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The topology of the electronic band structure of solids can be described by its Berry curvature distribution

across the Brillouin zone. We theoretically introduce and experimentally demonstrate a general methodology
based on the measurement of energy- and momentum-resolved optical transition rates, allowing to reveal sig-
natures of Berry curvature texture in reciprocal space. By performing time- and angle-resolved photoemission
spectroscopy of atomically thin WSe2 using polarization-modulated excitations, we demonstrate that excitons
become an asset in extracting the quantum geometrical properties of solids. We also investigate the resilience of
our measurement protocol against ultrafast scattering processes following direct chiroptical transitions.

INTRODUCTION

Electron transport and dynamics in periodically-ordered
solids are governed by intrinsic quantum mechanical proper-
ties, such as the electronic band structure and the interaction
between electrons, phonons, and other quasiparticles. The
quantum geometrical properties of the Bloch wavefunction,
manifesting as Berry curvature (property that reflects hand-
edness of Bloch electrons), band topology, Fermi-liquid trans-
port properties [1], current-noise characteristics [2], or the ge-
ometric origin of superfluidity in flat-band systems [3], play
a fundamental role in all of these microscopic mechanisms.
More generally, the quantum geometry of Bloch electrons is
of capital importance, as it provides key insights into the in-
tricate interplay between quantum mechanics and materials’
electronic properties. Recently, the link between the quantum
geometry and light-matter interaction has entered the stage,
providing insights into physical mechanisms underlying pecu-
liar optoelectronic responses of topological materials [4–8].

However, a momentum-resolved measurement of Bloch
electrons’ quantum geometry still remains a grand challenge.
A direct approach – exploiting the close link between the quan-
tum geometry and light-matter interaction – has been intro-
duced in the context of cold atoms, where paradigmatic model
systems can directly be implemented. Indeed, since inter-
band transition dipole matrix elements are equivalent to the
Berry connection [9], the rate of transitions from occupied
to unoccupied bands upon resonant monochromatic irradia-
tion has been shown to be a direct measure of the underly-
ing quantum geometry [10]. In particular, the circular dichro-
ism in the absorption is a fingerprint of a Chern insulating

state, which has been demonstrated out-of-equilibrium [11],
for fractional quantum Hall systems [12], and in optical lat-
tices [13]. However, applying this approach to diagnose a
material’s quantum geometry is not straightforward. Indeed,
for systems with locally nonzero but globally vanishing Berry
curvature, the total (momentum-integrated) optical oscillator
strength does not provide any specific information on the quan-
tum geometrical properties. However, it has been predicted
that quantum geometric information can in principle be ex-
tracted from dichroism in the momentum-resolved optical os-
cillator strength [4, 14, 15]. Even if the connection between
k-resolved optical oscillator strengths of interband transitions
and Berry curvature is already established [4], an associated
experimental measurement protocol for extracting local quan-
tum geometric information of materials is still missing. Tack-
ling this problem requires going beyond standard optical spec-
troscopic probes, as they lack momentum resolution.

This is where angle-resolved photoemission spectroscopy
(ARPES) [16, 17] has entered the stage. Indeed, signatures of
local Berry curvature in solids can be extracted by using circu-
larly polarized ionizing radiation [18–23]. The basic principle
of this approach is based on the close relation between Berry
curvature and orbital angular momentum (OAM). Intuitively,
it has been shown that OAM is linked with a self-rotation of the
initial state, which is reflected in the dipole selection rules in
the ARPES matrix elements – circular dichroism can emerge
because of propensity rules in photoemission for electrons co-
or counter-rotating with circularly polarized light. However,
despite its feasibility, extracting information on the Berry cur-
vature from photoemission transition dipole matrix elements
is not straightforward in practice due to the influence of the
experimental geometry [24] and effects of complicated photo-
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FIG. 1. Illustration of Berry curvature texture and exciton popu-
lation along with the schematic of the experimental measurement
protocol. (a) Single particle top valence band and bottom conduc-
tion band of WSe2 close to the K valley. Due to the Berry curvature
(represented by color shading), the electrons and holes created upon
photoexcitation possess intrinsic orbital angular momentum. The op-
tical transition rate is modulated by the chirality of excitons and of
the pump pulse and serves as a probe of the Berry curvature. (b)
Sketch of the experimental setup, featuring a polarization-modulated
IR pump and linearly-polarized XUV probe pulses. Photoelectrons
are collected by a time-of-flight momentum microscope detector.

electron final states [25, 26].
The extension to the time domain using time-resolved

ARPES (trARPES) – a powerful technique to measure out-
of-equilibrium band structures and excited states of crys-
talline solids – allows, in principle, to directly measure the
momentum-resolved optical interband transition rate. For ex-
ample, momentum-resolved linear dichroism in bilayer MoS2in trARPES has been shown to reveal intralayer single-particle
hopping [27]. Extending this approach to chiral (circular) exci-
tations allows to translate the cold-atom concept of the dichro-
ism of the depletion rate into pump dichroism of the population
of the unoccupied states. However, the rich ultrafast dynam-
ics within the photoexcited material, leading to the redistri-
bution of optically prepared excited states both in energy and
momentum, can blur the direct relationship between measured
photoemission intensities and momentum-resolved optical os-
cillator strength. In particular, electron-electron and electron-

phonon scattering can smear out the initial energy-momentum
distribution of pump-induced excited states on the femtosec-
ond timescale. In addition, many-body excitations such as ex-
citons or correlated in-gap states are often the dominating ex-
citation channel, which, at first sight, seems to obscure the link
between optical transition rates and quantum geometry.

In this work, we in turn use the many-body excitations
to extract of quantum geometrical properties of solids. In
particular, by exploiting the optical selection rules for chi-
ral valley-excitons, we map out the Berry curvature texture
of the prototypical atomically thin transition metal dichalco-
genide (TMDC) WSe2. We show that the measurement of the
momentum-resolved chiroptical oscillator strength, using op-
tical pump polarization-modulation in trARPES, allows us to
access the electronic wavefunction’s quantum geometry tex-
ture in materials.

RESULTS

Monolayer WSe2 (ML-WSe2) possesses broken inversion
symmetry and strong spin-orbit coupling, leading to locked
spin, orbital, and valley degrees of freedom [28]. These sym-
metry considerations imply peculiar valley-selective optical
selection rules, leading to strong circular dichroism [29–31]
– a property that is at the heart of our approach. These mate-
rial systems are also characterized by specific orbital angular
momentum and Berry curvature texture in reciprocal space. In
addition, monolayer WSe2 has a direct band gap at the two in-
equivalent K and K’ valleys. Due to the reduced screening re-
sulting from its atomically thin nature, its excitons have large
binding energies and dominate their optical responses, even
at room temperature. As a result, strongly bound (hundreds
of meV) bright excitons comprised of electrons and holes in
the vicinity of K/K’ in the top valence and bottom conduction
band are formed (known as A-excitons) upon resonant pho-
toexcitation. These strongly bound excitons are stable against
momentum scattering for relatively long time scales. In con-
trast, typical band-to-band single-particle excitations at higher
energy are subject to electron-electron and electron-phonon
scattering on the femtosecond time scale. The key concept of
our approach is summarized in Fig. 1(a): the Berry curvature
of the valence and conduction bands is tied to OAM. There-
fore, excitons as bound states of electrons and holes become
chiral excitations, whose population is determined by whether
the chirality of the pump aligns with their intrinsic chirality.
In turn, the exciton population (as measured from trARPES)
is characteristic of the Berry curvature of the underlying va-
lence and conduction band. While the chirality of excitons
has been discussed in terms of winding numbers [32] and from
first principles [33], its use for the reconstruction of the Berry
curvature texture is an unexplored territory.
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FIG. 2. Optical polarization-modulated pump-probe photoemission in monolayer WSe2. (a) Sketch of the Brillouin zone of WSe2 with
the high-symmetry points. (b) Sketch of the overlapping pump and probe pulses. (c) Optical polarization-averaged trARPES signal along
𝑘𝑥 (K-Λ-Γ-Λ’-K’). The intensity has been multiplied by 1000 for unoccupied states. (d) Ellipticity factor (Stokes parameter 𝑆3) of the pump
pulse, which is controlled by the continuous rotation of quarter-wave-plate (QWP) angle 𝜃 (top panel), along with the ellipticity-resolved
photoemission intensity of excited states around the K and K’ points. (e) The absolute value of the Fourier coefficients associated with the
polarization-modulated photoemission intensities from excitonic states in (d). The highlighted coefficient (𝑛 = 1) is associated with the helicity-
swap frequency, i.e. captures the effects of circular polarization.

Experiments

In our trARPES setup, bright K/K’ excitons are resonantly
prepared at room temperature by a resonant near-infrared
(NIR) pump pulse (760 nm, ℏ𝜔IR = 1.63 eV, ∼ 45 fs full
width at half maximum (FWHM) duration). Electrons with
momenta corresponding to first Brillouin zone (Fig. 2(a)) are
ejected from the sample (ML-WSe2 on thin hBN flake on a
slightly Nb-doped rutile TiO2 (100) substrate – for more de-
tails, see Methods) through the photoelectric effect induced
by linearly p-polarized XUV pulses (57 nm, ℏ𝜔pr = 21.7 eV
and ∼ 20 fs FWHM duration). Measurements are performed
at the pump-probe overlap (Δ𝑡 = 0) to maximize the sig-
nal emerging from bright excitons (Fig. 2(b)), while simul-
taneously minimizing the contribution of ultrafast scatter-
ing processes following photoexcitation. We recorded two-
color (NIR+XUV) ARPES spectra while continuously rotat-
ing the quarter-wave plate (QWP) angle 𝜃, leading to a pump
polarization-modulation from left-hand circularly polarized
(LCP) to linearly s-polarized to right-hand circularly polarized
(RCP) (top panel in Fig. 2(d)). This continuous polarization-
modulated photoemission measurement protocol is analogous
to a lock-in detection scheme. Indeed, using Fourier analysis,
this measurement scheme allows us to isolate signals which
are modulated at the helicity-swap frequency, efficiently re-
jecting all other frequency components coming from e.g. lin-
ear dichroism, experimental geometry, or artifacts (imperfec-
tion of the waveplate, misalignments, etc.). The photoemis-
sion data are acquired using a time-of-flight momentum mi-
croscope, which allows to detect each photoelectron as a sin-
gle event, as a function of NIR quarter-waveplate angle (𝜃),
resulting in 4D photoemission intensity data – 𝐼(𝑘𝑥, 𝑘𝑦, 𝐸, 𝜃).

More information about the experimental setup can be found
in the methods section.

A typical ARPES signal along K-Γ-K’ high symmetry di-
rection (pump polarization-integrated) is shown in Fig. 2(c).
Bright excitons directly manifest themselves in Fig. 2(c)
as strongly localized (in energy-momentum space) pump-
induced signals (𝐸 − 𝐸VBM ∼ ℏ𝜔IR) at the Brillouin zone
(BZ) boundaries in the trARPES spectra [? ? ]. In addition,
photoemission intensity at Γ, which can be attributed to laser-
assisted photoemission (LAPE) [34], as well as signatures of
momentum-indirect dark excitons at the Σ valleys are also vis-
ible in Fig. 2(c).

In Fig. 2(d), we show the modulation of the photoemission
signal from bright excitons at K (K’), momentum and energy-
integrated for the three equivalent valleys, as a function of the
NIR quarter-wave plate angle. Note that before summing the
signal emerging from the three equivalent K and K’ valleys, we
made sure that the modulation in each equivalent valley was
following the same trend. Signals originating from excitons
located around both K and K’ valleys are strongly modulated,
with a dominating oscillation component with a 180◦ period
(helicity-swap period). The 𝜋-phase shift between the modu-
lations of the K and K’ excitons indicates that these quasipar-
ticles are created upon the absorption of light with opposite
chirality, RCP and LCP, respectively. The 𝜋

2 -phase with an
identical population of K and K’ valley excitons reflects equal
excitation with a linearly polarized pump. These results al-
ready indicate that the phase of the exciton population modula-
tion encodes some information related to their intrinsic valley
pseudospin degree of freedom.

From the full 𝜃-dependent intensity, we can perform a
Fourier analysis of the experimentally measures signals in
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Fig. 2(d). Besides a non-oscillating background (encoded in
the 𝑛 = 0 component), the 𝑛 = 1 Fourier component is dom-
inant at both K and K’ (Fig. 2(e)), consistent with the mod-
ulation of the light chirality. The 𝑛 = 2 Fourier coefficient
is originating mainly from linear dichroism, i.e. the modula-
tion between s- and p- components of pump pulses. Because
we recorded four-dimensional ARPES data 𝐼(𝑘𝑥, 𝑘𝑦, 𝐸, 𝜃), we
have access to the polarization-modulated (𝜃) photoemission
signal for each energy (𝐸) and momenta (𝑘𝑥, 𝑘𝑦) coordinates.
We can thus perform the energy- and momentum-resolved
Fourier analysis, i.e. compute the Fourier components for each
voxel

𝐼𝑛(𝑘𝑥, 𝑘𝑦, 𝐸) =
1
2𝜋 ∫

𝜋

−𝜋
𝑑𝜃 𝑒−2𝑖𝑛𝜃𝐼(𝑘𝑥, 𝑘𝑦, 𝐸, 𝜃) . (1)

This procedure yields complex quantities containing the full
information on the excitation with linearly polarized photons
(encoded in 𝐼2(𝑘𝑥, 𝑘𝑦, 𝐸)), and circular dichroism (encoded
in 𝐼1(𝑘𝑥, 𝑘𝑦, 𝐸)). 𝐼0(𝑘𝑥, 𝑘𝑦, 𝐸) and the imaginary part of
𝐼1(𝑘𝑥, 𝑘𝑦, 𝐸) computed from the experimental data are shown
in Fig. 3(c)-(d), respectively.

While the dominant components of Im[𝐼1(𝑘𝑥, 𝑘𝑦, 𝐸)] are
strong signals at BZ corners with alternating signs between K
and K’ valleys, suggesting qualitatively some similarity with
the OAM and Berry curvature texture, the detailed understand-
ing of the origin of these features requires some theoretical
analysis, which is done in the following sections.

Theory of exciton signatures

We treat excitons in the electron-hole basis, expanding the
many-body state

|Ψexc
𝐩𝜆 ⟩ =

∑
𝐤𝛼𝛽

𝑌 𝜆𝛼𝛽(𝐩,𝐤)𝑐
†
𝐤+𝐩𝛼𝑐𝐤𝛽 |Ψ0⟩ . (2)

Here, 𝐩 denotes the center-of-mass momentum of the exci-
ton (different states labeled by 𝜆), while 𝑐†𝐤+𝐩𝛼 (𝑐𝐤𝛽) creates an
electron (a hole) in the conduction (valence) band 𝛼 (𝛽) with
corresponding momentum; |Ψ0⟩ is the ground state. The en-
velope function 𝑌𝛼𝛽(𝐩,𝐤) – its Fourier transform limited size
can be experimentally measured [35–37] – describes the local-
ization of the excitons. For excitons in TMDCs, 𝑌𝛼𝛽(𝐩,𝐤) is
strongly localized around 𝐤 =K/K’ for bright excitons, while
for the dark excitons, 𝐤 is localized around K/K’ (Λ) for holes
(electrons).

In the linear-response regime, the population 𝑃exc of the
bright excitons is obtained from Fermi’s Golden rule (assum-
ing atomic units)

𝑃 𝜆exc(𝜃) = 𝑆2(𝜔IR − 𝐸𝜆exc)
|||𝐞IR(𝜃) ⋅𝐌

𝜆|||
2
, (3)

where 𝐸𝜆exc is the energy of the two A-excitons relative to
the ground state, while 𝐞IR(𝜃) denotes the polarization of the
NIR pump pulse. The dipole matrix element of the excitons

is given by 𝐌𝜆, while 𝑆(𝜔) stands for the Fourier transform
of the envelope of the pump pulse (all other constant pref-
actors have been absorbed into 𝑆(𝜔)). Combining the wave-
function (2) and the exciton population (3) with the trARPES
formalism [38, 39] and assuming that the exciton population
stays constant over the duration of the probe pulse, one finds

𝐼𝐩𝜆(𝑘𝑥, 𝑘𝑦, 𝐸, 𝜃) ∝ 𝑔(𝜀𝛽(𝐤 − 𝐩) + 𝐸𝜆exc(𝐩) + 𝜔pr − 𝐸)

× 𝑃 𝜆exc(𝐩, 𝜃)
∑
𝛽

|||𝑌
𝜆
𝛼𝛽(𝐩,𝐤)

|||
2
. (4)

Here, 𝜀𝛽(𝐤) denotes the energy of the valence bands, 𝜔pr the
photon energy of the probe pulse, and𝐸 the energy of the final
states, all entering a Gaussian function 𝑔(𝜔) whose width is
determined by the duration of the probe pulse. We also include
the dark excitons (𝐩 ≠ 0) in Eq. (4), as they get populated on a
sub-100 fs time scale due to electron-phonon scattering [40].
Neglecting photoemission matrix elements, the experimental
intensity 𝐼(𝑘𝑥, 𝑘𝑦, 𝐸, 𝜃) is obtained from Eq. (4) by summing
over all exciton momenta 𝐩 in the first BZ.

Apart from enabling a direct comparison with the exper-
imental results, our theory allows us to trace the depen-
dence of the trARPES intensity on the QWP angle 𝜃 back to
the exciton population. For the bright excitons, the Fourier
components (1) are thus determined by 𝐼𝑛(𝑘𝑥, 𝑘𝑦, 𝐸) ∝
∫ 𝜋−𝜋 𝑑𝜃∕(2𝜋) 𝑒−2𝑖𝑛𝜃|𝐞IR(𝜃) ⋅𝐌𝜆|2. Working out the pump po-
larization 𝐞IR(𝜃) in the given experimental geometry, the 𝑛 = 1
Fourier component is given by

Im
[
𝐼𝑛=1(𝑘𝑥, 𝑘𝑦, 𝐸)

]
∝ cos 𝛼

2
Im

[
(𝑀𝜆

𝑥 )
∗𝑀𝜆

𝑦

]
, (5)

where 𝛼 denotes the angle of incidence. The combination of
matrix elements in Eq. (5) is directly proportional to the circu-
lar dichroism:

Im
[
𝐼𝑛=1(𝑘𝑥, 𝑘𝑦, 𝐸)

]
∝ −cos 𝛼

4
(
𝑃 LCP
exc − 𝑃RCP

exc
)
. (6)

Here, 𝑃 LCP
exc (𝑃RCP

exc ) is the exciton population that would be
generated by a pump with LCP (RCP) polarization in normal
incidence. The component 𝐼𝑛=2 is related to linear dichro-
ism. In summary, sweeping over the QWP angle 𝜃 and
Fourier transforming the ARPES signal provides direct access
to energy- and momentum-resolved chiroptical (pump) circu-
lar dichroism in normal incidence, while the experimental ge-
ometry enters only as a prefactor.

Impact of Berry curvature on excitons

To trace the impact of the quantum geometry on the pump-
induced exciton population, we analyze the dipole transition
matrix element 𝐌𝜆 of the bright excitons in Eq. (3). The
light-matter coupling is expressed through the coupling of
the pump electric field 𝐄p(𝑡) and the polarization operator 𝐏̂:
𝐻̂𝑙𝑚 = −𝐄(𝑡) ⋅ 𝐏̂. For interband transitions, the matrix el-
ements of 𝐏̂ in the basis of Bloch states |𝜓𝐤𝛼⟩ are given by
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FIG. 3. Berry curvature, spin texture, and Fourier components of the dichroic signal of excitons. (a) Berry curvature of monolayer WSe2along indicated high-symmetry points. (b) Spin expectation value texture ⟨𝑆𝑧⟩ along the same high-symmetry points. The arrows illustrate
the pump excitation and the relevant exciton scattering processes in the electron and hole picture. (c) Polarization-averaged photoemission
intensity (equivalent to the 𝑛 = 0 Fourier component), energy-integrated over the excited state’s region. (d) Imaginary part of the 𝑛 = 1 Fourier
component 𝐼𝑛=1(𝑘𝑥, 𝑘𝑦, 𝐸) (energy-integrated as in (c)). (e), (f) Theoretical predictions (without any scattering) of the 𝑛 = 0 and 𝑛 = 1 Fourier
components of the intensity corresponding to (c), (d). (g), (h) Theoretical predictions where the inter-valley scattering has been included.

𝐀𝛼𝛼′ (𝐤) = ⟨𝜓𝐤𝛼|𝐫|𝜓𝐤𝛼′⟩. With the modern theory of polar-
ization [9] we can identify the matrix elements 𝐀𝛼𝛼′ (𝐤) with
the Berry connections 𝑖⟨𝑢𝐤𝛼|∇𝐤𝑢𝐤𝛼′⟩ (|𝑢𝐤𝛼⟩ is the cell-periodic
part of the Bloch wave-function). Combining this with the ex-
citon wave-function (2), the exciton transition matrix element
becomes 𝐌𝜆 =

∑
𝐤𝛼𝛽 𝑌

𝜆
𝛼𝛽(𝐤)𝐀𝛼𝛽(𝐤). Inserting into Fermi’s

Golden rule (3) and exploiting the localization in momen-
tum space, we obtain the leading contribution to the circular
dichroism 𝑃CD

exc = 𝑃 LCP
exc − 𝑃RCP

exc :
𝑃 CD
exc = −𝑆2(𝜔p − 𝐸𝜆exc)

× ∫ 𝑑𝐤
𝑉BZ

Im[𝐴𝑥𝛼𝛽(𝐤)𝐴
𝑦
𝛽𝛼(𝐤)]

|||𝑌
𝜆
𝛼𝛽(𝐤)

|||
2
. (7)

Here, 𝑉BZ is the area of the BZ. For TMDCs, the quantum
geometry in the vicinity of the K/K’ valleys is determined by
the top valence (𝛽) and the bottom conduction (𝛼) band [41].
As a consequence, the Berry connections can be related to the
Berry curvature, yielding

𝑃CD
exc = −1

2
𝑆2(𝜔p − 𝐸𝜆exc)∫ 𝑑𝐤

𝑉BZ
Ω𝛼(𝐤)

|||𝑌
𝜆
𝛼𝛽(𝐤)

|||
2
. (8)

The distinct Berry curvature texture in monolayer TMDCs (see
Fig. 3(a)) thus determines the exciton population induced by
circularly polarization light, giving rise to valley polarization.
Based on this close connection, we can track the signatures
of the quantum geometry: the dichroic exciton population and
the exciton envelope function (which can be determined in-
dependently [35]) directly correspond to the Berry curvature

texture in the case of two relevant bands (for more bands the
correspondence stays intact qualitatively ). In particular, the
strongly localized nature of 𝑌 𝜆𝛼𝛽(𝐤) [35] effectively limits the
BZ integral in Eq. (8) to either the K or K’ valley. While abso-
lute numbers can only be extracted using accurate theory input,
the positive-negative texture of the dichroic exciton population
is directly proportional to the texture of the Berry curvature.

We are now ready to analyze the Fourier transform of
the measured polarization-modulated photoemission intensi-
ties (Eq. (1)), in an energy- and momentum-resolved fash-
ion. In particular, the 𝑛 = 1 component reflects the cir-
cular dichroism (Eq. (6)), which should directly reflect the
Berry curvature texture (Eq. (8)). Indeed, the imaginary part
Im[𝐼𝑛=1(𝑘𝑥, 𝑘𝑦, 𝐸)], energy-integrated over the spectral re-
gion where the excitons peaks occur, (Fig. 3(d)) shows clear
dichroic features at the K/K’ valleys. The alternating positive-
negative pattern matches exactly the behavior of the in the con-
duction band Berry curvature (Fig. 3(a)).

The Fourier component Im[𝐼𝑛=1(𝑘𝑥, 𝑘𝑦, 𝐸)] obtained with
our theoretical calculations (Fig. 3(f)) is in very good agree-
ment with the experiment. We obtain the identical positive-
negative pattern which – within the theory – can exactly be
traced back to the momentum dependence of the Berry curva-
ture (see Eq. (8)). The width of the peaks is governed by the
exciton envelope function 𝑌 𝜆𝛼𝛽(𝐤).
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Role of ultrafast scattering processes

Apart from the bright excitons manifesting in the trARPES
signal at K/K’, the experimental data clearly feature additional
excited states signals around the Λ/Λ′ valleys. Despite being
clearly weaker than at the K/K’ valleys, these features are char-
acterized by the same alternating sign pattern between adja-
cent Λ/Λ′ valleys. The origin of the population at the Λ/Λ′

valleys is well known: its originates from K-Λ inter-valley
scattering, leading to the formation of momentum-forbidden
dark excitons, with electron and hole residing at the Λ and
K valleys, respectively. Because of their momentum-indirect
nature, these excitons cannot be prepared by a direct (verti-
cal) optical transition. Understanding the origin of the Λ/Λ′

valleys Im[𝐼𝑛=1(𝑘𝑥, 𝑘𝑦, 𝐸)] texture thus requires more sophis-
ticated modeling, including ultrafast scattering processes fol-
lowing photoexcitation.

Indeed, electron-phonon and electron-electron scattering
limit the lifetime of the bright excitons. Two mechanisms are
dominant on tens of femtosecond time scale: (i) electrons scat-
tering to the Λ valleys, and (ii) electrons scattering from K
to K’ (or K’ to K) [42, 43]. The spin polarization and the
Berry curvature are locked, and adjacent K/K’ valleys are char-
acterized by opposite spin- and Berry curvature textures (see
Fig. 3(b)). These properties strongly influence the ultrafast ex-
citon dynamics in 2D systems [35, 40, 44, 45]. To compare
experiment and theory directly, we solved a quantum-master
equation:

𝑑
𝑑𝑡

𝝆(𝑡) = −𝑖[𝐇(𝑡),𝝆(𝑡)] +
∑
𝑛
𝛾𝑛𝐃𝑛[𝝆(𝑡)] . (9)

Here, 𝝆(𝑡) is the many-body density matrix in the space of the
ground state (index 𝜈 = 0) and the bright (𝜈 = 1, 2, cor-
responding to 𝐩 = 0) and dark (𝜈 > 2, corresponding to
𝐩 ≠ 0) excitons. We can thus identify 𝑃 𝜆exc(𝐩, 𝑡) = 𝜌𝜈𝜈(𝑡)for 𝜈 > 0. The scattering operators 𝐃𝑛[𝝆] (𝑛 labels the scat-
tering channels) are constructed such that they incorporate (i)
K↔K’ scattering (rate 𝛾𝑛 = 𝑇 −1

K→K′ ), (ii) K→ Λ scattering (rate
𝛾𝑛 = 𝑇 −1

K→Λ), and (iii) general dephasing of the off-diagonal
components (rate 𝛾𝑛 = 𝑇 −1

deph). The diagonal components of
the time-dependent exciton Hamiltonian are given by the ex-
citon energies 𝐸𝜈 = 𝐸𝜆exc(𝐩), while the off-diagonal elements
𝐻𝜈0(𝑡) = −𝐄IR(𝑡) ⋅ 𝐌𝜆 (for 𝜈 denoting the bright excitons)
describe the light-matter coupling. Substituting the exciton
population obtained from solving the master equation (9) (av-
eraging over the duration of the probe pulse) into the trARPES
expression (4) yields an excellent match with the experimen-
tal exciton (polarization-averaged) intensity (Fig. 3(c), (g)) for
𝑇K→K′ = 120 fs and 𝑇K→Λ = 80 fs. The only major differ-
ence is the intensity peak around the Γ point observed in the
experiments, which is attributed to LAPE [34]. Similarly, the
agreement between experiment and theory is improved for the
𝑛 = 1 Fourier component (Fig. 3(d), (h)).

Strikingly, despite being significantly weaker, the dichroism
encoded in the 𝑛 = 1 Fourier component from the Λ valleys

time (fs) time (fs)
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p
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p
u

la
ti
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n

(a) (b)

probe

Λ

Λ

FIG. 4. Impact of ultrafast scattering on the dichroism. (a) Time-
dependent population of the exciton states upon pumping with LCP
light in normal incidence, along with the envelope of the pump pulse
and the probe pulse (top panel), and corresponding energy-integrated
Fourier signal Im[𝐼𝑛=1(𝑘𝑥, 𝑘𝑦)] for 𝑇K→K′ = 10 fs, 𝑇K→Λ = ∞. (b)
Same as (a), but for 𝑇K→K′ = ∞ and 𝑇K→Λ = 10 fs. The color scale
is consistent with Fig. 3(f),(h).

has the same sign as the dichroism at the closest K or K’ valley.
While the Berry curvature texture in the Λ valleys is roughly
similar to the corresponding K/K’ valley, it possesses a pro-
nounced momentum dependence (weaker for smaller parallel
momenta), which is not observed in the experiments nor in
the theory. Indeed, the dichroism is determined by the pump-
induced population, i.e. by the interband vertical optical tran-
sitions. With LCP (RCP) polarization, the spin-polarized elec-
trons forming the bright excitons at K (K’) scatter to Λ valleys
with the same spin, while spin-flip processes have a low prob-
ability (see Fig. 3(b)) [45]. Therefore, the valley selectivity
of the pump-induced bright exciton population is preserved by
the K→ Λ (K’→ Λ) scattering process, due to the constrain on
scattering pathways imposed by the spin texture. This "mem-
ory" effect is also present in our calculations (Fig. 3(h)), con-
firming this physical mechanism.

In contrast, post-optical transition ultrafast intervalley scat-
tering involving spin-flip processes would reduce the mea-
sured dichroism. In particular, K↔K’ (or vice-versa) scat-
tering would give rise to electron populations in the minor-
ity valley, thus leading to a weaker polarization modulation of
the valley-resolved population. While it is very challenging to
control them experimentally, our theoretical approach allows
us to investigate the role of scattering processes by tuning their
characteristic times 𝑇K→K′ and 𝑇K→Λ (Fig. 4).

We first investigate the situation where onlyK → K′ scatter-
ing channel is activated (i.e. K → Λ is forbidden – 𝑇K→Λ = ∞
– see Fig. 4(a)). In this case, the population of the excitons lo-
calized at K/K’ approach the same value rapidly, thus reducing
the dichroic signal. Note that even for scattering times as fast
as 𝑇K→K′ = 10 fs, which has been used for the simulation in
Fig. 4(a), the dichroism is not fully suppressed. Ultrafast scat-
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tering processes thus blur the direct correspondence between
the momentum-resolved optical transition rate and the Berry
curvature.

In Fig. 4(b), we investigate another extreme scenario with
ultrafast K→ Λ scattering (𝑇K→Λ = 10 fs) and forbidden
K → K′ channel (𝑇K→K′ = ∞). In this case, the dichroic
trARPES signal from the Λ valleys dominates. Similar to
Fig. 4(a), the quantum geometric texture still leaves its imprint
onto the dichroic Im[𝐼𝑛=1(𝑘𝑥, 𝑘𝑦)] signal, despite the rapid
population transfer.

DISCUSSION

Our joint experimental and theoretical work introduces a
robust scheme to extract local quantum geometric proper-
ties of the electronic structure of materials using momentum-
resolved many-body optical transition rates, here exemplified
for a TMDC monolayer (WSe2). Indeed, we exploit the di-
rect relationship between chiroptical selection rules for bright
excitons and their Berry curvature to design a viable measure-
ment protocol to access its texture in reciprocal space. Using
continuous pump polarization modulation in trARPES in an
analogous fashion to the lock-in detection scheme, we isolate
signals modulated at the helicity-swap frequency. This mea-
surement scheme allows for extracting a pure optical circular
dichroism signal, efficiently removing all contamination com-
ing from linear pump contributions, experimental geometry, or
other experimental artifacts. This Fourier analysis protocol is
particularly interesting for ARPES measurements, which are
performed at off-normal angles of incidence, leading to non-
trivial experimental geometric effects competing with intrinsic
signals of interest.

Our theoretical model allowed us to investigate the re-
silience of our dichroic signal towards ultrafast scattering fol-
lowing optical transitions. Ultrafast reorganization of popula-
tions in energy- and momentum-space may blur the one-to-one
correspondence between momentum-resolved optical transi-
tion rate and Berry curvature. However, even in the scenario
where the scattering time is shorter than the pulse duration,
our calculations demonstrate that the quantum geometric tex-
ture still leaves its imprint onto the dichroic Im[𝐼𝑛=1(𝑘𝑥, 𝑘𝑦)]signal. With sub-50 fs temporal resolution routinely available
in trARPES setups, this measurement scheme can be applied
to a wide range of material systems.

It is also interesting to mention that a simple extension of
our scheme would be compatible with the recent proposal
to experimentally measure the quantum metric [14], i.e. the
real part of the quantum geometric tensor (Berry curvature
is the imaginary part of the quantum geometric tensor). A
light-matter interaction-based protocol to measure the quan-
tum metric would be highly desirable, as this momentum-
resolved quantity has been predicted to be of capital impor-
tance in the emergence of a broad range of physical phenom-
ena, e.g. anomalous Hall effect [46], orbital magnetic suscep-
tibility [47], exciton Lamb shift [48], as well as superconduc-

tivity [49].
Moreover, being intrinsically compatible with ultrafast

time-resolved measurements, extending our scheme to a three-
pulses trARPES approach would allow measuring ultrafast
light-induced modification of local quantum geometric prop-
erties of solids undergoing dynamics.

METHODS

Experiments

The optical setup underlying our time- and angle-resolved
photoemission spectroscopy experiments is based on a home-
built optical parametric chirped-pulse amplifier (OPCPA). The
OPCPA is delivering up to 30 𝜇J/pulses (15 W, 800 nm, 30 fs)
at 500 kHz repetition rate [50]. In the probe arm, the second
harmonic (SHG) of the OPCPA output (400 nm) is used to
drive high-order harmonic generation (HHG) by tightly focus-
ing (15 𝜇m FWHM) laser pulses onto a thin and dense Argon
gas jet. The nonlinear interaction between the laser pulses and
the Argon atoms leads to the generation of a comb of odd har-
monics of the driving laser, extending up to the 11th order.
A single harmonic (7th order, 21.7 eV) is isolated by reflec-
tion off a focusing multilayer XUV mirror and transmission
through a 400 nm thick Sn metallic filter. A photon flux of
up to 2x1011 photons/s at the sample position is obtained (110
meV FWHM) [51]. As a pump beam, we used s-polarized
near-infrared pulses (760 nm, ℏ𝜔IR = 1.63 eV, ∼ 45 fs full
width at half maximum (FWHM) duration), to resonantly pre-
pare bright A-excitons in ML-WSe2 sample. We use a quarter-
wave plate located before the pump and probe recombination
chamber to control the polarization state of the pump pulse.
The NIR pump and XUV probe pulses are noncollinear re-
combined and focused onto the sample lying in the photoe-
mission end-station. The photoemission data are acquired
using a time-of-flight momentum microscope (METIS1000,
SPECS GmbH), allowing to detect each photoelectron as a sin-
gle event, as a function of NIR quarter-waveplate angle (𝜃).
The resulting 4D photoemission intensity data have the coor-
dinates 𝐼(𝑘𝑥, 𝑘𝑦, 𝐸, 𝜃).

Concerning the preparation of the atomically thin TMDC
sample, first, thin hBN flakes are mechanically exfoliated on
polydimethylsiloxane (PDMS) and transferred onto a 0.5 wt%
Nb-doped rutile TiO2 (100) substrate. Subsequently, mono-
layer WSe2 is exfoliated from bulk crystals (HQ graphene)
on PDMS and stamped on top of the previously transferred
hBN flake. The sample is then annealed in a high vacuum at
180◦C for at least 2h at each step. The hBN serves as an atom-
ically smooth buffer layer to prevent the corrugation of sub-
strate surface roughness [52], and the slightly conductive sub-
strate TiO2 reduces the space charging effect from trARPES
measurements [53].
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First-principle calculations

We performed density-functional theory (DFT) calculations
with the full-electron code FLEUR [54] within the Perdew-
Burke-Ernzerhof (PBE) approximation [55] to the exchange-
correlation functional and subsequently constructed projective
Wannier functions𝜙𝑗(𝐫) using the WANNIER90 code [56]. We
included the W−𝑑 and the Se-𝑝 orbitals. As the next step we
performed a one-shot 𝐺0𝑊 0 calculation [57] to obtain the
self-energy Σ𝛼(𝐤, 𝜔), from which the quasiparticle energies
𝜀𝛼(𝐤) are computed. The resulting quasiparticle Hamiltonian
is expressed in the Wannier basis, yielding an 11-orbital model
reproducing the 𝐺0𝑊 0 bands with high accuracy.

As the next step, we performed constrained random-
phase approximation (cRPA) calculations [58] to obtain the
Coulomb matrix elements in the Wannier basis using the
SPEX code [59]. Due to reduction to the bands spanned
by the Wannier functions, the Coulomb interaction attains a
frequency dependence. However, as the energy scale of the
screening effects is much bigger than the band gap, we ap-
proximate the interaction as static (𝜔 = 0). Furthermore, we
only keep the density-density matrix elements due to the lo-
calized nature of the Wannier functions. Thus we obtain the
interaction Hamiltonian

𝐻̂int =
1
2
∑
𝐑,𝐑′

∑
𝑗𝑗′
𝑈𝑗𝑗′ (𝐑 − 𝐑′)𝑛̂𝐑𝑗 𝑛̂𝐑′𝑗′ , (10)

where 𝑛̂𝐑𝑗 = 𝑐†𝐑𝑗𝑐𝐑𝑗 is the density operator for the lattice site
𝐑 and orbital 𝑗. The Coulomb interactions 𝑈𝑗𝑗′ (𝐑 − 𝐑′) are
presented in the supplemental materials, along with full details
of the calculations.

Wannier model

With the𝐺0𝑊 0-Wannier Hamiltonian and the Coulomb in-
teractions, we have a flexible and accurate model for the elec-
tronic structure, including excitons. To obtain the exciton en-
velope function, we solved the Wannier equation [60, 61] for
a selected pair of valence (𝛽) and conduction (𝛼) bands:
[
𝜀𝛼(𝐤 + 𝐩)−𝜀𝛽(𝐤) − 𝐸𝜆exc(𝐩)

]
𝑌 𝜆𝛼𝛽(𝐩,𝐤)

−
∑
𝐪
𝑊𝛼𝛽(𝐤 + 𝐩,𝐤 + 𝐪,𝐪)𝑌 𝜆𝛼𝛽(𝐩,𝐪) = 0 .

(11)
The effective interaction 𝑊𝛼𝛽(𝐤,𝐤′,𝐩) is the inter-band
screened interaction. As the precise dielectric environment
of the substrate is hard to characterize, we employed the ef-
fective continuum model from refs. [62, 63]. The model di-
electric function 𝜖(𝐪) is parameterized by the dielectric con-
stant at 𝜔 → ∞, 𝜖∞, the substrate dielectric function 𝜖sub,
and the effective thickness of the WSe2 layer 𝑑eff . We fixed
𝑑eff = 6.48 Å as in ref. [63] while adjusting 𝜖∞ and 𝜖sub

to match the exciton binding energies observed in the experi-
ments. The resulting absorption spectrum (see supplemental
materials) is in good agreement with first-principle calcula-
tions for WSe2 on hBN substrate.

Once the exciton envelope functions 𝑌 𝜆𝛼𝛽(𝐩𝐤) (we take the
lowest states 𝜆 only) have been determined, optical matrix el-
ements are computed as 𝐌𝜆

exc = 𝛿𝐩,0
∑

𝐤𝛼𝛽 𝑌
𝜆
𝛼𝛽(𝐩,𝐤)𝐀𝛼𝛽(𝐤).The Berry connections 𝐀𝛼𝛽(𝐤) are calculated from the Wan-

nier Hamiltonian as in ref. [64].

Time-dependent dynamics

To simulate the population dynamics we derived the
quantum-master equation (9) from the Lindblad formalism.
Thus, the scattering operators are constructed as

𝐃𝑛[𝝆] = 𝐋𝑛𝝆𝐋†
𝑛 −

1
2
{
𝐋†
𝑛𝐋𝑛,𝝆

}
, (12)

where {, } denotes the anti-commutator. The Lindblad op-
erators are constructed as projectors as follows: (i) 𝐋𝑛 =
|Ψexc

0𝜆 ⟩⟨Ψexc
𝐩𝜆′ | for the scattering process from K/K’ (corre-

sponding to 𝜈 = 1, 2) to the dark exciton states with cor-
responding momentum 𝐩 (𝜈′ > 2), (ii) 𝐋𝑛 = |Ψexc

0𝜆 ⟩⟨Ψexc
0𝜆′ |for the K↔K’ process with 𝜈 = 1, 2, 𝜈′ = 2, 1, and (ii)

𝐋𝑛 = |Ψ0⟩⟨Ψ0| + ∑
𝐩𝜆 |Ψexc

𝐩𝜆 ⟩⟨Ψexc
𝐩𝜆 | to capture the dephas-

ing of off-diagonal components of the density matrix. We fix
𝑇deph = 40 fs for all calculations.

Inserting the scattering operators (12), the optical transi-
tion matrix elements 𝐌𝜆, and the pump pulse with parameters
consistent with the experiments into the master equation (9)
yields the time-dependent density matrix 𝜌𝜈𝜈(𝑡), from which
the trARPES spectra presented in the text are computed.
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Supplementary Note 1: Computational details for the first principles cal-
culations
We start from a density functional theory (DFT) calculation of monolayer WSe2 within the generalized gradient
approximation (GGA) [1] using the full-potential all-electron code FLEUR [2]. We use a 32 × 32 × 1 𝐤-grid for
the calculations, and to avoid interactions with the periodic image along the 𝑧 (nonperiodic) direction we use a
23 Å vacuum distance. The primitive cell contains a single formula unit, and the atomic positions and lattice
parameters for the hexagonal lattice are given in Tab. S1.

Table S1: Lattice parameters in Å and atomic positions in Cartesian coordinates for the relaxed structure of hexag-
onal monolayer WSe2.

𝑎=3.32 Å, 𝑐 = 8𝑎
𝑥 [Å] 𝑦 [Å] 𝑧 [Å]

W 0 0 0Se 1.660 -0.958 -1.675Se 1.660 -0.958 1.675

We construct a low-energy model subspace using projected Wannier functions from the Wannier90 library [3]
as basis functions. We include W 5𝑑- and Se 4𝑝-like orbitals for the three sites in the primitive cell, defining a
model spanned by eleven orbitals in total. The resulting disentangled band structure agrees very well with the DFT
calculation, as shown in Fig. S1. The model should therefore provide a good starting point for our many-body
calculations.

To define a quasiparticle 𝐺𝑊 Hamiltonian, we first perform a one-shot 𝐺0𝑊 0 calculation [4] to compute the
self-energy Σ𝛼(𝐤, 𝜔). The quasiparticle energies are then obtained by solving the quasiparticle equation [5]

𝜀QP
𝛼 (𝐤) = 𝜀𝛼(𝐤) − 𝑉 xc

𝛼 (𝐤) + Re
[
Σ𝛼(𝐤, 𝜀QP

𝛼 (𝐤))
]
, (1)

where 𝜀𝛼(𝐤) and 𝑉 xc
𝛼 (𝐤) are the Kohn-Sham eigenvalues and the exchange-correlation potential from the DFT cal-

culation, respectively. The resulting𝐺0𝑊 0 quasiparticle band structure is shown in Fig. S1, where we in particular
note the usual widening of the band gap.

Within the constrained random-phase approximation (cRPA) [6] the effective bare interaction 𝑈 for a low-
energy subspace is calculated as

𝑈 (𝜔) = [1 − 𝑣Π𝑟(𝜔)]−1𝑣. (2)
Here 𝑣 is the bare Coulomb interaction and the screening from within the 𝑑𝑝-model, Π𝑑 , has been removed from the
polarization function, Π𝑟 = Π−Π𝑑 . Through this downfolding of the higher-energy states, the effective interaction
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Figure S1: Band structure of monolayer WSe2. Left: The model band structure (solid lines) plotted on top of the
DFT band structure (gray dashed lines). The color bar shows the orbital-like character of the model bands. Right:
The𝐺0𝑊 0 quasiparticle band structure (black lines) and disentangled model bands (gray dashed lines). The Fermi
energy is placed in the middle of the gap.

for the low-energy model is defined as

𝑈𝑗1𝑗2𝑗3𝑗4 (𝜔,𝐑) = ∫ ∫ d𝐫d𝐫′𝜙∗
𝑗1𝟎

(𝐫)𝜙𝑗2𝟎(𝐫)𝑈 (𝐫, 𝐫′, 𝜔)𝜙∗
𝑗3𝐑

(𝐫′)𝜙𝑗4𝐑(𝐫
′)

= 1
𝑁

∑
𝐪
𝑒−𝑖𝐪𝐑𝑈𝑗1𝑗2𝑗3𝑗4 (𝜔,𝐪) (3)

attains a frequency dependence, in addition to being a nonlocal quantity. The basis functions 𝜑𝑗𝟎(𝐫) are here taken
to be the localized Wannier functions defining the model subspace. In this study, we have chosen to retain the
full nonlocal nature, while limiting ourselves to only treating the static (𝜔 = 0) density-density interaction terms:
𝑈𝑗𝑗′ (𝐑) ≡ 𝑈𝑗𝑗,𝑗′𝑗′ (𝜔 = 0,𝐑).

Since the metallic screening coming from the low-energy region is removed, the calculated effective bare in-
teraction typically displays a long-ranged Coulomb-like tail. It is therefore important that both the local (𝐑 = 0)
and long-range parts are well-converged with respect to the momentum grid, in particular as we for a 2D system
can expect the remaining screening to be less efficient. In Fig. S2 we show the nonlocal interaction 𝑈 (|𝐑|) for one
W 5𝑑- and one Se 4𝑝-like orbital calculated using increasingly dense momentum grids. We can note that while the
local and short-range interaction terms converge rapidly, the long-range tail is more sensitive to the sampling. We
have further checked that increasing the vacuum distance to 30 Å only produces a small (∼ 0.1 eV) change in the
local quantities for the 20 × 20 × 1 k-grid, which is within our “errorbar" for these calculations.

The cRPA and 𝐺0𝑊 0 calculations are performed using the SPEX code [7]. The quantities used for the results
presented in the main text have been calculated using the dense 32 × 32 × 1 𝐤-grid, and we include DFT bands up
to ∼ 40 eV when computing both the polarization function and self-energy.

Supplementary Note 2: Wannier equation and exciton properties
With the compact representation of the Coulomb interaction in the Wannier basis, 𝑈𝑗𝑗′ (𝐑), we can express any
inter-band interaction. For excitons, the relevant contribution is the interband interaction
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Figure S2: Distance dependence of the effective interactions. The static nonlocal cRPA interaction𝑈 (𝜔 = 0, |𝐑|)
calculated with varying 𝐤-grids (see the labels) for (a) one of the W 5𝑑-like orbitals and (b) one of the Se 4𝑝 -like
orbitals.

𝐻̂int =
∑
𝛼𝛽

∑
k1k2q

[∑
𝑗𝑗′
𝑈𝑗𝑗′ (𝐪)𝐶∗

𝑗𝛼(𝐤1)𝐶
∗
𝑗′𝛽(𝐤2)𝐶𝑗′𝛼(𝐤2 + 𝐪)𝐶𝑗𝛽(𝐤1 − 𝐪)

]
𝑐†𝛼k1

𝑐†𝛽k2
𝑐𝛽k2+q𝑐𝛼k1−q

≡ ∑
𝛼𝛽

∑
k1k2q

𝑉𝛼𝛽(𝐤1,𝐤2,𝐪)𝑐
†
𝛼k1
𝑐†𝛽k2

𝑐𝛽k2+q𝑐𝛼k1−q . (4)

Here, 𝛼 (𝛽) label the conduction (valence) bands. We have approximated the interaction as diagonal in band space.
Exciton properties are obtained from solving the Wannier equation with the screened interaction, while Eq. (4)

describes the bare interaction in the Wannier space. To build in the screening, we employ the continuum model
from refs. [8, 9], which allows us to incorporate the screening of the hBN substrate in a phenomenological way. The
model dielectric function 𝜖(𝐪) (we only the consider static screening) is parameterized by the dielectric function for
𝜔→ ∞ (𝜖∞), the substrate dielectric function (𝜖sub), and the effective width of the WSe2 layer (𝑑eff ). As in ref. [9]
we fix 𝑑eff = 6.48 a.u., while we chose 𝜖∞ = 2 and 𝜖sub = 3.375. We thus obtain the statically screened interaction

𝑊𝛼𝛽(𝐤1,𝐤2,𝐪) =
𝑉𝛼𝛽(𝐤1,𝐤2,𝐪)

𝜖(𝐪)
. (5)

The exciton states are treated within the particle-hole expansion
|Ψexc

𝐩𝜆 ⟩ = 𝑌 𝜆𝛼𝛽(𝐩,𝐤)𝑐
†
𝐤+𝐩𝛼𝑐𝐤𝛽 |Ψ0⟩ , (6)

where |Ψ0⟩ is the quasi-particle ground state. Inserting the exciton state into the Schrödinger equation with the
interaction Hamiltonian (4), replacing 𝑉𝛼𝛽(𝐤1,𝐤2,𝐪) → 𝑊𝛼𝛽(𝐤1,𝐤2,𝐪), then yields the Wannier equation for the
exciton envelope function

∑
𝐪

𝐩𝜆
𝛼𝛽 (𝐤,𝐪)𝑌

𝜆
𝛼𝛽(𝐩,𝐪) = 𝐸𝜆(𝐩)𝑌 𝜆𝛼𝛽(𝐩,𝐤) . (7)

Here, the effective two-particle Hamiltonian is given by
𝐩𝜆
𝛼𝛽 (𝐤,𝐪) =

[
𝜀QP𝛼 (𝐤 + 𝐩) − 𝜀QP𝛽 (𝐤))

]
𝛿𝐤𝐪 −

1
𝑁
𝑊𝛼𝛽(𝐤 + 𝐪,𝐤 + 𝐩,𝐪) . (8)
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Figure S3: Excitonic properties. (a) Optical absorption spectrum 𝐴(𝜔) obtained from Eq. (9). We averaged over
the light polarization 𝐞. (b) Energy-integrated and polarization-averaged intensity 𝐼0(𝐤) along the 𝑘𝑥 direction,
extracted from experiments (circles) and theory (solid line). (c) Similar to (b), the imaginary component of the
𝑛 = 1 Fourier component of the energy-integrated intensity.

Solving Eq. (7) then yields the exciton envelope function for each eigenstate 𝜆.
To benchmark our method and justify the choice of screening parameters, we have also computed the absorption

spectrum
𝐴(𝜔) = 1

𝜋
Im⟨Ψ0|𝐷̂†

𝐞
1

𝜔 − 𝐻̂ − 𝑖𝜂
𝐷̂𝐞|Ψ0⟩ , (9)

where
𝐷̂𝐞 =

∑
𝐤

∑
𝛼𝛽

𝐞 ⋅ 𝐀𝛼𝛽(𝐤)𝑐
†
𝐤𝛼𝑐𝐤𝛽 (10)

denotes the dipole operator comprised of the Berry connections 𝐀𝛼𝛽(𝐤) and the light polarization 𝐞. Fig. S3(a)
shows the absorption spectrum, featuring the prominent A-exciton peak and the particle-hole continuum. The
exciton binding energy is in excellent agreement with the experiments, while the spectrum in Fig. S3(a) agrees
very well with first-principle calculations for WSe2 on a thick hBN substrate.

Supplementary Note 3: Fitting of the scattering times
From the exciton envelope function we computed the dipole transition matrix elements 𝑀𝜆 = ⟨Ψexc

0𝜆 |𝐷̂𝐞|Ψ0⟩ for a
specific light polarization. Combining with the exciton energies𝐸𝜆(𝐩), we have all ingredients to build the effective
Hamiltonian in exciton space, as discussed in the methods section in the main text. To further ensure the accuracy
of our approach to obtaining exciton properties and to determine the scattering times 𝑇K→Σ and 𝑇K→K′ , we solved
the quantum master equation (Eq. (9) in the main text) for various parameters. We adopted the pump and the probe
pulse as in the experiments and also modulated the pump polarization 𝐞 accordingly. For each value of 𝑇K→K′ and
𝑇K→Σ we computed the photoemission intensity (Eq. (4) in the main text, summing over all exciton states).

The thus simulated trARPES intensity is compared directly to experiments. To reduce the effect of the slight
misalignment of the sample, we averaged the intensity over the three different paths along the K–Γ–K’ directions.
Experiment and theory (performing the same Fourier analysis) are directly compared to each other in Fig. S3(b),(c).
We note the excellent agreement of theory and experiment for the A-exciton peak. The scattering times have then
been optimized to reproduce the relative weight of the bright excitons and the indirect excitons (peaks at Σ) as well
as possible.
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