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INTRODUCTION

A key challenge in deepening our understanding of the 
evolution of quantitative traits in nature is the devel-
opment of theory that captures the role of ecological 
processes on evolutionary change and integrates this 
with data. Both natural selection and genetic drift are 
fundamentally ecological processes driven by the pop-
ulation dynamics of genetically diverse populations. 
Furthermore, gene flow is often determined by ecolog-
ical processes such as dispersal. Moreover, by altering 
the genetic makeup of populations, micro- evolutionary 

processes in turn change the ecological conditions, which 
leads to a feedback loop between ecology and evolu-
tion. There is a long history of studying these feedbacks 
(Hutchinson,  1965; Pimentel,  1961), leading to classic 
work on density-  and frequency- dependent selection 
(Chitty, 1967; Clarke, 1972), and to the development of the-
oretical frameworks aiming to capture eco- evolutionary 
feedbacks (for recent reviews, see Govaert et al.,  2019; 
Klausmeier et al., 2020; Lion, 2018; McPeek, 2017). The 
two prominent approaches for studying the evolution of 
quantitative traits in an ecological context are quantita-
tive genetics (QG) and adaptive dynamics (AD).
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Abstract
Understanding the interplay between ecological processes and the evolutionary 
dynamics of quantitative traits in natural systems remains a major challenge. Two 
main theoretical frameworks are used to address this question, adaptive dynamics 
and quantitative genetics, both of which have strengths and limitations and are 
often used by distinct research communities to address different questions. In 
order to make progress, new theoretical developments are needed that integrate 
these approaches and strengthen the link to empirical data. Here, we discuss a 
novel theoretical framework that bridges the gap between quantitative genetics and 
adaptive dynamics approaches. ‘Oligomorphic dynamics’ can be used to analyse 
eco- evolutionary dynamics across different time scales and extends quantitative 
genetics theory to account for multimodal trait distributions, the dynamical 
nature of genetic variance, the potential for disruptive selection due to ecological 
feedbacks, and the non- normal or skewed trait distributions encountered in nature. 
Oligomorphic dynamics explicitly takes into account the effect of environmental 
feedback, such as frequency-  and density- dependent selection, on the dynamics 
of multi- modal trait distributions and we argue it has the potential to facilitate a 
much tighter integration between eco- evolutionary theory and empirical data.
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Both QG and AD are versatile frameworks and can be 
applied to a variety of ecological or demographic mod-
els, allowing for discrete-  or continuous- time dynam-
ics, discrete population structure (as in matrix models; 
Caswell,  2001) or continuous population structure (as 
in integral projection models; Rees & Ellner, 2016). As 
noted by several authors, these two frameworks gener-
ate similar long- term predictions under the assumptions 
of small mutation effects (for AD) and narrow trait dis-
tributions (for QG) (Abrams, 2001; Abrams et al., 1993; 
Day,  2005; Lion,  2018). However, AD and QG models 
have often been developed by distinct research com-
munities, originally with different types of questions in 
mind. For instance, QG was initially developed to study 
the short- term transient dynamics resulting from stand-
ing genetic variation, and the changes in mean trait of 
a population over a few generations (Lande, 1976, 1979; 
Walsh & Lynch,  2018). A large part of this literature 
has considered simple ecological scenarios with simple 
forms of density- dependence, often ignoring frequency- 
dependence (Box  1), as in classical moving- optimum 
QG models (Kopp & Matuszewski,  2014). In contrast, 
adaptive dynamics is tailored to investigate long- term 
eco- evolutionary endpoints under mutation- limited 
evolution, using the notion of ‘invasion fitness’ as its 
main fitness concept (Dercole & Rinaldi,  2008; Geritz 
et al., 1998; Metz, 2011; Metz et al., 1992).

The recent surge of interest in rapid evolutionary pro-
cesses (Bassar et al., 2021; Govaert et al., 2019; Hairston 
Jr et al., 2005; Hendry, 2017; Kopp & Matuszewski, 2014; 
Thompson,  1998) has led many researchers to use 
frequency- dependent QG models to jointly consider 
the ecological and evolutionary dynamics of a focal 
population (see e.g. Cortez, 2018; Cortez & Weitz, 2014; 
Klauschies et al.,  2016; Mougi & Iwasa,  2010; Patel 
& Schreiber,  2015; Schreiber et al.,  2011; van Velzen 
et al., 2022; Vasseur et al., 2011; Yamamichi et al., 2019). 
Indeed, AD always assumes that evolution is relatively 
slow with ecological dynamics reaching equilibrium be-
fore the potential invasion of a new mutation and there-
fore cannot examine the impact of rapid evolutionary 
change. However, these eco- evolutionary QG models 
assume a narrow unimodal trait distribution with con-
stant variance, and approximate the eco- evolutionary 
dynamics through the joint change of population density 
and trait mean, neglecting the effect of selection on the 
shape of the distribution. As a result, they cannot cap-
ture the emergence of multimodal distributions through 
frequency- dependent disruptive selection, or changes 
in the skewness of the distribution. Empirical evidence 
of skewed (Bonamour et al.,  2017) or multimodal dis-
tributions (Anderson et al.,  2009; Duffy et al.,  2008; 
Emlen,  1994) in the wild suggests that the widely used 
assumptions of Gaussian or narrow unimodal distribu-
tions with constant variance may be too restrictive. On 
the other hand, while AD is able to capture the diver-
sifying processes leading to polymorphism through the 

BOX 1 Glossary

Eco- evolutionary feedback: Stricto sensu, this 
refers to the reciprocal interaction between eco-
logical and evolutionary processes.

Eco- evolutionary dynamics: We use this term 
to describe the coupled dynamics of ecologi-
cal variables and of genetic or phenotypic dis-
tributions, due to eco- evolutionary feedbacks. 
Although some authors have advocated a nar-
row use of the term, restricted to cases where 
there is no separation in time between ecological 
and evolutionary dynamics (e.g. rapid evolution; 
Bassar et al., 2021), our definition is broader as 
we wish to emphasise the continuum between 
dynamics with a pure separation of time scales 
and dynamics with overlapping time scales, and 
the ability of OMD to describe how variation in 
the relative time scales of ecological and evolu-
tionary processes can lead to different forms of 
eco- evolutionary feedback.

Environmental (or ecological) feedback: Fitness  
is a property of a geno-  or phenotype (with trait 
value z ) measured in a given environment E , 
hence the notation r(z,E) we use in this man-
uscript. The environment E is affected by the 
actions of the individuals and by the composi-
tion of the population (densities, frequencies of 
types and trait distribution), and this in turn 
feeds back on fitness. The notion of environ-
mental feedback thus generalises the concepts of 
density- dependence or frequency- dependence.

Frequency- dependence: Frequency- dependence  
is an ubiquitous but ambiguous concept (Heino 
et al., 1998). Stricto sensu, it means that fitness 
depends on the frequencies of the different gen-
otypes in the population. In realistic ecological 
scenarios with environmental feedback, this is 
always the case, simply because the fitness of a 
given individual is affected by the presence of 
other individuals with different traits. For in-
stance, in an AD setting, a mutant that has a 
positive invasion fitness at low frequency will 
have fitness zero after fixation. Frequency- 
dependent QG models typically assume that the 
environmental feedback can be summarised by 
the mean trait z and therefore use a fitness func-
tion of the form r(z, z), which is a special case of 
the general environmental feedback formula-
tion. For our purpose here, it will be sufficient 
to equate frequency- independence with the ab-
sence of environmental feedback (i.e. fitness can 
be written as a function of the phenotype only, 
r(z), but see Metz and Geritz  (2016) for a more 
refined definition).
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phenomenon of evolutionary branching, it does so in the 
limit of vanishingly small standing variation.

There is therefore the need for an integrative frame-
work to model and understand eco- evolutionary dy-
namics (Box 1) across different time scales (e.g. fast vs. 
slow evolution) and to take into account the effect of 
directional, stabilising, and disruptive selection on re-
alistic distributions of quantitative traits. Various au-
thors have attempted to build bridges between AD and 
QG (Abrams,  2001; Abrams et al.,  1993; Cortez,  2016; 
Day,  2005; Kremer & Klausmeier,  2013; Lion,  2018), 
but they have typically done so by highlighting the 
connections between these two approaches and not by 
suggesting a new framework to go beyond the current 
limitations of both theories. Our goal in this perspective 
was to discuss a theoretical development which aims to 
bridge the gap between QG and AD approaches. We do 
this in the simpler case of clonal reproduction (a widely 
used assumption in AD) because, although the classical 
QG approach considers sexually reproducing organisms, 
most eco- evolutionary QG approaches do not explicitly 
model the effect of sexual reproduction on population 
dynamics and yield equations which are identical to 
those derived for asexual organisms. This simplification 
will also make the approach directly applicable to a wide 
range of classical ecological models.

The approach we describe here uses an ‘oligo-
morphic’ approximation introduced by Sasaki and 
Dieckmann  (2011), and is related to various trait- 
based approaches developed in community ecol-
ogy and quantitative genetics (Barabás et al.,  2022; 
Barabás & D'Andrea,  2016; Débarre et al.,  2013, 2014; 
Débarre & Otto,  2016; Klauschies et al.,  2018; Mullon 
& Lehmann,  2019; Norberg et al.,  2001; Wickman 
et al.,  2022; Wirtz & Eckhardt,  1996). This new theo-
retical framework explicitly takes into account the ef-
fect of environmental feedback, notably frequency-  and 
density- dependent selection, on the joint dynamics of 
ecological variables and trait distributions, and has the 
potential to facilitate a tighter integration between eco- 
evolutionary theory and empirical data. Here, we show 
how this framework can be used to analyse the eco- 
evolutionary dynamics across different time scales, as it 
allows us to examine both fast evolutionary dynamics in 
non- equilibrium population (typically analysed in eco-
logical and quantitative genetics models) and slow evo-
lutionary dynamics in populations that have reached an 
ecological attractor (typically analysed using adaptive 
dynamics). We also discuss how this approach can be 
used to extend quantitative genetics theory to account 
for the dynamical nature of genetic variance, the poten-
tial for disruptive selection due to ecological feedbacks, 
and the non- normal or skewed trait distributions typi-
cally encountered in nature. We conclude by discussing 
the links with other established theoretical methods and 
by highlighting some perspectives for further theoretical 
developments and applications.

CLASSICA L ECO - EVOLUTIONARY  
APPROACH ES

In this section, we will briefly review the three clas-
sical approaches to model eco- evolutionary dynam-
ics, which are population genetics, adaptive dynamics 
and quantitative genetics. Readers interested in a more 
thorough discussion of the differences and similari-
ties between these theoretical frameworks may look up 
Abrams (2001), Day (2005) and Lion (2018). For didactic 
purposes, we will focus on simple versions of these theo-
ries. For instance, as typical of many eco- evolutionary 
models, we will consider asexual populations. We will 
also ignore much of the complexities caused by genetic 
architecture, population structure, or the effects of the 
environment on the genotype– phenotype map. We refer 
the reader to Section “Perspectives” for a more detailed 
discussion of these issues.

We will use a classical resource– consumer model 
(Model 1 in Box 2) as a running example, but our main 
argument will use the following general formulation

where ni is the density and r
(
zi ,E

)
 the per- capita growth 

rate of individuals with phenotype zi. The function r(z,E) , 
for a given phenotype z experiencing environment E, will 
play an important role and will often be called ‘fitness 
function’ in the rest of this article. As in Lion (2018), we 
follow the typical practice in adaptive dynamics of making 
the fitness function depend on the trait and on the environ-
ment, E, thereby materialising the environmental feedback 
(Box 1). The vector E contains the densities ni and any ex-
trinsic environmental variable necessary to calculate fit-
ness, collected in a variable e (for instance, in Model 1 in 
Box 2, e is simply the density of resource R ). The function 
g captures the dynamics of e and will in general depend 
on all the phenotypes in the population, although we leave 
this dependency implicit for simplicity. For completeness, 
we note that the environmental feedback formulation 
generalises the practice of writing fitness as a function 
of the individual phenotype z and the mean phenotype z 
in frequency- dependent QG models (Box 1; see also e.g. 
Day, 2005; Iwasa et al., 1991; Lion, 2018).

The formulation in Equation (1) should be simply un-
derstood as a general framework for eco- evolutionary 
change that describes how the densities of individuals 
with particular phenotypes change depending on their 
per- capita growth rates, which are functions of the en-
vironment E. The critical point is that the environment 
varies due to in part to feedbacks between ecological 
and evolutionary processes. Starting with this general 

(1a)
dni

dt
= r

(
zi ,E

)
ni ,

(1b)de

dt
= g(E),
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formalism, the different analytical methods (population 
genetics, quantitative genetics and adaptive dynamics) 
typically make particular assumptions that we will de-
scribe in detail below.

Population genetics

Our first approach will be to track the change in the fre-
quencies of the different types, thereby following the cen-
tral idea of classical population genetics (PG). Defining 
n =

∑
ini as the total density of consumers and fi = ni ∕n 

as the frequency of type i, we obtain

where ri = r
(
zi ,E

)
 is a short- hand for the per- capita growth 

rate of type i. The second term between brackets is the 

average growth rate of the total population, r =
∑

j rj fj. For 
our running example, we have

Equation  (2) is a version of the replicator equation 
(Taylor & Jonker,  1978) and simply tells us that type i 
will increase in frequency if its per- capita growth rate 
is greater than the average growth rate of the popula-
tion. Note that in this version of the replicator equation, 
the change in frequency depends on the environmental 
feedback (e.g. through the density of resources R). In the 
special case where we only have two types (a wild- type 
w and a mutant m), the change in mutant frequency is 
simply given by(2)

dfi

dt
=

(

ri −
∑

j

fj rj

)

fi ,

ri = b
(
zi
) R

1 + �R
− d

(
zi
)
.

(3)
dfm

dt
= fm

(
1 − fm

)(
rm − rw

)
,

BOX 2 Two models of resource competition

Model 1: Adaptation of a resource exploitation trait. As our main running example, we use a classical model of con-
sumers exploiting a single dynamic resource, with density R. We assume that the consumer population is geneti-
cally diverse, and we consider the following ecological dynamics for the density ni of consumers with phenotype zi:

where b(z) and d(z) are the fecundity and death rates of the consumer population, which depend on the phenotype 
z, and the link between resource and consumer reproduction follows a type- II functional response with attack rate 
1 and handling time �. We couple the consumer dynamics to an equation describing the production and consump-
tion of the resource (see Online Appendix). In Model 1, we investigate the evolution of reproductive effort, that 
is, we consider a trait z that affects both fecundity b(z) and mortality d(z) and ask whether the consumer should 
preferentially invest into reproduction or survival, given the ecological context it experiences.
Model 2: Evolutionary diversification through niche partitioning. To investigate frequency- dependent disruptive 
selection, we use the classical MacArthur– Levins model of resource competition, analysed using OMD by Sasaki 
and Dieckmann (2011). The consumer dynamics are given by

where the phenotype z is a resource utilisation trait. Individuals with similar phenotypes exploit similar resources 
(or niches) and thus compete more intensely than individuals with distant phenotypes. This is captured by an in-
creased mortality rate. For instance, with a discrete phenotypic distribution, we write

where d0 is the baseline mortality rate, and c
(
zj − zi

)
 is a function that quantifies the strength of competition ex-

perienced by a type- i consumer from a type- j consumer, and is assumed to depend on the difference between the 
phenotypes of the two types. Assuming a trade- off between competitive ability and fecundity, Model 2 can lead 
to diversification with different morphs occupying different niches.

dni

dt
=

[
b
(
zi
) R

1 + �R
− d

(
zi
)]
ni ,

dni

dt
=
[
b
(
zi
)
− d

(
zi
)]
ni ,

d
(
zi
)
= d0 +

∑

j

c
(
zj − zi

)
nj ,
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where fm
(
1 − fm

)
 measures the genetic variance in the 

population and rm − rw is the selection coefficient. This 
is a classical result of population genetics, which can 
be obtained either in discrete or in continuous time, 
but note that Equation (3) does not assume that the se-
lection coefficient is a constant and takes into account 
ecological feedbacks (through the density of resources 
in our example). Thus, Equations  (2) and (3) need to 
be coupled to dynamical equations for the ecological 
densities (e.g. the total density of consumers n and the 
density of resources R). This approach has been used 
to study the interplay of ecology and single- locus ge-
netics (see e.g. Charlesworth, 1971; Roughgarden, 1971; 
Yamamichi,  2022; Yamamichi et al.,  2011; Yoshida  
et al., 2007).

Adaptive dynamics

The key assumption of adaptive dynamics (AD) is that 
mutations are rare. This leads to a separation of time 
scales where mutants arise at low frequency in a resident 
population on its ecological attractor. Hence, evolu-
tion is mutation- limited and unfolds on a much slower 
time scale than ecological processes. This assumption 
is justified by limiting arguments on the mutation pro-
cess (Geritz et al., 1998; Lehmann & Rousset, 2014; Metz 
et al., 1992; Rousset, 2004; Van Cleve, 2015) and has fos-
tered the development of a detailed toolbox to deal with 
evolution with complex ecological interactions.

In adaptive dynamics, the success of a mutant al-
lele is measured by its invasion fitness (Dieckmann & 
Law,  1996; Geritz et al.,  1998; Metz et al.,  1992, 1996), 
which is explicitly defined as a function of the ecological 
variables characterising the resident community. Hence, 
invasion fitness clearly captures the notion of environ-
mental feedback (Ferrière & Legendre, 2013; Lion, 2018; 
Metz et al., 1992; Mylius & Diekmann, 1995), although 
it does so under the assumption of mutation- limited 
evolution.

In our example, it is straightforward to calculate the 
invasion fitness from Equation  (4). Assuming that the 
resident attractor is an equilibrium, we have rw = 0 and 
therefore the mutant increases in frequency if rm is posi-
tive. Invasion fitness can thus be written in terms of the 
mutant trait zm and of the equilibrium resident environ-
ment Ê as

Because the density of resources at equilibrium R̂ is a 
function of the resident trait zw, it is also often convenient 
in practice to define invasion fitness as a function of the 
traits, as s

(
zm, zw

)
.

It is beyond the scope of this perspective piece to give 
a full overview of the AD toolbox, and we will instead 

focus on two key results that will be important in the 
following. Both results are derived under the additional 
assumption that mutations have small phenotypic ef-
fects (often called weak selection in the literature; 
Rousset, 2004), so that zm − zw is small. The first result 
is that, under this assumption, the direction of selection 
is given by the selection gradient, which is the deriva-
tive of invasion fitness with respect to the mutant trait, 
evaluated at neutrality (i.e. when the mutant and resident 
traits are equal). The zeros of the selection gradient then 
correspond to evolutionary singularities. The second 
result is that the evolutionarily stability of a singularity 
can be assessed through the sign of the second derivative 
of invasion fitness.

For our example, the selection gradient is

and depends on the slopes of fecundity and mortality with 
respect to the phenotype, while the second derivative eval-
uated at a point z⋆ such that (z⋆) = 0 is

and depends on the curvature of the life- history trait 
functions.

Adaptive dynamics has become a widely used ap-
proach to study long- term phenotypic evolution in the 
presence of eco- evolutionary feedbacks. However, there 
are key limitations of adaptive dynamics as a model of 
eco- evolutionary dynamics that is of use to empiricists. 
First, it is not well suited to study short- term evolution-
ary dynamics fuelled by standing genetic variation in the 
population. Second, theoretical investigations of evolu-
tion in polymorphic resident populations, although con-
ceptually well established (Durinx et al.,  2008; Geritz 
et al., 1998; Kisdi, 1999), are often mathematically com-
plex and restricted to potential evolutionary endpoints. 
Third, invasion fitness, as a theoretical construct, is dif-
ficult to integrate with empirical or experimental data. 
In practice, in most systems, it is often difficult to carry 
out a large number of reciprocal invasion experiments 
between pairs of different variants, as we typically rarely 
have multiple phenotypes characterised, or good condi-
tions under which invasion can be quantified, and, even 
if we do, the scale and duration of the experiments would 
often be impractical.

Quantitative genetics

Originally, quantitative genetics (QG) was specifically 
developed to model short- term genetic and phenotypic 
changes in natural populations. The aim of QG is to track 

(4)r
(
zm, Ê

)
= b

(
zm

) R̂

1 + �R̂
− d

(
zm

)

(z) = �r

�zm

|
|
|
|zm=zw=z

= b�(z)
R̂

1 + �R̂
− d �(z)

(
z⋆

)
=

𝜕2r

𝜕z2
m

|||
||zm=zw=z⋆

= b��
(
z⋆

) �R

1 + 𝜏 �R
− d ��

(
z⋆

)
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the dynamics of the distribution of a quantitative trait 
determined by many loci with small phenotypic effects. 
Instead of considering a discrete distribution of types 
(through the frequencies fi's), we now assume a continuous 
distribution �(z, t), normalised such that ∫ �(z, t)dz = 1 
over the trait space, and model how this distribution 
changes over time. Often, this is a very difficult task and 
the majority of studies focus on the dynamics of moments 
(characteristics) of this distribution, typically the mean 
trait or (less frequently) the variance of the trait (Barton 
& Turelli, 1987; Bulmer, 1971; Bürger, 1991; Lande, 1976, 
1979; Lande & Arnold, 1983; Walsh & Lynch, 2018).

In QG, the dynamics of the mean trait are given by 
the Robertson– Price equation (Lion, 2018; Price, 1970; 
Queller,  2017; Robertson,  1966) which relates the 
change in the mean trait z = ∫ z�(z, t)dz to the covari-
ance between the trait and the per- capita growth rate 
of a given type, and from which the well- known breed-
er's equation can be derived (Walsh & Lynch, 2018). We 
have

The dependency on the environmental feedback E shows 
that QG models explicitly handle the coupling between 
ecology and evolution. For instance, in our resource– 
consumer example, we can couple the dynamics of the 
mean trait with that of the total density of the population 
(Day, 2005; Slatkin, 1980; Taper & Case, 1992). However, in 
contrast to AD, this coupling does not, without additional 
assumptions, rely on a separation of time scales, which al-
lows for the study of short- term evolution resulting from 
existing genetic variation in the population.

In order to make progress however, most QG mod-
els make additional assumptions, in the wake of 
Lande (1976, 1979, 1982)' seminal work. One central and 
very common assumption is that the trait distribution is 
and remains normally distributed (Lynch & Walsh, 1998; 
Walsh & Lynch, 2018). This allows tractability and leads 
to considerable insight. However, it also puts major con-
straints on the evolutionary process, and prevents QG 
models from examining how multimodal distributions 
can be generated by frequency- dependent disruptive se-
lection, or how selection acts on skewed or multimodal 
trait distributions. Another classical assumption of QG 
models is that selection is frequency- independent. This 
yields dynamical equations for the mean and higher mo-
ments of an arbitrary trait distribution for weak (Barton 
& Turelli, 1987; Bürger, 1991; Turelli & Barton, 1990) or 
strong (Turelli & Barton, 1994) selection. However, with 
frequency- independent selection, only specific forms of 
ecological feedbacks can be analysed.

In order to study eco- evolutionary processes, research-
ers have attempted to partly relax these assumptions and 
turned to a frequency- dependent version of QG which 
assumes that the trait distribution is tightly clustered 

around its mean (Abrams et al., 1993; Day, 2005; Iwasa 
et al., 1991; Taylor & Day, 1997; Vincent et al., 1993). This 
small variance approximation leads to the following ap-
proximation of Equation (5)

where V  is the (additive) genetic variance. Equation  (6) 
shows that the mean trait changes along the slope of an 
adaptive landscape, but note that the selection gradient 
is given by the slope of the individual fitness function in-
stead of the mean population fitness (Abrams et al., 1993; 
Day, 2005; Iwasa et al., 1991). For our running example, 
this leads to

The direction of selection is thus given by a selection gradi-
ent which takes the same form as in AD, with two distinct 
features. First, the density of resources R is not necessarily 
at equilibrium. Second, the rate of evolution is scaled by 
the existing standing variation through the genetic vari-
ance V  (note that, here, heritability is assumed to be 1 for 
simplicity, so that there is no distinction between genetic 
and phenotypic variance, but extensions are discussed in 
Section “Genetics, inheritance, and mutation”).

Many QG models take a further step and consider that 
the variance is constant (but see e.g. Barton & Turelli, 1987; 
Bulmer, 1971; Bürger, 1991; Lande & Arnold, 1983; Turelli 
& Barton, 1994; Walsh & Lynch, 2018). Clearly, such ap-
proximations will fail once the distribution of a quanti-
tative character becomes bimodal as is expected under 
frequency- dependent disruptive selection, but also when 
one is interested in understanding how selection alters the 
shape of trait distributions. The need for an alternative 
approach is highlighted by empirical evidence of skewed 
(Bonamour et al.,  2017) or multimodal distributions 
(Anderson et al., 2009; Duffy et al., 2008; Emlen, 1994).

The need for an integrated approach

What is currently the best tool to study the interplay 
of ecological and evolutionary processes? The answer 
clearly depends on the biological question we want to 
solve. Ecological models or PG single- locus models have 
been used to explore rapid evolutionary dynamics due 
to ecologically mediated competition between geno-
types, but they are less suitable to study the longer- term 
dynamics of quantitative traits fuelled by standing vari-
ation or recurrent mutations. AD provides a solid math-
ematical framework to study long- term evolution in the 
presence of environmental feedbacks, but does so using 
the assumption that evolution is limited by rare muta-
tions, and is therefore not well suited to make predictions 

(5)dz

dt
= Cov(z, r(z,E)).

(6)
dz

dt
= V

�r

�z

|
|
|
|z=z

dz

dt
= V

[
b�(z)

R

1 + �R
− d �(z)

]
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   | 7LION et al.

on short- term evolution, as typically observed in the 
field or in experiments. On the other hand, QG is per-
fectly suited to investigate rapid evolutionary dynamics 
in complex ecological scenarios, but in practice, most 
models rely on some restrictive assumptions. For in-
stance, a large body of literature focuses on models of 
adaptation to a constant or moving optimum (for a re-
view, see Kopp & Matuszewski, 2014). In such models, 
the optimum is externally determined by the abiotic en-
vironment and the fitness function is Gaussian or quad-
ratic. Such a priori constraints prevent the investigation 
of more complex feedback loops between the abiotic or 
biotic environmental factors and the evolution of quan-
titative traits. On the other hand, frequency- dependent 
QG models can be used to explore more complex eco- 
evolutionary dynamics (e.g. Patel & Schreiber, 2015), but 
these models typically assume narrow unimodal trait 
distributions with constant variance, and therefore can-
not handle the dynamics of multimodal or non- Gaussian 
distributions, or the emergence of polymorphism under 
frequency- dependent disruptive selection.

Thus, we think there is value in trying to bridge the 
gap between AD and QG approaches. As we have just 
seen, bridging this gap is facilitated by the fact that, 
in eco- evolutionary theory, AD and QG use similar 
assumptions (e.g. weak selection) and share key con-
cepts (e.g. the selection gradient). The weak selection 
assumption stems from either assuming that mutation 
effects are small or that standing genetic variation is 
small. As a result, both approaches capture the effect 
of directional selection through a gradient formula-
tion: the change in the mean trait is given by a measure 
of genetical variation multiplied by a selection gradient 
which gives a first- order (linear) approximation of fit-
ness (Abrams,  2001; Day,  2005; Lion,  2018). However, 
assuming weak selection affects the time scales between 
ecological and evolutionary dynamics, and therefore 
the shape of environmental feedbacks. This is because 
evolution by natural selection will be slower when the 
amount of genetic variation is small. One may therefore 
wonder whether this assumption, despite its ubiquity and 
technical usefulness, is really suited to study rapid evo-
lutionary dynamics, often caused by high standing vari-
ation and/or mutation rates. In the next section, we show 
how a small variance assumption can be coupled with 
the oligomorphic approximation introduced by Sasaki 
and Dieckmann (2011) to help us move beyond both the 
focus on unimodal character distributions with constant 
variance, typically encountered in QG, and on mutation- 
limited evolution, typical of AD.

MULTI- MORPH ECO- EVOLUTIONARY  
DY NA M ICS

The key idea underpinning oligomorphic dynamics 
(OMD) (Sasaki & Dieckmann,  2011) is to decompose 

a multimodal trait distribution into a sum of narrow 
unimodal morph distribution. Intuitively, each morph 
corresponds to one peak of the trait distribution, and 
is characterised by its abundance (e.g. its frequency), 
its position (e.g. its mean trait value) and its width (e.g. 
its standard deviation). By deriving the dynamics of the 
morph frequencies, mean trait values and variances, it 
is thus possible to determine how each peak changes or 
moves over time, and therefore how the full trait distri-
bution, at the population level, changes as well.

To explain these ideas, we will give a brief overview of 
the general framework, before showing how it can be ap-
plied to shed light on various aspects of eco- evolutionary 
dynamics.

The oligomorphic decomposition

The first step is to decompose a possibly multimodal 
trait distribution into several morphs. A morph is a clus-
ter of continuous variants around a phenotypic mean 
trait. Mathematically, we write

where �(z, t) is the trait distribution at the population level, 
M is the number of morphs, �i(z, t) is the trait distribution 
of morph i and fi(t) is the frequency of morph i (Figure 1a). 
A frequent simplifying assumption will be that the morph 
distributions �i(z, t) are Gaussian, but this is not required 
for most of the theory.

An intuitive interpretation of the decomposition (7) 
is that the mean value of a morph should correspond 
to one of the modes of the distribution. However, the 
oligomorphic decomposition does not require that the 
distance between the morphs is large, and is also valid 
when the population contains two very similar morph 
distributions with different frequencies. Hence, the de-
composition allows for a quasi- monomorphic trait dis-
tribution, with two nearly identical morphs, to split into 
two modes through disruptive selection. The required 
number of morphs will depend on the biological sce-
nario (see Section “How many morphs?”).

The small morph variance approximation

Once our trait distribution is formally split into several 
morphs, we further assume that each morph is tightly clus-
tered around its mean, zi, so that the quantities z − zi are 
all proportional to a small parameter �. This is equivalent 
to saying that the morph variances, Vi, are of order �2. With 
this assumption, we can apply a Taylor approximation to 
the per- capita growth rate r(z,E) around the mean of each 
morph, and use this approximation to derive the dynamics 

(7)�(z, t) =

M∑

i=1

�i(z, t)fi(t),

 14610248, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14183 by C

ochrane France, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 |   OLIGOMORPHIC DYNAMICS FOR ECO- EVO

of the ecological densities, morph frequencies and morph 
moments. A short overview is given in Appendix A and we 
focus on the key results below.

Dynamics of ecological densities

Equipped with this approximation, we can now derive 
the dynamics of the total population density, n(t). We 
obtain

Here, as in all equations from now on, we drop the explicit 
dependency of fitness on E and only write r(z) to simplify 
the notation.

To leading order, the per- capita growth rate of the 
total population density can thus be approximated by 
the sum of the growth rates at the morph means, r

(
zi
)
 , 

weighted by the morph frequencies, fi (the first term 
between brackets). For fixed morph means, this exactly 
corresponds to the dynamics of the total density of a 
multi- species population, as encountered in community 
ecology.

The second term between brackets is scaled by the 
morph variances and therefore corresponds to a second- 
order correction. It captures the decrease in the mean 
growth rate r due to individual phenotypic deviations 
from the mean trait, known as the ‘genetic (or standing) 
load’ in the QG literature (Chevin,  2013; Kirkpatrick 
& Barton,  1997; Lande & Shannon,  1996; Wickman 
et al., 2022). In Equation (9), the genetic load is a multi- 
morph extension of these previous results and takes the 
form of an average, over all morphs, of the strength of 
stabilising or disruptive selection around the morph 
mean (given by the curvature of the fitness function r(z)), 
weighted by the morph genetic variance. In practice, this 
second- order term can often be neglected with good ac-
curacy, as in the simulations used below, but it would be 
interesting to investigate the conditions for which taking 
into account the impact of genetic variation on popula-
tion dynamics becomes important (Bolnick et al., 2011).

Dynamics of morph frequencies

Equation  (8) depends on the dynamics of morph fre-
quencies and morph means. The dynamics of morph fre-
quencies take the following form

To leading order, this equation takes exactly the same form 
as the equation governing allele frequency change in popu-
lation genetics (e.g. Equation 2). However, in the oligomor-
phic approximation, the morph means are not fixed, so the 
changes in morph frequencies depend on how the peaks of 
the multimodal distribution move over time. Competitive 
exclusion of one morph corresponds to a decrease to zero 
of that morph's frequency.

Dynamics of morph means

The next step is therefore to derive equations for the dy-
namics of the morph means. Using the small morph vari-
ance approximation, we obtain

(8)dn

dt
=

[
∑

i

fir
(
zi
)
+

1

2

∑

i

fiVi

�2r

�z2

||
||z=zi

]

n +O
(
�3
)
.

(9)
dfi

dt
= fi

(

r
(
zi
)
−

∑

j

fj r
(
zj
)
)

+O
(
�2
)
.

(10)
dzi

dt
= Vi

�r

�z

||
||z=zi

+O
(
�3
)
.

F I G U R E  1  OMD in a nutshell. (a) The full trait distribution 
�(z, t) (dotted line) is decomposed into a sum of the morph 
distributions �1(z, t) and �2(z, t) (with means zi and variances Vi), 
weighted by the morph frequencies f1 and f2. The blue and orange 
shaded regions correspond to f1�1(z, t) and f2�2(z, t) respectively.  
(b) Relationships between OMD and other theoretical approaches.

(a)(a)

(b)
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   | 9LION et al.

Thus, to leading order, the rate of change in morph means 
is scaled by the amount of genetic variation, measured by 
the morph variance Vi, and its direction is given by the 
selection gradient (the slope of the fitness function r(z) 
evaluated at the morph mean). We thus recover a morph- 
specific version of Equation  (6), with the key difference 
that the selection gradient may also depend on the means 
of the other morphs, so that the equations for the morph 
means are all coupled. Equation (10) tells us in which di-
rection the modes of our distribution move. The long- term 
endpoints are given by the zeros of the selection gradient, 
and correspond to the predictions of an AD analysis. As 
shown by Sasaki and Dieckmann (2011), the condition for 
the stability of the dynamics of the morph means is equiv-
alent to the convergence stability condition of AD.

Dynamics of morph variances

In contrast to the typical practice in QG, the oligomor-
phic approach does not assume that the morph variances 
are fixed. Hence, we can go one step further and derive 
the following equation for the change in morph vari-
ances, with the additional assumption that morph distri-
butions are all symmetric around their means:

where Ki is the kurtosis of the morph distribution. Thus, 
the rate at which the genetic variance of a morph changes 
is scaled by the amount of genetic variation Vi, and by 
the degree of presence of outliers in the trait distribution, 
measured by the kurtosis Ki (so that the change in vari-
ance will be faster if the distribution has more outliers). 
The direction of the change in the genetic variance of the 
morph is given by the sign of the curvature of the fitness 
function r(z) at the morph mean. As shown by Sasaki 
and Dieckmann  (2011), the condition for the stability of 
morph variances corresponds to the evolutionarily stabil-
ity condition of AD. Note that, in discrete time, the dy-
namics of variance have an extra term corresponding to 
the square of the selection gradient (see Online Appendix 
for a discussion).

Moment closure

Equations  (11) and (12) are reminiscent of the QG mo-
ment recursions introduced by Barton and Turelli (1987), 
Turelli and Barton  (1990), Bürger  (1991) for frequency- 
independent selection under multi- locus genetics. Apart 
from the simpler genetic assumptions, the main techni-
cal difference with their approach is that we derive these 
equations at the morph level and only leading- order 
terms are kept under the small morph variance approxi-
mation. In effect, by allowing for the interaction between 

the different morphs, OMD effectively extends these mo-
ment methods to multimodal distributions, frequency- 
dependent selection and a broad range of ecological 
scenarios.

Of course, as typical of moment methods, the sys-
tem of equation is not closed. To make progress, we 
need to rely on a moment- closure approximation. The 
simplest is to assume that each morph distribution is 
and remains normal (so that the total distribution is 
a sum of Gaussian peaks). In that case, the kurtosis 
is 3, so that the rate of change of the morph variance  
is simply given by the squared variance, V 2

i
 (Appendix A; 

Barton & Turelli, 1987; Lynch & Walsh, 1998; Sasaki & 
Dieckmann, 2011; Walsh & Lynch, 2018; chapter 24). Note 
that, in contrast to the classical QG theory, the Gaussian 
closure is here applied at the morph level, and not at the 
population level. Hence, the full distribution will gener-
ically be non- Gaussian and asymmetric. Other morph- 
level moment closure approximations can also be used, 
such as the ‘rare alleles’ or ‘house- of- cards’ approxima-
tions (Barton & Turelli, 1987; Sasaki & Dieckmann, 2011; 
Walsh & Lynch, 2018, chapter 24), or beta distribution 
approximation (Cropp & Norbury,  2021; Klauschies 
et al., 2018). We briefly discuss these closure schemes in 
Appendix A. In Box 3, we present the full oligomorphic 
approximation of the resource- consumer model (Model 
1 in Box 2), based on the Gaussian closure.

Separation of time scales

A very important consequence of the small morph vari-
ance approximation is that the different statistics of the 
model do not change on the same time scales. Typically, 
the population density and the morph frequencies change 
on a fast time scale, while the morph means and morph 
variances change more slowly.1 This means that, when 
genetic variation within each morph is not too large, eco-
logical densities and morph frequencies will change 
quickly compared to the morph mean, and will very 
quickly respond to any change in the means. This is very 
useful as it allows for the application of mathematical 
quasi- equilibrium techniques (Cortez & Ellner,  2010; 
Cortez & Weitz, 2014; Rinaldi & Scheffer, 2000) to sim-
plify the eco- evolutionary dynamics.

Comparison of the different eco- evo frameworks

Figure 1b gives an overview of the connections between 
the different theoretical frameworks available to study 
eco- evolutionary dynamics. Multi- species ecological dy-
namics and PG are limit cases of OMD for fixed values 

(11)
dVi

dt
=

1

2
V 2
i

(
Ki − 1

) �2r
�z2

||
||z=zi

+O
(
�5
)
,

 1More precisely, under the Gaussian moment closure, the rate of change of the 
ecological densities and morph frequencies is O(1), while it is O

(
�2
)
 for 

morph means and O
(
�4
)
 for morph variances.
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10 |   OLIGOMORPHIC DYNAMICS FOR ECO- EVO

of the traits (e.g. Vi = 0 and zi is constant for all morphs). 
QG correspond to the limit case of a unimodal trait dis-
tribution, typically with constant variance. The results 
of AD are retrieved in the limit of vanishingly small 
morph variances. OMD therefore acts a unifying frame-
work allowing for a fruitful dialogue between different 
theoretical schools.

APPLICATIONS

We now show how the OMD equations can be used to 
shed light on various phenomena such as the interplay 
between fast and slow evolution regimes, transient eco- 
evolutionary dynamics, disruptive selection through 

frequency- dependent selection, the dynamics of genetic 
variance under mutation and selection, and the evolution 
of skewed trait distributions, structured populations and 
multivariate traits.

Bridging the gap between fast and slow evolution

OMD allows us to analyse eco- evolutionary dynamics 
across different relative ecological and evolutionary time 
scales. In particular, OMD can be used to study the role 
of ‘fast evolution’ fuelled by a large standing variation at 
the population level.

As a simple model, consider a population charac-
terised by a bimodal distribution with two morphs. 

BOX 3 Oligomorphic dynamics of the resource– consumer model

The joint dynamics of the density of consumers, morph frequencies, morph means and morph variances 
for Model 1 in Box 2 are given by:

For the dynamics of morph variances, we have used a Gaussian closure approximation of the morph distribution. 
The dynamics of the resource can also be approximated to leading order (see Online Appendix).
In order to clarify the connections with PG, AD and QG, note that we recover the dynamics of single- locus 
PG models in the limit Vi = 0 (we are then left with only Equations (a) and (b)), and the dynamics of frequency- 
dependent QG models with only one morph and fixed variance (we are then left with Equations (a) and (c)). The 
terms between brackets in Equations (c) and (d) correspond to the first and second partial derivatives of invasion 
fitness in AD.
In addition, if we want to incorporate frequency- dependent competition, as in the Model 2 in Box 2, we can ap-
proximate the function d(z) = d0 + n ∫ c(y − z)�(y, t)dy using the multi- morph decomposition and small morph 
variance approximation to obtain:

and we can plug this expression into the OMD equations to complete the analysis. Note the similarity between the 
latter expression and the definition given in Box 2 for a discrete phenotypic distribution. The two coincide when 
the morph variances are vanishingly small.

(a)
dn

dt
=

∑

i

fi

[
b
(
zi
) R

1 + �R
− d

(
zi
)]

n,

(b)
dfi

dt
=

∑

i

fi

[(

b
(
zi
)
−

∑

j

fjb
(
zj
)
)

R

1 + �R
−

(

d
(
zi
)
−

∑

j

fjd
(
zj
)
)]

,

(c)
dzi

dt
= Vi

[
b�
(
zi
) R

1 + �R
− d �

(
zi
)]
,

(d)
dVi

dt
= V 2

i

[
b��

(
zi
) R

1 + �R
− d ��

(
zi
)]
.

d(z) = d0 + n
∑

j

fjc
(
zj − z

)
+O

(
�2
)
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   | 11LION et al.

Even if the morph variances V1 and V2 are not large, the 
population- level variance, V , can be substantial if the 
difference in morph means, z2 − z1 is large. As we shall 
see, the magnitude of the population- level variance V  
will greatly impact the form of the feedback between 
ecological and evolutionary dynamics.

To fix ideas, let us consider our resource– consumer 
example (Model 1). The mean trait, at the population 
level, can be calculated from the morph frequencies and 
morph means as z =

∑
i fizi. Using Equations (9) and (10), 

we obtain

Equation (12) captures the coupling between fast and slow 
evolution. The first line of Equation (12) represents the con-
tribution of the dynamics of frequencies to the change in 
the mean (i.e. what happens when the heights of the peaks 
change), while the second line represents the contribution 
of the change in morph means (i.e. when the position of the 
peaks change).

When the two morphs are very different (i.e. when the 
distance between the two peaks of the distribution is large 
compared to the morph variances V1 and V2), the dynam-
ics of the mean trait in the population are dominated by 
the change in frequencies. Then, the change in mean trait 
is given by the difference in growth rates between the two 
morphs, scaled by the variance f2

(
1 − f2

)
, as in popula-

tion genetics or two- species ecological models (see e.g. 
Equation 3). In contrast with these approaches, however, 
Equation  (12) assumes non- zero within- morph genetic 
variation.

On the other hand, when the two morphs are close 
(z2 − z1 is small, so that the population can be thought 
of as quasi- monomorphic), the dynamics of the mean 
trait are dominated by the change in morph means. As in 
classical AD and QG approaches, the direction of selec-
tion is now given by the slope of the morph growth rates, 
weighted by the morph frequencies and variances.

Hence, a morph that has a higher growth rate but a 
lower slope could be transiently selected (on the fast time 
scale), but eventually counter- selected in the long run (on 
the slow time scale). This leads to a very distinct pattern 
of environmental feedback, where evolutionary dynam-
ics (i.e. the change in the trait mean z) take place before 
the ecological dynamics have the time to settle on an eco-
logical attractor. This is characteristic of fast evolution 
regimes. Once selection has eroded the population- level 
genetic variation, the dynamics enter the typical gradi-
ent dynamics of slow evolution regime, where gradual 
change in the mean trait triggers a fast readjustment of 
the ecological variables. Figure 2 shows that OMD can 
capture how different levels of initial standing variation 
lead to distinct patterns of eco- evolutionary feedbacks, 

despite identical long- term steady states. For our spe-
cific example, note that, for small initial variance, we 
have fast relaxation of the ecological dynamics followed 
by a gradual evolution of the mean trait which slowly 
decreases towards its evolutionarily stable value. In 
contrast, for large initial variance, we observe fast evo-
lutionary dynamics characterised by a transient increase 
in mean trait followed by a sharp decrease, then a slow 
increase of the mean trait towards the ESS. These differ-
ent feedbacks have distinct practical implications: with 
large standing variation, we expect transient selection 
for rapacious consumers, whereas when standing varia-
tion is small, we predict selection to always favour more 
prudent consumers. Similar arguments could be used to 
study predator– prey cycles under different fast or slow 
evolution, as investigated by Cortez and Weitz  (2014), 
who studied the impact of genetic variation on the speed 
of evolution and the form of the eco- evolutionary feed-
back, using clonal models and frequency- dependent QG 
models. The OMD approach provides a connection be-
tween these two types of models.

Because OMD gives predictions on the morph dis-
tributions, it allows us to better understand the evolu-
tionary mechanisms affecting the change in the trait 
distribution. For instance, we show in Figure 3 how the 
two phases of fast vs. slow evolution observed in the 
simulations of Figure 2c can be ascribed to changes in 
morph frequencies (peak heights) versus morph means 
(peak positions). By going back and forth between the 
morph and population- level statistics, it is thus possible 
to shed light on the mechanisms shaping the dynamics of 
trait distributions.

Transient and non- equilibrium 
evolutionary dynamics

An immediate consequence of the ability of OMD to 
capture both fast and slow evolution is that it allows for 
the study of transient evolutionary dynamics, on short 
time scales. In principle, this makes it easier to formulate 
testable predictions that match the time scales of empiri-
cal observation in the field or in the lab, while retaining 
the ability to make long- term evolutionary predictions as 
in AD. We therefore think that it represents an interest-
ing step towards a better integration of theory and data 
in evolutionary ecology.

In addition, because OMD does not assume that the 
population is always near an ecological attractor, it can 
be used to investigate evolution in non- equilibrium, dy-
namical environments. For instance, we have recently 
applied this approach to analyse the evolution of patho-
gen virulence under the repeated epidemics caused by 
antigenic escape (Sasaki et al., 2022). The problem of man-
aging transient pathogen evolution over the course of an 
epidemic is central in evolutionary epidemiology (Day & 
Gandon, 2007; Day & Proulx, 2004; Lenski & May, 1994), 

(12)

dz

dt
=
(
z2−z1

)
f2
(
1− f2
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∑
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12 |   OLIGOMORPHIC DYNAMICS FOR ECO- EVO

and this could be an interesting application of OMD. For 
instance, if we make an analogy between consumers and 
pathogens on the one hand, and resources and susceptible 

hosts on the other hand, we can use Equation (12) to study 
the transient evolution of more transmissible and virulent 
pathogen strains during an epidemic, followed by selection 

F I G U R E  2  Coupling fast and slow evolution. Depending on the magnitude of the initial standing variation, the dynamics of the resource– 
consumer model (Model 1 in Box 2) are characterised by very distinct transient eco- evolutionary feedbacks, corresponding to different balances of 
fast versus slow evolution. OMD is able to integrate the dynamics across these different time scales. The dashed line on the left panels corresponds 
to the quasi- equilibrium approximation for the monomorphic dynamics. In each panel, the value of the variance at the population level is given, 
and corresponds to the variance calculated for a population with two Gaussian morphs with morph variances V1(0) = V2(0) = 0.01 and distances 
between morphs z2(0) − z1(0) = 0.02 (a), 1 (b) or 2 (c). See Online Appendix for technical details and parameter values.

(a)

(b)

(c)
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   | 13LION et al.

for more prudent pathogens once the endemic phase is 
reached. More generally, as the oligomorphic decompo-
sition and small morph variance approximations do not 
rely on the assumption of equilibrium dynamics, we think 
OMD could be used to generate predictions for the evolu-
tionary consequences of non- equilibrium processes such 
as seasonality, and to better understand how environmen-
tal fluctuations in space or time affect diversification.

Frequency- dependent disruptive selection

In contrast with QG, OMD can be used to study how dis-
ruptive selection may cause the trait distribution to split 
into several modes. Consider for instance a continuous- 
trait version of Model 2 in Box 2, where the mortality 
rate of individuals with trait z is

This can be used to represent the increase in mortality 
caused by competition between phenotypically similar in-
dividuals (Roughgarden, 1972; Slatkin, 1980). Using the oli-
gomorphic decomposition and a double Taylor expansion 

(Box 3; Online Appendix; Sasaki & Dieckmann, 2011), it is 
possible to approximate the change in the morph means in 
Model 2 as

Intra- specific competition at the population level is thus 
approximated by the pairwise competition between the 
different morphs, so that the equations of the morph 
means are all coupled. The presence of the frequencies fj 
shows that, in a literal sense, Equation  (14) captures the 
notion of frequency- dependence. An analogous equation 
can be derived for the change in morph variance.

Using the morph dynamics, we can thus describe 
how, starting from a quasi- monomorphic distribution 
with two slightly different morphs, frequency- dependent 
competition leads to the two morphs moving apart until 
the distribution becomes bimodal. Figure 4a compares 
the predictions of the OMD approximation to numerical 
simulations of the full model without the oligomorphic 
decomposition, and shows that the OMD predictions 
capture well the timing and location of the branching 
although, due to the built- in morph decomposition, 

(13)d(z) = d0 + ∫ c(y − z)�(y, t)dy.

(14)
dzi

dt
= Vi

[

b�
(
zi
)
−

∑

j

fjc
�
(
zj − zi

)
n

]

.

F I G U R E  3  Linking fast and slow evolution to mechanisms. Starting with a bimodal distribution with a large initial standing variation at 
the population level (as in Figure 2c), the dynamics of the resource– consumer model are first characterised by a phase of fast evolution where 
most of the change in the population mean is due to changes in morph frequencies while the morph means stay approximately constant. This 
leads to the competitive exclusion of one morph, at which stage the population enters a phase of slow evolution where the mean trait changes 
gradually in the direction of the selection gradient. Note that the trait variance also changes in that phase. See Online Appendix for technical 
details and parameter values.
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14 |   OLIGOMORPHIC DYNAMICS FOR ECO- EVO

they tend to overestimate the speed at which the dis-
tribution splits into two modes. However, the trait dis-
tributions and population densities before and after 
branching are accurately predicted (Figure 4b,c). Sasaki 
and Dieckmann  (2011) give a detailed discussion of 
how the OMD predictions relate to classical character- 
displacement models (Bulmer, 1974; Roughgarden, 1972, 
1976; Slatkin, 1980; Taper & Case, 1985). The OMD ap-
proach goes one step beyond by relaxing the assumption 
of fixed variance (e.g. Roughgarden, 1976), Gaussian dis-
tributions (e.g. Slatkin, 1980), or single- locus two- allele 
genetics (Bulmer, 1974). As we have seen, all these pre-
vious models can be seen as special cases of the more 
general OMD framework.

Another question that can be addressed using OMD 
is to approximate the time required until an initially 
unimodal character distribution splits into two distinct 
morphs under frequency- dependent disruptive selection. 

For clonally reproducing species, this is a measure of 
the waiting time until adaptive speciation. As shown 
by Sasaki and Dieckmann (2011), an approximation for 
this waiting time can be derived under various moment 
closure approximations, and is found to be typically in-
versely proportional to the curvature of the fitness land-
scape at the evolutionary branching point.

Dynamics of genetic variance and mutation- 
selection balance

In contrast to the majority of QG approaches, the OMD 
approach allows us to capture the dynamical nature of 
genetic variance due to both selection and mutation. The 
small morph variance approximation leads to explicit 
expressions for the effect of selection on the dynamics 
of variance, in terms of the frequencies and means of the 

F I G U R E  4  Capturing frequency- dependent disruptive selection. OMD can be used to capture how an initially unimodal distribution splits 
into two peaks. In panel (a), the contour plot represents the trait distribution obtained from numerical simulations of the full model (Model 
2 in Box 2 without the oligomorphic approximation, see Online Appendix). The orange and blue lines represent the results of simulations of 
a two- morph oligomorphic approximation, starting from initially similar morphs (dashed lines: morph means; dotted lines: morph standard 
deviations). Population- level trait distributions before (b) and after (c) branching are represented on the right (dots: full simulations; lines: 
oligomorphic approximation). In panel (d), we present, using the OMD results of panel (a), a schematic of the time- evolution of the trait 
distribution at the population level, �(z, t). On the left panel, the initial distribution (in black) is the sum of the two morph distributions (in 
blue and orange). On the other panels, we show the total distribution at different time points (lighter shades of grey corresponding to earlier 
time points). The total trait distribution first moves towards the left under directional selection, before becoming bimodal through disruptive 
selection (at which point, the two morph distributions begin to move apart). Stabilising selection on each peak then leads to the equilibrium 
trait distribution, with each peak corresponding to a distinct morph. See Online Appendix for technical details and parameter values.

(a)

(b)

(c)

(b)
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   | 15LION et al.

different morphs (Equation 11; Lion et al., 2022; Sasaki 
& Dieckmann, 2011), which sheds light on the ecologi-
cal processes leading to diversification. It is also possi-
ble to incorporate mutation to capture the fact that the 
depletion of variance due to stabilising selection will 
tend to be restored by the generation of genetic varia-
tion through mutation. There are various ways to in-
corporate mutation in OMD. The simplest is to assume 
unbiased mutations occurring at rate � with the distribu-
tion of mutation effects having variance �2

M
 (Sasaki & 

Dieckmann, 2011). This leads to the following equations 
for the morph variances:

where VM = ��2
M

 is the mutational variance and 

i =�2r∕�z2
|
|
|z=zi

 measures the curvature of the fitness 

landscape and therefore the strength of disruptive or 
stabilising selection. When i < 0, selection on morph 
i is stabilising and the morph variance equilibrates at a 
mutation- selection balance. Assuming that the morph dis-
tributions are Gaussian (Ki = 3), the equilibrium variance 
can be simply calculated as

Equation  (16) generalises classical expressions obtained 
under the assumption of Gaussian or quadratic stabilising 
selection (Kimura, 1965; Turelli, 1984), with the difference 
that the parameter measuring the intensity of selection, 
1∕i, is not a constant but depends on the mean trait and 
on the environmental feedback. Other expressions can be 
obtained under other closure assumptions, such as the 
house- of- cards approximation (Appendix  A; Sasaki & 
Dieckmann, 2011; Turelli, 1984).

Population- level variance and skewness

From the moments of the morph distributions, it is possi-
ble to calculate the moments of the population- level dis-
tribution, as we have already done for the mean in Section 
“Bridging the gap between fast and slow evolution”. This 
allows one to investigate how the variance and skewness 
of the whole trait distribution change over time through 
selection and mutation. In particular, the fact that the 
skewness of the trait distribution can affect directional 
selection on the mean trait has been repeatedly noted 
in theoretical studies (Barton & Turelli,  1987; Débarre 
et al.,  2015; Turelli & Barton,  1990), and is backed up 
by experimental data (Bonamour et al., 2017). However, 
these previous works were faced with the problem of clos-
ing the system of population- level moment equations. 

Because with OMD the dynamics of moments are closed 
at the morph level, expressions for the population- level 
moments can be derived that only depend on the heights, 
locations and widths of the various peaks of the distribu-
tion (Box 4). From this point of view, OMD can be seen 

(15)
dVi

dt
=

1

2
V 2
i

[
Ki − 1

]i +VM .

(16)V ∗

i
=

√
VM

i

.

BOX 4 Calculating population- level moments 
from morph moments

The mean of a multi- morph distribution can 
be easily calculated as a function of the morph 
means and frequencies. This yields the following 
intuitive expression:

which we can use to derive an equation for the 
dynamics of the population- level mean (see e.g. 
Section “Bridging the gap between fast and slow 
evolution”).
For the variance and third central moment of the 
trait distribution, similar, albeit more complex, 
expressions can be derived. For the variance, we 
have:

The first term is the average of the morph 
variances, weighted by morph frequencies. 
The second term is the weighted average of the 
squared deviations of the morph means from 
the population- level mean. This captures the 
fact that the variance of the trait distribution in-
creases either when the morph distributions are 
flatter or when the morphs move apart. This re-
lationship makes it possible to track the dynam-
ics of the population variance from those of the 
morph moments.

The third central moment, T , of the 
population- level distribution can similarly be ex-
pressed as a function of the morph frequencies, 
means, and variances. For two morphs, this can 
be written as

under the assumption that each morph distribu-
tion is symmetric. In that case, the above expres-
sion captures the fact that a bimodal distribution 
will be skewed if its two peaks have different 
heights or widths.

z =
∑

i

fizi ,

V =
∑

i

fiVi +
∑

i

fi
(
zi−z

)2
.

T = f1f2
(
z1 − z2

)[(
f2 − f1

)(
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16 |   OLIGOMORPHIC DYNAMICS FOR ECO- EVO

as a partial solution to the moment closure conundrum 
that has hampered the applicability of moment methods 
in QG, and has the potential to allow for a tighter in-
tegration between theoretical predictions and empirical 
trait distributions. Figure 5 gives a taste of how OMD 
can be used to track the short- term dynamics of non- 
Gaussian trait distributions under the action of natural 
selection and small mutation. Further developments will 
need to investigate the robustness of the moment closure 
approximation when mutation is stronger, but we already 
note that the small- morph approximation is remarkably 
accurate even when the morph distributions are not par-
ticularly narrow, as in Figure 5.

Population structure and multivariate traits

As in AD and QG, OMD can be extended to take into 
account class structure (Lion et al.,  2022; Wickman 
et al., 2022) and the joint evolution of multiple quantita-
tive traits (Sasaki et al., 2022).

Class structure is a major feature of natural biologi-
cal populations, taking into account individual differ-
ences in state including age, spatial location, infection 
or physiological status, and species. By deriving equa-
tions for the frequencies and moments of the morph 
distributions in each class, it is possible to apply OMD 

to a broad range of realistic ecological scenarios (Lion 
et al., 2022, Wickman et al., 2022). Furthermore, Lion 
et al. (2022) show how the theory of reproductive values 
can be used to obtain compact analytical expressions 
for the dynamics of multimodal trait distributions in 
structured populations under density-  and frequency- 
dependent selection. From a biological perspective, 
this sheds light on how the quality and quantity of indi-
viduals in different classes affect the eco- evolutionary 
dynamics.

The analysis of multivariate quantitative traits is a key 
feature of QG models. With OMD, it is possible to ob-
tain dynamical equations for the change in morph means 
and variances (Box 5; Sasaki et al., 2022) that closely re-
semble those derived in QG by assuming Gaussian un-
imodal distributions (Lande & Arnold,  1983; Mullon 
& Lehmann,  2019; Phillips & Arnold,  1989). However, 
OMD goes one step further by allowing us to take into 
account selection on multimodal and skewed trait dis-
tributions, as well as frequency- dependent disruptive 
selection caused by environmental feedbacks. There are 
interesting connections with QG community ecology 
models (Barabás et al., 2022; Barabás & D'Andrea, 2016), 
which retain the classical QG assumption of trait nor-
mality but allow for multi- species ecological interac-
tions, and yield equations that are very similar to those 
describing the morph dynamics in Box 5.

F I G U R E  5  Transient dynamics of non- Gaussian trait distributions. Panel (a) shows the dynamics of the variance (left) and third 
central moment (right) of the trait distribution evolving in the resource– consumer model (Model 1 in Box 2). OMD (line) yields a very good 
approximation of the dynamics (dots are simulation results without the oligomorphic approximation). Panel (b) shows how OMD can capture 
the full transition from left- skewed (t = 0, negative skewness) to right- skewed (t = 10, positive skewness) to symmetric (t = 20) trait distribution. 
In both the OMD (lines) and full (dots) simulations, the trait distribution is initiated as a sum of four Gaussian peaks (coloured lines at t = 0

). OMD tracks how these morph distributions change (coloured lines at t > 0), and the resulting population- level trait distribution (black lines) 
accurately predicts that in the full simulation (dots). See Online Appendix for technical details and parameter values.

(a)

(b)
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   | 17LION et al.

PERSPECTIVES

There are many directions in which to take OMD, but 
the main theoretical challenges, from a biological point 
of view, are to take into account complex genetical sys-
tems, environmental variance, demographic and envi-
ronmental stochasticity, and integration with data. We 
discuss these in turn.

Genetics, inheritance, and mutation

Most of the theory we describe here has been developed 
under the assumption of clonal reproduction and there-
fore leaves aside the potential complexities of genetic ar-
chitecture (e.g. ploidy, number of loci, interaction across 
loci and sexual reproduction). This is a classical simplifi-
cation shared by most PG, AD and QG models interested 
in the interplay between ecology and evolution. In fact, 
although the mathematical justification of QG often in-
vokes random mating in sexually reproducing organisms, 

most eco- evolutionary QG models do not explicitly model 
sexual reproduction and rely on equations that are identi-
cal to those derived for clonally reproducing organisms. 
There are however good empirical and theoretical rea-
sons for arguing that genetic architecture and variation 
may have strong effects on eco- evolutionary processes, 
especially on the short term (Barrett & Schluter, 2008; 
Bolnick et al., 2011; Yamamichi, 2022), and on the shape 
of trait distributions (Débarre et al.,  2015; Yeaman & 
Guillaume,  2009). It is also known that sexual repro-
duction affects disruptive selection and that assortative 
mating is often necessary for diversification to occur in 
sexually reproducing organisms (Doebeli et al.,  2007). 
Coupling OMD with more complex genetic models will 
therefore be an important challenge for future extensions 
of the theory. Although the moment equations derived 
in QG models assuming sexual reproduction have been 
found to be similar to those derived under clonal repro-
duction (Barabás et al., 2022; Barabás & D'Andrea, 2016; 
Bürger,  1991; Débarre et al.,  2013), additional assump-
tions are often needed when dealing with multi- locus 
genetics and recombination (see e.g. the discussion in 
Débarre et al. 2013). At a technical level, further develop-
ments in this area may be fostered by analysing the con-
nections between OMD, classical multi- locus moment 
equations (Barton & Turelli, 1987; Bürger, 1991; Turelli 
& Barton,  1994), and recent theoretical developments 
that have studied how sexual reproduction and genetic 
architecture affect the origin and maintenance of poly-
morphism (e.g. Dekens et al., 2021; Patel & Bürger, 2019). 
Biologically, these technical extensions could be very 
fruitful for our understanding of the complex feedback 
between ecological dynamics and genetics.

In addition, we have assumed, for simplicity, a one- to- 
one relationship between the genotype and phenotype, 
and ignored the possibility that individual or environ-
mental variation may alter the phenotypic value for a 
fixed genotypic value. As a result, there is no distinction 
between the additive genetic variance and the phenotypic 
variance in our morph- specific moment equations (in 
other words, heritability is assumed to be 1 throughout 
this paper). Of course, this simplification contrasts with 
the large and successful literature in theoretical and sta-
tistical QG, which is specifically devoted to taking into 
account how the phenotypic distribution is shaped by 
both genetical and environmental effects (Falconer, 1960; 
Kruuk et al.,  2018; Lynch & Walsh,  1998). However, it 
would be relatively straightforward to extend OMD in 
that direction, by writing the phenotypic distribution 
as a joint distribution of genotypic and environmental 
effects, and integrating over the environmental distribu-
tion (see e.g. the Appendix of Iwasa et al. (1991)). More 
generally, it would be particularly interesting to com-
bine the oligomorphic decomposition and small morph 
variance approximation with well- established statistical 
QG methods. This could be done by building on exist-
ing multi- species QG theory (e.g. Barabás et al.,  2022; 

BOX 5 Joint evolution of multiple quantitative 
traits

Following the seminal work of Lande and 
Arnold  (1983), the dynamics of multivariate 
quantitative traits in QG models are given by 
the product of a genetic (cov)variance matrix G 
and of a selection gradient. As shown in Sasaki 
et al. (2022), the multivariate extension of OMD 
takes a similar form at the morph level:

where Gi is the morph- specific genetic (co)vari-
ance matrix and Si is the morph- specific gradient 
of the fitness function r(z,E) with respect to the 
multivariate trait z.
As in the univariate case, the dynamics of the 
morph means depend on a dynamical measure of 
genetic variation, Gi, which changes as follows

where Hi is the Hessian of the fitness function 
for morph i and VM is the diagonal matrix of 
the mutational variances for each trait. Similar 
equations have been derived in multi- species 
models (Débarre et al.,  2014) or single- species 
models with a Gaussian distribution (Mullon & 
Lehmann, 2019).

dzi

dt
= GiSi

dGi

dt
= GiHiGi +VM ,
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18 |   OLIGOMORPHIC DYNAMICS FOR ECO- EVO

Barabás & D'Andrea, 2016), or by coupling OMD with 
the framework of Coulson et al. (2017) which tracks both 
the genetical and environmental components of pheno-
typic distributions.

One of the main limitations of OMD so far is that the 
accuracy of the approximation can be eroded in the limit 
of strong mutation, as this may cause the small morph 
variance approximation to break down. To solve this, in-
spiration could come from other related approaches that 
have been developed to handle high mutation rates on 
the stationary trait distributions, but lack the dynamical 
aspect of OMD (Mirrahimi & Gandon, 2020). There are 
also interesting theoretical challenges in better under-
standing how various mutation models affect the robust-
ness of OMD.

Population and community structure

Non- genetic heterogeneity between individuals is a key 
feature of natural populations, which is known to have 
important ecological and evolutionary consequences 
(Coulson & Tuljapurkar,  2008; Ozgul et al.,  2009). In 
demography or ecology, this heterogeneity is taken into 
account by adding a discrete or continuous structure to 
the population (Caswell,  2001; Charlesworth,  1994). In 
addition to the class- structure extension of OMD we 
discussed above, it would be interesting to apply the 
oligomorphic decomposition and small morph vari-
ance approximation to simplify the dynamics of eco- 
evolutionary integral projection models (IPMs), which 
have been developed to model the dynamics of the 
distribution of heritable traits, typically under QG as-
sumptions, and successfully applied to analyse empirical 
data (Barfield et al.,  2011; Childs et al.,  2016; Coulson 
et al.,  2017; Rees & Ellner,  2016). OMD could be used 
to decompose the population- level trait distribution and 
translate the IPM into morph- specific equations. As we 
have shown, OMD allows for a decomposition of fast 
and slow evolution regimes and for the study of multi-
modal trait distributions and complex environmental 
feedbacks, which would be an interesting contribution to 
current IPM approaches.

Another interesting extension would be to use OMD 
to better understand eco- evolutionary dynamics at the 
community level. Over the past 20 years or so, there has 
been a renewed interest in incorporating evolutionary 
considerations into community ecology (Ellner,  2013; 
Fussmann et al.,  2007; Govaert et al.,  2021; Jansen & 
Mulder,  1999; Johnson & Stinchcombe,  2007; Norberg 
et al.,  2001, 2012; Nordbotten et al.,  2020; Weber 
et al., 2017). Most models rely on the assumptions of PG 
or QG to introduce genetic variation into community dy-
namics, and resemble the oligomorphic equations if we 
equate one morph to one species (Klauschies et al., 2018; 
Norberg et al., 2001). But OMD could be used to allow for 
multiple morphs within each species and to analyse how 

frequency- dependent selection, multimodal or skewed 
trait distributions, and rapid evolutionary processes af-
fect community stability and evolution.

Demographic and environmental stochasticity

Although demography and evolution are inherently 
stochastic processes, many existing developments of 
OMD focus on deterministic models, instead of for-
mulating a stochastic model as in traditional popula-
tion genetics approaches. Thus, in its current form, 
OMD relies on a large- population assumption, like 
most AD models (Champagnat et al.,  2006; Lehmann 
et al.,  2016; Méléard, 2011; Rousset,  2004). The benefit 
of this simplification is that it makes the model more 
tractable to analyse the coupled eco- evolutionary dy-
namics without resorting to the assumptions of fre-
quency-  or density- independence often encountered in 
population genetics (Day, 2005; Heino et al., 1998; Holt 
& Gomulkiewicz,  1997; Rice,  2004). The drawback is 
that a deterministic framework cannot capture the fact 
that both ecological (Lande et al., 2003) and evolution-
ary (Lenormand et al., 2009) processes can be strongly 
affected by demographic or environmental stochasticity.

There are however exceptions to the focalisation on 
deterministic models in OMD. For instance, Débarre and 
Otto (2016) have shown that it is possible to use the small 
variance approximation to analyse eco- evolutionary dy-
namics under demographic stochasticity. This analysis 
paves the way for a multi- morph extension that could 
be used to incorporate demographic stochasticity and 
multi- morph eco- evolutionary dynamics. In addition, 
it would be particularly interesting to further extend 
the OMD framework to account for environmental 
stochasticity, which is a key feature of many QG mod-
els (Chevin et al.,  2017). Understanding the joint effect 
of stochastic population dynamics and environmental 
feedback on eco- evolutionary dynamics is a very active 
and promising area of research in mathematical biology 
(Champagnat et al., 2022).

How many morphs?

So far, we have left open the question of how many 
morphs we need to consider. Mathematically speaking, 
the number of morphs is arbitrary, as it is possible to con-
sider morphs with negligible frequencies or nearly equal 
means. However, we know that there is potentially a limit 
to the effective number of morphs that can be supported 
by the ecological dynamics under study. In addition, 
OMD does not allow for the splitting of a morph distribu-
tion into two, so if we initiate the dynamics with only one 
morph but evolutionary branching takes place, we will 
not observe diversification but rather that the variance of 
the single morph blows up (Sasaki & Dieckmann, 2011). 
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Hence, the number of morphs used to decompose the 
trait distribution will in general depend on the ques-
tion we are interested in. However, the upper bound for 
the number of coexisting morphs will correspond to the 
dimension of the environment, as defined in AD, that 
is the effective number of ecological variables that are 
controlled by the population dynamics and needed to 
describe the effect of the environment on the sign of in-
vasion fitness (Lion & Metz, 2018; Metz et al., 2008; Metz 
& Geritz, 2016; Mylius & Diekmann, 1995). Hence, exist-
ing theory can be used to guide our choice of the num-
ber of morphs. In simple cases, intuition can be used. 
For instance, in a two- habitat or two- resource model in 
a constant environment, it makes sense to start with a 
two- morph decomposition.

Application to data

A key limitation to the application of AD is that there 
is a separation between the theoretical outcomes and 
empirical data. OMD retains the ecological ground-
ing of AD but moves beyond forecasting the long- term 
evolutionary stable states, and yields predictions on the 
dynamics of quantities that can be measured on the 
time scale of an empirical or experimental study, such 
as the mean phenotype in the population, or the heights 
of the different peaks of a multimodal distributions. 
Predictions on the shape and dynamics of the full trait 
distribution understanding variation can also be ob-
tained, which allows for a tighter integration with em-
pirical trait distributions. As a result, we think coupling 
OMD, empirical quantitative genetics, and community 
ecology would represent a fruitful research programme 
with the potential to lead to a much better under-
standing of trait and population dynamics in nature. 
For instance, within the large empirical literature on 
rapid evolutionary processes (De Meester et al.,  2019; 
Ellner, 2013; Hairston Jr et al., 2005; Hendry, 2017; Post 
& Palkovacs, 2009; Thompson, 1998), a major question 
is to quantify how much of the change in an ecologi-
cally relevant variable is due to evolutionary change 
(due to genetic or non- genetic causes) or to ecological 
change (Ellner et al.,  2011; Hairston Jr et al.,  2005). 
OMD could potentially be used to shed light on how 
multimodality and the dynamics of variance may af-
fect the relative magnitude of these two terms. Another 
example of integration with empirical data would come 
from applying OMD to long- term studies of wild popu-
lations often analysed using integral projection mod-
els (Coulson et al., 2017; Ozgul et al., 2010; Simmonds 
et al., 2020), in order to take into account skewed trait 
distributions (Bonamour et al., 2017) or disruptive se-
lection. Robust statistical methods to decompose a 
multimodal distributions into a mixture of unimodal 
distributions are available (McLachlan & Peel,  2000) 
and already used (although not commonly) in functional 

ecology (Laughlin et al., 2014) and quantitative genetics 
(Gianola et al., 2006; Lynch & Walsh, 1998).

CONCLUSIONS

To sum up, we propose that oligomorphic dynamics will 
allow for a better understanding of the role of ecological 
feedbacks, frequency-  and density- dependent selection 
in nature, and has the potential to facilitate a tighter inte-
gration between eco- evolutionary theory and empirical 
data. It is interesting to note that both the oligomorphic 
decomposition and the small morph variance approxi-
mation have been independently introduced in various 
fields over the last 30 years. For instance, they form the 
backbone of trait- based multi- species models in marine 
ecology (Merico et al.,  2014; Wirtz & Eckhardt,  1996) 
and community ecology (Cropp & Norbury,  2021; 
Klauschies et al., 2016, 2018; Norberg et al., 2001, 2012; 
Nordbotten et al.,  2020). In this perspective, we have 
chosen to build on the formalism introduced by Sasaki 
and Dieckmann (2011), which focuses on morph frequen-
cies instead of species abundances and is thus conceptu-
ally better suited to take into account fast evolution due 
to rapid changes in morph frequencies. However, a major 
objective for future research would be to tighten the in-
tegration between this framework, community ecology 
theory and ecological QG methods. Although we have 
focused on relatively simple ecological models for didac-
tical purposes, we also think that a stimulating research 
direction, at the interface between theory and experi-
ments, would be to use OMD to investigate how complex 
ecological dynamics, such as predator– prey cycles or 
non- equilibrium dynamics, can be affected by relatively 
rapid evolutionary processes, and how genetic variation 
impacts the speed and outcome of population dynamical 
processes, notably extinction risk and evolutionary res-
cue (Bolnick et al., 2011; Gonzalez et al., 2013; Yoshida 
et al., 2007). On the technical side, there is a deep interest 
in the rigorous mathematical justifications of the oligo-
morphic decomposition and small variance approxima-
tion in the mathematical community (see e.g. Mirrahimi 
& Gandon,  2020; Dekens et al.,  2021; Champagnat 
et al., 2022), which paves the way for further theoretical 
developments.

Hence, there is a large body of theory on which to 
build to further develop OMD, with the triple ambition 
of working towards an improved theoretical synthesis 
between ecology and evolution, a better integration be-
tween theory, experiments and empirical studies, and a 
better communication between theoretical schools. At a 
technical level, OMD moves the field on by relaxing the 
assumptions of unimodal trait distributions (typical of 
QG models), and of negligible within- morph variance 
and rare mutations (used in AD). At a biological level, 
we think OMD can be used to better understand the 
feedback between ecological processes and the evolution 
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and maintenance of diversity, as well as the interplay be-
tween ecological and evolutionary dynamics across po-
tentially overlapping time scales.

AU T HOR CON TR I BU T IONS
Sébastien Lion, Akira Sasaki and Mike Boots conceived 
the study. Mike Boots, then Sébastien Lion, wrote the 
first draft of the manuscript. All authors contributed 
substantially to revisions. Sébastien Lion performed 
modelling work, numerical simulations and figures.

ACK NO W LE DGE M EN TS
We thank three anonymous reviewers for very helpful and 
insightful comments and suggestions. This study was sup-
ported by ANR JCJC grant ANR- 16- CE35- 0012- 01 to SL, 
grants NIH/R01 GM122061- 03 and NSF- DEB- 2011109 
to MB, MEXT grant JP- 24115001 to AS, and the ESB 
Cooperation Program, The Graduate University for 
Advanced Studies, SOKENDAI. This publication is 
funded in part by the Gordon and Betty Moore Foundation 
through grant GBMF10578 to MB. This work was initiated 
during a visit by SL and MB to SOKENDAI in January 
2019. SL also wishes to acknowledge B. Duthie, L. Govaert, 
V. Luque, K. Lyberger and S. Patel for stimulating discus-
sions while writing the first draft of the manuscript.

DATA AVA I LA BI LI T Y STAT EM EN T
Codes used to run numerical simulations and gen-
erate figures are available at https://doi.org/10.5281/
zenodo.7583745.

ORCI D
Sébastien Lion   https://orcid.org/0000-0002-4081-0038 
Akira Sasaki   https://orcid.org/0000-0003-3582-5865 
Mike Boots   https://orcid.org/0000-0003-3763-6136 

R E F ER E NC E S
Abrams, P.A. (2001) Modelling the adaptive dynamics of traits in-

volved in inter-  and intraspecific interactions: an assessment 
of three methods. Ecology Letters, 4, 166– 175. Available from: 
https://doi.org/10.1046/j.1461- 0248.2001.00199.x

Abrams, P.A., Matsuda, H. & Harada, Y. (1993) Evolutionarily un-
stable fitness maxima and stable fitness minima of continuous 
traits. Evolutionary Ecology, 7, 465– 487.

Anderson, B., Alxandersson, R. & Johnson, S.D. (2009) Evolution 
and coexistence of pollination ecotypes in an African Gladiolus 
(Iridaceae). Evolution, 64, 960– 972. Available from: https://doi.
org/10.1111/j.1558- 5646.2009.00880.x

Barabás, G. & D'Andrea, R. (2016) The effect of intraspecific variation 
and heritability on community pattern and robustness. Ecology 
Letters, 19, 977– 986. Available from: https://doi.org/10.1111/
ele.12636

Barabás, G., Parent, C., Kraemer, A., Van de Perre, F. & De 
Laender, F. (2022) The evolution of trait variance creates a 
tension between species diversity and functional diversity. 
Nature Communications, 13, 2521. Available from: https://doi.
org/10.1038/s4146 7- 022- 30090 - 4

Barfield, M., Holt, R.D. & Gomulkiewicz, R. (2011) Evolution in 
stage- structured populations. The American Naturalist, 177, 
397– 409. Available from: https://doi.org/10.1086/658903

Barrett, R.D.H. & Schluter, D. (2008) Adaptation from standing 
genetic variation. Trends in Ecology & Evolution, 23, 38– 44. 
Available from: https://doi.org/10.1016/j.tree.2007.09.008

Barton, N.H. & Turelli, M. (1987) Adaptive landscapes, genetic dis-
tance and the evolution of quantitative characters. Genetical 
Research, 49, 157– 173. Available from: https://doi.org/10.1017/
S0016 67230 0026951

Bassar, R.D., Coulson, T., Travis, J. & Reznick, D.N. (2021) Towards 
a more precise— and accurate— view of eco- evolution. Ecology 
Letters, 24, 623– 625. Available from: https://doi.org/10.1111/
ele.13712

Bolnick, D.I., Amarasekare, P., Araújo, M.S., Bürger, R., Levine, 
J.M., Novak, M. et al. (2011) Why intraspecific trait variation 
matters in community ecology. Trends in Ecology & Evolution, 
26, 183– 192. Available from: https://doi.org/10.1016/j.tree.2011. 
01.009

Bonamour, S., Teplitsky, C., Charmantier, A., Crochet, P.A. & 
Chevin, L.M. (2017) Selection on skewed characters and the par-
adox of stasis. Evolution, 71, 2703– 2713. Available from: https://
doi.org/10.1111/evo.13368

Bulmer, M. (1974) Density- dependent selection and character dis-
placement. The American Naturalist, 108, 45– 58.

Bulmer, M.G. (1971) The effect of selection on genetic variability. The 
American Naturalist, 105, 201– 211.

Bürger, R. (1991) Moments, cumulants, and polygenic dynamics. 
Journal of Mathematical Biology, 30, 199– 213. Available from: 
https://doi.org/10.1007/BF001 60336

Caswell, H. (2001) Matrix population models: construction, analysis, 
and interpretation. Sunderland, MA: Sinauer Associates.

Champagnat, N., Ferrière, R. & Méléard, S. (2006) Unifying evolu-
tionary dynamics: from individual stochastic processes to mac-
roscopic models. Theoretical Population Biology, 69, 297– 321. 
Available from: https://doi.org/10.1016/j.tpb.2005.10.004

Champagnat, N., Méléard, S., Mirrahimi, S. & Tran, C.V. (2022) 
Filling the gap between individual- based evolutionary models 
and Hamilton- Jacobi equations. arXiv. https://doi.org/10.48550/ 
ARXIV.2205.00770

Charlesworth, B. (1971) Selection in density- regulated populations. 
Ecology, 52, 469– 474.

Charlesworth, B. (1994) Evolution in age- structured populations. 
Cambridge, UK: Cambridge University Press.

Chevin, L.- M. (2013) Genetic constraints on adaptation to a changing 
environment. Evolution, 67, 708– 721. Available from: https://doi.
org/10.1111/j.1558- 5646.2012.01809.x

Chevin, L.- M., Cotto, O. & Ashander, J. (2017) Stochastic evolution-
ary demography under a fluctuating optimum phenotype. The 
American Naturalist, 190, 786– 802. Available from: https://doi.
org/10.1086/694121

Childs, D.Z., Sheldon, B.C. & Rees, M. (2016) The evolution of la-
bile traits in sex-  and age- structured populations. The Journal 
of Animal Ecology, 85, 329– 342. Available from: https://doi.
org/10.1111/1365- 2656.12483

Chitty, D. (1967) The natural selection of self- regulatory behavior 
innatural populations. Proceedings of the Ecological Society of 
Australia, 2, 51– 78.

Clarke, B. (1972) Density- dependent selection. The American Naturalist, 
106, 1– 13. Available from: https://doi.org/10.1086/282747

Cortez, M.H. (2016) How the magnitude of prey genetic varia-
tion alters predator- prey eco- evolutionary dynamics. The 
American Naturalist, 188, 329– 341. Available from: https://doi.
org/10.1086/687393

Cortez, M.H. (2018) Genetic variation determines which feedbacks 
drive and alter predator- prey eco- evolutionary cycles. Ecological 
Monographs, 88, 353– 371. Available from: https://doi.org/10.1002/
ecm.1304

Cortez, M.H. & Ellner, S.P. (2010) Understanding the effects of 
rapid evolution on predator– prey interactions using the theory 

 14610248, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14183 by C

ochrane France, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.7583745
https://doi.org/10.5281/zenodo.7583745
https://orcid.org/0000-0002-4081-0038
https://orcid.org/0000-0002-4081-0038
https://orcid.org/0000-0003-3582-5865
https://orcid.org/0000-0003-3582-5865
https://orcid.org/0000-0003-3763-6136
https://orcid.org/0000-0003-3763-6136
https://doi.org/10.1046/j.1461-0248.2001.00199.x
https://doi.org/10.1111/j.1558-5646.2009.00880.x
https://doi.org/10.1111/j.1558-5646.2009.00880.x
https://doi.org/10.1111/ele.12636
https://doi.org/10.1111/ele.12636
https://doi.org/10.1038/s41467-022-30090-4
https://doi.org/10.1038/s41467-022-30090-4
https://doi.org/10.1086/658903
https://doi.org/10.1016/j.tree.2007.09.008
https://doi.org/10.1017/S0016672300026951
https://doi.org/10.1017/S0016672300026951
https://doi.org/10.1111/ele.13712
https://doi.org/10.1111/ele.13712
https://doi.org/10.1016/j.tree.2011.01.009
https://doi.org/10.1016/j.tree.2011.01.009
https://doi.org/10.1111/evo.13368
https://doi.org/10.1111/evo.13368
https://doi.org/10.1007/BF00160336
https://doi.org/10.1016/j.tpb.2005.10.004
https://doi.org/10.48550/ARXIV.2205.00770
https://doi.org/10.48550/ARXIV.2205.00770
https://doi.org/10.1111/j.1558-5646.2012.01809.x
https://doi.org/10.1111/j.1558-5646.2012.01809.x
https://doi.org/10.1086/694121
https://doi.org/10.1086/694121
https://doi.org/10.1111/1365-2656.12483
https://doi.org/10.1111/1365-2656.12483
https://doi.org/10.1086/282747
https://doi.org/10.1086/687393
https://doi.org/10.1086/687393
https://doi.org/10.1002/ecm.1304
https://doi.org/10.1002/ecm.1304


   | 21LION et al.

of fast- slow dynamical systems. The American Naturalist, 176, 
E109– E127.

Cortez, M.H. & Weitz, J.S. (2014) Coevolution can reverse predator- 
prey cycles. Proceedings of the National Academy of Sciences of 
the United States of America, 111, 7486– 7491. Available from: 
https://doi.org/10.1073/pnas.13176 93111

Coulson, T., Kendall, B., Barthold, J., Plard, F., Schindler, S., 
Ozgul, A. et al. (2017) Modeling adaptive and nonadap-
tive responses of populations to environmental change. The 
American Naturalist, 190, 313– 336. Available from: https://doi.
org/10.1086/692542

Coulson, T. & Tuljapurkar, S. (2008) The dynamics of a quantitative 
trait in an age- structured population living in a variable environ-
ment. The American Naturalist, 172, 599– 612.

Cropp, R. & Norbury, J. (2021) The eco- evolutionary modelling of 
populations and their traits using a measure of trait differentia-
tion. Journal of Theoretical Biology, 531, 110893. Available from: 
https://doi.org/10.1016/j.jtbi.2021.110893

Day, T. (2005) Modeling the ecological context of evolutionary 
change: déjà vu or something new? In: Cuddington, K. & 
Beisnet, B.E. (Eds.) Ecological paradigms lost: routes to theory 
change. Burlington, MA: Academic Press.

Day, T. & Gandon, S. (2007) Applying population- genetic models in the-
oretical evolutionary epidemiology. Ecology Letters, 10, 876– 888. 
Available from: https://doi.org/10.1111/j.1461- 0248.2007.01091.x

Day, T. & Proulx, S.R. (2004) A general theory for the evolutionary 
dynamics of virulence. The American Naturalist, 163, E40– E63. 
Available from: https://doi.org/10.1086/382548

De Meester, L., Brans, K.I., Govaert, L., Souffreau, C., Mukherjee, S., 
Vanvelk, H. et al. (2019) Analysing eco- evolutionary dynamics— 
the challenging complexity of the real world. Functional Ecology, 
33, 43– 59. Available from: https://doi.org/10.1111/1365- 2435.13261

Débarre, F., Nuismer, S.L. & Doebeli, M. (2014) Multidimensional 
(co)evolutionary stability. The American Naturalist, 184, 158– 171. 
Available from: https://doi.org/10.1086/677137

Débarre, F. & Otto, S.P. (2016) Evolutionary dynamics of a quantita-
tive trait in a finite asexual population. Theoretical Population 
Biology, 108, 75– 88. Available from: https://doi.org/10.1016/j.
tpb.2015.12.002

Débarre, F., Ronce, O. & Gandon, S. (2013) Quantifying the effects 
of migration and mutation on adaptation and demography in 
spatially heterogeneous environments. Journal of Evolutionary 
Biology, 26, 1185– 1202. Available from: https://doi.org/10.1111/
jeb.12132

Débarre, F., Yeaman, S. & Guillaume, F. (2015) Evolution of quantita-
tive traits under a migration- selection balance: when does skew 
matter? The American Naturalist, 186, S37– S47. Available from: 
https://doi.org/10.1086/681717

Dekens, L., Otto, S.P. & Calvez, V. (2021) The best of both worlds: 
combining population genetic and quantitative genetic models. 
arXiv. https://doi.org/10.48550/ ARXIV.2111.11142

Dercole, F. & Rinaldi, S. (2008) Analysis of evolutionary processes. 
Princeton, NJ: Princeton University Press.

Dieckmann, U. & Law, R. (1996) The dynamical theory of coevolu-
tion: a derivation from stochastic ecological processes. Journal 
of Mathematical Biology, 34, 579– 612. Available from: https://
doi.org/10.1007/BF024 09751

Doebeli, M., Blok, H.J., Leimar, O. & Dieckmann, U. (2007) 
Multimodal pattern formation in phenotype distributions of sex-
ual populations. Proceedings of the Royal Society B, 274, 347– 357. 
Available from: https://doi.org/10.1098/rspb.2006.3725

Duffy, M.A., Brassil, C.E., Hall, S.R., Tessier, A.J., Cáceres, C.E. & 
Conner, J.K. (2008) Parasite- mediated disruptive selection in a 
natural daphnia population. BMC Evolutionary Biology, 8, 80. 
Available from: https://doi.org/10.1186/1471- 2148- 8- 80

Durinx, M., Metz, J.A.J. & Meszéna, G. (2008) Adaptive dynamics 
for physiologically structured populations models. Journal of 

Mathematical Biology, 56, 673– 742. Available from: https://doi.
org/10.1007/s0028 5- 007- 0134- 2

Ellner, S.P. (2013) Rapid evolution: from genes to communities, and 
back again? Functional Ecology, 27, 1087– 1099. Available from: 
https://doi.org/10.1111/1365- 2435.12174

Ellner, S.P., Geber, M.A. & Hairston, N.G., Jr. (2011) Does rapid evo-
lution matter? Measuring the rate of contemporary evolution and 
its impacts on ecological dynamics. Ecology Letters, 14, 603– 614. 
Available from: https://doi.org/10.1111/j.1461- 0248.2011.01616.x

Emlen, D.J. (1994) Environmental control of horn length dimor-
phism in the beetle Onthophagus acuminatus (Coleoptera: 
Scarabaeidae). Proceedings of the Royal Society B, 256, 131– 136. 
Available from: https://doi.org/10.1098/rspb.1994.0060

Falconer, D.S. (1960) Introduction to quantitative genetics. New York: 
Ronald.

Ferrière, R. & Legendre, S. (2013) Eco- evolutionary feedbacks, adap-
tive dynamics and evolutionary rescue theory. Philosophical 
Transactions of the Royal Society B, 368, 20120081. Available 
from: https://doi.org/10.1098/rstb.2012.0081

Fussmann, G.F., Loreau, M. & Abrams, P.A. (2007) Eco- 
evolutionary dynamics of communities and ecosystems. 
Functional Ecology, 21, 465– 477. Available from: https://doi.
org/10.1111/j.1365- 2435.2007.01275.x

Geritz, S.A.H., Kisdi, E., Meszéna, G. & Metz, J.A.J. (1998) 
Evolutionarily singular strategies and the adaptive growth and 
branching of the evolutionary tree. Evolutionary Ecology, 12, 35– 
57. Available from: https://doi.org/10.1023/A:10065 54906681

Gianola, D., Heringstad, B. & Odegaard, J. (2006) On the quantita-
tive genetics of mixture characters. Genetics, 173, 2247– 2255. 
Available from: https://doi.org/10.1534/genet ics.105.054197

Gonzalez, A., Ronce, O., Ferrière, R. & Hochberg, M.E. (2013) 
Evolutionary rescue: an emerging focus at the intersection be-
tween ecology and evolution. Philosophical Transactions of the 
Royal Society B, 368, 20120404. Available from: https://doi.
org/10.1098/rstb.2012.0404

Govaert, L., Altermatt, F., De Meester, L., Leibold, M.A., McPeek, 
M.A., Pantel, J.H. et al. (2021) Integrating fundamental pro-
cesses to understand eco- evolutionary community dynamics 
and patterns. Functional Ecology, 35, 2138– 2155. Available from: 
https://doi.org/10.1111/1365- 2435.13880

Govaert, L., Fronhofer, E.A., Lion, S., Eizaguirre, C., Bonte, D., Egas, 
M. et al. (2019) Eco- evolutionary feedbacks— theoretical models 
and perspectives. Functional Ecology, 33, 13– 30. Available from: 
https://doi.org/10.1111/1365- 2435.13241

Hairston, N.G., Jr., Ellner, S.P., Geber, M.A., Yoshida, T. & Fox, J.A. 
(2005) Rapid evolution and the convergence of ecological and 
evolutionary time. Ecology Letters, 8, 1114– 1127. Available from: 
https://doi.org/10.1111/j.1461- 0248.2005.00812.x

Heino, M., Metz, J.A.J. & Kaitala, V. (1998) The enigma of frequency- 
dependent selection. Trends in Ecology & Evolution, 13, 367– 370. 
Available from: https://doi.org/10.1016/S0169 - 5347(98)01380 - 9

Hendry, A.P. (2017) Eco- evolutionary dynamics. Princeton, NJ: 
Princeton University Press.

Holt, R.D. & Gomulkiewicz, R. (1997) How does immigration influ-
ence local adaptation? A reexamination of a familiar paradigm. 
The American Naturalist, 149, 563– 572. Available from: https://
doi.org/10.1086/286005

Hutchinson, G.E. (1965) The ecological theatre and the evolutionary 
play. New Haven, CT, USA: Yale University Press.

Iwasa, Y., Pomiankowski, A. & Nee, S. (1991) The evolution of costly 
mate preferences: II the “handicap” principle. Evolution, 45, 
1431– 1442.

Jansen, V.A.A. & Mulder, G. (1999) Evolving biodiversity. 
Ecology Letters, 2, 379– 386. Available from: https://doi.
org/10.1046/j.1461- 0248.1999.00100.x

Johnson, M.T. & Stinchcombe, J.R. (2007) An emerging synthesis be-
tween community ecology and evolutionary biology. Trends in 

 14610248, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14183 by C

ochrane France, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1073/pnas.1317693111
https://doi.org/10.1086/692542
https://doi.org/10.1086/692542
https://doi.org/10.1016/j.jtbi.2021.110893
https://doi.org/10.1111/j.1461-0248.2007.01091.x
https://doi.org/10.1086/382548
https://doi.org/10.1111/1365-2435.13261
https://doi.org/10.1086/677137
https://doi.org/10.1016/j.tpb.2015.12.002
https://doi.org/10.1016/j.tpb.2015.12.002
https://doi.org/10.1111/jeb.12132
https://doi.org/10.1111/jeb.12132
https://doi.org/10.1086/681717
https://doi.org/10.48550/ARXIV.2111.11142
https://doi.org/10.1007/BF02409751
https://doi.org/10.1007/BF02409751
https://doi.org/10.1098/rspb.2006.3725
https://doi.org/10.1186/1471-2148-8-80
https://doi.org/10.1007/s00285-007-0134-2
https://doi.org/10.1007/s00285-007-0134-2
https://doi.org/10.1111/1365-2435.12174
https://doi.org/10.1111/j.1461-0248.2011.01616.x
https://doi.org/10.1098/rspb.1994.0060
https://doi.org/10.1098/rstb.2012.0081
https://doi.org/10.1111/j.1365-2435.2007.01275.x
https://doi.org/10.1111/j.1365-2435.2007.01275.x
https://doi.org/10.1023/A:1006554906681
https://doi.org/10.1534/genetics.105.054197
https://doi.org/10.1098/rstb.2012.0404
https://doi.org/10.1098/rstb.2012.0404
https://doi.org/10.1111/1365-2435.13880
https://doi.org/10.1111/1365-2435.13241
https://doi.org/10.1111/j.1461-0248.2005.00812.x
https://doi.org/10.1016/S0169-5347(98)01380-9
https://doi.org/10.1086/286005
https://doi.org/10.1086/286005
https://doi.org/10.1046/j.1461-0248.1999.00100.x
https://doi.org/10.1046/j.1461-0248.1999.00100.x


22 |   OLIGOMORPHIC DYNAMICS FOR ECO- EVO

Ecology & Evolution, 22, 250– 257. Available from: https://doi.
org/10.1016/j.tree.2007.01.014

Kimura, M. (1965) A stochastic model concerning the maintenance 
of genetic variability in quantitative characters. Proceedings 
of the National Academy of Sciences of the United States of 
America, 54, 732– 736. Available from: https://doi.org/10.1073/
pnas.54.3.731

Kirkpatrick, M. & Barton, N.H. (1997) Evolution of a species' range. 
The American Naturalist, 150, 1– 23. Available from: https://doi.
org/10.1086/286054

Kisdi, E. (1999) Evolutionary branching under asymmetric compe-
tition. Journal of Theoretical Biology, 197, 149– 162. Available 
from: https://doi.org/10.1006/jtbi.1998.0864

Klauschies, T., Coutinho, R.M. & Gaedke, U. (2018) A beta 
distribution- based moment closure enhances the reliability 
of trait- based aggregate models for natural populations and 
communities. Ecological Modelling, 381, 46– 77. Available from: 
https://doi.org/10.1016/j.ecolm odel.2018.02.001

Klauschies, T., Vasseur, D.A. & Gaedke, U. (2016) Trait adaptation 
promotes species coexistence in diverse predator and prey com-
munities. Ecology and Evolution, 6, 4141– 4159. Available from: 
https://doi.org/10.1002/ece3.2172

Klausmeier, C.A., Kremer, C.T. & Koffel, T. (2020) Trait- based ecolog-
ical and eco- evolutionary theory. In: Theoretical ecology: concepts 
and applications. Oxford, UK: Oxford University Press, pp. 161– 194. 
Available from: https://doi.org/10.1093/oso/97801 98824 282.003.0011

Kopp, M. & Matuszewski, S. (2014) Rapid evolution of quantitative 
traits: theoretical perspectives. Evolutionary Applications, 7, 169– 
191. Available from: https://doi.org/10.1111/eva.12127

Kremer, C.T. & Klausmeier, C.A. (2013) Coexistence in a variable en-
vironment: eco- evolutionary perspectives. Journal of Theoretical 
Biology, 339, 14– 25. Available from: https://doi.org/10.1016/j.
jtbi.2013.05.005

Kruuk, L.E., Slate, J. & Wilson, A.J. (2018) New answers for old ques-
tions: the evolutionary quantitative genetics of wild animal pop-
ulations. Annual Review of Ecology, Evolution, and Systematics, 
39, 525– 548.

Lande, R. (1975) The maintenance of genetic variability by mutation 
in a polygenic character with linked loci. Genetical Research, 
26, 221– 235. Available from: https://doi.org/10.1017/S0016 67230 
0016037

Lande, R. (1976) Natural selection and random genetic drift in pheno-
typic evolution. Evolution, 30, 314– 334.

Lande, R. (1979) Quantitative genetic analysis of multivariate evolu-
tion, applied to brain- body size allometry. Evolution, 33, 402– 416.

Lande, R. (1982) A quantitative genetic theory of life history evolu-
tion. Ecology, 63, 607– 615.

Lande, R. & Arnold, S.J. (1983) The measurement of selection on cor-
related characters. Evolution, 37, 1210– 1226.

Lande, R., Engen, S. & Saether, B.- E. (2003) Stochastic population 
dynamics in ecology and conservation. Oxford, UK: Oxford 
University Press.

Lande, R. & Shannon, S. (1996) The role of genetic variation in ad-
aptation and population persistence in a changing environment. 
Evolution, 50, 434– 437. Available from: https://doi.org/10.1111/
j.1558- 5646.1996.tb045 04.x

Laughlin, D.C., Joshi, C., Richardson, S.J., Peltzer, D.A., Mason, 
N.W. & Wardle, D.A. (2014) Quantifying multimodal trait dis-
tributions improves trait- based predictions of species abun-
dances and functional diversity. Journal of Vegetation Science, 
26, 46– 57. Available from: https://doi.org/10.1111/jvs.12219

Lehmann, L., Mullon, C., Akçay, E. & Van Cleve, J. (2016) Invasion 
fitness, inclusive fitness, and reproductive numbers in hetero-
geneous populations. Evolution, 70, 1689– 1702. Available from: 
https://doi.org/10.1111/evo.12980

Lehmann, L. & Rousset, F. (2014) The genetical theory of social be-
haviour. Philosophical Transactions of the Royal Society B, 369, 
20130357. Available from: https://doi.org/10.1098/rstb.2013.0357

Lenormand, T., Roze, D. & Rousset, F. (2009) Stochasticity in evolu-
tion. Trends in Ecology & Evolution, 24, 157– 165. Available from: 
https://doi.org/10.1016/j.tree.2008.09.014

Lenski, R.E. & May, R.M. (1994) The evolution of virulence in para-
sites and pathogens: reconciliation between two competing hy-
potheses. Journal of Theoretical Biology, 169, 253– 265.

Lion, S. (2018) Theoretical approaches in evolutionary ecol-
ogy: environmental feedback as a unifying perspective. The 
American Naturalist, 191, 21– 44. Available from: https://doi.
org/10.1086/694865

Lion, S., Boots, M. & Sasaki, A. (2022) Multi- morph eco- evolutionary 
dynamics in structured populations. The American Naturalist, 
200, 345– 372. Available from: https://doi.org/10.1086/720439

Lion, S. & Metz, J.A.J. (2018) Beyond R0 maximisation: on patho-
gen evolution and environmental dimensions. Trends in Ecology 
& Evolution, 33, 75– 90. Available from: https://doi.org/10.1016/j.
tree.2018.02.004

Lynch, M. & Walsh, B. (1998) Genetics and analysis of quantitative 
traits. Sunderland, MA: Sinauer.

McLachlan, G. & Peel, D. (2000) Finite mixture models. New York, 
NY: John Wiley & Sons.

McPeek, M.A. (2017) The ecological dynamics of natural selec-
tion: traits and the coevolution of community structure. The 
American Naturalist, 189, E91– E117. Available from: https://doi.
org/10.1086/691101

Méléard, S. (2011) Random modeling of adaptive dynamics and evo-
lutionary branching. In: Chalub, F.A.C.C. & Rodrigues, J.R. 
(Eds.) The mathematics of Darwin's legacy. Basel: Birkhäuser, 
Springer, pp. 175– 192.

Merico, A., Brandt, G., Smith, S.L. & Oliver, M. (2014) Sustaining 
diversity in trait- based models of phytoplankton communities. 
Frontiers in Ecology and Evolution, 2, 59. Available from: https://
doi.org/10.3389/fevo.2014.00059

Metz, J.A. & Geritz, S.A. (2016) Frequency dependence 3.0: an at-
tempt at codifying the evolutionary ecology perspective. Journal 
of Mathematical Biology, 72, 1011– 1037. Available from: https://
doi.org/10.1007/s0028 5- 015- 0956- 2

Metz, J.A.J. (2011) Thoughts on the geometry of meso- evolution: col-
lecting mathematical elements for a postmodern synthesis. In: 
Chalub, F.A.C.C. & Rodrigues, J.R. (Eds.) The mathematics of 
Darwin's legacy. Basel: Birkhäuser, Springer, pp. 193– 231.

Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A. & van 
Heerwaarden, J.S. (1996) Adaptive dynamics: a geometrical 
study of the consequences of nearly faithful reproduction. In: van 
Strien, S.J. & Verduyn Lunel, S.M. (Eds.) Stochastic and spatial 
structures of dynamical systems. Amsterdam, The Netherlands: 
North- Holland, pp. 183– 231.

Metz, J.A.J., Mylius, S.D. & Diekmann, O. (2008) When does evolu-
tion optimize? Evolutionary Ecology Research, 10, 629– 654.

Metz, J.A.J., Nisbet, R.M. & Geritz, S.A.H. (1992) How should we 
define ‘fitness’ for general ecological scenarios? Trends in 
Ecology & Evolution, 7, 198– 202. Available from: https://doi.
org/10.1016/0169- 5347(92)90073 - K

Mirrahimi, S. & Gandon, S. (2020) Evolution of specialization in 
heterogeneous environments: equilibrium between selection, 
mutation and migration. Genetics, 214, 479– 491. Available from: 
https://doi.org/10.1534/genet ics.119.302868

Mougi, A. & Iwasa, Y. (2010) Evolution towards oscillation or stability 
in a predator- prey system. Proceedings of the Royal Society B, 277, 
3163– 3171. Available from: https://doi.org/10.1098/rspb.2010.0691

Mullon, C. & Lehmann, L. (2019) An evolutionary quantitative genet-
ics model for phenotypic (co)variances under limited dispersal, 
with an application to socially synergistic traits. Evolution, 73, 
1695– 1728. Available from: https://doi.org/10.1111/evo.13803

Mylius, S.D. & Diekmann, O. (1995) On evolutionarily stable life 
histories, optimization and the need to be specific about den-
sity dependence. Oikos, 74, 218– 224. Available from: https://doi.
org/10.2307/3545651

 14610248, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14183 by C

ochrane France, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.tree.2007.01.014
https://doi.org/10.1016/j.tree.2007.01.014
https://doi.org/10.1073/pnas.54.3.731
https://doi.org/10.1073/pnas.54.3.731
https://doi.org/10.1086/286054
https://doi.org/10.1086/286054
https://doi.org/10.1006/jtbi.1998.0864
https://doi.org/10.1016/j.ecolmodel.2018.02.001
https://doi.org/10.1002/ece3.2172
https://doi.org/10.1093/oso/9780198824282.003.0011
https://doi.org/10.1111/eva.12127
https://doi.org/10.1016/j.jtbi.2013.05.005
https://doi.org/10.1016/j.jtbi.2013.05.005
https://doi.org/10.1017/S0016672300016037
https://doi.org/10.1017/S0016672300016037
https://doi.org/10.1111/j.1558-5646.1996.tb04504.x
https://doi.org/10.1111/j.1558-5646.1996.tb04504.x
https://doi.org/10.1111/jvs.12219
https://doi.org/10.1111/evo.12980
https://doi.org/10.1098/rstb.2013.0357
https://doi.org/10.1016/j.tree.2008.09.014
https://doi.org/10.1086/694865
https://doi.org/10.1086/694865
https://doi.org/10.1086/720439
https://doi.org/10.1016/j.tree.2018.02.004
https://doi.org/10.1016/j.tree.2018.02.004
https://doi.org/10.1086/691101
https://doi.org/10.1086/691101
https://doi.org/10.3389/fevo.2014.00059
https://doi.org/10.3389/fevo.2014.00059
https://doi.org/10.1007/s00285-015-0956-2
https://doi.org/10.1007/s00285-015-0956-2
https://doi.org/10.1016/0169-5347(92)90073-K
https://doi.org/10.1016/0169-5347(92)90073-K
https://doi.org/10.1534/genetics.119.302868
https://doi.org/10.1098/rspb.2010.0691
https://doi.org/10.1111/evo.13803
https://doi.org/10.2307/3545651
https://doi.org/10.2307/3545651


   | 23LION et al.

Norberg, J., Swaney, D.P., Dushoff, J., Lin, J., Casagrandi, R. & 
Levin, S.A. (2001) Phenotypic diversity and ecosystem func-
tioning in changing environments: a theoretical framework. 
Proceedings of the National Academy of Sciences of the United 
States of America, 98, 11376– 11381. Available from: https://doi.
org/10.1073/pnas.17131 5998

Norberg, J., Urban, M.C., Vellend, M., Klausmeier, C.A. & Loeuille, 
N. (2012) Eco- evolutionary responses of biodiversity to climate 
change. Nature Climate Change, 2, 747– 751. Available from: 
https://doi.org/10.1038/nclim ate1588

Nordbotten, J.M., Bokma, F., Hermansen, J.S. & Stenseth, N.C. 
(2020) The dynamics of trait variance in multi- species commu-
nities. Royal Society Open Science, 7, 200321. Available from: 
https://doi.org/10.1098/rsos.200321

Ozgul, A., Childs, D.Z., Oli, M.K., Armitage, K.B., Blumstein, 
D.T., Olson, L.E. et al. (2010) Coupled dynamics of body mass 
and population growth in response to environmental change. 
Nature, 466, 482– 485. Available from: https://doi.org/10.1038/
natur e09210

Ozgul, A.O., Tuljapurkar, S., Benton, T.G., Pemberton, J.M., 
Clutton- Brock, T.H. & Coulson, T. (2009) The dynamics of 
phenotypic change and the shrinking sheep of St. Kilda. 
Science, 325, 464– 467. Available from: https://doi.org/10.1126/
scien ce.1173668

Patel, S. & Bürger, R. (2019) Eco- evolutionary feedbacks between prey 
densities and linkage disequilibrium in the predator maintain 
diversity. Evolution, 73, 1533– 1548. Available from: https://doi.
org/10.1111/evo.13785

Patel, S. & Schreiber, S.J. (2015) Evolutionarily driven shifts in com-
munities with intraguild predation. The American Naturalist, 
186, E98– E110. Available from: https://doi.org/10.1086/683170

Phillips, P.C. & Arnold, S.J. (1989) Visualizing multivariate selection. 
Evolution, 43, 1209– 1222. Available from: https://doi.org/10.1111/
j.1558- 5646.1989.tb025 69.x

Pimentel, D. (1961) Animal population regulation by the genetic feed- 
back mechanism. The American Naturalist, 95, 65– 79.

Post, D.M.P. & Palkovacs, E.P. (2009) Eco- evolutionary feedbacks 
in community and ecosystem ecology: interactions between 
the ecological theatre and the evolutionary play. Philosophical 
Transactions of the Royal Society B, 364, 1629– 1640. Available 
from: https://doi.org/10.1098/rstb.2009.0012

Price, G.R. (1970) Selection and covariance. Nature, 227, 520– 521.
Queller, D.C. (2017) Fundamental theorems of evolution. The 

American Naturalist, 189, 345– 353. Available from: https://doi.
org/10.1086/690937

Rees, M. & Ellner, S.P. (2016) Evolving integral projection models: 
evolutionary demography meets eco- evolutionary dynamics. 
Methods in Ecology and Evolution, 7, 157– 170. Available from: 
https://doi.org/10.1111/2041- 210X.12487

Rice, S.H. (2004) Evolutionary theory. Sunderland, MA: Sinauer 
Associates.

Rinaldi, S. & Scheffer, M. (2000) Geometric analysis of ecological 
models with slow and fast processes. Ecosystems, 3, 507– 521. 
Available from: https://doi.org/10.1007/s1002 10000045

Robertson, A. (1966) A mathematical model of the culling process in 
dairy cattle. Animal Production, 8, 95– 108.

Roughgarden, J. (1971) Density- dependent natural selection. Ecology, 
52, 453– 468.

Roughgarden, J. (1972) Evolution of niche width. The American 
Naturalist, 106, 683– 718.

Roughgarden, J. (1976) Resource partitioning among competing 
species— a coevolutionary approach. Theoretical Population 
Biology, 9, 388– 424.

Rousset, F. (2004) Genetic structure and selection in subdivided popula-
tions. Princeton, NJ: Princeton University Press.

Sasaki, A. & Dieckmann, U. (2011) Oligomorphic dynamics for ana-
lyzing the quantitative genetics of adaptive speciation. Journal of 

Mathematical Biology, 63, 601– 635. Available from: https://doi.
org/10.1007/s0028 5- 010- 0380- 6

Sasaki, A., Lion, S. & Boots, M. (2022) Antigenic escape selects for 
the evolution of higher pathogen transmission and virulence. 
Nature Ecology and Evolution, 6, 51– 62. Available from: https://
doi.org/10.1038/s4155 9- 021- 01603 - z

Schreiber, S.J., Bürger, R. & Bolnick, D.I. (2011) The community 
effects of phenotypic and genetic variation within a predator 
population. Ecology, 92, 1582– 1593. Available from: https://doi.
org/10.1890/10- 2071.1

Simmonds, E.G., Cole, E.F., Sheldon, B.C. & Coulson, T. (2020) 
Testing the effect of quantitative genetic inheritance in struc-
tured models on projections of population dynamics. Oikos, 129, 
559– 571. Available from: https://doi.org/10.1111/oik.06985

Slatkin, M. (1980) Ecological character displacement. Genetics, 61, 
163– 177.

Taper, M.L. & Case, T.J. (1985) Quantitative genetic models for the 
coevolution of character displacement. Ecology, 66, 355– 371.

Taper, M.L. & Case, T.J. (1992) Models of character displacement and 
the theoretical robustness of taxon cycles. Evolution, 46, 317– 333.

Taylor, P.D. & Day, T. (1997) Evolutionary stability under the repli-
cator and the gradient dynamics. Evolutionary Ecology, 11, 579– 
590. Available from: https://doi.org/10.1007/s1068 2- 997- 1513- 2

Taylor, P.D. & Jonker, L.B. (1978) Evolutionary stable strategies and 
game dynamics. Mathematical Biosciences, 40, 145– 156.

Thompson, J.N. (1998) Rapid evolution as an ecological process. 
Trends in Ecology & Evolution, 13, 329– 332. Available from: 
https://doi.org/10.1016/S0169 - 5347(98)01378 - 0

Turelli, M. (1984) Heritable genetic variation via mutation- selection 
balance: Lerch's zeta meets the abdominal bristle. Theoretical 
Population Biology, 25, 138– 193. Available from: https://doi.
org/10.1016/0040- 5809(84)90017 - 0

Turelli, M. & Barton, N.H. (1990) Dynamics of polygenic charac-
ters under selection. Theoretical Population Biology, 38, 1– 57. 
Available from: https://doi.org/10.1016/0040- 5809(90)90002 - D

Turelli, M. & Barton, N.H. (1994) Genetic and statistical analyses of 
strong selection on polygenic traits: what, me normal? Genetics, 
138, 913– 941.

Van Cleve, J. (2015) Social evolution and genetic interactions in the 
short and long term. Theoretical Population Biology, 103, 2– 26. 
Available from: https://doi.org/10.1016/j.tpb.2015.05.002

van Velzen, E., Gaedke, U. & Klauschies, T. (2022) Quantifying 
the capacity for contemporary trait changes to drive intermit-
tent predator– prey cycles. Ecological Monographs, 92, e1505. 
Available from: https://doi.org/10.1002/ecm.1505

Vasseur, D.A., Amarasekare, P., Rudolf, V.H.W. & Levine, J.M. (2011) 
Eco- evolutionary dynamics enable coexistence via neighbor- 
dependent selection. The American Naturalist, 178, E96– E109. 
Available from: https://doi.org/10.1086/662161

Vincent, T., Cohen, Y. & Brown, J.S. (1993) Evolution via strategy dy-
namics. Theoretical Population Biology, 44, 149– 176.

Walsh, B. & Lynch, M. (2018) Evolution and selection of quantitative 
traits. Oxford, UK: Oxford University Press.

Weber, M.G., Wagner, C.E., Best, R.J., Harmon, L.J. & Matthews, 
B. (2017) Evolution in a community context: on integrating eco-
logical interactions and macroevolution. Trends in Ecology & 
Evolution, 32, 291– 304. Available from: https://doi.org/10.1016/j.
tree.2017.01.003

Wickman, J., Koffel, T. & Klausmeier, C.A. (2022) A theoretical 
framework for trait- based eco- evolutionary dynamics: popu-
lation structure, intraspecific variation, and community as-
sembly. The American Naturalist. Available from: https://doi.
org/10.1086/723406

Wirtz, K.- W. & Eckhardt, B. (1996) Effective variables in ecosys-
tem models with an application to phytoplankton succession. 
Ecological Modelling, 92, 33– 53. Available from: https://doi.
org/10.1016/0304- 3800(95)00196 - 4

 14610248, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14183 by C

ochrane France, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1073/pnas.171315998
https://doi.org/10.1073/pnas.171315998
https://doi.org/10.1038/nclimate1588
https://doi.org/10.1098/rsos.200321
https://doi.org/10.1038/nature09210
https://doi.org/10.1038/nature09210
https://doi.org/10.1126/science.1173668
https://doi.org/10.1126/science.1173668
https://doi.org/10.1111/evo.13785
https://doi.org/10.1111/evo.13785
https://doi.org/10.1086/683170
https://doi.org/10.1111/j.1558-5646.1989.tb02569.x
https://doi.org/10.1111/j.1558-5646.1989.tb02569.x
https://doi.org/10.1098/rstb.2009.0012
https://doi.org/10.1086/690937
https://doi.org/10.1086/690937
https://doi.org/10.1111/2041-210X.12487
https://doi.org/10.1007/s100210000045
https://doi.org/10.1007/s00285-010-0380-6
https://doi.org/10.1007/s00285-010-0380-6
https://doi.org/10.1038/s41559-021-01603-z
https://doi.org/10.1038/s41559-021-01603-z
https://doi.org/10.1890/10-2071.1
https://doi.org/10.1890/10-2071.1
https://doi.org/10.1111/oik.06985
https://doi.org/10.1007/s10682-997-1513-2
https://doi.org/10.1016/S0169-5347(98)01378-0
https://doi.org/10.1016/0040-5809(84)90017-0
https://doi.org/10.1016/0040-5809(84)90017-0
https://doi.org/10.1016/0040-5809(90)90002-D
https://doi.org/10.1016/j.tpb.2015.05.002
https://doi.org/10.1002/ecm.1505
https://doi.org/10.1086/662161
https://doi.org/10.1016/j.tree.2017.01.003
https://doi.org/10.1016/j.tree.2017.01.003
https://doi.org/10.1086/723406
https://doi.org/10.1086/723406
https://doi.org/10.1016/0304-3800(95)00196-4
https://doi.org/10.1016/0304-3800(95)00196-4


24 |   OLIGOMORPHIC DYNAMICS FOR ECO- EVO

Yamamichi, M. (2022) How does genetic architecture affect eco- 
evolutionary dynamics? A theoretical perspective. Philosophical 
Transactions of the Royal Society B, 377, 20200504. Available 
from: https://doi.org/10.1098/rstb.2020.0504

Yamamichi, M., Klauschies, T., Miner, B.E. & van Velzen, E. (2019) 
Modelling inducible defences in predator– prey interactions: 
assumptions and dynamical consequences of three distinct ap-
proaches. Ecology Letters, 22, 390– 404. Available from: https://
doi.org/10.1111/ele.13183

Yamamichi, M., Yoshida, T. & Sasaki, A. (2011) Comparing the ef-
fects of rapid evolution and phenotypic plasticity on predator- 
prey dynamics. The American Naturalist, 178, 287– 304. Available 
from: https://doi.org/10.1086/661241

Yeaman, S. & Guillaume, F. (2009) Predicting adaptation under mi-
gration load: the role of genetic skew. Evolution, 63, 2926– 2938. 
Available from: https://doi.org/10.1111/j.1558- 5646.2009.00773.x

Yoshida, T., Ellner, S.P., Jones, L.E., Bohannan, B.J.M., Lenski, R.E. 
& Hairston, N.G., Jr. (2007) Cryptic population dynamics: rapid 
evolution masks trophic interactions. PLoS Biology, 5, e235. 
Available from: https://doi.org/10.1371/journ al.pbio.0050235

SU PPORT I NG I N FOR M AT ION
Additional supporting information can be found online 
in the Supporting Information section at the end of this 
article.

How to cite this article: Lion, S., Sasaki, A. & 
Boots, M. (2023) Extending eco- evolutionary 
theory with oligomorphic dynamics. Ecology 
Letters, 00, 1–25. Available from: https://doi.
org/10.1111/ele.14183

A PPEN DI X 

A: Deriving OMD equations: An overview

In this appendix, we give the key steps used to de-
rive OMD equations. Additional technical details can 
be found in Sasaki and Dieckmann  (2011), Sasaki et 
al. (2022) and Lion et al. (2022). For simplicity, we drop 
any explicit dependency on time and environmental 
feedback, so we will use derivatives instead of partial de-
rivatives with respect to time.

Dynamics of morph frequencies and distributions

To derive the dynamics of morph frequencies and dis-
tributions, we assume that the per- capita growth rate of 
an individual with phenotype z is the same irrespective 
of the morph they belong to. This means that, for any 
morph i, the density ni(z, t) of individuals with phenotype 
z belonging to morph i grows at the same rate as the total 
density of individuals with phenotype z, n(z, t). Noting 
that fi(t)�i(z, t) = ni(z, t)∕n(t) and �(z, t) = n(z, t)∕n(t), 
this leads to the following equalities

which can be rewritten as

where

with r = ∫ r(z)�(z)dz the mean growth rate of the popula-
tion. Using Equation (A.2) and integrating Equation (A.1) 
over z then directly leads to the dynamics of the morph 
frequencies fi

where ri = ∫ r(z)�i(z)dz is the mean growth rate of morph 
i. To obtain the dynamics of the morph distribution, we 
rearrange Equation (A.1) as

Plugging in Equations (A.2) and (A.3), we finally obtain

Dynamics of morph moments

We can then calculate the dynamics of the mean and var-
iance of the morph distribution by multiplying by z and (
z−zi

)2
 respectively and integrating over z. This yields

where the covariances are taken over the morph distribu-
tions �i(z) and �i = z − zi is the deviation from the morph 
mean.

To make further progress, we approximate the covari-
ances in Equations (A.4) with a small morph variance 
approximation which is obtained by Taylor- expanding 
the fitness function near the morph means:

where �i = z − zi is small and O(�). Integrating over the 
morph distribution �i(z) yields the following approxima-
tion for the morph mean growth rate:

1

fi�i(z)

dfi�i(z)

dt
=

1

�(z)

d�(z)

dt

(A.1)
dfi�i(z)

dt
=
fi�i(z)

�(z)

d�(z)

dt
,

(A.2)d�(z)

dt
= [r(z) − r]�(z)

(A.3)
dfi

dt
= fi

(
ri − r

)
,

d�i(z)

dt
=

�i(z)

�(z)

d�(z)

dt
−

�i(z)

fi

dfi

dt
.

d�i(z)

dt
=
[
r(z) − ri

]
�i(z).

(A.4a)
dzi

dt
= Cov

�i
(z, r(z)) = ∫ �i

(
r(z) − ri

)
�i(z)dz,

(A.4b)
dVi

dt
= Cov

�i

((
z−zi

)2
, r(z)

)
= ∫ �2

i

(
r(z) − ri

)
�i(z)dz,

(A.5)r(z) = r
(
zi
)
+ �i

�r

�z

(
zi
)
+

1

2

(
�i
)2 �2r
�z2

(
zi
)
+O

(
�3
)
,
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Equations  (A.5) and (A.6) are then plugged into 
Equations  (A.3) and (A.4) to derive Equations  (9), (10), 
and (11). Note that, in doing so, we use the additional as-
sumption that the morph distributions are symmetrical, 
so that the third central moments ∫

i
(�i)

3 �i(z, t)dz can be 
set to zero. The dynamics of the total density (Equation 8) 
can also be calculated by noting that r =

∑
i firi and using 

Equation (A.6).

Moment closure

The dynamics of morph variance are given by

where i =�2r∕�z2
||
|z=zi

 is the curvature of the fitness 

function at the morph mean, Qi = ∫ (�i)4�i(z, t)dz is the 
fourth central moment of the morph distribution, and 
Ki = Qi ∕V

2
i
 is the kurtosis. Two common moment clo-

sure approximations can then be used to close the sys-
tem. The first is to assume that the morph distribution 
is Gaussian, so that Qi = 3V 2

i
, which implies Ki = 1 and 

leads to

At a genetic level, this assumption can be justified by a 
mutation model with small Gaussian increments (see e.g. 
Barton & Turelli, 1987; Lande, 1975; Turelli, 1984; Walsh & 
Lynch, 2018, chapter 24).

A second approximation is related to the ‘rare alleles 
model’ (Barton & Turelli,  1987) or ‘house- of- cards ap-
proximation’ (Turelli,  1984), which both assume that 
selection is stronger than mutation and leads to a pro-
portionality relationship between the fourth and second 
moments, Qi = �Vi (Barton & Turelli, 1987; Turelli, 1984; 
Walsh & Lynch, 2018, chapter 24). Then, neglecting the 
−V 2

i
 term leads to (Sasaki & Dieckmann, 2011)

If Vi is small, its dynamics are thus expected to be faster 
under this approximation than under the Gaussian closure 
(Barton & Turelli, 1987).

Finally, we note that other authors have also pro-
posed a beta distribution approximation (Cropp & 
Norbury, 2021; Klauschies et al., 2018) that could also be 
particularly interesting to take into account the possibil-
ity of skewed morph distibutions.

(A.6)ri = r
(
zi
)
+

1

2
Vi

�2r

�z2

(
zi
)
+O

(
�3
)
.

dVi

dt
=

1

2

(
Qi −V 2

i

)i +O
(
�5
)
=

1

2
V 2
i

(
Ki − 1

)i +O
(
�5
)
,

dVi

dt
= V 2

i
i .

dVi

dt
=

�

2
Vii .
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