
use the AE to extract a compressed representation. Moreover, as for the first iterations of the
search the AE representation does not properly represent the behavior space yet (Grillotti and
Cully, 2022), the training happens more frequently. Once a few training iterations have been
performed, the AE can better represent the behaviors, so the training happens less and less
frequently. A detailed description of the training process of the AE is given in Sec. 3.2.

The second important aspect of STAX is the optimization of the reward through emitters.
If, during the exploration phase, a policy θi obtains a reward, it will be used during the
exploitation phase to instantiate an emitter in order to improve on the reward. The rationale is
that behaviors similar to the rewarding behavior ψ(θi) are likely rewarding too, with possibly
even higher performances than ψ(θi). These behaviors can be considered belonging to the
subspace of rewarding behaviors BRew ∈ B and their corresponding policies can be discovered
by performing local search around θi through emitters. Note that the reward exploitation
performed during this phase does not rely on any behavior descriptor. The quality of B learned
representation then does not interfere with the reward optimization process. This means that if a
reward is discovered at the initial stages of the search, when behavior space has not been learned
yet, STAX can still exploit it thanks to descriptor-less emitters, without loss of performance.
The details of the reward optimization are given in Sec. 3.3.

During its operation, STAX tracks the policies generated in the different phases of the
search through the following buffers and containers:

Evolutionary Computation Volume x, Number x 7

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

• novelty archive ANov: a collection of policies with diverse behaviors found during the
exploration phase. One of the two collections of policies returned as outputs of STAX;

• reward archiveARew: a collection of the most rewarding policies found during the exploita-
tion phase. Other collection of policies returned as outputs of STAX;

• candidates emitter buffer QCand Em: a buffer in which the rewarding policies ψ(θi) ∈ BRew
found during the exploration phase are stored before being used to initialize emitters in the
exploitation phase;

• emitter buffer QEm: a buffer in which the initialized emitters to be evaluated during the
exploitation phase are stored;

• novelty candidates buffer QCand Nov: an emitter-specific buffer in which the most novel
policies found by the emitter are stored. Each emitter has its own novelty candidate buffer
from which policies are sampled to be added toANov at the termination of the emitter itself.

A high-level overview of the interactions between the buffers and containers is shown in Fig. 2.

 Rewarding
Policies

TAXONS
Novelty
Archive

Reward
Archive

Dataset
Generation

Novelty
Calculation

AE
Training

Novel
Policies

 Sampled
Policies

Novelty
Candidates

Buffer

Novel
 Policies

Candidates
Emitter
Buffer

 Initialized
Emitters

Bootstrap
Step

Novel
 Policies

Best
Policies

Emitter
Step

 Selected
Emitters

Emitter
Buffer

Exploration Phase

Exploitation Phase

Figure 2: Overview of the containers used during the search by STAX to track the discovered
policies and the initialized emitters. The two collections returned as outputs of the algorithms
are highlighted in red.

The three main steps of STAX - exploration, training of the AE and exploitation of the
reward - are detailed respectively in sections 3.1, 3.2 and 3.3. The whole STAX algorithm is
illustrated in Fig. 1 and described in Alg. 1.

3.1 Exploration
Having minimal prior information about the task, STAX starts by performing the exploration
step. The first time this step is performed, the parameters θ ∈ Θ of the M policies in the
initial population Γ0 randomly sampled from the normal distribution N (0, I), as the policies
are Neural Networks (NN). Note that any parametric function f(s|θ) = a, where s is the state
of the system and a is the action, can be used as policy. The weights of the AE used to drive
the search are also randomly sampled. At each generation g, m policies θji are generated for
each policy θi in the current population Γg through a mutation operator. This will result in an
offspring population Γm

g of size m×M whose policies are formed as:

∀j ∈ {1, . . . ,m},∀i ∈ {1, . . . ,M}, θji = θi + ϵ, with ϵ ∼ N (0, σI). (3)

The policies in the offspring population θ ∈ Γm
g are then evaluated. During the evaluation of a

policy θi the system traverses a trajectory of states τ is = [si0, . . . , s
i
T] that are observed through

8 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

Algorithm 2: STAX Exploration Phase
INPUT: budget chunk KBud, number of offspring per parent m, mutation parameter
σ, novelty archive ANov, candidate emitters buffer QCand Em, population Γg , number
of policies NQ, autoencoder AE;

while KBud not depleted do
Generate offspring Γm

g from population Γg;
/* Loop over the policies in the population */
for θi ∈ Γm

g do
Eval(θi); \\Evaluate policy
bi = ψ(θi) = [. . . , E(oitk), . . . , E(oitK)]; \\Calc. behavior descr.

for θi ∈ Γm
g do

η(θi) =
1
|J|

∑
j∈J dist(bi, bj); \\Calculate novelty

s(θi) =
∑

k∈K

∣∣∣∣oitk −D(
E(oitk)

)∣∣∣∣2; \\Calculate surprise
/* If the policy has a rewarding behavior */
if ψ(θi) ∈ BRew then
QCand Em ← θi; \\Store rewarding policy

ANov ← Sample(Γm
g , NQ); \\Store most novel NQ policies

/* NSGA-II policy selection wrt novelty and surprise */
Calculate non dominated fronts Fj , ∀θi ∈ Γm

g

⋃
Γg;

Sort fronts according to non domination;
Generate Γg+1 from most non dominated solutions θi ∈ Fj ;
if If last front FJ is partially selected then

Calculate crowding distance ∀θi ∈ FJ ;
Complete filling up Γg+1 with less crowded solution θi ∈ FJ ;

sensors, generating a corresponding trajectory of observations τ io = [oi0, . . . , o
i
T]. The policy is

then assigned a behavior descriptor bi obtained by using multiple observations sampled along
τ iO. The descriptor is generated by encoding the sampled observations thanks to the AE’s
encoder E(·) and then stacking their low-dimensional representations together. This can be
described as bi = ψ(θi) = [. . . , E(oitk), . . . , E(oitK)], where oitk is the observation generated
by the policy θi at time-step tk. Sampling multiple observations along the trajectory is in
contrast to what Paolo et al. (2020) did in TAXONS, in which only the last observation was
used to generate the descriptor. Using the last observation in fact requires such observation to
be informative of the behavior of the policy over the whole trajectory. On the contrary, using
multiple observations along τs, such an assumption is not required anymore.

The diversity of a policy is evaluated through two metrics: novelty and surprise. The first
one is the normalized euclidean distance in the learned B:

η(θi) =
1

|J |
∑
j∈J

dist(ψ(θi), ψ(θj)). (4)

At the same time, the surprise is calculated as the sum of the AE’s reconstruction error over
each one of the sampled observations generated by θi. A higher surprise implies that the AE has
not seen that area of the learned behavior space very often. This means that selecting policies
with high surprise leads the algorithm to increased exploration. Such metric is defined as:

s(θi) =
∑
k∈K

∣∣∣∣oitk −D(
E(oitk)

)∣∣∣∣2, (5)

where K is the list of indexes of the selected time-steps along the trajectory.

Evolutionary Computation Volume x, Number x 9

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

The two metrics are used to select the policies that will form the population for the next
generation Γg+1 through the NSGA-II multi-objective approach (Deb et al., 2002). This is in
contrast to what was done by Paolo et al. (2020) in TAXONS, in which only one among novelty
and surprise was sampled at each generation to be used for policy selection.

Finally, STAX samples uniformly NQ policies to be added to the novelty archive ANov.
Moreover, all the rewarding policies found in this phase are added in the candidates emitter
buffer QCand Em to be used during the exploitation phase to generate emitters. The whole
exploration process is shown in Algorithm 2.

3.2 Training of the autoencoder

The exploration performed by STAX is driven by the AE. This means that the way the AE itself
is trained, and thus the quality of the learned low-dimensional representation, is fundamental
in order to obtain good exploration. In order to meaningfully look for diversity in the learned
behavior space B, the AE has to be trained on the data collected during the search for policies
itself. This data is collected into a dataset DS consisting of the observations used to generate
the behavior descriptor of the policies, as defined in Sec. 3.1. The policies whose observations
are added to DS are the ones contained in both the reward archiveARew and the novelty archive
ANov, with the addition of the observations from the population Γg and the offspring population
Γm
g of the last evaluated generation g. The data of the archives provides a curriculum, stabilizing

the training process and preventing the search from cycling back to already explored areas. At
the same time, adding the observations from the most recent population to the training dataset
helps the AE to better represent the frontier of the explored space, towards which the search is
to be pushed.

Once the dataset DS has been collected, it is split into two sub-datasets: the training
dataset DSTrain and the validation dataset DSVal. For each training episode, the AE is trained on
theDSTrain. At the end of each training epoch onDSTrain, the model validation error is calculated
on DVal. The training episode is stopped if the error increases for 3 consecutive epochs.

As stated in Sec. 3, the AE is trained less frequently the longer the search is performed;
the same strategy is employed in the AURORA method (Cully, 2019). This allows adapting the
frequency of the training to the maturity of the learned B, while saving time and computational
resources with respect to training the AE at fixed intervals. This shifting training regime is
obtained by performing the training process every TI exploration steps. At the beginning of
the search, STAX sets TI = 1. Its value is then increased by 1 every time a training episode is
performed. Finally, at the end of each training episode, the behavior descriptor of all the policies
present in the archives and in the populations is updated with the new descriptors generated
by the retrained AE. This keeps the behavior descriptors and the novelty measurements of the
policies consistent and meaningful.

3.3 Exploitation

At the end of the exploration step, if the emitters candidate bufferQCand Em or the emitters buffer
QEm are not empty, the meta-scheduler assigns a budget chunk KBud to the exploitation step.
The objective of this phase is to optimize the reward. In practice, this consists of i) identifying
the policies that can be used to initialize the populations of the emitters and ii) running such
emitters with the goal of generating solutions with high rewards. This is done through two
sub-steps: the bootstrap step and the emitter step. During the bootstrap step, the rewarding
policies collected in the emitters candidate buffer QCand Em are used to instantiate emitters that
are then evaluated for few iterations. The emitter with the potential to improve on the reward
are added to the emitter buffer QEm to be fully evaluated during the subsequent emitter step.
At the same time, the emitters not capable of improving on the reward are discarded. In the

10 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

following sub-step, the emitters from QEm are sampled according to their performance and
evaluated until termination or until the budget chunk is depleted.

Such a two sub-steps process allows STAX to quickly decide which of the rewarding
policies from QCand Em is worth optimizing and which is not. This prevents the waste of
computational budget on the optimization of policies that are in hard-to-escape local optima of
the reward landscape. Moreover, using emitters allows to disjointly optimize multiple reward
areas in an efficient way by quickly finding good solutions. This is fundamental for an approach
like STAX in which the B is autonomously learned. In hand-designed B the engineer has total
control over the space itself, allowing him to reduce the disjointedness of the reward areas.
This is not the case when the behavior descriptor is generated by stacking multiple learned
representations extracted from high-dimensional observations, as done by STAX. In this kind
of setting, there is no guarantee that the new space will have the same structure of the reward
areas as the ground-truth hand-designed B. Given the complex nature of the learned space, due
to the stacking of the encoding of multiple observations, it can happen that this space contains
multiple reward areas, even if only one is present in the ground-truth B. For these reasons,
using an emitter-based approach as STAX capable of focusing on multiple reward areas can
give a strong advantage in situations where the behavior representation is so complex.

In the following, we will describe in detail first how our emitters work and how the two
sub-steps of the exploitation process use them to optimize the reward. The whole exploitation
phase is detailed in Algorithm 3.

Emitters
Emitters are what STAX uses to optimize the reward. An emitter in an instance of a reward-
based EA. While any reward optimization method can be used, in this paper we base the emitters
on an elitist EA, similarly to the work of Paolo et al. (2021). At each generation, the emitter
selects the population among the best performing policies θ̃j from the previous generation’s
population and offsprings, while the offsprings themselves are generated according to Eq. (3).
Using an elitist EA removes the need to estimate a covariance matrix from the emitter popula-
tion. This estimation can be unstable in situations in which the population size is lower than the
dimensionality of the space, as can be often the case when working with neural networks. To
prevent this instability issue, methods like CMA-ES (Hansen, 2016) take into account informa-
tion about older generations when estimating the covariance. This can render the estimation of
the quality of an emitter from its initial generations less reliable, limiting the performance of a
method like STAX which discards less promising emitters according to their initial performance.

Each one of the emitters Ei used by STAX consist of a population Pγ of size ME of
policies θ̃i ∈ Θ, its offspring population Pm

γ of size m × ME , a novelty candidates buffer
QCand Nov in which the most novel policies are stored, a generation counter γ, and a tracker
for the highest reward found until now Rγ . At the same time, the emitter also tracks two
novelties, ηγ , that is the novelty of the most novel policy found until generation γ, and the
emitter novelty, η(Ei), corresponding to the novelty of the policy generating the emitter. The
emitter is initialized from the policy θi by sampling the ME policies in its initial population P0

from the distribution N (θi, σiI). To reduce the overlap of the emitter’s search space with the
ones of possible nearby emitters, STAX shapes N (θi, σiI) such that the distance between θi
and the closest θj corresponds to 3 standard deviations. This is done by initializing σi as:

σi =
minj(dist(θi, θj))

3
, ∀θ̃j ∈ Γm

g ∪ Γ̃g. (6)

During its evaluation, an emitter tracks also its own emitter improvement I(Ei), a metric that is
then used by STAX to select which emitters to prioritize and which to discard, allowing a better

Evolutionary Computation Volume x, Number x 11

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

Algorithm 3: STAX Exploitation Phase
INPUT: budget chunk KBud, candidate emitters buffer QCand Em, number of bootstrap

generations λ, emitter population size ME , number of offspring per policy m,
emitters buffer QEm, rewarding archive ARew, novelty archive ANov;
/* Bootstrap step */
while KBud/3 not depleted do

Select most novel policy θi from QCand Em;
\\Calculate emitter’s mutation standard deviation
σi = minj(dist(θi,θj))/3, ∀θ̃j ∈ Γm

g ∪ Γ̃g;
Initialize: Ei, Qi

Cand Nov = ∅, and P0;
for γ ∈ {0, . . . , λ} do

if P0 then
Eval(θ̃j), ∀θ̃j ∈ P0; \\Evaluate initial population

Generate offspring population Pm
γ from Pγ ;

Eval(θ̃j), ∀θ̃j ∈ Pm
γ ; \\Evaluate offspring population

Generate Pγ+1 from best θ̃j ∈ Pm
γ

⋃
Pγ ;

Calculate improvement I(Ei);
/* Store promising emitters in emitters buffer */
if I(Ei) > 0 then
QEm ← Ei;

/* Emitters step */
Calculate pareto fronts in QEm;
while 2/3KBud not depleted do

Sample Ei from non-dominated emitters in QEm;
while not terminate(Ei) do

Generate offspring population Pm
γ from Pγ ;

Eval(θ̃j), ∀θ̃j ∈ Pm
γ ; \\Evaluate population

ARew ← θ̃j , ∀θ̃j ∈ Pm
γ | r(θ̃j) > Rγ ; \\Store high rewarding

policies
Qi

Cand Nov ← θ̃j , ∀θ̃j ∈ Pm
g | η(θ̃j) > ηi; \\Store high novelty

policies
Generate Pγ+1 from best θ̃j ∈ Pm

γ

⋃
Pγ ;

Update I(Ei) and Rγ ;
if terminate(Ei) then
ANov ← Sample(Qi

Cand Nov, NQ); \\Store NQ novel policies
in archive

Discard emitter Ei;

allocation of evaluation budget. A positive I(Ei) means that the emitter can improve on its
initial reward. On the contrary, I(Ei) ≤ 0 means that the chances for the emitter to find better
rewards are low, so it is not worth allocating more evaluation budget to it.

The improvement is calculated as the difference between the average reward obtained dur-
ing the most recent and the initial generations of the emitter:

I(Ei) =
1

λME

 T∑
γ=T−λ/2

ME∑
j=0

r(γ,j) −
λ/2∑

γ=γ0

ME∑
j=0

r(γ,j)

 , (7)

where T is the last evaluated generation, r(γ, j) is the reward of policy θ̃j ∈ Pγ and γ0 is the

12 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

generation at which the emitter is at the beginning of its evaluation.
An emitter is terminated once a termination criterion is reached. There can be many termi-

nation criteria, depending on the kind of algorithm used as emitter. In this work, we use the one
introduced by Paolo et al. (2021). This criterion is directly inspired by the stagnation criterion
used for the CMA-ES algorithm and introduced by Hansen (2016) and stops the emitter once
there is no more improvement on the reward. This is calculated by tracking the history of the
rewards obtained by the emitter over the last 120 + 20 ∗ n/ME , where n is the size of the pa-
rameter space Θ and ME is the population size of the emitter. The termination condition is met
if the maximum or the median of the last 20 rewards is lower than the maximum or the median
of the first 20 rewards.

Bootstrap step
The candidate emitters buffer QCand Em contains all the rewarding policies found during the
exploration phase. During the bootstrap step, emitters are initialized from these policies starting
from the most novel ones with respect to the reward archive ARew. This allows STAX to focus
more on the less explored areas of the rewarding behavior space BRew.

Once an emitter Ei has been initialized, it is executed for λ generations to evaluate its poten-
tial for improving the reward by calculating its initial emitter improvement I(Ei). Only the emit-
ters with positive improvement after this initial evaluation phase are added to the emitter buffer
QEm for further evaluation during the emitter step, while the rest are discarded. This allows
STAX to quickly discard emitters whose initializing policy is in a hard-to-optimize local min-
ima of the reward space. At the same time, it helps in discovering the policies whose behaviors
are in the most promising regions of the rewarding behavior space BRew. The whole bootstrap
step lasts Kbud/3 evaluation steps, at the end of which STAX switches to the emitter step.

Emitter step
During this step, STAX evaluates the emitters that, due to a positive emitter improvement, are
now present in the emitter buffer QEm. The step starts by calculating the Pareto front between
the improvement I(·) and the emitter novelty η(·) of the emitters in the buffer. The emitter Ei to
run is then sampled from the front of the non-dominated emitters. This allows STAX to focus
on the most promising and less explored areas of the rewarding search space BRew.

The policies θ̃i found during the evaluation of an emitter Ei can be stored either for
their novelty or for the reward they obtain. At every generation γ, the policies with a novelty
higher than the maximum novelty found by the emitter so far, ηγ−1, are stored in the novelty
candidates buffer QCand Nov. At the same time, the policies with a reward higher than the
maximum reward found until γ − 1, Rγ−1, are stored into the reward archive ARew. Once these
policies have been stored, both ηγ−1 and Rγ−1 are updated with the new maximum values.

The emitter Ei is run until either one of these two conditions happens: the 2/3KBud

evaluation budget chunk is depleted or a termination condition is met. The first case leads
STAX to update the improvement of Ei and store it again in the emitters buffer QEm for a
possible future evaluation. The algorithm then goes back to the exploration phase. In the second
case, the emitter is terminated and NQ policies from the emitter’s novelty candidate buffer
are uniformly sampled to be added to the novelty archive ANov. This allows STAX to save
particularly novel solutions toANov and prevent the search to go back to already explored areas.
Finally, a new emitter to be evaluated is selected from the front of non-dominated emitters.

4 Experiments

This section studies how STAX can discover highly rewarding policies while exploring a
behaviour representation space learned online. All of this with minimal previous information
about the environment and the task at hand. STAX will be compared against various baselines.

Evolutionary Computation Volume x, Number x 13

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

Figure 3: The three testing environments. Row (a) shows the real environments. The reward
areas are represented by the green, orange and red circles. Row (b) contains the 64 × 64 RGB
observations of the environment as seen by the AE. The behavior descriptors are generated by
sampling 5 of these images along the trajectories.

Moreover, multiple ablation studies will be performed to study which aspects of the method
are the most important ones. In Sec. 5.1 we will evaluate the exploration performance of the
algorithms, while the exploitation performance will be studied in Sec. 5.2. An example of the
final distribution of the behavior representation learned by the discovered policies is given in
Sec. 5.3. Ablation studies on the factors contributing to the exploration performance and the
importance of the AE training regime are done respectively in Sec. 5.4 and Sec. 3.2. Finally, in
Sec. 5.6 we evaluate the quality of the learned B.

In order to perform this analysis, STAX is evaluated on 3 sparse rewards environments,
shown in Fig. 3.

Curling: it consists of a 2 Degrees of Freedom (DoF) arm pushing a ball over a table
(Paolo et al., 2021). The arm is controlled by a 3 layers NN with each layer of size 5. The
input of the controller is a 6-dimensional array containing the (x, y) ball pose and the joints
angles and velocities. The controller outputs a 2-dimensional array containing the speeds of the
two joints at the next time-step. Each policy is run in the environment for 500 timesteps. The
reward is given only if the ball is in one of the two rewarding areas and is higher the closer it
is to the center of the area. The ground truth behavior descriptor used by methods that do not
learn the representation is the final (x, y) position of the ball. The environment, together with
the 64× 64 RGB image the AE sees during the algorithm execution, is shown in Fig. 3.

HardMaze: it consists of a 2-wheeled robot whose goal is to navigate a maze with the aid
of 5 distance sensors (Lehman and Stanley, 2008). The robot, in blue in Fig. 3, is controlled
by a 2-layers NN with each layer of size 5. The controller receives as inputs the reading of
the 5 distance sensors, shown in red in Fig. 3, and outputs the speed of the wheels for the
next timestep. The agent receives a reward if the robot reaches one of the 2 reward areas,
with the reward being higher the closer to the center the robot stops. Each policy is run in the
environment for 2000 timesteps. The ground truth behavior descriptor used by methods that do
not learn the representation is the final (x, y) position of the robot. The environment, together
with the 64× 64 RGB image the AE sees during the algorithm execution, is shown in Fig. 3.

Redundant Arm: it consists of a 20-DoF arm moving on a 2-dimensional plane (Loviken
and Hemion, 2017). The arm is controlled by a NN with 2 layers, each one of size 5. The input
of the controller is the 20-dimensional vector of each joint’s positions, while the output consists
of the 20-dimensional joints’ torque vector. The policies are run for 100 timesteps each, or until
the arm collides either with the wall or itself. The ground truth behavior descriptor used by
methods that do not learn the representation is the final (x, y) position of the end effector. The

14 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

reward is given if the end effector reaches one of the three highlighted areas, with the reward
being higher the closer the effector is to the center of the reward area. The environment, together
with the 64× 64 RGB image the AE sees during the algorithm execution, is shown in Fig. 3.

In all these environments, STAX builds the behavior descriptors by stacking the low-
dimensional representations extracted by the AE from multiple high-dimensional observations.
To this end, 5 samples collected at regular intervals along the trajectories are used during the
experiments.

Baselines
STAX is compared against the following baselines:

• NS (Lehman and Stanley, 2008): vanilla NS, that performs pure exploration in the ground-
truth behavior space and does not attempt to improve on the reward;

• MAP-Elites (ME) (Mouret and Clune, 2015): vanilla MAP-Elites that uses a 50× 50 grid
to cover the ground-truth behavior space of each environment;

• MOO-NR (Deb et al., 2002): a multi-objective evolutionary algorithm optimizing both the
novelty in the ground-truth behavior space and the reward of the policies;

• TAXONS (Paolo et al., 2020): that performs pure exploration by learning the behavior
descriptor through an AE trained during the search process;

• SERENE (Paolo et al., 2021): that performs exploration through NS in the ground-truth
behavior space, exploiting any discovered reward through emitters.

Note that among the baselines, only TAXONS learns the behavior descriptor similarly to STAX.
The other baselines all use the ground-truth behavior descriptor.

For each experiment, the given evaluation budget is Bud = 500000, with a chunk size of
KBud = 100. The population has a size of M = 100 and each policy generates m = 2 off-
springs. This is done by using a mutation parameter of σ = 0.5. At each generation, the number
of policies sampled to be added to the novelty archive isNQ = 5. The emitters have a population
size of ME = 6 with a bootstrap phase of λ = 6. For every experiment, the policies’ parameters
are bounded in the [−5, 5] range. All approaches using an AE to represent the behavior descrip-
tor use the same structure. The AE consists of an encoder E(·) with 4 convolutional layers of
sizes [32, 64, 32, 16], followed by a linear layer projecting the 256-dimensional vector returned
by the last convolutional layer into the 10-dimensional feature space. Each convolutional op-
eration has a kernel of size 4, with a stride of 2 and a padding of 1. Every layer is followed
by a SeLU activation function (Klambauer et al., 2017), allowing the self-normalization of the
NN. On the contrary, the decoder D(·) starts with a linear layer projecting the 10-dimensional
feature vector into a 256-dimensional vector. Then it is followed by 4 convolutional layers of
sizes [32, 64, 32, 3], each one using a kernel of size 4, a stride of 2, and a padding of 1. Every
layer uses a SeLU activation function, with the exception of the last convolutional one using
a ReLU, in order to force the non-negativity of the output value. The weights of the AE are
randomly initialized through the default Pytorch initialization. This is done by sampling the
weights of each layer from an uniform distribution U(− 1√

ω
, 1√

ω
), with ω being the number of

learned parameters in the layer. The training is done with the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 0.001. The results are computed over 15 runs for each exper-
iment and their statistical significance is evaluated by performing a Mann-Whitney test (Mann
and Whitney, 1947) with Helm-Bonferroni correction (Holm, 1979). Finally, in each plot, the
performances of methods using the ground-truth B are represented with dashed lines, while the

Evolutionary Computation Volume x, Number x 15

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

HardMazeCurling Redundant Arm

Figure 4: Final coverage reached by STAX against the different baselines after 5× 105 evalua-
tions. The medians and the extrema are highlighted. The plots are calculated over 15 seeds.

methods learning the behavior space are shown through a continuous line. The code repository
is available at: https://github.com/GPaolo/STAX.git.

5 Results

In this section, the results obtained from the experiments are discussed. The significance of
the results is evaluated through the non-parametric Mann-Whitney U test (Mann and Whitney,
1947) with Holm-Bonferroni correction (Holm, 1979).

5.1 Exploration
This section studies how well STAX can explore in situations of sparse rewards while having
minimal information about the environment and the task. This is done by measuring the
coverage metric obtained in the ground truth B defined in Sec. 4 for each one of the tested
environments. The coverage metric is evaluated by dividing said ground truth space into a
50 × 50 grid and calculating the percentage of cells occupied during the search. A cell is con-
sidered occupied if a policy reaches it at the end of its evaluation. Note that, while the coverage
is calculated in the ground-truth space, STAX has no access to this space at search time. The
algorithm has to learn a representation from a collection of high-dimensional observations in
order to perform the exploration. This means that the method can also explore areas of the space
that are not considered by the coverage metric in the ground-truth space. An example of this is
the Curling environment, in which a single final position of the ball - the one considered in the
ground-truth B - can correspond to multiple arm positions that are represented by STAX. At the
same time, the strongest baseline with respect to this metric is NS which has direct access to the
space in which the coverage is calculated, providing an upper-bound value for our experiments.

Fig. 4 shows the coverage reached by our method and all the tested baselines. It can be seen
that on the Curling environment STAX performs similarly to NS, with a mean final coverage
of 90.8% for STAX compared to the 91% for NS (p = .77). In the other two environments,
STAX reaches lower coverage compared to NS. The difference is small on the HardMaze,
80.3% for STAX versus 82.2% for NS (p = 1.5× 10−2), but it is higher on the Redundant Arm
environment with 78.2% for STAX against the 93.3% obtained by NS (p = 7.31× 10−5).

The reason for STAX’s low performances on this last environment are due to STAX
learning to represent the whole arm configuration rather than only the end effector position,
thus maximizing diversity in dimensions not considered by the coverage metric. On the
contrary, the 86.6% of coverage reached by STAX when the AE is only shown the end effector
position, rather than the whole arm, STAX ef in the Redundant Arm plot in Fig. 4, are
comparable to the coverage of 87% reached by SERENE (p = .47). The other methods using
the hand-designed ground-truth B to drive the search - ME and SERENE - reach high levels of
coverage comparable to NS on Curling (ME: p = .77, SERENE: p = .77), but slightly lower on
both Redundant Arm (ME: p = 1.7 × 10−4, SERENE: p = 5.8 × 10−4) and HardMaze (ME:
p = 1.7× 10−2, SERENE: p = 2.6× 10−2). This is expected given that both methods perform
the search in the same space in which the coverage metric is computed but also optimize the

16 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

reward. The good performance of STAX is instead obtained with minimal information about
the task and the space in which information is gathered. At the same time, MOO-NR struggles
in all environments, likely because once a rewarding solution is found, it will dominate all the
non-rewarding solutions, strongly limiting the exploration of the method.

TAXONS also obtains high coverage, with the notable exception of the Curling environ-
ment. The culprit of this loss of performance is likely the presence of the 2-DOF arm in the
image fed to the AE, as shown in Fig. 3, that can act as a distractor in situations in which only
the final position of the ball is interesting. At the same time, the presence of the arm is not a
hindrance to the performances of STAX. This is likely due to both the higher amount of data on
which the AE is trained - the 5 frames sampled along the trajectory for STAX compared to only
the last frame for TAXONS - and the better selection of new policies according to the MOO
based approach, performed by STAX. The effects of these factors on the performance of STAX
will be studied in Sec. 5.4.

5.2 Exploitation

The maximum reward achieved by the algorithms in all the reward areas is shown in Fig. 5.
Using emitters to exploit the reward allows STAX to reach high rewards in a few evaluations.
These performances are similar to the ones obtained by SERENE on Curling (p = .53) and
HardMaze (p = .71) and slightly higher on Redundant Arm (p = 1.4 × 10−2), thanks to
the fact that the reward exploitation performed by the emitters does not rely on any behavior
descriptor. Among the other baselines performing reward improvement, the best performing
one is ME, capable of reaching high values on all reward areas, but at a much slower pace than
STAX. This is not the case for the multi-objective approach MOO-NR, which can always find
at least one of the multiple reward areas, but then tends to extensively focus on it, instead of
also exploring other areas. For this reason, only the easiest reward area is exploited to high
values in all environments, while the harder reward area is seldom exploited. On the contrary,
while NS and TAXONS can perform good exploration, they cannot reach high reward levels
very quickly, with TAXONS being consistently worse in this regard than any other algorithm
(p = 2.5 × 10−4). This is due to the lack of any reward-exploitation mechanism present in
both methods. This is even more noticeable in the redundant arm environment, where even if
TAXONS can reach higher coverage levels than STAX (p = 6.9 × 10−3), the absence of any
reward improving mechanism leads to very low performances on all reward areas.

5.3 Final archives distribution

An example of the final distribution of the behaviors representations for the policies in the final
archives is shown in Fig. 6. Each point represents a policy. In blue are shown the policies
present in the novelty archiveANov, while in orange are the policies in the reward archiveARew.
For the baselines not using the double archives structure, the blue points represent the policies
that did not receive any reward, considered exploratory, while the orange points represent
the rewarding policies. If a method is capable of properly exploring the behavior space, the
blue dots should cover as much as possible of the space. At the same time, a method capable
of optimizing the reward, should be able to focus on the reward areas, thus producing many
solutions reaching said areas (orange dots).

From the figure, it is possible to see how emitter-based methods, STAX and SERENE,
densely cover the reward areas discovered during exploration, while NS and TAXONS do not
have this effect due to the lack of any exploitation mechanism. At the same time, the row of
MOO-NR shows how once reward areas are discovered, the method mainly focuses on those.
Finally, the figure shows how ME very uniformly covers the search space compared to the other
methods, thanks to the discretization of the behavior space.

Evolutionary Computation Volume x, Number x 17

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

C
u
rl

in
g

H
a
rd

M
a
ze

R
e
d

u
n
d

a
n

t
A

rm

Figure 5: Maximum reward reached in all the reward areas by STAX against the different base-
lines. For each environment, the top row represents the median maximum reward with respect
to the whole evaluation budget. The bottom row represents the final maximum reward obtained
by the algorithms. The medians and the extrema are highlighted. All plots have been calculated
over 15 seeds.

5.4 Exploration ablation studies

This section studies the contributing factors to the exploration results obtained by STAX. The
study focuses on two aspects of the algorithm: the multi-objective approach for policy selection
and the multiple observations used to generate the behavior descriptor of a policy. Four ablated
variants of STAX are considered:

• STAX multi: it is the vanilla version of STAX. It uses both the multi-objective policy

18 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

Hard Maze

Environment

STAX

Curling Redundant arm

NS

MOO-NR

ME

TAXONS

SERENE

Figure 6: Distribution of the behavior descriptors of the archived policies. On each column
are shown the results for an environment, while on each row is shown the distribution for each
experiment. The archive plotted are from the runs achieving the highest coverage. In blue are
the policies outside of the reward area, while in orange are the policies within the reward area.

Evolutionary Computation Volume x, Number x 19

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

selection between novelty and surprise and the 5 observations sampled along the policy
trajectory to generate the behavior descriptor;

• STAX single: this variant still uses the multi-objective policy selection strategy, but the
behavior descriptor is calculated only from the last observation. This baseline is used to
evaluate how important is to use points along the whole trajectory rather than just the last
one;

• STAX-ALT multi: this variant uses the same strategy used by TAXONS to select between
novelty and surprise, sampling either one of the two at each generation. The behavior de-
scriptor is generated by using 5 observations sampled at regular intervals along the trajec-
tory. This baseline is used to evaluate the importance of the new policy-selection strategy
used by STAX;

• STAX-ALT single: as the previous variant, here the TAXONS policy selection strategy is
used. Moreover, the behavior descriptor is generated by only the last observation of the
trajectory.

Both the coverage and the maximum reward reached by each variant over each reward area are
analyzed.

HardMazeCurling Redundant Arm

Figure 7: Median coverage with respect to the given evaluation budget reached by STAX against
the ablated versions of the algorithm. The shaded areas represent the 10 and 90 percentile
calculated over 15 seeds.

The average coverage is shown in Fig. 7. It is possible to see that the final reached coverage
is similar for all variants on all environment (p > .05), with the exception of the Curling envi-
ronment in which the variants using multiple observations reach higher final coverage compared
to both STAX single (p < 0.028) and STAX-ALT single (p < 4.33 × 10−5). Nonetheless, the
variants using multiple observations reach higher coverage earlier during the runs compared to
the single observation variants. This is likely due to the AEs of these variants being trained on
5 times more data than the ones of the variants using a single observation. Moreover, being the
data collected along the whole trajectory, it provides a more diverse collection of data from the
observation space, making it easier for the algorithm to learn a good representation.

The improved performance provided by using multiple observations can be seen also when
analyzing the maximum reward reached in the environments, as shown in Fig. 8. While the
final reward reached for the different reward areas is similar for all the methods, STAX multi
tends to reach high rewards earlier in the runs compared to the ablated approaches.

5.5 Autoencoder training regime
This section analyzes how the way B is learned through the AE influences the search. In this
regard, the study focuses on two aspects: how important it is to learn the representation versus
just using a random one and if retraining from scratch the AE at each training episode has any
influence on the search process. In STAX the AE is continuously trained across different train-
ing episodes. This means that similarly to what is done by Paolo et al. (2020), the training of

20 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

C
u
rl

in
g

H
a
rd

M
a
ze

R
e
d

u
n
d

a
n

t
A

rm

Figure 8: Median maximum reward reached in all the reward areas by STAX against the ablated
versions of the algorithm. The shaded areas represent the 10 and 90 percentile calculated over
15 seeds.

the AE is resumed at every training episode. This produces a curriculum effect over the borders
of the explored space due to the training on the last generation of the population and offsprings.
The curriculum effect is also given by training the AE over the archives, even if this contribution
is small at the beginning of the search when the archives contain only a few elements.

To analyze these two aspects, STAX is compared against 2 variants:

• STAX-NT: in which the search is driven through an AE whose weights are randomly sam-
pled at the beginning of the search and not modified anymore;

• STAX reset: in which the weights of the AE are randomly resampled before each training
episode. This means that the AE is retrained from scratch at every training episode. This
effectively removes any memory from previous iterations from the AE.

Thanks to the first variant, it is possible to analyze if a random representation is enough to push
for exploration and how important is the autonomous learning of B. The last variant allows
studying the importance of the curriculum effect given by the continuous training of the AE
versus the one provided by the data collected in the archive. Note that the only change among
all these versions of STAX is the AE training regime. The behavior descriptor is still generated
as described in Sec. 5.1. The coverage results for the 3 tested environments are shown in Fig.
9, while the rewards reached in each reward area are shown in Fig. 10.

Not surprisingly, the results show that training the AE, rather than using a randomly gen-
erated one, greatly helps the exploration process. The random representations are not enough to
discover all the areas of the ground-truth B: STAX-NT has significantly lower coverage on all

Evolutionary Computation Volume x, Number x 21

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

Curling HardMaze Redundant Arm

Figure 9: Median coverage with respect to the given evaluation budget reached by STAX against
the other versions of the algorithm. The shaded areas represent the 10 and 90 percentile calcu-
lated over 15 seeds.

C
u
rl

in
g

H
a
rd

M
a
ze

R
e
d
u
n
d
a
n

t
A

rm

Figure 10: Median maximum reward reached in all the reward areas by STAX against the other
versions of the algorithm. The shaded areas represent the 10 and 90 percentile calculated over
15 seeds.

the tested environments compared to the versions in which the AE is trained (p < 3.5× 10−6).
The effect is extreme in the Curling environment in which, to obtain good exploration, it is not
enough to randomly move the arm, but it is necessary to properly hit the ball. In the HardMaze
and the Redundant Arm environments, the non-trained versions can explore the easier-to-reach
areas of the space, but not reach high levels of coverage.

This is reflected in the reward obtained by the methods, shown in Fig. 10. In Curling,
random exploration is not enough to discover rewards due to the complex interaction between
the ball and the arm, leading to STAX-NT not being able to obtain rewards. At the same time,
the random representation suffices to explore just enough to discover the easy-to-reach reward
areas in the easier dynamics of the HardMaze and Redundant Arm, allowing the emitters to
exploit them.

On the contrary, the continuous training of the AE has a small effect on the coverage:
STAX performs similarly to STAX reset on both Redundant Arm (p = 0.27) and only slightly
better on Curling (p = 0.038) and HardMaze (p = 8.18 × 10−6). This means that the archive

22 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

O
ri

g
in

a
l

A
E
 r

e
co

n
st

ru
ct

io
n

Figure 11: Reconstruction of the AE trained during the search performed by STAX. The first
row shows the original 64 × 64 × 3 images. The second row shows the reconstructions of the
images produced by the AE.

can provide enough of a curriculum when learning a representation of B. The rewards obtained
by the two methods are also similar for all environments on all reward areas, with the exception
of the harder-to-reach reward area in the HardMaze environment, for which STAX reaches
much higher rewards than STAX reset (p = 4.49×10−5). The high difference in reward here is
due to the fact that this reward area is in the farthest zone from the starting position of the robot.
This means that the small difference in exploration between the two methods often prevents
STAX reset to discover it and thus to exploit it.

5.6 Learned behavior space
This section studies how well the trained AE can represent the behavior space and how close
the learned representation is to the ground truth one. In Fig. 11 are shown some 64 × 64
observations collected during the evaluation of policies on the Redundant Arm environment
(top row) with the respective AE reconstructions (bottom row). This environment provides
the hardest to reconstruct observations, given the presence of the whole arm in the images. It
is possible to see from the figure that the reconstructed image is not perfect, even though the
position of the arm is clear. Nonetheless, this level of reconstruction seems to be enough to
push for good exploration in the environment, as seen in Sec. 5.1.

To give a quantitative estimate of the similarity between the learned representation and the
ground truth one, we calculated the similarity between the correlation matrices of the ground
truth behavior descriptors and the learned descriptors of the policies in the final collections.
This is done through the following formula (Herdin et al., 2005):

s(C1, C2) = 1− tr(C1 · C2)

||C1|| · ||C2||
, (8)

where C1 and C2 are the two correlation matrices and the norm is the Frobenius norm.
The metric varies between [0,1] and allows estimating how meaningful is a representation
compared to the other. The higher the value of the metric, the closer we can consider the
two representations. For comparison, we also evaluate s(·, ·) between the correlation matrix
of the ground truth descriptor and the representation given by a random AE over the same
observations. The results are shown in Fig. 12.

It is possible to see how representation leaned by STAX reaches high values of similarity
compared to the ground truth descriptor on all environments (p < 4.23 × 10−5). Moreover,
the figure also shows that the representation provided by a random AE is much less meaningful
with respect to the original representation, confirming the results from Sec. 5.5.

Finally, Fig. 13 shows an example of how the learned representation for one single reward
area can contain multiple distinct zones even if the ground-truth descriptor only contains one, as
discussed in Sec. 3.3. This is due to the combined effect of the representation learning done by
the AE and the stacking of multiple frames along the trajectory. The presence of multiple reward
zones in the learned representations supports the use of emitters when optimizing rewards.

Evolutionary Computation Volume x, Number x 23

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

Figure 12: Similarity between the ground truth behavior descriptor and the one provided by the
AE for the three environments. The violins are calculated over 15 seeds.

Ground truth BD Learned BD

Figure 13: Ground truth descriptor for the policies in reward area 0 (left) compared to the first
2 principal components of the learned descriptor for the same policies (right). The learned
descriptor is divided into multiple areas due to the stacking of frames and the learning of the
representation by the AE.

6 Discussion and Conclusion

This paper introduced STAX, a method that combines the representation learning ability of
TAXONS (Paolo et al., 2020) when dealing with unknown B and the capacity to focus on inter-
esting areas of the search space of SERENE (Paolo et al., 2021) through emitters. In addition
to what TAXONS does when learning B, STAX uses multiple observations sampled along the
trajectory generated by the policies to extract their behavior descriptor. This allows overcoming
the requirement of the final observation needing to be descriptive enough to distinguish between
the policies. Moreover, by using a multi-objective approach to combine the two metrics of nov-
elty and surprise, STAX can perform better exploration compared to TAXONS. As discussed
in Sec. 3.3, performing reward exploitation through emitters can prove extremely useful when
exploring with a learned behavior space. This is due to the fact that there is no guarantee that
this learned space will represent all the rewards in a single connected area, as shown in Sec. 5.6.

The results on three different sparse rewards environments show how STAX can prove ef-
fective in dealing with these kinds of situations, reaching high performances both from the point
of view of exploration and exploitation of the rewards. These results are comparable to the ones
obtained by SERENE (Paolo et al., 2021) notwithstanding STAX being provided much less prior
information about the task to solve. Moreover, learning the behavior space while performing
the search allows reducing the main limitation of NS-based methods: the hand-design of B.

It is to notice that, while the choice of learning the behavior space from images might
seem limiting, this is not the case. Thanks to the simplicity and availability of cameras, many
problems in robotics can be represented through images without providing problem specific
information. At the same time, images are only one type of high-dimensional observations and,

24 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

while we have not tested STAX on other kind of representation, there is no constraint on the
type of observations to use. Finally, while learning the behavior space representation through an
AE introduces the need of the model design, this requires much less engineering effort than the
one required to hand-design the behavior space. This greatly increases the generalization and
applicability of STAX. An example of this is the fact that to solve the three test environment we
used the same AE model structure, even if the ground truth behavior space was different.

To properly study how the aspects of policy selection and behavior space learning of
STAX influence the exploration process, and the discovery and exploitation of rewards, multiple
ablation experiments have been performed. The results show that the combination of using
multiple observations collected during the trajectory and the multi-objective policy selection
strategy are important in obtaining good coverage of the ground-truth search space. At the
same time, the continuous training of the AE during the whole search is shown to provide a
negligible curriculum effect, compared to the one provided by training on the data from the
archives. Finally, Sec. 5.6 showed how the learned space has a similar structure to the ground
truth one, allowing the algorithm to perform good exploration in both.

The introduction of STAX addresses the multiple shortcomings of the original NS algo-
rithm while at the same time opening multiple interesting avenues of research. As for SERENE,
STAX uses a simple scheduler to alternate between the exploration and the exploitation pro-
cesses. Applying more complex and adaptive approaches to perform the switch between the
two processes can be an interesting line of work in improving the method even more. Another
possible direction of research is the one initiated by Cully (2021), where multiple kinds of emit-
ters are combined through a multi-armed bandit approach. Moreover, the sampling of multiple
observations along the trajectory to generate the behavior descriptor leads to interesting ques-
tions on how this sampling can be done and how the generated behaviors can be compared more
meaningful ways. Recent work started to investigate similar questions (Stork et al., 2020; Hagg
et al., 2019) and future work will investigate how an approach like STAX can take advantage of
such ideas.

Acknowledgements

This work has received funding from the European Commission’s Horizon Europe Framework
Program under grant agreement No. 101070381 (PILLAR-robots project).

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J.,

Abbeel, O. P., and Zaremba, W. (2017). Hindsight experience replay. In Advances in Neural Information
Processing Systems, pages 5048–5058.

Aubret, A., Matignon, L., and Hassas, S. (2019). A survey on intrinsic motivation in reinforcement learn-
ing. arXiv preprint arXiv:1908.06976.

Baranes, A. and Oudeyer, P.-Y. (2013). Active learning of inverse models with intrinsically motivated goal
exploration in robots. Robotics and Autonomous Systems, 61(1):49–73.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016). Unifying count-
based exploration and intrinsic motivation. In Advances in Neural Information Processing Systems,
volume 29, pages 1471–1479.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme,
S., Hesse, C., et al. (2019). Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018). Exploration by random network distillation.
arXiv preprint arXiv:1810.12894.

Evolutionary Computation Volume x, Number x 25

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

Cideron, G., Pierrot, T., Perrin, N., Beguir, K., and Sigaud, O. (2020). Qd-rl: Efficient mixing of quality
and diversity in reinforcement learning. arXiv preprint arXiv:2006.08505.

Colas, C., Sigaud, O., and Oudeyer, P.-Y. (2018). Gep-pg: Decoupling exploration and exploitation in deep
reinforcement learning algorithms. In International Conference on Machine Learning, pages 1039–
1048. PMLR.

Cully, A. (2019). Autonomous skill discovery with quality-diversity and unsupervised descriptors. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 81–89.

Cully, A. (2021). Multi-emitter map-elites: improving quality, diversity and data efficiency with heteroge-
neous sets of emitters. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
84–92.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can adapt like animals. Nature,
521(7553):503.

Cully, A. and Demiris, Y. (2017). Quality and diversity optimization: A unifying modular framework.
IEEE Transactions on Evolutionary Computation, 22(2):245–259.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2019). Go-explore: a new approach
for hard-exploration problems. arXiv preprint arXiv:1901.10995.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2018). Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070.

Fontaine, M. C., Togelius, J., Nikolaidis, S., and Hoover, A. K. (2020). Covariance matrix adaptation
for the rapid illumination of behavior space. In Proceedings of the 2020 genetic and evolutionary
computation conference, pages 94–102.

Forestier, S., Portelas, R., Mollard, Y., and Oudeyer, P.-Y. (2022). Intrinsically motivated goal exploration
processes with automatic curriculum learning. J. Mach. Learn. Res.

Gaier, A., Asteroth, A., and Mouret, J.-B. (2019). Are quality diversity algorithms better at generating step-
ping stones than objective-based search? In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 115–116.

Grillotti, L. and Cully, A. (2022). Unsupervised behaviour discovery with quality-diversity optimisation.
IEEE Transactions on Evolutionary Computation.

Hagg, A., Preuss, M., Asteroth, A., and Bäck, T. (2020). An analysis of phenotypic diversity in multi-
solution optimization. In International Conference on Bioinspired Methods and Their Applications,
pages 43–55. Springer.

Hagg, A., Zaefferer, M., Stork, J., and Gaier, A. (2019). Prediction of neural network performance by
phenotypic modeling. In Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, pages 1576–1582.

Hansen, N. (2016). The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772.

Herdin, M., Czink, N., Ozcelik, H., and Bonek, E. (2005). Correlation matrix distance, a meaningful
measure for evaluation of non-stationary mimo channels. In 2005 IEEE 61st Vehicular Technology
Conference, volume 1, pages 136–140. IEEE.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics,
pages 65–70.

Hu, Y., Wang, W., Jia, H., Wang, Y., Chen, Y., Hao, J., Wu, F., and Fan, C. (2020). Learning to utilize
shaping rewards: A new approach of reward shaping. Advances in Neural Information Processing
Systems, 33:15931–15941.

26 Evolutionary Computation Volume x, Number x

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). Self-normalizing neural networks. In
Advances in neural information processing systems, pages 971–980.

Laversanne-Finot, A., Pere, A., and Oudeyer, P.-Y. (2018). Curiosity driven exploration of learned disen-
tangled goal spaces. In Conference on Robot Learning, pages 487–504. PMLR.

Lehman, J. and Stanley, K. O. (2008). Exploiting open-endedness to solve problems through the search for
novelty. In ALIFE, pages 329–336.

Lehman, J. and Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty search
and local competition. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pages 211–218. ACM.

Liapis, A., Martı́nez, H. P., Togelius, J., and Yannakakis, G. N. (2013). Transforming exploratory creativity
with delenox,. In ICCC, pages 56–63.

Loviken, P. and Hemion, N. (2017). Online-learning and planning in high dimensions with finite ele-
ment goal babbling. In 2017 Joint IEEE International Conference on Development and Learning and
Epigenetic Robotics (ICDL-EpiRob), pages 247–254. IEEE.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically
larger than the other. The annals of mathematical statistics, pages 50–60.

Mataric, M. J. (1994). Reward functions for accelerated learning. In Machine learning proceedings 1994,
pages 181–189. Elsevier.

Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine, S. (2018). Visual reinforcement learning
with imagined goals. In Advances in Neural Information Processing Systems, pages 9191–9200.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward transformations: Theory and
application to reward shaping. In Icml, volume 99, pages 278–287.

Oudeyer, P.-Y. and Kaplan, F. (2009). What is intrinsic motivation? a typology of computational ap-
proaches. Frontiers in neurorobotics, 1:6.

Paolo, G. (2020). Billiard. https://github.com/GPaolo/Billiard.

Paolo, G., Coninx, A., Doncieux, S., and Laflaquière, A. (2021). Sparse reward exploration via novelty
search and emitters. In The Genetic and Evolutionary Computation Conference 2021 (GECCO 2021).

Paolo, G., Laflaquiere, A., Coninx, A., and Doncieux, S. (2020). Unsupervised learning and exploration of
reachable outcome space. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 2379–2385. IEEE.

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016). Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and AI, 3:40.

Salehi, A., Coninx, A., and Doncieux, S. (2021). Br-ns: an archive-less approach to novelty search. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 172–179.

Sigaud, O. (2022). Combining evolution and deep reinforcement learning for policy search: a survey.
arXiv preprint arXiv:2203.14009.

Stork, J., Zaefferer, M., Bartz-Beielstein, T., and Eiben, A. (2020). Understanding the behavior of rein-
forcement learning agents. In International Conference on Bioinspired Methods and Their Applications,
pages 148–160. Springer.

Evolutionary Computation Volume x, Number x 27

https://github.com/GPaolo/Billiard

G. Paolo, M. Coninx, A. Laflaquiere, and S. Doncieux

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Trott, A., Zheng, S., Xiong, C., and Socher, R. (2019). Keeping your distance: Solving sparse reward tasks
using self-balancing shaped rewards. In Advances in Neural Information Processing Systems, pages
10376–10386.

28 Evolutionary Computation Volume x, Number x

	Introduction
	Background and related work
	Sparse Reward
	Novelty Search
	Learning a behavior descriptor
	Emitters

	Method
	Exploration
	Training of the autoencoder
	Exploitation

	Experiments
	Results
	Exploration
	Exploitation
	Final archives distribution
	Exploration ablation studies
	Autoencoder training regime
	Learned behavior space

	Discussion and Conclusion

