
HAL Id: hal-04239175
https://hal.science/hal-04239175

Submitted on 12 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Max-Entropy Sampling for Deterministic Timed
Automata Under Linear Duration Constraints

Benoît Barbot, Nicolas Basset

To cite this version:
Benoît Barbot, Nicolas Basset. Max-Entropy Sampling for Deterministic Timed Automata Under Lin-
ear Duration Constraints. Qest23, Sep 2023, Antwerp, Belgium, Belgium. pp.188-204, �10.1007/978-
3-031-43835-6_14�. �hal-04239175�

https://hal.science/hal-04239175
https://hal.archives-ouvertes.fr

QEST

Evaluation
Artifact

2023

Accepted

Max-entropy sampling for deterministic timed
automata under linear duration constraints⋆

Benôıt Barbot1 and Nicolas Basset2

1 Univ Paris Est Creteil, LACL, F-94010 Creteil, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG,

38000 Grenoble, France

Abstract. Adding probabilities to timed automata enables one to carry
random simulation of their behaviors and provide answers with statistical
guarantees to problems otherwise untractable. Thus, when just a timed
language is given, the following natural question arises: What probability
should we consider if we have no a priori knowledge except the given
language and the considered length (i.e. number of events) of timed words?
The maximal entropy principle tells us to take the probability measure
that maximises the entropy which is the uniform measure on the language
restricted to timed word of the given length (with such a uniform measure
every timed word has the same chance of being sampled). The uniform
sampling method developed in the last decade provides no control on the
duration of sampled timed words.
In the present article we consider the problem of finding a probability
measure on a timed language maximising the entropy under general
linear constraints on duration and for timed words of a given length. The
solution we provide generalizes to timed languages a well-known result on
probability measure over the real line maximising the Shannon continuous
entropy under linear constraints. After giving our general theorem for
general linear constraints and for general timed languages, we concentrate
to the case when only the mean duration is prescribed (and again when
the length is fixed) for timed languages recognised by deterministic timed
automata. For this latter case, we provide an efficient sampling algorithm
we have implemented and illustrated on several examples.

1 Introduction

Since their introduction in the early 90’s, Timed Automata (TA) are extensively
used to model and verify the behaviors of real-timed systems and thoroughly
explored from a theoretical standpoint. Several lines of research have been
developed to add probabilities to these models. The two main motivations for this
are (i) modelling systems that both exhibit real-time and probabilistic aspects,
for example network protocols where delays are chosen at random to resolve
conflicts, as in CSMA-CD (see e.g. [16,9]); (ii) statistical model checking of TA
with the claim of replacing a prohibitively expensive exhaustive verification of the

⋆ This work was financed by the ANR MAVeriQ (ANR-20-CE25-0012)

system by a thorough random simulation of the TA with statistical guarantees
(see e.g. [11] and reference therein).

For statistical model checking (or any other approach based on statistics) to
make sense, the probability distribution defined on the runs of the TA has to be
clearly given, which is not always the case as pointed in [10,2]. In the present
article we follow a line of research initiated in [6,2] focusing on Deterministic
Timed Automata (DTA), where the aim is to give a constructive answer to the
following question inspired by Jayne’s maximal entropy principle [14]: What
probability should we specify on the runs of a given DTA without any a priori
knowledge? Another aim of this approach, which appears equivalent, is to get
a sampler as uniform as possible of runs of the DTA, that is, a sampler that
gives to runs of the same length the same (density of) probability. The article
[6] was a first theoretical one that dealt with infinite timed words while [2] gave
more pragmatic algorithms and their implementation to sample timed words
of a given finite length. These two probability measures maximize Shannon
continuous entropy adapted to probability measures on finite and infinite timed
words respectively. The algorithms in [2] were later implemented in the tool
Wordgen [5] and applied in the context of validation of CPS by generating
input signals satisfying a specification given as a DTA [4,3]. With this sampling
method, one can choose the length of runs, that is, the number of events occurring
in them, but not their duration.

In Section 3, we propose, as a main contribution, a maximal entropy theorem
for general linear constraints on duration, that is, the expectations (over the timed
words of a DTA of a given length) of some arbitrary constraint functions depending
only on duration are prescribed. We were inspired by a classical maximal entropy
theorem for real-to-real functions and classical Shannon continuous entropy (see
the dedicated chapter of the textbook on information theory [12]). As a second
main contribution we propose in Section 4, a procedure for sampling finite timed
words of fixed length with random duration such that the mean duration is
prescribed. Besides these two main contributions, we introduce, in Section 4, the
key concept of Laplace Transform of Volumes (LTV) which generalizes the volume
functions of [1,2] with an extra parameter. As we will discuss in the conclusion
(Section 6), we think that replacing these previous volume functions by LTVs
can enable us to extend several results by adding a focus on duration. Last but
not least, we implemented our algorithms by extending the tool Wordgen and
in this article we provide several experiments in Section 5, one of which features
a DTA with thousands of control states.

Before exposing our contributions, we recall preliminaries on timed languages
and previous work on max-entropy sampling for DTA in Section 2. Due to space
constraints, we move the proof of our results into an appendix.

2 Preliminaries

In this section, we recall definitions on timed languages, max-entropy probability
measure on them and how to sample them.

2.1 General timed languages and their measure

Let Σ be a finite alphabet of events. A timed letter (t, a) is a couple of R+ ×Σ
where t represents the delay before the event a happens. A timed word w is a
sequence of timed letters. We denote by ε the empty timed word. For the sake
of conciseness we often remove commas and parentheses and write t1a1 · · · tnan
for (t1, a1) · · · (tn, an). Such timed word is called of length n and of duration∑n

i=1 ti denoted by θ(w). A timed language is a set of timed words. The universal
language is the set of all timed words denoted by (R+ × Σ)∗. We are mainly
interested in timed languages recognized by timed automata described in Section
2.2 below but a large part of our theory can be stated for more general timed
language.

For a timed language L and a timed letter ta, we define (ta)−1L the left
derivative of L wrt ta as

(ta)−1L = {w | taw ∈ L}.

Languages can be defined recursively via defining sub-languages [L]n, n ∈ N
which are the restriction to L to words of length n.

[L]n =
⋃
t

⋃
a

(ta).[(ta)−1L]n−1 where the base case is [L]0 = {ϵ} or [L]0 = ∅.

(1)

Example 1. Consider the timed language L = {t1at2a . . . tna | ∀i ≥ 1, ti + ti+1 <
1}. This language satisfy (ta)−1L = {t2a . . . tna | t2 < 1 − t ∧ ti + ti+1 < 1} if
t < 1 and is empty otherwise.

Timed language as a collection of sets of real-vectors Given a timed
language L and n ∈ N, every untimed-word w = a1 · · · an ∈ Σn can be seen as
the label for the set PL(w) = {(t1, . . . , tn) ∈ Rn | t1a1 · · · tnan ∈ L} which is
possibly empty.

In the following we only consider timed language for which every PL(w) is
a measurable set for the Lebesgue measure. In particular we mostly work with
timed language for which every PL(w) is a union of polytopes but our general
theorem applies for the general case of measurable sets.

A polytope in dimension n is a subset of Rn defined as the set of points
whose coordinates satisfy a finite conjunction of linear inequalities, that is, of
the form

∑n
i=1 αiti ≤ β. Note we consider non-necessarily bounded polytope e.g.

{t1, t2 | t1 ≤ 3 ∧ t2 ≥ 1 ∧ t1 + t2 ≥ 3}.

Example 2. The polytopes corresponding to the language of Example 1 are de-
picted below with their respective volumes. Polytopes up to dimension 4 are
displayed. For dimension 4 the projection of the polytope with t1 = 1 is displayed.

polytopes t1

t1

t2

t3

t1

t2

t3

t4

t2

t3 t1 = 1

words ε t1a t1at2a t1at2at3a t1at2at3at4a
volumes 1 1 1

2
1
3

5
24

Integrating a function over a language, volume and entropy Given a
timed language L, n ∈ N and f : Ln → R, a real-valued function defined on Ln,
we use the following notation for the integral of f over Ln.∫

Ln

f(w)dw =
∑

w=a1···an∈Σn

∫
(t1,...,tn)∈PL(w)

f(t1a1 · · · tnan)dt1 · dtn.

When f is non-negative this value is either a non-negative real or +∞. We say
that two functions are equal almost everywhere if the set where they differ is of
null measure, that is,

∫
Ln

1f(w)̸=g(w)dw = 0. In the rest of the paper we will just
see as equals functions that are almost everywhere equals. Similarly when we say
that a function f is a unique solution of a maximisation problem, it means that
all functions almost-everywhere equal to f , and only them, are also a solution of
the problem. These conventions will also apply to functions from R to R.

Volumes For a given n, Ln is the formal union of subsets PL(w) of Rn. The
volume of Ln denoted Vol(Ln) is the sum of volumes of these sets. When one
is infinite then so is Vol(Ln). Equivalently it is just the integral of 1 over Ln:
Vol(Ln) =

∫
Ln

1dw. Volumes can also be characterised recursively by

Vol(∅) = 0,Vol({ε}) = 1, Vol(Ln) =
∑
a∈Σ

∫ ∞

0

Vol([(ta)−1L]n−1)dt. (2)

PDF on timed languages A probability density function (PDF) over Ln is
a function f non-negative for which

∫
Ln

f(w)dw = 1. Given a PDF f , and a

function g defined on Ln, the expected value of g is denoted by Ef (g) and defined
by
∫
Ln

g(w)f(w)dw. We will be mostly interested with the expected duration of

timed words of a given language L and PDF f : Ef (θ) =
∫
Ln

θ(w)f(w)dw.

Entropy of a PDF The entropy of a PDF f on Ln is3

H(f)=Ef (− log2(f)) =−
∫
Ln

f(w) log2 f(w)dw, (3)

This definition is the natural generalisation to timed languages of the Shannon
continuous entropy (aka. Shannon differential entropy) for functions from R to R.
The following max-entropy theorem, tells us that the uniform PDF (used in [2]
for uniform random sampling) is the unique PDF that maximises the entropy.

3 In this definition the usual convention that 0 log2 0 = 1 applies.

Theorem 1. Given a timed language L and n ∈ N such that Vol(Ln) < +∞,
the maximal value of the entropy of a PDF on Ln is log2(Vol(Ln)). It is reached
by a unique PDF on Ln which the uniform PDF on Ln: the constant function
w 7→ 1/Vol(Ln).

This theorem will be a particular case of our main theorem (Theorem 2 of
Section 3) where no constraint is given on duration.

Maximal entropy measure and uniform sampling for general timed
languages Uniform sampling can be defined over general timed languages
based on Eq. (2). Exact sampling in L of a word of length n is performed
iteratively. When n is equal to 0 the sampling stops otherwise the next letter

a ∈ Σ is chosen with probability
∫ ∞
0

Vol([(ta)−1L]n−1)dt

Vol(Ln)
. Next a delay t is sampled4

from the continuous distribution defined by the Probability Density function

t 7→ Vol([(ta)−1L]n−1)∫ ∞
0

Vol([(ta)−1L]n−1)
. Then a timed word of length n− 1 is sampled from the

language (ta)−1L. This scheme needs a practical way of computing PDF which
will be the case for timed languages recognized by deterministic timed automata.

2.2 Languages recognized by DTA and their measures

In this part we restrict our attention to languages recognised by a DTA. For
these languages, we can describe computation of the volume of the language with
recursive equations on the structure of the DTA recognising the language.

q0 q1

a, x < 1, {x}

a, y < 1, {y}

(a) A TA with 2 clocks x and y, 2 states
and 2 transitions. The transitions are
guarded by an upper-bound of 1. This
automaton recognises the language of Ex-
ample 1

q0

q1

q2

a, x < 1, {x}

b, 2 < x, {x}

a, x < 1, {x}

b, 2 < x, {x}

(b) A TA with a single clock recognising
either words in an with delays bounded by
1 or words in bn with delays of at least 2.

Fig. 1: Examples of Deterministic Timed Automata

Timed automata A timed automaton (TA)A is defined as a tuple (Σ,X,Q, q0,F
, ∆) where Σ is a finite set of events; X is a finite set of clocks; Q is a finite set
of locations; q0 is the initial location; F ⊆ Q is a set of final locations; and ∆ is
a finite set of transitions. The finite set of clocks X is a finite set of non-negative

4 One could also sample the delay before the action, this would lead at the end to the
same probability distribution on timed words.

real-valued variables . A guard is a finite conjunction of clock constraints. For a
clock vector x ∈ [0,∞[X and a non-negative real t, we denote by x+ t the vector
x+ (t, . . . , t). A transition δ = (δ−, aδ, gδ, rδ, δ

+) ∈ ∆ has an origin δ− ∈ Q, a
destination δ+ ∈ Q, a label aδ ∈ Σ, a guard gδ and a reset function rδ determined
by a subset of clocks B ⊆ X. To simplify notation r are overloaded to be both
a subset of the clocks set and the function assigning 0 to clocks in the subset.
Fig. 1a depicts a TA with two clocks x and y, two locations q0, q1 which are final
and two transitions. The transition from q0 to q1 is labelled by a is guarded by
x < 1 and reset x while the transition from q1 to q0 is labelled by a is guarded
by y < 1 and reset y. Other examples of TAs are given in Fig. 1b and Fig. 4.

A state s = (q,x) ∈ Q× [0,∞[X is a pair of location and a clock vector. The
initial state of A is (q0,0). A timed transition is a pair (t, δ) of a time delay
t ∈ [0,∞[followed by a discrete transition δ ∈ ∆. The delay t represents the time
before firing the transition δ.

A run is an alternating sequence (q0,x0)
t1,δ1−−−→ (q1,x1) . . .

tn,δn−−−→ (qn,xn) of
states satisfying that qi is the successor of qi−1 by δi, the vector xi−1 + t satisfies
the guard gδ and xi = rδ(xi−1 + t), (q0,x0) is the initial state and qn is a final
location. This run is labelled by the timed word (t1, a1) · · · (tn, an) where for every
i ≤ n, ai is the label of δi. The set of timed words that label all the runs is called
the timed language of A. The TA of Fig. 1a recognises the language of Ex. 1.

A deterministic timed automaton (DTA) is a TA where for every location q,
transitions starting from q have pairwise disjoint guards or different labels. All
TA shown in this paper are DTA.

Max-entropy sampling for DTA In [2,3,4,5] algorithms were developed to
compute the volume for languages of DTA with some restrictions. Given a DTA,
(2) can be instantiated over its zone graph. The first step is to compute the
forward-reachability zone graph. The second operation splits the zone graph such
that, for any vertex of the graph, for each available transition δ, there exist two
functions lbδ and ubδ of the clock vector x such that, for all t ∈ R+, x+ t |= gδ
is equivalent to t ∈ [lbδ(x), ubδ(x)]. Moreover the bounds lbδ(x) and ubδ(x) are
of the form c−x where c ∈ N and x is a clock or zero. Details on the computation
of the split operation can be found in [2]. In the split zone graph equation (2)
becomes:

v0(l,x) = 1l∈F and vn(l,x) =
∑
δ−=l

∫ ubδ(x)

lbδ(x)

vn−1

(
δ+, rδ(x+ t)

)
dt (4)

Given n, vn(l,x) can be computed in polynomial time with respect to n and
the split zone graph size which in the worst case can be exponentially large in
the number of clocks. Given n and location l the functions x 7→ vn(l,x) is a
polynomial in x. This can be seen by a straightforward recursion since v0 is a
constant and the bound of the integrals to define vn+1 from vn are polynomials.

Since closed-form formulae for vn are efficiently computable, this provides an
effective way of sampling using the procedure presented in Section 2.1.

More precisely the kth letter is randomly chosen in state (q,x) by chosing the
transition δ = (q, a, gδ, rδ, q

′) labelling a with the discrete probability distribution

pk(δ | q,x) =

∫ ubδ(x)

lbδ(x)
vn−k−1(q

′, rδ(x+ t))dt

vn−k(q,x)
(5)

and the delay with the PDF:

pk(t | a, q,x) =
1t∈(lbδ,ubδ)vn−k−1(q

′, rδ(x+ t))∫ ubδ(x)

lbδ(x)
vn−k−1(q′, rδ(x+ t))dt

(6)

Approximate uniform sampling method are presented in [2] to sample words
of large length. One of such method is the receding sampling where to avoid
computing the pk in (5) and (6) when k is close to a too large sampling length m,
one use instead pmin(n,k) for a n large enough but small compared to m (see [2]
for the details and formal statements).

3 Max-Entropy Theorem Under Linear Duration
Constraints

In previous work on uniform sampling, constraint on duration could not be
expressed. Here we are interested to express for instance that the mean and the
variance of duration are equals to µ and ν, we write

∫
Ln

θ(w)p(w)dw = µ and∫
Ln

θ2(w)p(w)dw = ν + µ2.

More generally we are given m measurable functions fi : R≥0 → R and
constants ai ∈ R, i = 1..m, and we address the following max-entropy problem:

Maximise H(p) under constraints

∫
Ln

fi(θ(w))p(w)dw = ai for i ∈ {0, . . . ,m},

(7)
where f0 is the constant 1 and a0 = 1, to add the constraints that p is a PDF.

Our solution given in the max-entropy theorem below (Theorem 2) is based
on expressing this max-entropy problem on Ln as a max-entropy problem for
functions of the reals (that take the duration as argument). Before stating this
theorem, we first need few definitions and Lemmas.

We say that a function f defined on Ln depends only on duration if f = f̃ ◦ θ
for some functions on the reals f̃ , that is, for every w ∈ Ln, f(w) = f̃(θ(w)). For
a PDF f , ”depending only on duration” can be rephrased as ”being uniform at
fixed duration”: for every T , all the timed words of duration T have the same
density of probability.

With Lemma 1 we show that integrating a function that depends only on
duration, i.e. of the form f̃ ◦ θ, can be expressed as integrating f̃(T) with the
duration T as the variable of integration multiplied by a weight denoted V L

n (T).

This weight V L
n (T) is the n− 1-dimensional5 volume of timed-word of length n

restricted to duration T defined by

V L
n (T) =

∑
w1···wn∈Σn

∫
(R≥0)n−1

1t1w1···tn−1wn−1(T−t1−···−tn−1)wn∈Ldt1 · · · dtn−1. (8)

We will denote V L
n (T) by Vn(T) when L is clear from the context. We will

also use the following notation: Ln,T = {w ∈ Ln | θ(w) = T} and consider
(n− 1)-dimensional integral on it:∫

Ln,T

f(w)dw =
∑

w1···wn∈Σn

∫
(R≥0)n−1

1w∈Ln,T
f(w)dt1 · · · dtn−1.

In particular V L
n (T) =

∫
Ln,T

1dw and hence w 7→ 1/V L
n (T) is the uniform PDF

on Ln,T

Lemma 1. If f = f̃ ◦ θ then
∫
Ln

f(w)dw =
∫ +∞
0

f̃(T)V L
n (T)dT

Remark 1. We give few cases of interest for this Lemma.

1. If f(w) = 1, then we get Vol(Ln) =
∫ +∞
0

Vn(T)dT

2. If f(w) = 1
Vol(Ln)

, then T 7→ Vn(T)
Vol(Ln)

is a PDF on reals.

3. If f(w) = θ(w)
Vol(Ln)

then
∫
Ln

θ(w)
Vol(Ln)

dw =
∫ +∞
0

T Vn(T)
Vol(Ln)

dT is the mean dura-

tion for the uniform distribution on Ln.

A straightforward consequence of Lemma 1, called Lemma 2 below, is that the
max-entropy problem is equivalent to a max-entropy problem for functions defined
on the reals. In this Lemma p ≪ Vn means that ∀T ∈ R≥0, Vn(T) = 0 ⇒ p(T) =
0, and

HVn(q) = −
∫ +∞

0

q(T) log2
q(T)

Vn(T)
dT.

Lemma 2. For every PDF of the form p̃ ◦ θ, the function pR : T 7→ Vn(T)p̃(T)
is a PDF such that HVn(p

R) = H(p ◦ θ). Moreover p̃ ◦ θ is a solution of (7) iff
pR is a solution of

Maximise HVn(p) s.t.

∫ +∞

0

fi(T)p(T)dT = ai for i ∈ {0, . . . ,m} and p ≪ Vn.

(9)

With Lemma 3 we show that given any PDF, one can always find another
PDF with higher or equal entropy that depends only on duration.

5 The timed words of duration T have their timed vector (t1, . . . , tn) belonging to
the hyperplane t1 + . . .+ tn = T which have a null volume. That is why we do not
integrate over the last delay which is fixed and equal to T − t1 − · · · − tn−1

Lemma 3. Let p be a PDF on Ln and6 p̃ : T 7→ 1
Vn(T)

∫
Ln,T

p(w)dw then

H(p) ≤ H(p̃ ◦ θ) with equality if and only if p = p̃ ◦ θ.

Theorem 2 (Maximal entropy theorem on Ln with integral constraints
on duration). Given the max-entropy problem (7) with its constraints functions
fi and constants ai. If one find constants λi, (0 ≤ i ≤ m) such that the function
p∗(w) = exp (λ0 +

∑m
i=1 λifi(θ(w))) is a PDF that satisfies the constraints, then

the problem admits a unique solution which is p∗.

Proof. Let p∗ and λi as above so that p∗ satisfies the constraints, then we have
to prove that H(p∗) is maximal and unique for this property. First, Lemma 3
implies that we only have to consider PDF q of the form q = q̃ ◦ θ. We show that
such PDF q satisfies H(q) ≤ H(p∗) with equality iff q = p∗. This is equivalent
to show that HVn(q

R) ≤ HVn(p
R) with equality iff qR = pR, with pR = p̃.Vn and

qR = q̃.Vn since by Lemma 2, HVn
(pR) = H(p∗) and HVn

(qR) = H(q).
We adapt a classical proof based on Kulback-Lebler divergence that can be

found in [12]. The Kullback–Leibler divergence from pR to qR is the quantity

D(qR||pR) =
∫ +∞
0

qR(T) log qR(T)
pR(T)

dT which is always non-negative, and null iff

pR = qR. We will show that D(qR||pR) = HVn(p
R)−HVn(q

R) and thus HVn(p
R) =

HVn(q
R) will be equivalent to pR = qR.

We introduce Vn(T) using the fact that log2(q
R/pR) = log2

qR(T)
Vn(T) − log2

pR

Vn(T) :

D(qR||pR) =
∫ +∞

0

qR(T) log2
qR(T)

Vn(T)
dT −

∫ +∞

0

qR(T) log2
pR(T)

Vn(T)
dT

The first integral is −HVn
(qR), hence it remains to prove that HVn

(pR) =

−
∫
qR(T) log2

(
pR(T)
Vn(T)

)
. We recall that pR(T)

Vn(T) = p̃(T) = exp (
∑m

i=0 λifi(T)), thus

∫ +∞

0

qR(T) log2

(
pR(T)

Vn(T)

)
=

1

ln 2

∫ +∞

0

qR(T)

(
m∑
i=0

λifi(T)

)
dT

=
1

ln 2

m∑
i=0

λi

∫ +∞

0

qR(T)fi(T)dT.

Since qR satisfies the constraints this quantity is equal to 1
ln 2

∑m
i=0 λiai The same

reasoning holds for p, so we can conclude the proof with the equality:

HVn(p
R) = − 1

ln(2)

m∑
i=0

λiai = −
∫ +∞

0

qR(T) log2

(
pR(T)

Vn(T)

)
dT.

Theorem 1 is a specialisation of Theorem 2 where there is no constraint on
duration. Indeed the function has to be searched as a constant eλ0 with the
unique constraint that

∫
Ln

eλ0dw = 1, that is, eλ0 = 1/Vol(Ln). As there is no
constraint on duration the volume must be finite for this theorem to apply.

6 Here p̃ generalises the previous concept it was used for: when p depends only on
duration then p = p̃ ◦ θ.

4 Max-entropy theorem with prescribed mean duration

In this section we describe and see how to compute the max-entropy PDF when
the mean duration is prescribed. So we will use Theorem 2 with f1 being the
identity function and explain the normalising constant (link between λ0 and λ1).

Theorem 3 (Maximal entropy theorem for measures on Ln with pre-
scribed mean duration). Given a timed language L, length n, duration Tmean.
If there exist probability measures p that satisfy the constraint Ep(θ(w)) = Tmean,
then there is a unique one p∗ satisfying this constraint that maximizes the entropy.
It is given by

p∗(w) =
e−sθ(w)

vLn,s

where the normalising constant vLn,s is defined by

vLn,s =

∫
Ln

e−sθ(w)dw =

∫ +∞

0

e−sTV L
n (T)dT (10)

with s the unique real such that 1
vL
n,s

∂vL
n,s

∂s = Tmean.

The normalising constant vLn,s defined in equation (10) can be interpreted as a
Laplace transform of the function Vn and hence we call it the Laplace Transform
of Volumes (LTV) and s is called the Laplace parameter. In the next section
we will propose efficient computation of it which will be the base of a sampling
algorithm. As shown above by tuning the Laplace parameter s we can control
the mean duration which is defined wrt. the LTV and its derivative. Controlling
the variance could be done by adding an extra parameter. Efficient sampling
for this latter case is left for future work, and we focus on fixing only the mean
duration so working only with the LTV. Once this done, we can characterise the
variance (without prescribing it) with the LTV and its derivatives.

Proposition 1 (Characterization of the variance wrt. LTV and its
derivatives). Let p∗ be the PDF given in Theorem 3 and let V arp∗(θ(w)) =
Ep∗(θ(w)2) − Ep∗(θ(w))2 the variance of the duration of timed words sampled
with this probability. Then

V arp∗(θ(w)) =
∂2vLn,s
∂s2

−

(
1

vLn,s

∂vLn,s
∂s

)2

.

Remark 2. Theorem 1 is again a special case. It suffices to take s = 0. We get in
addition, a characterisation of the mean of the duration and with Proposition 1
its variance.

The LTV vn can be characterized via a recursive definition:

Proposition 2 (Recursive definition of vn).

vLn,s =
∑
a∈Σ

(∫ +∞

0

e−stv
(ta)−1L
n−1,s dt

)
(11)

This recursive definition is a step towards dynamic programming computation
that will be fully possible now when we focus on DTA.

4.1 Computing LTV and max-entropy sampling for Timed Automata

Theorem 3 tells us the form of the maximal entropy PDF when a mean duration
constraint is imposed. In this section we focus on how to sample this PDF for
language recognized by a DTA using the LTVs for languages starting on states
of this DTA. This PDF is then used to sample its language.

Computation of LTV as exponential Polynomials for DTA In this section,
we describe how LTV can be computed effectively from a timed automaton. This
is done by computing LTV recursively and by showing that all computations
are performed over exponential polynomials (Def. 1) for which the computation
of integral is effective. Here we find a suitable generalisation of the volumes
functions used in [1,6,2] and recall in Section 2. In a nutshell, we multiply by
e−st the function which is integrated over the next transition with the delay as
integration variable.

In the following we assume that a DTA in split form is given and for every
length n, parameter s and state (l,x) we denote by vn,s(l,x) the LTV of the

language starting from (l,x) that is vn,s(q,x) = v
L(l,x)
n,s .

Definition 1 (Exponential Polynomials). Given a variable s and a sequence
of variable X = (Xi)

n
i=1, we call exponential polynomials, expressions EP (s,X)

such that : there exists a finite set S ⊂ {0, 1, . . . , n}×N and a polynomial Pi,k for
each element of S with Pi,k a polynomials over X ∪ { 1

s} with the the convention
that X0 = 0; and EP (s,X) is written in the form

EP (s,X) =
∑

(i,k)∈S

Pi,k

(
1

s
,X

)
es(Xi−k)

Proposition 3. For every location q and length n, x 7→ vn,s(q,x) is an ex-
ponential polynomials. It can be computed in polynomial time using dynamic
programming from the following recursive equations:

v0,s(l,x) = 1l∈F and vn,s(l,x) =
∑
δ−=l

∫ ubδ(x)

lbδ(x)

vn−1,s

(
δ+, rδ(x+ t)

)
e−stdt.

(12)

Random sampling using the LTV

The sampling follows the same line as in for the unconstrained case (Section
2.1) where the probability distributions for discrete and continuous choice (5)
and (6) are replaced by

pk,s(a | q,x) =

∫ ubδ(x)

lbδ(x)
vn−k−1,s(q

′, rδ(x+ t))e−stdt

vn−k,s(q,x)
; and (13)

pk,s(t | a, q,x) =
1(lbδ,ubδ)vn−k−1,s(q

′, rδ(x+ t))e−st∫ ubδ(x)

lbδ(x)
vn−k−1,s(q′, rδ(x+ t))e−stdt

. (14)

5 Experiments

We have implemented our approach in the tool Wordgen [5], which required
developing a data structure for exponential polynomials, implementing the LTV
computation and the estimation of parameters s. These developments are freely
available with the GPLv3 licence. This section contains experiments on small
timed automata (Example 3 and 4) and a case study on a larger automaton
(Example 5).

Example 3. We compute the LTVs of the language defined in Example 1 recog-
nized by the timed automaton depicted in Figure 1a. After computing the split
zone graph, the number of locations is still 2. We show the LTVs computed for
small n in both of these locations and in the initial one in the following table.

(q,x)\n 0 1 2

(q0,(x,y)) 1 1−e−s(1−x))

s
1−e−s(1−x))

s2 + (x−1)
s e−s

(q1,(x,y)) 1 1−e−s(1−y)

s
1−e−s(1−y))

s2 + (y−1)
s e−s

If we restrict to timed words of length 2, sampling with the parameter s = 0
(using Taylor expansion) provides a uniform distribution in the triangle. The

expected duration is 1
v2,s(q0,(0,0))

∂v2,s

∂s (q0, (0, 0)). For s ̸= 0 it is 2+2s+s2−2es

s+s2−ses .

Using Taylor expansions in s = 0 of both the numerator and the denominator
one can show that the limit when s → 0 is 2

3 .
Figure 2 shows plots of the sampling from this language with different mean

durations. We observe a shift of the concentration of points along the axis y = x.
Note that the time duration of 0.9 is obtained with a negative value of s. This is
allowed when all clocks are bounded and thus Vn(T).

Example 4. In this example, we are interested in the language recognized by the
automaton of Figure 1b. We want to generate words of length 3(n = 3) with a
mean time duration of 5.5. There are only two possible untimed words which
are aaa and bbb. One can see that their corresponding polytopes are [0, 1)3 and
(2,+∞)3. In particular, timed words are either of duration < 3 or > 6, so there
are no timed words of the target duration 5.5. However, a mean duration of 5.5
can be reached by computing and taking the appropriate value for the parameter
s, that is, 0.52. By sampling 100 000 words with this parameter, we obtain the
histogram depicted in Figure 3 with an average duration of 5.50116.

E(T) = 0.4, s ≈ 4.34 s = 0, E(T) = 2
3

E(T) = 0.9, s ≈ −8.70

Fig. 2: Sample 50000 timed words t1at2a from the language of Example 1 (the
DTA is in Figure 1a) with t1 in the abscissa and t2 in the ordinate.

Fig. 3: Histogram of duration of 100000 words sampled from the automaton in
Figure 1b.

Example 5 (Train Gate). We illustrate the scalability of our method using the
well-known Train Gate example described extensively in the Uppaal Tutorial [8].
This example does not involve a single automaton but a network of timed
automata synchronized by their transitions. The semantics of such a network is a
single timed automaton whose state space is the cross product of each automaton.
This synchronisation semantics is explained in [8] and implemented in the tool
Uppaal, thus we will use the same notation as in this tool.

In this model, N trains want to cross a one-way bridge repeatedly. Each train
is modeled as a timed automaton with one clock. The bridge is modeled as a FIFO
scheduler, which stops trains or clears them for crossing. The timed automaton
for each train is depicted in Figure 4(left) where id is instantiated as an identifier
for the train. This automaton is replicated N times with an independent copy
of clock x. The clock x is reset on every edge (omitted in the figure). Note that
the states Safe and Stop are unbounded. Figure 4(right) depicts the scheduler
whose size depends on the number of trains. The FIFO queue is implemented by
an array of identifiers of size N and four functions pop, push, front and last

that modify it.

In Table 1 we show the performance of the tool Wordgen in sampling a
thousand runs of this automaton of expected duration 50. The number N of
trains and parameter n are shown in the first two columns. As there is one clock
per train, the number of zones grows exponentially with N , while the splitting
only double the number of zones. The computation time is dominated by the
computation of vn,s(l,x). The sampling time is proportional to the number of
trajectories and requires the evaluation of large polynomials for the sampling of
timed distributions. As expected, the computation of the zone graph and split

Safe

Appr

Stop

Start

Cross

appr[id]!

x ≤ 10
stop[id]?

go[id]?

7 ≤ x
x ≤ 15

3 ≤ x ≤ 5, leave[id]!

10
≤ x ≤

20

Q0 Q1

Q2Stop

Q1Free

Q2

Q3Stop

Q2Free

Q3 · · ·

appr[id]?
push(id)

leave[id]?
pop()

appr[id]?
push(id)
stop[last()]!

leave[id]?
pop()

go[front()]!

appr[id]?
push(id)
stop[last()]!

leave[id]?
pop()

go[front()]!

Fig. 4: The automaton on the left depicts the timed automaton for each train
where the clock x is reset on every edge. The automaton on the right depicts the
scheduler.

zone graph is small, compared to the other computations. The memory appears
to be a computational bottleneck as the number of terms in each vn,s(l,x) grows
exponentially with the number of clocks and they need to be computed on each
location.

N n number of locations time (sec) memory
reachability split reach+split distribution sampling

1 10 9 9 0 0 0.07 6.2 MB
2 10 51 70 0.01 0 0.13 34.8 MB
3 10 1081 1826 0.12 9.04 2.6 1.7 GB
4 10 28353 53534 7.2 647 466 51.9 GB
5 10 88473 178414 35 Out of Memory > 64GB
5 7 88473 178414 35 408 205 52.4 GB

Table 1: Each experiment samples 1000 timed words of length n and expected
duration 50

By changing the expected duration of timed words, we observe very different
behaviors of the system. Figure 5 depicts two timed words sampled from the
Train Gate example with 3 trains and n = 10 and of length of length m = 40
using receding sampling. Figure 5(a) depicts a timed word sampled with expected
duration 80 while Figure 5(b) depicts a timed word sampled with expected time
duration 240. We can see that in Figure 5(b) the system is saturated since there
is almost always a train in the locations Start or Cross which have a lower bound
on their waiting time, and the synchronisation blocks other events. In Figure 5(a)
we observe that the system stay in a state where all trains are in location Safe
for some time where there are no constraints (no lower nor upper bound) thus
trains evolve more independently.

Safe
Appr
Stop
Start
Cross

 0 50 100 150 200 250 300 350

Train0
Train1
Train2

(a) Timed words with an expected duration of 240 time units and 40 events
(s ≈ 0.1098).

Safe
Appr
Stop
Start
Cross

 0 10 20 30 40 50 60 70 80 90 100

Train0
Train1
Train2

(b) Timed words with an expected duration of 80 time units and 40 events
(s ≈ 0.9070).

Fig. 5: Timed words sampled from the Train Gate example. The state of trains
are in ordinates.

6 Conclusion and Future work

In this article, we address the problem of characterizing probability measures
of maximal entropy for timed words of a fixed length of timed languages under
duration constraints. We focus our attention on constraint on mean duration,
which leads us to define and propose a method for efficiently computing Laplace
Transform of Volumes, a key theoretical tool to sample timed word wrt. the
maximal entropy measure. Several experiments are provided to illustrate our
sampling algorithm.

Ongoing and future work The LTV we compute are Laplace transforms
of functions Vn(T) which can be called the volume of timed words with fixed
duration T . These functions are crucial in our theoretical development of Section
3 but are not computed in this current article. An ongoing work is to write
recursive characterization of such functions that could be turned into a sampler
of timed words of exact duration T . The computation of closed form formulae
for Vn(T) could be used to sample the PDF of the form pR(T) = p̃(T)Vn(T),
which, coupled with a uniform sampler of exact duration T , would provide a
max-entropy sampler for the general linear constraints of Theorem 2. Another
promising research direction is to revisit the results of [6,1] with the operator
underlying the definition of the LTV. With this approach we aim at defining
maximal entropy measure for infinite timed words with a prescribed frequency
of event, e.g. 0.7 events per time unit. Finally, another possible extension is to
consider max-entropy measures when the length is also random. For this we
would like to adapt Boltzmann sampling algorithms ([13]) to our settings. A first
adaptation of such a sampling for a very particular subclass of timed languages
(used for random sampling of permutations) was proposed in [7]. This latter work
though was not concerned at all with duration of timed words (nor entropy).

References

1. Asarin, E., Basset, N., Degorre, A.: Entropy of regular timed languages. Information
and Computation 241, 142–176 (2015)

2. Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for
timed automata with application to language inclusion measurement. In: QEST
2016, Quebec City, QC, Canada, August 23-25, 2016. pp. 175–190 (2016)

3. Barbot, B., Basset, N., Dang, T.: Generation of signals under temporal constraints
for CPS testing. In: NASA Formal Methods - 11th International Symposium, NFM
2019. pp. 54–70 (2019)

4. Barbot, B., Basset, N., Dang, T., Donzé, A., Kapinski, J., Yamaguchi, T.: Falsifica-
tion of cyber-physical systems with constrained signal spaces. In: NASA Formal
Methods - 12th International Symposium, NFM, 2020. pp. 420–439 (2020)

5. Barbot, B., Basset, N., Donze, A.: Wordgen : A timed word generation tool.
In: Proceedings of the 26th ACM International Conference on Hybrid Systems:
Computation and Control. HSCC ’23, Association for Computing Machinery, New
York, NY, USA (2023). https://doi.org/10.1145/3575870.3587116, https://
doi.org/10.1145/3575870.3587116

6. Basset, N.: A maximal entropy stochastic process for a timed automaton. Inf. Com-
put. 243, 50–74 (2015). https://doi.org/10.1016/j.ic.2014.12.006, https:

//doi.org/10.1016/j.ic.2014.12.006

7. Basset, N.: Counting and generating permutations in regular classes. Algorithmica
76(4), 989–1034 (2016). https://doi.org/10.1007/s00453-016-0136-9, https:
//doi.org/10.1007/s00453-016-0136-9

8. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems: 4th
International School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM-RT 2004. pp. 200–236. No. 3185 in LNCS,
Springer–Verlag (September 2004)

9. Bertrand, N., Bouyer, P., Brihaye, T., Menet, Q., Baier, C., Größer, M., Jurdzinski,
M.: Stochastic timed automata. Log. Methods Comput. Sci. 10(4) (2014). https://
doi.org/10.2168/LMCS-10(4:6)2014, https://doi.org/10.2168/LMCS-10(4:6)

2014

10. Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll, T.:
A review of statistical model checking pitfalls on real-time stochastic models. In:
ISOLA. pp. 177–192. Springer (2014)

11. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. pp. 340–358. Springer
(2018)

12. Cover, T.M., Thomas, J.A.: Information theory and statistics. Elements of informa-
tion theory 1(1), 279–335 (1991)

13. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the ran-
dom generation of combinatorial structures. Combinatorics, Probability and Com-
puting 13(4), 577–625 (2004). https://doi.org/10.1017/S0963548304006315,
publisher: Cambridge University Press

14. Jaynes, E.T.: Information Theory and Statistical Mechanics. II. Physical Review
Online Archive (Prola) 108(2), 171–190 (Oct 1957)

15. Moll, V.H.: Special Integrals of Gradshteyn and Ryzhik: the Proofs-Volume I, vol. 1.
CRC Press (2015)

https://doi.org/10.1145/3575870.3587116
https://doi.org/10.1145/3575870.3587116
https://doi.org/10.1145/3575870.3587116
https://doi.org/10.1145/3575870.3587116
https://doi.org/10.1016/j.ic.2014.12.006
https://doi.org/10.1016/j.ic.2014.12.006
https://doi.org/10.1016/j.ic.2014.12.006
https://doi.org/10.1016/j.ic.2014.12.006
https://doi.org/10.1007/s00453-016-0136-9
https://doi.org/10.1007/s00453-016-0136-9
https://doi.org/10.1007/s00453-016-0136-9
https://doi.org/10.1007/s00453-016-0136-9
https://doi.org/10.2168/LMCS-10(4:6)2014
https://doi.org/10.2168/LMCS-10(4:6)2014
https://doi.org/10.2168/LMCS-10(4:6)2014
https://doi.org/10.2168/LMCS-10(4:6)2014
https://doi.org/10.2168/LMCS-10(4:6)2014
https://doi.org/10.2168/LMCS-10(4:6)2014
https://doi.org/10.1017/S0963548304006315
https://doi.org/10.1017/S0963548304006315

16. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Formal Methods in System Design 43(2), 164–190 (2013)

A Appendix

In this appendix, we give the omitted proofs of the results presented above after
recalling their statement.

Lemma 1. If f = f̃ ◦ θ then
∫
Ln

f(w)dw =
∫ +∞
0

f̃(T)V L
n (T)dT

Proof.∫
Ln

f(w)dw =
∑

w∈Σn

∫ +∞

0

· · ·
∫ +∞

0

1t1a1···tnan∈Ln
f̃(t1 + · · ·+ tn)dt1 · · · dtn.

We do the change of variables that replace tn with T − t1 − . . .− tn−1 and leave
unchanged the others ti. This change of variables has a Jacobian equals to 1 and
so no multiplicative constant appears.∫
Ln

f(w)dw =
∑

w∈Σn

∫ +∞

0

· · ·
∫ +∞

0

1t1a1···tn−1an−1(T−t1−···−tn−1)an∈Ln
f̃(T)dt1 · · · dtn−1dT

=

∫ +∞

0

V L
n (T)f̃(T)dT

⊓⊔

Lemma 2. Let p be a PDF on Ln and7 p̃ : T 7→ 1
Vn(T)

∫
Ln,T

p(w)dw then

H(p) ≤ H(p̃ ◦ θ) with equality if and only if p = p̃ ◦ θ.

Proof. We first regroup timed word with respect to duration in the definition of
H(p):

H(p) = −
∫
Ln

p(w) log2 p(w)dw = −
∫ +∞

0

∫
Ln,T

p(w) log p(w)dwdT

We use Jensen’s inequality with the strictly convex function φ : x 7→ x log2 x the
uniform PDF on Ln,T : w 7→ 1

Vn(T) and the function p:

∫
Ln,T

p(w) log2 p(w)
dw

Vn(T)
≥

(∫
Ln,T

p(w)
dw

Vn(T)

)
log2

(∫
Ln,T

p(w)
dw

Vn(T)

)
= p̃(T) log2 p̃(T)

Multiplying by −Vn(T) and integrating wrt. T we get

H(p) ≤ −
∫ +∞

0

Vn(T)p̃(T) log2 p̃(T)dT = H(p̃ ◦ θ)

The last equality being an application of Lemma 1. To have equality H(p) =
H(p̃ ◦ θ) we must have equality in the Jensen’s inequality which is only possible
if p(w) is constant on Ln,T . This means that p depends only on duration which
is equivalent to p = p̃ ◦ θ. ⊓⊔
7 Here p̃ generalises the previous concept it was used for: when p depends only on
duration then p = p̃ ◦ θ.

Theorem 2 (Maximal entropy theorem on Ln with integral constraints
on duration). Given the max-entropy problem (7) with its constraints functions
fi and constants ai. If one find constants λi, (0 ≤ i ≤ m) such that the function
p∗(w) = exp (λ0 +

∑m
i=1 λifi(θ(w))) is a PDF that satisfies the constraints, then

the problem admits a unique solution which is p∗.

Proof. Let p∗ and λi as above so that p∗ satisfies the constraints, then we have
to prove that H(p∗) is maximal and unique for this property. First, Lemma 3
implies that we only have to consider PDF q of the form q = q̃ ◦ θ. We show that
such PDF q satisfies H(q) ≤ H(p∗) with equality iff q = p∗. This is equivalent
to show that HVn(q

R) ≤ HVn(p
R) with equality iff qR = pR, with pR = p̃.Vn and

qR = q̃.Vn since by Lemma 2, HVn(p
R) = H(p∗) and HVn(q

R) = H(q).
We adapt a classical proof based on Kulback-Lebler divergence that can be

found in [12]. The Kullback–Leibler divergence from pR to qR is the quantity

D(qR||pR) =
∫ +∞
0

qR(T) log qR(T)
pR(T)

dT which is always non-negative, and null iff

pR = qR. We will show that D(qR||pR) = HVn
(pR)−HVn

(qR) and thus HVn
(pR) =

HVn(q
R) will be equivalent to pR = qR.

We introduce Vn(T) using the fact that log2(q
R/pR) = log2

qR(T)
Vn(T) − log2

pR

Vn(T) :

D(qR||pR) =
∫ +∞

0

qR(T) log2
qR(T)

Vn(T)
dT −

∫ +∞

0

qR(T) log2
pR(T)

Vn(T)
dT

The first integral is −HVn(q
R), hence it remains to prove that HVn(p

R) =

−
∫
qR(T) log2

(
pR(T)
Vn(T)

)
. We recall that pR(T)

Vn(T) = p̃(T) = exp (
∑m

i=0 λifi(T)), thus

∫ +∞

0

qR(T) log2

(
pR(T)

Vn(T)

)
=

1

ln 2

∫ +∞

0

qR(T)

(
m∑
i=0

λifi(T)

)
dT

=
1

ln 2

m∑
i=0

λi

∫ +∞

0

qR(T)fi(T)dT.

Since qR satisfies the constraints this quantity is equal to 1
ln 2

∑m
i=0 λiai The same

reasoning holds for p, so we can conclude the proof with the equality:

HVn
(pR) = −

∫ +∞

0

pR(T) log2

(
pR(T)

Vn(T)

)
dT = − 1

ln(2)

m∑
i=0

λiai

=−
∫ +∞

0

qR(T) log2

(
pR(T)

Vn(T)

)
dT

⊓⊔

Proposition 2 (Recursive definition of vn).

vLn,s =
∑
a∈Σ

(∫ +∞

0

e−stv
(ta)−1L
n−1,s dt

)
(15)

Proof.

vLn,s =
∑
a∈Σ

· · ·
∑
an∈Σ

∫ +∞

0

1ta···tnan∈Lne
−s(t+t2···+tn)dtdt2 · · · dtn =

∑
a∈Σ

(∫ +∞

0

(∑
a2∈Σ

· · ·
∑
an∈Σ

∫ +∞

0

· · ·
∫ +∞

0

1ta···tnan∈Ln
e−s(t2···+tn)dt2 · · · dtn

)
e−stdt

)

Then it suffices to remark than ta · · · tnan ∈ Ln iff t2a2 · · · tnan ∈ ((ta)−1L)n−1

⊓⊔

Theorem 3 (Maximal entropy theorem for measures on Ln with pre-
scribed mean duration). Given a timed language L, length n, duration8 Tmean,
among the probability measures p that satisfy the constraint Ep(θ(w)) = Tmean,
there is a unique one p∗ that maximizes the entropy. It is given by

p∗(w) =
e−sθ(w)

vLn,s

where the normalising constant vLn,s is defined by

vLn,s =

∫
Ln

e−sθ(w)dw =

∫ +∞

0

e−sTV L
n (T)dT (16)

with s the unique real such that 1
vL
n,s

∂vL
n,s

∂s = Tmean.

Proof. Applying the theorem tells us that p∗(w) = eλ0+λ1θ(w) with
∫
Ln
eλ0+λ1θ(w)dt

= 1 and
∫
Ln

θ(w)eλ0+λ1θ(w)dt = Tmean. We let s = −λ1 and let vLn,s = e−λ0 =∫
Ln

e−sθ(w)dt which by Lemma 1 is also equal to
∫ +∞
0

e−sTV L
n (T)dT .

The expected duration is by definition:∫
Ln

θ(w)
e−sθ(w)

vLn,s
dw.

We can express this with the derivatives of vLn,s =
∫
Ln

e−sθ(w)dw. Indeed,

∂vLn,s
∂s

=

∫
Ln

∂e−sθ(w)

∂s
dw = −

∫
Ln

θ(w)e−sθ(w)dw = −vLn,sTmean.

The first equality holds because the integrated function vLn,s is non-negative. ⊓⊔

The following Lemma is useful in the proof of proposition 3.

8 satisfying the constraint to be in the bounds for Ln

Lemma 3 (Folk, see [15] page 82). The primitive function of eaxxn wrt. x is

n!eax
n∑

k=0

(−1)kxn−k

(n− k)!ak+1

Proposition 3. For every location q and length n, x 7→ vn,s(q,x) is an ex-
ponential polynomials. It can be computed in polynomial time using dynamic
programming from the following recursive equations:

v0,s(l,x) = 1l∈F and vm,s(l,x) =
∑
δ−=l

∫ ubδ(x)

lbδ(x)

vm−1,s

(
δ+, rδ(x+ t)

)
e−stdt.

(17)

Proof. (12) is a consequence of (11) where we use the language starting from
states and their corresponding LTV. We reason by induction and assume that
the results holds at some rank m − 1 for some m (and every location q): and
show it at rank m. The base case is straightforward since the function is v0,s(l,x)
is the constant 1 or 0 depending on whether the location is final or not. We use
the recursive characterisation (12). A sum of exponential polynomial is clearly
an exponential polynomial so it suffices to show that every integral in (12) gives
an exponential polynomial. There are two cases to compute the integral:

1. xi ∈ rδ:∫ ubδ(x)

lbδ(x)

P(i,k)

(
1

s
, rδ(x+ t)

)
es(rδ(x+t)i−k)e−stdt

= e−sk

∫ ubδ(x)

lbδ(x)

P(i,k)

(
1

s
, rδ(x+ t)

)
e−stdt

as t 7→ P(i,k)

(
1
s , rδ(x+ t)

)
is a polynomials in t, applying classical results on

Laplace Transform of polynomials (See for example [15] page 82, recalled in
the appendix) we get:

e−sk(e−s ubδ(x)P̃ (1/s,x)− e−s lbδ(x)P̃ (1/s,x))

where P̃ is a polynomial. We recall that the bounds lbδ(x) and ubδ(x) are
both of the form = c − xi for some constant c and clock xi, so the whole
expression is an exponential polynomial.

2. xi /∈ rδ :∫ ubδ(x)

lbδ(x)

P(i,k)

(
1

s
, rδ(x+ t)

)
es(rδ(x+t)i−k)e−stdt

= es(xi−k)

∫ ubδ(x)

lbδ(x)

P(i,k)(rδ(x+ t))dt

as es(xi−k) is a constant with respect to t. We assume that P(i,k) is non-
null otherwise (i, k) can be removed from S. It cannot be the case that

ubδ(x) = +∞ otherwise the integral would give an infinite value which is
not possible because the LTV corresponding to the language starting from
(q,x) is well defined (at least for positive s) and satisfies (12). Hence ubδ is
like lbδ a polynomial (of degree 1), and hence the integral is a polynomial as
integral with polynomial bound of a polynomial.

⊓⊔

	Max-entropy sampling for deterministic timed automata under linear duration constraints

