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This study introduces the rec-GLI function, a recursive function, 

aimed at accurately fitting cyclic voltammograms (CVs) under 

Nernstian conditions and estimating key parameters on 

electroactive monolayers or redox-responsive materials. The rec-

GLI function is derived from the GLI model and improves upon 

previous functions by incorporating mathematical recursion and 

curve fitting algorithms implemented in Python and MATLAB. 

A comparative analysis is conducted between the rec-GLI function 

and the GLI function, demonstrating the superior accuracy of the 

former in fitting CVs and estimating key parameters such as peak 

potential, peak intensity, full width at half maximum, surface 

coverage, and lateral interactions. The rec-GLI function proves 

particularly effective in cases where the peaks exhibit narrow 

widths and exhibits agreement with experimental data. 

 

 

 

1. Introduction 

Since their initial discovery in 1946 [1], Self-Assembled Monolayers (SAMs) have attracted 

considerable attention as fascinating systems for creating functionalized interfaces with diverse 
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applications in catalysis, energy storage, biosensing, and more. They have also become an ideal 

system for the theoretical study of interfacial phenomena, especially in the field of electrochemistry 

[2]. However, SAMs face challenges related to stability due to the nature of the binding between the 

molecules and the surface [3,4]. To address this issue, a popular and more recent method for 

constructing monolayers involves the use of diazonium salts [5]. These salts can form (self-

assembled) monolayers of aryl groups through the reduction of the diazonium moiety [6,7]. 

Cyclic voltammetry (CV) is a powerful electrochemical technique widely used to study the redox 

behaviour of various systems, including monolayers composed of electroactive molecules exhibiting 

redox properties [8,9]. Accurate determination of CV parameters such as peak potentials, peak 

currents, and peak shapes is crucial for characterizing the redox and non-redox processes within 

monolayers, including the estimation of lateral interaction parameters that provide valuable insights 

into the molecular-level interactions, enhance our understanding of redox processes, and optimize 

monolayer-based devices [10–13]. 

Interpreting CV data for electroactive monolayers (EMs) requires robust fitting algorithms capable 

of extracting meaningful electrochemical parameters. However, fitting the CV peaks of these systems 

can be challenging due to the presence of lateral interactions between neighbouring molecules. These 

interactions strongly influence the electrochemical response, resulting in sharper or broader 

voltammetric peaks [14], and introduce mathematical complexities. In our previous works, we 

introduced novel mathematical functions to capture the effects of lateral interactions in the CV peaks 

of SAMs and EMs. One notable function is the Generalized Lateral Interactions (GLI) function [15], 

which successfully accounted for the complexities arising from intermolecular interactions and 

significantly simplified the fitting process compared to other existing models [16–18]. However, the 

GLI function employed certain approximations to simplify the mathematical recursions induced by 

the interactions, potentially reducing precision in some cases. 

Building upon our previous findings, the present study aims to further refine the mathematical 

function for fitting CV peaks of EMs while preserving the mathematical recursion, for a redox 

reaction described by Butler-Volmer (BV) kinetic formalism under Nernstian conditions. This 

refinement will involve combining experimental CV measurements, advanced mathematical 

modelling techniques, and curve fitting algorithms implemented in Python and MATLAB. By doing 

so, we aim to unravel the complex interplay between lateral interactions and the electrochemical 

behaviour of EMs. The improved accuracy in parameter estimation will allow for a deeper 

understanding of the intricate intermolecular interactions within these systems, ultimately paving the 

way for the design and development of monolayer-based devices with enhanced electrochemical 

performance.  



The following sections present an overview of the experimental conditions and theoretical 

background (section 2), details of the generalized lateral interaction (GLI) model and the recursive 

GLI function (rec-GLI) (sections 3 and 4, respectively) and, finally, a comparison of theoretical and 

experimental data (section 5). 

 

2. Experimental conditions and theoretical background 

 

Table 1 lists symbols used hereinafter. 

 

2.1 Reagents, chemical and preparation of SAMs at gold electrodes 

The relevance of our fitting procedure was tested using two electroactive monolayers (scheme 1). The 

first monolayer is a TEMPO-based self-assembled monolayer (C15-TEMPO) on a gold substrate, 

known for its strong attractive interactions between its oxidized species in methylene chloride. The 

second monolayer is a TTF-based self-assembled monolayer (C12-TTF) on a gold substrate, known 

for its reversible and sequential oxidation to the corresponding mono- and dicationic forms at 

moderate potentials in methylene chloride. The synthesis, characterizations, and preparation of C15-

TEMPO were described in Ref [14], while the details for C12-TTF can be found in Ref [19]. The 

gold (Au) substrate consists of a 0.2 cm² circular disc comprising an initial adhesion layer of 

chromium, with a thickness of 2 nm, followed by a 35 nm layer of gold. Both of these layers are 

deposited onto a glass substrate using the process of physical vapor deposition. (10-6 mbar). 

 

2.2. Electrochemical measurements  

Conventional cyclic voltammetry (CV) experiments were conducted using a Biologic SP-300 

potentiostat controlled by the EC-Lab software, incorporating ohmic drop compensation (resistance 

is measured using impedance spectroscopy at a frequency of 100 kHz and is real-time hardware-

compensated to 85% of the measured value). The experiments were performed in a three-electrode 

cell maintained at a temperature of 293 K within an argon-filled glove box, ensuring dryness and 

oxygen-free conditions (< 1 ppm). The working electrodes consisted of an Au-SAM surface, while 

platinum wires served as counter electrodes. For accurate potential measurements, either Ag wire or 

Ag/AgNO3 (0.01 M CH3CN) were used as reference electrodes. The choice of reference electrode 

enabled precise potential determination. The experiments were carried out in dry HPLC-grade 

methylene chloride with the addition of tetrabutylammonium hexafluorophosphate (Bu4NPF6, 

electrochemical grade, Fluka) as the supporting electrolyte.  

In a cyclic voltammetry experiment, the charge (Q) associated with the process is determined by 

integrating the voltametric signal. The surface coverage (Γ) of the electroactive species on the 



electrode surface can then be calculated using Γ = Q / (n F A). Here, n is the number of electrons 

involved in the redox process, F is the Faraday constant, and A is the active surface area of the 

electrode (assumed to be equivalent to the macroscopic geometric area, i.e., implying a highly smooth 

surface). This equation establishes a relationship between the charge passed during the 

electrochemical process and the extent of surface coverage of the electroactive species on the 

electrode surface. 

 

2.3. Generation of simulated voltammograms 

As previously reported [15,20], to ensure direct comparability with previous studies, all simulated 

cyclic voltammograms (CVs) were generated using Python 3.11 and/or MATLAB R2020b software 

running on a conventional desktop computer. A rudimentary numerical method was employed, 

mimicking a real experiment by approximating the continuous change of the applied potential as a 

sequence of potential steps ΔE over a time interval Δt. By using a sufficiently small increment ΔE (at 

least 1 mV), it is reasonable to assume that the oxidation (kox) and reduction (kred) rate constants 

remain quasi-constant during each step. This approach is well-suited to our formalism and can 

generate any voltammograms regardless of the input parameters (v, k0’, aij, etc.). Particularly in this 

study, it closely matches theoretical ones under Nernstian conditions. 

For a reversible n-electron process involving adsorbed electroactive species described by the Butler-

Volmer (BV) kinetic formalism and following to the general lateral interaction model (vide infra), 

the following set of equations can be employed to simulate CV voltammograms:  
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The solution to this first-order differential equation is: 
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2.4. Procedure of fitting voltammograms 

The fitting procedure for voltammograms involved the utilization of the Levenberg-Marquardt 

algorithm [21,22]. This widely recognized algorithm is an optimization method commonly employed 

for nonlinear least squares curve fitting. It proves particularly valuable when fitting models to data 

that may exhibit noisy or inconsistent measurements. The main objective of the algorithm is to 

determine the model parameters that minimize the sum of squared differences between the model 

predictions and the observed data. Following the fitting of the function's parameters, they are 

subsequently utilized to generate a smoothed representation of the adjusted voltammogram. 

However, it is important to note that the Levenberg-Marquardt algorithm offers numerous 

possibilities that require careful fine-tuning to achieve optimal results. The algorithm's flexibility lies 

in its ability to adapt to various problem settings. It provides options to control convergence criteria, 

regularization parameters, step size adjustments, and more. Adjusting these options appropriately is 

crucial to customize the algorithm's behaviour to specific applications and achieve accurate and 

efficient solutions. 

To facilitate users in understanding and applying the Levenberg-Marquardt algorithm, we have 

included easy-to-understand Python and MATLAB code examples in the Supplementary 

Information. These code snippets serve as demonstrations of how to utilize the algorithm for fitting 

cyclic voltammograms. They offer practical illustrations of the algorithm's application and serve as a 

starting point for researchers and practitioners who wish to incorporate it into their own work.  

In the case of recursive functions (vide infra), fitting voltammograms requires slightly more 

computational resources compared to fitting voltammograms based on linear models, as it involves 

solving a system of nonlinear equations during the fitting process. The time difference amounts to 

approximately a factor of 10. However, it's important to emphasize that computers are becoming 

increasingly powerful. As of 2023, computation times for fitting a noisy voltammogram consisting 

of two waves and a baseline, as depicted in Figure 4, are now less than a tenth of a second. In this 

scenario, the linear model takes about 0.5 seconds, while the non-linear model demands around 5 

seconds of computation time when utilizing a 13th Gen Intel(R) Core(TM) i7-1365U 1.80 GHz 

processor (HP Elite x360 1040 G10). 



 

3. The GLI model 

Our previous work was devoted to theoretical and modelling studies aimed at improving the lateral 

interaction model proposed by E. LAVIRON [23,24]. Our enhancements involved extending the 

initial model to account for non-random distributions of electroactive species and considering 

interactions between redox and non-redox species [25,26]. When focusing on interactions solely 

between redox species, this model allows for the simulation of current-voltage behaviours and 

facilitates the extraction of characteristic parameters from CVs obtained under Nernstian conditions 

from any surface distribution of electroactive monolayers. 

To provide a comprehensive summary of the previous works, it is important to outline the main 

assumptions underlying the generalized lateral interactions (GLI) model. The GLI model can be 

defined based on the following key assumptions: 

 

 The electroactive species are distributed on a substrate with a unimodal statistical distribution 

of electroactive neighbours. A parameter    , ranging from 0 to 1 and defined for a 

normalized surface coverage 
max


 


, quantifies the level of segregation of the electroactive 

species. For a randomly distributed EM,      , and when segregation exists on the surface, 

     . 

 The sum of the normalized surface coverage O  and R  of oxidized (O) and reduced (R) species 

is constant and equal to  . 

 The surface occupied by one molecule of O is equal to the surface occupied by one molecule 

of R. 

 The redox reaction is described by Butler-Volmer (BV) kinetic formalism (see 2.3.). 

 The electrochemical rate constant of redox adsorbate k0’ is independent of the coverage. 

 aOO, aRR, and aOR are the interaction constants between molecules of O, molecules of R, and 

molecules of O and R, respectively. a is positive for attraction and negative for repulsion. 

 

During experiments under Nernstian conditions (
0'k

v
 ), CVs exhibit perfect reversibility, and the 

current can be expressed [27] as a function of O , the only parameter relating to the progress of the 

reaction and linked to the potential of the working electrode (E): 
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The characteristic parameters of CVs, such as the peak potential (Ep), full width at half maximum 

(FWHM), and peak current (ip), can be obtained and defined as follows: 
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With 0'n, F, v, A, R, T, E, E  have their usual meanings (table 1). 

OO RR ORG a a 2a 2     and RR OOS a a   are defined as "global interactions" parameters and play 

a crucial role when associated with    . Specifically,  G   defines the shape of the peak and 

modulates the FWHM and peak intensity (ip), while  S   solely determines the position of the peak 

potential (Ep).  G   and  S   can be seen as global interactions weighted by surface segregation 

and, consequently, by surface coverage. 

 

4. The rec-GLI function 

The GLI model is indeed valuable for predicting important parameters of CVs. However, when it 

comes to fitting CVs, it becomes necessary to express the current as a function of the applied potential 

(E), which differs from the expression 1 that was previously expressed as a function of O .  

As detailed in our previous work [15], expression 1 becomes: 
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The main issue with equation 7 is that the variable X in equation 8 is unmeasurable and defined with 

both the potential (E) and either (1) the unmeasurable variable O  or (2) itself, resulting in recursion. 

To address this issue, the GLI function was proposed and defined as follows: 
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And Ep, B and Γ are the unknown parameters of the fit. 

However, in the GLI function, an approximation was made for the term X, where the expression (1 - 

0.4 B) was used to avoid mathematical recursions induced by interactions. While this approximation 

helped simplify the calculations, it may have potentially resulted in a loss of precision. 

Given this consideration, an interesting question arises: Can we explore and utilize mathematical 

recursions to our advantage? 

If we start again with equation 3, for a full reversible reaction (
0'k

v
 ), the current depends only 

on O  and follows a polynomial relationship. Consequently, it is feasible to express O  in terms of 

the current using the same approach. The initial stage of the process yields a quadratic equation 

involving variable O , for which the discriminant D is employed to obtain the roots. 
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The two roots of the quadratic equation are as follows: 
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By incorporating this expression into the expression of X (equation 8), it is possible to express X as 

a function of E and i. 
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And lastly, by combining equations 7 and 13, the current (i) becomes a recursive function (rec-GLI 

function) expressed as a function of itself and the applied potential (E): 
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And, as for the GLI function, Ep, B and Γ are the unknown parameters of the rec-GLI function, and 

the fit conducts to obtain the peak potential  
pp EE ;  , the global interaction parameter  BB ;   

and the surface coverage  ;   . 

One important distinction, when comparing to the GLI function, is that the rec-GLI function i(E, i) 

incorporates two measurable variables, E and i, without making any approximation in the variable X. 

Despite the recursive nature of the function with respect to i, this recursion does not pose any obstacle 

to numerical fitting procedures conducted using Python scripts, MATLAB scripts, or any other 

programming language. 

However, a potential issue that may arise with this type of function is related to measurement errors. 

In a fitting problem, measurement errors are naturally present in the output variable being adjusted, 

but they are assumed to be negligible for input variables. In the case of a recursive function, the output 

variable being adjusted is also an input variable, thereby subject to the same errors, albeit assumed to 

be negligible. This situation should be thoroughly tested to evaluate the robustness of the function. 

Based on the fitted parameters, key characteristic parameters of the CVs (Ep, ip, and FWHM), along 

with their corresponding errors, can be determined. Detailed calculations pertaining to these 

parameters are provided in the Appendix. 

Peak potential (Ep) is directly determined by the fit of experimental CVs:  

 
pp EE ;             (15) 

Peak intensity (ip) can be extracted at the maximum of the CV: 
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FWHM is calculated at ip / 2: 
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      (17) 

Hence, all the characteristic parameters of the CVs and their corresponding errors are determined 

based on the fitted parameters. 

 

5. Results and discussions 

5.1. rec-GLI function vs. GLI function (interaction conditions) 

To evaluate the accuracy of the rec-GLI function under controlled conditions, we conducted a 

simulation of cyclic voltammograms (CVs) for three specific values of the G and S parameters (G = 

-S = +1 ; 0 ; -1) with initial conditions chosen as  1      and {n = 1, k0’ = 1000 s-1, v = 0.1 V.s-

1, E0’ = 0 V, T = 293 K, A = 0.2 cm2 and Γmax = 5 10-10 mol.cm-2}. We chose G = -S because this case 

artificially enforces the presence of interactions solely among the oxidized species (aOO ≠ 0), a quite 

common experimental scenario. The simulated CVs were then fitted, with the procedure describe in 

section 2.4., with the rec-GLI function and the GLI function to obtain characteristic parameters such 

as Γ, B, Ep, ip and FWHM. 

The obtained fitting results (figure 1, table 2 and ref. [15]) clearly demonstrate that, overall, the rec-

GLI function outperforms the GLI function in terms of accuracy (Δ) and precision (Sx), even though 

the latter remains quite close in terms of results despite the approximation used. 

In all the investigated cases, it is important to note that absolute variations theoretical fitted   , 

and standard deviations (Sx) consistently show lower values with the rec-GLI function, indicating 

higher fidelity and improved accuracy of the fitting procedure. Additionally, commonly used criteria 

for evaluating the quality of a fit, such as residual analysis (iresidual = isimulated - ifitted) presented in figure 



1, as well as statistical indicators like RMS error, chi-squared (χ²), and coefficient of determination 

(R²), consistently favour the rec-GLI function.  

Another significant advantage of the rec-GLI function is observed in less restrictive cases, where 

broad voltammograms are obtained (G < 0). In such cases, the absolute variations are lower than the 

standard deviations (i.e., Δ < Sx), indicating that the adjusted values consistently fall within the 

statistical confidence intervals (95%). However, it is worth noting that the determination of Ep is 

influenced by the step size used in the simulation and is subject to systematic errors, therefore Δ(Ep) 

is just a rough estimate. 

Conversely, in more restrictive cases resulting in narrow voltammograms (G > 0), the potential step 

size not only affects the determination of Ep but also the other parameters, leading to absolute 

variations larger than standard deviations. Consequently, the adjusted values may fall outside the 

statistical confidence intervals (95%). Taking into account the errors introduced during the modelling 

process (section 2.3.), the fitting procedure using the rec-GLI function allows accurate parameter 

estimation for the studied voltammograms. This contrasts with previous studies that reported sharp 

peaks and discontinuities. 

Lastly, it is important to highlight that when B = 0 (representing the ideal case without interaction), 

the rec-GLI function simplifies to the LAVIRON case [24]. In other words, the ideal case inherently 

corresponds to a specific instance of the rec-GLI function. As expected, the fitting procedure yields 

excellent results in this case, with standard deviations lower than 10-9. 

The study across all cases provides compelling evidence for the effectiveness of the rec-GLI function 

in accurately fitting simulated cyclic voltammograms under well-controlled conditions. 

 

5.2. rec-GLI function vs. Generalized Lateral Interactions model  

To further validate the reliability of the rec-GLI function in controlled conditions, a series of cyclic 

voltammograms (CVs) based on the GLI model were simulated for various cases involving phase 

segregation (ϕ(θ) > θ). Specifically, simulations were performed using a challenging value of the G 



parameter (G > 0; G = -S = +1) and with fixed experimental conditions {n = 1, k0’ = 1000 s-1, v = 0.1 

V.s-1, E0’ = 0 V, T = 293 K, A = 0.2 cm2 and Γmax = 5 10-10 mol.cm-2}. The simulated CVs were then 

fitted using the rec-GLI function to extract characteristic parameters including Ep, ip, FWHM, Γ, and 

B. These parameters were subsequently plotted against the theoretical surface coverage Γ (figure 2) 

and compared to the expected values derived from the GLI model. As expected, the agreement 

observed between the simulated voltammograms and the fitted voltammograms serves as evidence 

for the effectiveness of the rec-GLI function (all error bars are included within the plotted points), 

except for the parameter Ep, which deviates when peaks are weak as Γ approaches Γmax as previously 

noted. 

Across a wide range of surface coverage and phase segregation, all characteristic parameters exhibit 

a good fit with their corresponding theoretical values [26]. 

 

5.3. rec-GLI function (gaussian noisy case) 

To assess the impact of noisy conditions on cyclic voltammograms (CVs), we performed simulations 

by introducing a substantial level of Gaussian noise (σnoise= 0.5 µA) to the simulated CV. The initial 

conditions chosen are G = -S = +0.85,  0.75      and {n = 1, k0’ = 1000 s-1, v = 0.1 V.s-1, E0’ = 

0 V, T = 293 K, A = 0.2 cm2 and Γmax = 5 10-10 mol.cm-2}.  

Given that the function rec-GLI is recursive on the current, the fitting procedure will inevitably be 

affected by the measurement noise of this same current (equation 14). Figure 3A shows that the fit 

(red line) remains very comparable and of the same quality as the fit performed with the GLI function 

(figure 3C).  

Despite the measurement noise, which typically affects the fit due to recursion, the obtained fitting 

parameters (table 3) are very close to the theoretical values and consistently show improvement with 

the rec-GLI function compared to the GLI function in terms of accuracy (Δ) and precision (Sx).  

The plotted residual errors, calculated with the simulated noise-free CV for better readability, are of 

the same order of magnitude despite the inherent noise introduced by reusing the noisy initial current 



for the calculation of the fitted current (equation 14). To overcome this recursion noise and to visually 

confirm the high accuracy of the characteristic parameters in the fitted CVs, an approximate 

simulation of the CVs can be carried out using an algorithm based on the Newton-Raphson method 

[28]. It is well known that this method employs an iterative numerical technique to yield rough 

solutions for equations, specifically focusing on the roots of real-valued functions. It serves as a robust 

and extensively utilized approach for solving equations in situations where obtaining analytical 

solutions is challenging or not possible, as is the case with the GLI function. 

 

Consequently, by employing the definition of the GLI function and integrating the fitted parameters, 

it becomes feasible to generate an approximate simulation of the current that is devoid of noise and 

follows a monotonic pattern. With this calculation procedure, residual errors are smoothed (figure 

3B) and are two times lower than those of the GLI function, demonstrating the reliability of the 

obtained fitting parameters. 

 

5.4. rec-GLI function vs. experimental voltammograms 

After the successful validation using simulated cyclic voltammograms (CVs), the next phase involves 

the experimental assessment of the rec-GLI function. This evaluation specifically targets two widely 

studied redox-responsive materials: self-assembled monolayers (SAMs) based on TEMPO and TTF 

moieties (scheme 1). 

At this stage, it is important to note that to account for the unpredictable fluctuations observed in the 

baseline of the experimental cyclic voltammogram (CV), a monotonic fourth-order polynomial 

function, denoted as 
n

i

i

i 0

g(x) a .x


  , is introduced and incorporated into the fitting functions. The 

primary objective of this approach is to improve the accuracy and reliability of the curve-fitting 

process [15]. 

TEMPO-based self-assembled monolayers undergo a reversible one-electron oxidation process in 

both non-aqueous and aqueous solvents. The shape of the cyclic voltammetry peak is influenced by 



the interactions among its oxidized species, which can be either attractive or repulsive depending on 

solvents used. In the presence of 0.1M TBAPF6/CH2Cl2, attractive interactions prevail, resulting in 

the generation of sharp peak cyclic voltammograms. This characteristic poses a challenge when 

applying the rec-GLI function and figure 4A demonstrates the suitability of the rec-GLI function for 

accurately fitting the experimental curve, particularly in the proximity of the peak potential. This 

enables the accurate determination of characteristic parameters of the cyclic voltammograms (CVs) 

with significant precision. Moreover, the rec-GLI function exhibited outstanding fitting performance 

for voltammetric responses in both water (FWHM = 90 mV) and acetonitrile, where the resulting 

voltammetric peaks displayed broader widths (FWHM > 90 mV). These results, when compared to 

previous studies [15,29], exhibit similar magnitudes but showcase enhanced accuracy. 

TTF-based SAMs undergo reversible and sequential oxidation processes in 0.1M TBAPF6/CH2Cl2, 

leading to the formation of mono- and dicationic forms. Importantly, these redox reactions remain 

unaffected by the substitution of hydrogen atoms on the TTF core with different functional groups 

and the width of the redox waves observed in CVs is strongly influenced by the oxidation states of 

the TTF moieties, primarily due to intermolecular interactions [30]. To evaluate the suitability of the 

rec-GLI function for TTF-based SAMs, it is necessary to ensure the conservation of charges during 

the two consecutive oxidation processes. This constraint is integrated into the fitting procedure by 

enforcing equal surface coverages (Γ1 = Γ2 = Γ) to achieve an accurate alignment between the model 

and the experimental data. Figure 4B demonstrates the ability of the rec-GLI function to extract the 

parameters Ep, ip, FWHM, Γ, and B from a partially covered TTF-based SAM on Au substrate, despite 

the presence of measurement noise, significant baseline drift and both broad and narrow peaks. 

Finally, it should be noted that the effectiveness of the rec-GLI function has also been successfully 

tested on other redox materials, including Bithiophene-based SAMs [31], Ferrocene-based SAMs 

[32,33], and Perylenediimide-based SAMs [34]. 

 

6. Conclusion 



In conclusion, this work introduces the rec-GLI function as an innovative mathematical tool for 

accurately fitting cyclic voltammograms (CVs) and estimating lateral interaction parameters on 

electroactive monolayers or redox responsive materials. By incorporating mathematical recursion and 

advanced curve fitting algorithms, the rec-GLI function exhibits enhanced accuracy in parameter 

estimation compared to existing models, particularly in cases of strong interactions (B > 0), making 

it closer to theoretical predictions and outperforming the empirical GLI function. 

The successful application of the rec-GLI function in fitting CVs of TEMPO-, TTF- and many other-

based SAMs on Au substrates highlights its effectiveness, and the Levenberg-Marquardt algorithm 

enables robust solutions in the presence of noise or inconsistent measurements. 

Overall, the introduction of the rec-GLI function offers a reliable mathematical framework for 

studying the redox behaviour of electroactive monolayers and estimating lateral interaction 

parameters. 
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Appendix 

 

To determine the standard deviations of the parameters of interest in this appendix, the standard 

formula utilized by engineers and experimental scientists to calculate statistical standard deviation 

through variance propagation is as follows: 
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Where σf denotes the standard deviation of the function f(x, y, ...), σx stands for the standard deviation 

of x, σy corresponds to the standard deviation of y, and so on. 

***** 

Peak potential (Ep) is directly determined by the fit of experimental CVs: 

pp EE    

***** 

Peak intensity (ip) can be extracted at the maximum of the CV, i.e., when the derivative of i is zero. 
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***** 

FWHM is calculated at ip/2: 
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Note that since B < 2, the expressions (B-4) and (B-2) are negative. 
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Note that Z+ and Z- are interconnected values: 
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Table 1: Major symbols and definitions used in this work 

Symbol Units Description 

E V Applied potential 

i A Measured current 

t s Acquisition time 

E0’ V Apparent standard potential of redox adsorbate 

k0’ s-1 Standard rate constant of redox adsorbate 

kox , kred s-1 Oxidation and reduction rate constants 

α  Charge-transfer coefficient 

FWHM V Full Width at Half Maximum 

Ep V Peak potential 

ip A Peak intensity 

Cdl F Double layer capacity 

v V.s-1 Scan rate 

Q C Electrical charge involved in the redox process 

n  Number of electrons involved in the redox process 

F C.mol-1 Faraday constant 

A cm² Active surface area 

R J⋅K−1⋅mol−1 Molar gas constant 

T K Temperature 

  mol.cm-2 Surface coverage of electroactive species 

max  mol.cm-2 Maximum surface coverage of electroactive species 

max


 


  Normalized surface coverage of electroactive species 

     Segregation constant (   1     ) 

O   Normalized surface coverage of oxidized species 

R   Normalized surface coverage of reduced species 

aij  
Interaction constant between immobilized molecules 

i and j represent oxidized or reduced species 

G , S  Global interaction parameters depending on aij 

 

 

 

 

  



Table 2: Results of the fitting processes (
k

v
 , n = 1, k0 = 1000 s-1, v = 0.1 V.s-1, E0= 0 V, T = 293 

K, A = 0.2 cm2 and Γmax = 5 10-10 mol.cm-2) in the case of G = -S = {+1 ; 0 ; -1} and  1      

Condition Parameters Simulated GLI Function rec-GLI Function 

G = -S = +1 

 1      

Ep vs E0 (V) * - 0.025249 

-0.024282 

Δ = 0.000967 

Sx = 0.000017 

- 0.024331 

Δ = 0.000918 

Sx = 0.000015 

B 1 

1.0125 

Δ = 0.0125 

Sx = 0.0015 

0.9923 

Δ = 0.0077 

Sx = 0.0012 

Γ (10-10 mol.cm-2) 5 

4.8842 

Δ = 0.1158 

Sx = 0.0057 

5.0126 

Δ = 0.0126 

Sx = 0.0044 

Ip (µA) 19.107 

18.900 

Δ = 0.207 

Sx = 0.035 

19.008 

Δ = 0.099 

Sx = 0.028 

FWHM (V) 0.037348 

0.039353 

Δ = 0.002005 

Sx = 0.000064 

0.037725 

Δ = 0.000377 

Sx = 0.000059 

G = -S = 0 

 1      

Ep vs E0 (V) * 0 
- 0.00050 

Sx < 10-9 

- 0.00049 

Sx < 10-9 

B 0 
- 0.000066 

Sx < 10-9 

- 0.000066 

Sx < 10-9 

Γ (10-10 mol.cm-2) 5 
4.99999 

Sx < 10-9 

4.99999 

Sx < 10-9 

ip (µA) 9.55346 
9.55315 

Sx < 10-14 

9.55315 

Sx < 10-14 

FWHM (V) 0.089014 
0.089018 

Sx < 10-9 

0.089018 

Sx < 10-9 

G = -S = -1 

 1      

Ep vs E0 (V) * 0.025249 

0.024280 

Δ = 0.000969 

Sx = 0.000015 

0.0242596 

Δ = 0.0009894 

Sx = 0.0000052 

B -1 

- 1.00146 

Δ = 0.00146 

Sx = 0.00088 

- 0.99993 

Δ = 0.00007 

Sx = 0.00031 

Γ (10-10 mol.cm-2) 5 

4.9896 

Δ = 0.0104 

Sx = 0.0012 

4.99996 

Δ = 0.00004 

Sx = 0.00042 

ip (µA) 6.36897 

6.3526 

Δ = 0.0164 

Sx = 0.0023 

6.36910 

Δ = 0.00013 

Sx = 0.00084 

FWHM (V) 0.143314 

0.145966 

Δ = 0.002652 

Sx = 0.000052 

0.143310 

Δ = 0.000004 

Sx = 0.000017 

* From a statistical standpoint, the true value of each parameter is based on a 95% confidence 

interval, according to:  student with   numberof  points 1estimated Sx t 5%;     

  



Table 3: Results of the fitting processes (
k

v
 , n = 1, k0 = 1000 s-1, v = 0.1 V.s-1, E0= 0 V, T = 293 

K, A = 0.2 cm2 and Γmax = 5 10-10 mol.cm-2) in the case of G = -S = +0.85,  0.75      and σnoise 

= 0.5 µA 

 Condition Parameters Simulated GLI Function rec-GLI Function 

G = -S = +0.85 

 0.75      

σnoise = 0.5 µA 

Ep vs E0 (V) * -0.01610 

-0.01585  

Δ = 0.00025 

Sx = 0.00014 

-0.01590 

Δ = 0.00020 

Sx = 0.00014 

B 0.6375 

0.582 

Δ = 0.056 

Sx = 0.010 

0.6086 

Δ = 0.0289 

Sx = 0.0094 

Γ (10-10 mol.cm-2) 3.75 

3.849 

Δ = 0.099 

Sx = 0.022 

3.815 

Δ = 0.065 

Sx = 0.021 

Ip (µA) 10.518 

10.376 

Δ = 0.142 

Sx = 0.097 

10.480 

Δ = 0.038 

Sx = 0.091 

FWHM (V) 0.05549 

0.05926 

Δ = 0.0377 

Sx = 0.00050 

0.05698 

Δ = 0.00149 

Sx = 0.00049 

* From a statistical standpoint, the true value of each parameter is based on a 95% confidence 

interval, according to:  student with   numberof  points 1estimated Sx t 5%;     
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Scheme 1:  

TEMPO-based SAM (C15-TEMPO) and TTF-based SAM (C12-TTF) on a gold substrate, along 

with their corresponding electrochemical processes. 

  



 

 

Figure 1:  

Evaluation of peak fitting (A, B, C) of the rec-GLI function on simulated cyclic voltammograms 

(CVs) generated from the GLI model under conditions of a fully reversible reaction (
0'k

v
 , n = 1, 

k0’ = 1000 s-1, v = 0.1 V.s-1, E0’ = 0 V, T = 293 K, A = 0.2 cm2 and Γmax = 5 10-10 mol.cm-2) in the 

case of G = -S = {+1 ; 0 ; -1} and  1     , and comparison to GLI function peak fitting (D, E, 

F). (●) Gaussian noisy simulated points and (—) fitted curves using rec-GLI function or GLI function. 

The bottom panels/graphs correspond to residual currents, which in our case, are calculated as the 

difference between the simulated current and the fitted currents. 

 

 

  



 

 

Figure 2: Evaluation of peak fitting of the rec-GLI function on simulated CVs generated from the 

GLI model under conditions of a fully reversible reaction (
0'k

v
 , n = 1, k0’ = 1000 s-1, v = 0.1 V.s-

1, E0’ = 0 V, T = 293 K, A = 0.2 cm2 and Γmax = 5 10-10 mol.cm-2) in the case of G = -S = +1. (A) 

(lines) simulated CVs with different values of surface coverage (θ) and phase segregation (ϕ), and 

(dotted lines) fitted curves using rec-GLI function. Comparison of (---) theoretical, (●) fitted 

estimated parameters: (B) surface coverage, (C) B = G ϕ parameter, (D) peak potential, (E) full width 

at half maximum and (F) peak intensity 

 

  



 

 

Figure 3: Evaluation of peak fitting (A and B) of the rec-GLI function on Gaussian noisy simulated 

CVs generated from the GLI model under conditions of a fully reversible reaction  (σnoise = 0.5 µA, 

0'k

v
 , n = 1, k0’ = 1000 s-1, v = 0.1 V.s-1, E0’ = 0 V, T = 293 K, A = 0.2 cm2 and Γmax = 5 10-10 

mol.cm-2) in the case of G = -S = +0.85,  0.75     , and comparison to GLI function peak fitting 

(C). (●) Gaussian noisy simulated points, (●) noiseless simulated points and (—) fitted curves using 

rec-GLI function, replotted with rec-GLI function (A) or Newton-Raphson algorithm solution (B) 

and fitted curves using GLI function (C). The bottom panels/graphs correspond to residual currents, 

which in our case, are calculated as the difference between the noiseless simulated currents and the 

recalculated currents.



 

 

Figure 4: Evaluation of peak fitting of the rec-GLI function on experimental CVs of TEMPO and 

TTF SAMs in 0.1 M Bu4NPF6/CH2Cl2, at v = 0.1 V.s-1, T = 293 K and A = 0.2 cm2. 

(A) Electrochemical parameters deduced from one peak fitting using rec-GLI function on TEMPO 

SAM: Γ = 2.91 10-10 mol.cm-2, B = 0.805, Ep1 = 0.504 V, FWHM = 0.047 V, ip = 9.13 µA (for 

comparison with GLI function: Γ = 2.89 10-10 mol.cm-2, B = 0.805, Ep1 = 0.504 V, FWHM = 0.047 

V, ip = 9.06 µA) 

(B) Electrochemical parameters deduced from two peaks fitting using rec-GLI function on TTF SAM: 

Γ = 0.88 10-10 mol.cm-2, B1 = -0.633, Ep1 = 0.256 V, FWHM1 = 0.123 V, ip1 = 1.25 10-6 A, B2 = 0.426, 

Ep2 = 0.576 V, FWHM2 = 0.066 V, ip2 = 2.10 10-6 A. (for comparison with GLI function: Γ = 0.88 

10-10 mol.cm-2, B1 = -0.634, Ep1 = 0.256 V, FWHM1 = 0.123 V, ip1 = 1.25 µA, B2 = 0.426, Ep2 = 0.575 

V, FWHM2 = 0.066 V, ip2 = 2.09 µA) 
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