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Extension-based Semantics for Incomplete Argumentation Frameworks: Properties, Complexity and Algorithms

Incomplete Argumentation Frameworks (IAFs) have been defined to incorporate some qualitative uncertainty in abstract argumentation: information such as "I am not sure whether this argument exists" or "I am not sure whether this argument attacks that one" can be expressed. Reasoning with IAFs is classically based on a set of completions, i.e. standard argumentation frameworks that represent the possible worlds encoded in the IAF. The number of these completions may be exponential with respect to the number of arguments in the IAF. This leads, in some cases, to an increase of the complexity of reasoning, compared to the complexity of standard AFs. In this paper, we follow an approach that was initiated for Partial AFs (a subclass of IAFs), which consists in defining new forms of conflict-freeness and defense, the properties that underly the definition of Dung's semantics for AFs. We generalize these semantics from PAFs to IAFs. We show that, among three possible types of admissibility, only two of them satisfy some desirable properties. We use them to define two new families of extension-based semantics. We study the properties of these semantics, and in particular we show that their complexity remains the same as in the case of Dung's AFs. Finally, we propose a logical encoding of these semantics, and we show experimentally that this encoding can be used efficiently to reason with IAFs, thanks to the power of modern SAT solvers.

Introduction

Abstract argumentation has been a major subfield of Knowledge Representation and Reasoning since the seminal paper by Dung [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. However, although it is very appealing, Dung's framework is limited in the kind of information that can be modeled: only (abstract) arguments and attacks between them. For this reason, many generalizations of this framework have been proposed, introducing the notion of support between arguments [START_REF] Amgoud | On bipolarity in argumentation frameworks[END_REF], weighted attacks [START_REF] Dunne | Weighted argument systems: Basic definitions, algorithms, and complexity results[END_REF] or weighted arguments [START_REF] Rossit | United we stand: Accruals in strength-based argumentation[END_REF], preferences between arguments [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF], and so on. Among these generalizations of Dung's framework, a very natural research direction is the introduction of uncertainty in the model. Indeed, uncertainty is omnipresent in real world, and must be taken into account in the modeling of agents that reason about their environment or about other agents. Moreover, when arguments are generated from natural language processing [START_REF] Lawrence | Argument mining: A survey[END_REF], the nuances that exist in natural language are likely to be sources of uncertainty [START_REF] Baroni | Encompassing uncertainty in argumentation schemes[END_REF] that should appear in the formal model. Two directions have been followed for integrating uncertainty in abstract argumentation: quantitative representation of uncertainties (e.g. probabilities [START_REF] Li | Probabilistic argumentation frameworks[END_REF][START_REF] Hunter | Some foundations for probabilistic abstract argumentation[END_REF]) and qualitative ones [START_REF] Coste-Marquis | On the merging of Dung's argumentation systems[END_REF][START_REF] Cayrol | Handling ignorance in argumentation: Semantics of partial argumentation frameworks[END_REF][START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF]. While quantitative representation of uncertainty is valuable when it is available, allowing fine grained reasoning about uncertainty, it may not be available in many realistic cases. For instance, in a debate, an agent can be uncertain that her opponent will use a given argument or not, without having a quantitative measure of this uncertainty. The study of qualitative models of uncertainty is thus of utter importance for the design of AI systems.

In this paper, we follow this direction. Qualitative uncertainty in abstract argumentation was originally studied in a context of Argumentation Framework (AF) merging [START_REF] Coste-Marquis | On the merging of Dung's argumentation systems[END_REF]: Partial Argumentation Frameworks (PAFs) are AFs with possible ignorance about the existence of some attacks, initially used as a tool during some step of the merging process. Semantics dedicated to these PAFs were then defined in [START_REF] Cayrol | Handling ignorance in argumentation: Semantics of partial argumentation frameworks[END_REF]. However, most of the work in this field focuses on a generalization of PAFs, namely Incomplete AFs (IAFs), where uncertainty concerns both the arguments and the attacks, and reasoning is based on completions. A completion is an argumentation framework that represents one of the (uncertain) scenarios encoded in the IAF. Classical reasoning tasks are then adapted in two versions: the possible view (is some property true for some completion?) and the necessary view (is some property true for each completion?). However, the number of completions is (in the worst case) exponential in the number of arguments. This means that various reasoning problems are harder for IAFs than their counterpart for standard AFs [START_REF] Baumeister | Verification in incomplete argumentation frameworks[END_REF][START_REF] Fazzinga | Revisiting the notion of extension over incomplete abstract argumentation frameworks[END_REF][START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF].

In this paper, we follow the approach initiated by [START_REF] Cayrol | Handling ignorance in argumentation: Semantics of partial argumentation frameworks[END_REF]: we define new forms of conflict-freeness and defense based on the different types of information in an IAF. The combination of a notion of conflict-freeness and a notion of defense yields a notion of admissibility; we show that among the three possible variants of admissibility, only two of them satisfy some desirable property, namely Dung's Fundamental Lemma (adapted to IAFs). This lemma states, in classical AFs, that an admissible set remains admissible if an argument defended by it is added to the set. From the two "fundamental" notions of admissibility for IAFs (that we call weak and strong admissibility), we define (weak and strong) variants of the classical complete, preferred and stable semantics. We study some properties of these semantics, and we show that their complexity remains the same as in the standard AF case. Finally, we propose logical encodings of these semantics, in the same vein as [START_REF] Besnard | Checking the acceptability of a set of arguments[END_REF]. We describe an implementation of our SAT-based approach for reasoning with the new semantics, and we empirically show that it scales up well.

This article is an extended version of a preliminary conference paper [START_REF] Mailly | Extension-based semantics for incomplete argumentation frameworks[END_REF].

The new material included in this version is this one:

• we provide additional background notions, on propositional logic and computational complexity: Section 2.1 and Section 2.2,

• we correct an error included in the previous publication, proving that weak stable extensions are not weak admissible sets (but strong stable extensions are indeed strong admissible sets): Section 3.3;

• we provide new results on the relations between weak and strong variants of the semantics: Section 3.4);

• we study the complexity of additional decision problems (extension existence and non-emptiness) for all the semantics studied in the paper: Section 4.1.3 and Section 4.1.5;

• we describe an implementation of the SAT-based approach, and an experimental evaluation thereof: Section 5.

The rest of the paper is organized as follows. Section 2 describes background notions on propositional logic, computational complexity and abstract argumentation. In Section 3, we define our new semantics and study some of their properties, in particular the satisfaction of the Fundamental Lemma, and some inclusion relations between them. In Section 4, we show that the complexity remains the same as in the standard AF case, 1 and we provide a logical encoding for our semantics. Section 5 describes our implementation of the logical encoding defined in the previous section, and an experimental evaluation thereof shows that it scales up well. Finally, Section 6 describes some related work, and Section 7 concludes the paper.

Background

Propositional Logic and Boolean Satisfiability

We first recall some basic notions of classical logic, that will be useful in Section 4.2. We consider propositional formulas built on a set of Boolean variables V , i.e. each variable can be assigned a value in B = {0, 1} (where 0 is interpreted as false, and 1 as true). A well-formed formula is:

• ϕ = x, for any x ∈ V (atomic formula),
• ϕ = ¬ψ, for ψ a well-formed formula (negation),

• ϕ = ψ ∨ ψ ′ , for ψ, ψ ′ two well-formed formulas (disjunction),

• ϕ = ψ ∧ ψ ′ , for ψ, ψ ′ two well-formed formulas (conjunction).
An interpretation is a mapping ω : V → B, i.e. an assignment of a truth value to each variable. It can be extended to arbitrary formulas by the recursive mechanism:

• ω(¬ϕ) = 1 -ω(ϕ), • ω(ϕ ∨ ψ) = max(ω(ϕ), ω(ψ)), • ω(ϕ ∧ ψ) = min(ω(ϕ), ω(ψ)).
An interpretation ω satisfies a formula ϕ if ω(ϕ) = 1. We also say that ω is a model of ϕ. We write mod(ϕ) the set of models of ϕ. Finally, we define additional connectives as shortcuts for complex formulas:

• the material implication is ϕ → ψ, with mod(ϕ → ψ) = mod(¬ϕ ∨ ψ), • the equivalence is ϕ ↔ ψ, with mod(ϕ ↔ ψ) = mod((ϕ → ψ) ∧ (ψ → ϕ)).
The Boolean satisfiability problem (SAT) consists in determining, given a propositional formula, whether it possesses at least one model. Although it is theoretically hard to solve in general (NP-complete [START_REF] Cook | The complexity of theorem-proving procedures[END_REF], see Section 2.2), modern SAT solvers allow to solve it for many instances, including large ones [START_REF]Handbook of Satisfiability[END_REF]. This makes reductions to SAT a good method for solving many hard problems without developing specific algorithms for these problems. Notice that SAT solvers usually take as input Conjunctive Normal Form formulas (CNF), i.e. conjunction of clauses, where each clause is a disjunction of literals, and a literal is either an atomic formula, or the negation of an atomic formula. This is not a problem in practice, since any propositional formula can be translated into an equivalent CNF formula in polynomial time (modulo the addition of variables) [START_REF] Tseytin | On the complexity of derivation in propositional calculus[END_REF].

Computational Complexity

We present now the basic notions of computational complexity that are used in the rest of this article. We focus on decision problems, i.e. questions that can be answered by "YES" or "NO". The goal is to determine how hard it is to solve such problems, with respect to the main resources required for computing a solution to these problems: time and space. To do so, we use the notion of complexity class, that are sets of problems sharing similar properties (e.g. being "easy" or "hard" to solve).

Roughly speaking, a problem is considered to be "easy" to solve (tractable) when there exists a deterministic algorithm that solves it in polynomial time with respect to the size of the problem instance, i.e. O(n k ) computation steps where n is the size of the instance, and k ∈ N is a fixed constant. These problems are gathered in the complexity class P. Among polynomial problems, we can identify space-logarithmic ones, that are the decision problems solved by a deterministic algorithm using a memory space logarithmic in the size of the input (besides the size of the input itself, naturally). This means that running the algorithm requires O(log(n)) memory units if the problem instance needs n memory units to be represented. These problems form the class L, which is a subset of P.

Among "hard" problems (intractable), special attention has been paid to NP, the set of problems that can be solved in polynomial time by a non-deterministic algorithm. A classical approach to identify a problem in NP is the following generic non-deterministic algorithm: given an instance I of the problem, 1. guess a potential proof p that I is a "YES" instance, 2. check (with a deterministic polynomial algorithm) that p is actually a proof that I is a "YES" instance.

The first step is called a non-deterministic guess. From this approach, NP is sometimes characterized as the set of problems for which it is hard to find a solution, but easy to verify a solution (step 2 of the algorithm).

If the second step does not use a deterministic polynomial algorithm, but a NP algorithm instead, it defines another class Σ P 2 (sometimes written NP NP ), the set of decision problems that can be solved in polynomial time by a nondeterministic algorithm with access to a NP oracle (i.e. a black box able to solve a problem from the class NP).

The complement of a complexity class C is C = {P | P ∈ C}, where P is the complement problem of P, i.e. the decision problem built on the same set of instances as P, such that i is a "YES" instance of P if and only if it is a "NO" instance of P. Complement classes that will be used in the rest of this article are coNP = NP and Π P 2 = Σ P 2 . Decision problems in these complexity classes can be compared thanks to the notion of polynomial time reduction, i.e. a function f that takes as input instances of a problem P, and outputs instances of a problem P ′ , such that i is a "YES" instance of P if and only if f (i) is a "YES" of P ′ , and f is computable in polynomial time with respect to the size of i. In this case, we write P ≤ P f P ′ , which means that P ′ is at least as hard as P. This notion is used to define the concept of C-hardness: a problem P ′ is C-hard if for any P ∈ C, P ≤ P f P ′ .2 A problem which is C-hard and belongs to C is called C-complete, which means that it is one of the hardest problems in C.

The classes mentioned here are part of the polynomial hierarchy, a family of complexity classes recursively defined from P, NP, and coNP, using the concept of oracles. Several inclusion relations exist between these classes, depicted by Figure 1. 3 Whether these inclusions are strict is still an open question; if they were not strict then we would say that the polynomial hierarchy collapses. However, the contrary is usually assumed, it means (for instance) that a Σ 2 Pcomplete problem is considered strictly harder than a NP-complete problem, which is in turn supposed to be strictly harder than a polynomial problem. For a more detailed overview of computational complexity, we refer the reader to e.g. [START_REF] Arora | Computational Complexity -A Modern Approach[END_REF].

Abstract Argumentation Frameworks

Abstract argumentation is the study of relations between abstract pieces of information called arguments; the internal nature of arguments, as well as their origin, is considered as irrelevant. Only the interactions between arguments are considered in order to determine which arguments are acceptable or not. The most classical type of relationship is the so-called attack relation, that expresses a contradiction between arguments. An attack is generally directed from one argument to another one, meaning that the first one somehow defeats the second one. The seminal paper [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] has launched the strong interest for abstract argumentation in the last 25 years. In this section, we formally introduce this abstract framework and how it is used for reasoning.

We suppose the existence of a finite set of arguments A. The acceptability of arguments is classically evaluated through the concept of extensions, i.e. sets of arguments that are jointly acceptable. This form of of calls to a Σ P i oracle. They are only shown for describing the position of Σ P 2 and Π P 2 in the hierarchy, but they not used in the rest of the article.

joint acceptance can be interpreted as defining a coherent point of view about the argumentative scenario that is represented by the AF. Different semantics have been defined, that yield different sets of extensions. The usual semantics are based on two main principles: conflict-freeness and admissibility.

Definition 2 (Conflict-freeness and Admissibility). Given F = ⟨A, R⟩ an AF, the set S ⊆ A is

• conflict-free iff ∀a, b ∈ S, (a, b) ̸ ∈ R; • admissible iff it is conflict-free and ∀a ∈ S, ∀b ∈ A s.t. (b, a) ∈ R, ∃c ∈ S s.t. (c, b) ∈ R.
The meaning of conflict-freeness is quite easy to understand: we do not want to accept together arguments that are conflicting. Admissibility corresponds to a notion of "self-defense": a (conflict-free) set of arguments must be able to defend itself against external attacks in order to be considered as a valid point of view. We use cf(F) (respectively ad(F)) to denote the set of conflict-free (respectively admissible) sets of an AF F.

These principles are usually considered to be too weak to define semantics, but the classical semantics are based on them. 4 We recall now the definition of these semantics: Definition 3 (Admissibility-based Semantics). Given F = ⟨A, R⟩ an AF, the admissible set S ⊆ A is • a complete extension iff S contains all the arguments that it defends;

• a preferred extension iff S is a ⊆-maximal admissible set;

• a grounded extension iff S is a ⊆-minimal complete extension.

A fourth semantics is defined by Dung, that does not directly rely on the notion of admissibility: Definition 4 (Stable Semantics). Given F = ⟨A, R⟩ an AF, the conflict-free set S ⊆ A is a stable extension iff ∀a ∈ A \ S, S attacks a.

We use co(F), pr(F), gr(F) and st(F) for the sets of (respectively) complete, preferred, grounded and stable extensions. Among their basic properties:

• for any AF F, |σ(F)| ≥ 1 for σ ∈ {co, pr, gr};

• for any AF F, |gr(F)| = 1;

• for any AF F, st(F) ⊆ pr(F) ⊆ co(F).

The last point implies that stable extensions are admissible sets as well, even if they are not explicitly defined through admissibility.

Example 2. Considering again F from Example 1; its extensions for the four semantics defined previously are given in Table 1 (second column).

For further details about these semantics, as well as other semantics that have been defined subsequently, we refer the reader to [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF][START_REF] Baroni | Abstract argumentation frameworks and their semantics[END_REF].

Given an argumentation framework and a semantics, classical reasoning tasks include the verification that a given set of arguments is an extension, and that a given argument is credulously or skeptically acceptable, i.e. belongs to some or each extension. Formally: σ-Ver Given an AF F = ⟨A, R⟩ and S ⊆ A, is S a σ-extension of F? σ-Cred Given an AF F = ⟨A, R⟩ and a ∈ A, does a belong to some σ-extension of F?

σ-Skep Given an AF F = ⟨A, R⟩ and a ∈ A, does a belong to each σ-extension of F?

We For most of the classical semantics, σ(F) ̸ = ∅ holds for any F. However, it is not the case for the stable semantics. This induces another interesting decision problem:

σ-Exist Given an AF F = ⟨A, R⟩, is σ(F) ̸ = ∅?
Finally, let us discuss the issue of (non-)emptiness in extension-based semantics. As said before, except for the stable semantics, most of the classical semantics always produce a non-empty set of extensions (i.e. σ(F) ̸ = ∅ for any F). However, there is no guarantee that there is a non-empty extension. On the contrary, the stable extensions may not exist, but if there are some then they are all non-empty. This conducts to the definition of the non-emptiness decision problem: σ-NE Given an AF F = ⟨A, R⟩, is there some S ⊆ A such that S ̸ = ∅ and S ∈ σ(F)?

The complexity of these problems for various semantics has been established, see e.g. [START_REF] Dvorák | Computational problems in formal argumentation and their complexity[END_REF] for an overview. The relevant results for this paper are summarized in Table 2.

Semantics σ σ-Ver σ-Cred σ-Skep σ-Exist σ-NE cf in L in L trivial trivial in L ad in L NP-c trivial trivial NP-c gr P-c P-c P-c trivial in L st in L NP-c coNP-c NP-c NP-c co in L NP-c P-c trivial NP-c pr coNP-c NP-c Π P 2 -c trivial NP-c
Table 2: Complexity of σ-Ver, σ-Cred, σ-Skep, σ-Exist and σ-NE for σ ∈ {cf, ad, gr, st, co, pr}. C-c means C-complete.

Qualitative Uncertainty in AFs

Now we present the existing models that incorporate qualitative uncertainty in abstract argumentation.

Incomplete Argumentation Frameworks

Definition 5 (Incomplete Argumentation Framework). An incomplete argumentation framework (IAF) is a tuple I = ⟨A, A ? , R, R ? ⟩ where

• A ⊆ A is the set of certain arguments;

• A ? ⊆ A is the set of uncertain arguments;

• R ⊆ (A ∪ A ? ) × (A ∪ A ? ) the set of certain attacks;

• R ? ⊆ (A ∪ A ? ) × (A ∪ A ? ) the set of uncertain attacks.

A and A ? are disjoint sets of arguments, and R, R ? are disjoint sets of attacks.

Intuitively, A and R correspond, respectively, to arguments and attacks that certainly exist, while A ? and R ? are those that may (or may not) actually exist. 

Let I = ⟨A, A ? , R, R ? ⟩ be an IAF. A completion of I is an AF F c = ⟨A c , R c ⟩ such that • A ⊆ A c ⊆ A ∪ A ? ; • R ∩ (A c × A c ) ⊆ R c ⊆ (R ∪ R ? ) ∩ (A c × A c ).
Example 5. As seen with the previous example, the number of completions is generally exponential in the size of the IAF. More precisely, it is bounded by 2 |A ? |+|R ? | .

(a) F 1 a b c (b) F 2 a b (c) F 3 a b c (d) F 4
Finally, reasoning tasks like credulous acceptance, skeptical acceptance or verification are defined with respect to some or each completion [START_REF] Baumeister | Verification in incomplete argumentation frameworks[END_REF][START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF]: each classical reasoning task has two variants, following the possible view (the property holds in some completion) and the necessary view (the property holds in each completion). These reasoning tasks are in many cases computationally harder than their counterpart for standard AFs (under the usual assumption that the polynomial hierarchy does not collapse) [START_REF] Baumeister | Verification in incomplete argumentation frameworks[END_REF][START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF]. This can be explained by the exponential number of completions.

Partial Argumentation Frameworks Partial Argumentation Frameworks were initially defined as a tool in a merging process [START_REF] Coste-Marquis | On the merging of Dung's argumentation systems[END_REF]. They are tuples P = ⟨A, R, I, N ⟩ with three binary relations over the set of arguments A: R is the (certain) attack relation, I the ignorance relation, and N the (certain) non-attack relation. Since N = (A × A) \ (R ∪ I), a PAF can be identified with only ⟨A, R, I⟩. Since the meaning of I is exactly the same as the meaning of R ? , PAFs actually form a subclass of IAFs:5 any PAF P = ⟨A, R, I⟩ is equivalent to an IAF

I P = ⟨A, ∅, R, R ? ⟩ with A = A, R = R, R ? = I.
Extension-based semantics for PAFs have been defined in [START_REF] Cayrol | Handling ignorance in argumentation: Semantics of partial argumentation frameworks[END_REF]. Intuitively, the idea consists in defining different forms of conflict-freeness and defense, and then combine them for defining three types of admissibility. From these new notions of admissibility, the authors define three variants of the preferred semantics, and study their properties. An interesting point is the fact that the complexity remains the same as in Dung's setting, contrary to the other reasoning methods for IAFs. These are the notions that are generalized from PAFs to IAFs in the next section.

Generalizing Extension-based Semantics from Partial to Incomplete AFs

In this section, we follow the same approach as [START_REF] Cayrol | Handling ignorance in argumentation: Semantics of partial argumentation frameworks[END_REF] for defining semantics for IAFs. Instead of defining the extensions with respect to the set of completions of the IAF, we will generalize the basic concepts of conflict-freeness and defense to take into account the uncertainty in the IAF. Then, the usual admissibilitybased semantics can be defined.

Conflict-free and Admissible Sets of IAFs

We follow two approaches for defining conflict-freeness and defense for IAFs:

• Optimistic view: we consider that only certain arguments and attacks are harmful, so keep the definition of conflict-freeness and defense as in Dung's frameworks;

• Pessimistic view: we consider that all attacks are harmful, and must be defended by certain arguments and attacks only.

By optimistic, we mean that the agent considers e.g. that (a, b) ∈ R ? does not make a a real "threat" against the acceptance of b. Roughly speaking, it means that the agent is tolerant to conflicts if they are uncertain. On the opposite, the pessimistic view means that the agent considers that all uncertain attacks against an argument are real threats against the acceptance of b, and that b must be defended by certain elements only in order to be accepted. Let us formally define the corresponding versions of conflict-freeness and defense.

Definition 7 (Weak and Strong Conflict-freeness). Let I = ⟨A, A ? , R, R ? ⟩ be an IAF. The set S ⊆ A ∪ A ? is

• weakly conflict-free iff ∀a, b ∈ S ∩ A, (a, b) ̸ ∈ R; • strongly conflict-free iff ∀a, b ∈ S, (a, b) ̸ ∈ R ∪ R ? .
We use cf w (I) and cf s (I) to denote, respectively, the weakly and strongly conflict-free sets of an IAF I. Strong conflict-freeness can be regarded as conflict-freeness applied on the "full" graph F f ull = ⟨A ∪ A ? , R ∪ R ? ⟩, i.e. an AF made from the same arguments and attacks than the IAF, but without any uncertainty. However, weakly conflict-free sets do not correspond to the conflict-free sets of the "minimal" graph We observe that in the case where A ? = ∅, then weak conflict-freeness and defense correspond to the notions of R-conflict-freeness and R-acceptability defined in [START_REF] Cayrol | Handling ignorance in argumentation: Semantics of partial argumentation frameworks[END_REF], while the strong versions correspond to RI-conflict-freeness and RI-acceptability. Thus, if R ? = ∅ also holds, then both weak conflictfreeness and strong conflict-freeness coincide with the classical conflict-freeness [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], while both forms of defense defined here correspond with the classical defense.

F min = ⟨A, R ∩ (A × A)⟩ (i.
For defining a notion of admissibility, we must combine conflict-freeness and defense. In theory, Definitions 7 and 8 induce four notions of admissibility. How-ever, the following result shows that weak conflict-freeness and strong conflictfreeness induce the same notion of admissibility when combined with strong defense.

Proposition 1. Let I = ⟨A, A ? , R, R ? ⟩ be an IAF. Let S ⊆ A ∪ A ? be a set of arguments such that S is weakly conflict-free and ∀a ∈ S, S strongly defends a. Then S is strongly conflict-free.

The proof is similar to the proof of [14, Property 1].

Proof. Reasoning towards a contradiction, let us suppose that S is not strongly conflict-free, i.e. ∃a, b ∈ S such that (a, b) ∈ R ∪ R ? . Then, since S strongly defends all its elements, in particular it strongly defends b, so ∃c ∈ S ∩ A such that (c, a) ∈ R. Now there are two options: either a ∈ A or a ∈ A ? . First assume a ∈ A. In that case, there is a contradiction between the existence of the attack (c, a) and the weak conflict-freeness of S. Now, assume that a ∈ A ? . Since it is assumed that S strongly defends all its elements, there must be some d ∈ S ∩A such that (d, c) ∈ R (i.e. a is strongly defended against its attacker c). Now, we have a certain attack (d, c) between two certain arguments c, d ∈ S ∩A, which is in contradiction with the weak conflict-freeness of S.

So we can conclude that S is strongly conflict-free. Now we define the three variants of admissibility. 6Definition 9 (Weak, Mixed and Strong Admissibility). Given I = ⟨A, A ? , R, R ? ⟩ an IAF, a set of arguments S ⊆ A ∪ A ? is

• weakly admissible iff S is weakly conflict-free and weakly defends all its elements;

• mixedly admissible iff S is strongly conflict-free and weakly defends all its elements;

• strongly admissible iff S is strongly conflict-free and strongly defends all its elements.

The weakly (respectively mixedly, strongly) admissible sets of an IAF I are denoted by ad w (I) (respectively ad m (I), ad s (I)).

The definitions imply that ad s (I) ⊆ ad m (I) ⊆ ad w (I), for any IAF I. Also, as in the standard Dung's framework, every IAF has at least one admissible set, for all the variations of admissibility. Indeed, for any IAF I, ∅ ∈ ad s (I). This fact will be useful later to guarantee the existence of extensions for the semantics based on admissibility.

Before going further with the definition of semantics based on these new notions of admissibility, we briefly discuss a property of classical semantics that we believe is important. It is called the Fundamental Lemma by Dung [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]Lemma 10]. This lemma states that if a set of arguments S is admissible, and defends an argument a, then S ∪ {a} is admissible. Besides its technical interest for proving some further results, this lemma describes an intuitive property of argumentation in general: if a point of view (i.e. a set of arguments) is seen as valid, then it should be jointly acceptable with any argument that it successfully defends. We thus consider this property as necessary for defining reasonable semantics. With the following lemma, we determine which of the notions of admissibility given in Definition 9 satisfy a notion of "fundamentality" similar to Dung's lemma. More precisely, we show that only weak and strong admissibility are suitable for defining semantics.

Lemma 1 (Fundamental Lemma). Given I = ⟨A, A ? , R, R ? ⟩ an IAF, and S ⊆ A ∪ A ? a weakly (respectively strongly) admissible set, if S weakly (respectively strongly) defends some a ∈ A ∪ A ? , then S ∪ {a} is weakly (respectively strongly) admissible.

Proof. We first consider weak admissibility. Let us prove that S ∪ {a} is weakly conflict-free. First of all, notice that if a ∈ A ? then the set S ∪ {a} is weakly conflict-free iff S is weakly conflict-free, since only certain attacks between certain arguments violate weak conflict-freeness. So in the rest of the reasoning we suppose that a ∈ A. Towards a contradiction, suppose that S ∪{a} is not weakly conflict-free. Then, ∃b ∈ S ∩ A such that, either (b, a) ∈ R or (a, b) ∈ R. In the former case, since S weakly defends a, then there must be a c ∈ S ∩ A with (c, b) ∈ R, which is impossible since S is weakly conflict-free. Hence the contradiction. In the latter case ((a, b) ∈ R), since S is weakly admissible, it must defend b against a, and the same reasoning applies for concluding the impossibility. Thus S ∪{a} is weakly conflict-free. The fact that S ∪{a} weakly defends all its elements comes from the fact that S weakly defends all its elements, as well as a. So we conclude that S ∪ {a} is weakly admissible. Now, consider S a strongly admissible set that strongly defends some a ∈ A ∪ A ? . Suppose that S ∪ {a} is not strongly conflict-free. It means that some b ∈ S is such that (b, a) ∈ R ∪ R ? or (a, b) ∈ R ∪ R ? . In the first case, the fact that S strongly defends a (against b) means that some c ∈ S ∩A attacks b, which violates strong conflict-freeness of S. In the second case, since S strongly defends all its elements, there is a c ∈ S ∩ A such that (c, a) ∈ R, which is impossible for similar reasons to the first case. Hence S ∪ {a} is strongly conflict-free. Finally, the fact that S ∪ {a} strongly defends all its elements follows the fact that S strongly defends all its elements and a. So we conclude that S ∪ {a} is strongly admissible.

On the contrary, mixed admissibility does not satisfy a property of fundamentality.

Proposition 2. There is an IAF I = ⟨A, A ? , R, R ? ⟩, S ⊆ A ∪ A ? and an argument a ∈ A ∪ A ? such that S is mixedly admissible, S weakly defends a, and S ∪ {a} is not mixedly admissible.

Proof. The IAF given at Figure 6 provides an example. The set S = {b} is mixedly admissible (it is strongly conflict-free, and it has no attacker). S weakly defends a (since there is no x ∈ A such that (x, a) ∈ R, there is actually no need to weakly defend a). But S ∪ {a} is not strongly conflict-free, hence not mixedly admissible. Because of this reason, we do not consider mixed admissibility as suitable for defining semantics (e.g. mixed preferred or mixed complete semantics).

Example 8. Based on Example 6 and 7, we observe that, in I 2 from Figure 5, {a} is weakly admissible but not strongly admissible. {a, e} is not strongly admissible either, because it does not strongly defend e (against the uncertain attack (d, e)). The full sets of weakly and strongly admissible sets of I 2 are given in Table 3.

x 

Admissibility-based Semantics for IAFs

The classical definitions of Dung's semantics can be adapted to IAFs, based on the two different notions of admissibility identified as suitable in Lemma 1.

Definition 10 (Admissibility-based Semantics). Given I = ⟨A, A ? , R, R ? ⟩ an IAF, a weakly (respectively strongly) admissible set of arguments S ⊆ A ∪ A ? is

• a weakly (respectively strongly) complete extension iff S contains all the arguments that it weakly (respectively strongly) defends;

• a weakly (respectively strongly) preferred extension iff it is a ⊆-maximal weakly (respectively strongly) admissible set.

For x ∈ {w, s} and σ ∈ {co, pr}, the set of x-σ extensions of an IAF I is denoted σ x (I). In the definition of the versions of complete semantics, the notion of defense used is the same as in the underlying notion of admissibility.

Example 9. We continue Example 8. From the weakly and strongly admissible sets described in Table 3, we deduce co w (I 2 ) = pr w (I 2 ) = {{a, c, d, e}}, and co s (I 2 ) = pr s (I 2 ) = {{c, d}}.

We observe some usual properties regarding these semantics. Proposition 3. Given I = ⟨A, A ? , R, R ? ⟩ an IAF, and x ∈ {w, s},

• pr x (I) ̸ = ∅;

• pr x (I) ⊆ co x (I).

Proof. The first item is a direct consequence of the fact that ad x (I) ̸ = ∅, as seen previously. The existence of (finitely many) admissible sets implies the existence of ⊆-maximal admissible sets. Now, let S be a x-preferred extension of I. Reasoning towards a contradiction, let us suppose that S ̸ ∈ co x (I). Since S is x-admissible, it means that S x-defends some argument a that it does not contain. According to Lemma 1, S ∪ {a} is x-admissible. This means that we have identified a proper superset of S which is x-admissible, thus S is not a ⊆-maximal x-admissible set. This contradicts the fact that S is x-preferred. So we can conclude S ∈ co x (I).

Stable Semantics for IAFs

Now we focus on a counterpart of stable semantics for IAFs.

Definition 11 (Stable Semantics). Given I = ⟨A, A ? , R, R ? ⟩ an IAF,

• a weakly conflict-free set of arguments S ⊆ A ∪ A ? is a weakly stable extension iff ∀a ∈ A \ S, there is some b ∈ S ∩ A such that (b, a) ∈ R;

• a strongly conflict-free set of arguments S ⊆ A ∪ A ? is a strongly stable extension iff ∀a ∈ (A∪A ? )\S, there is some b ∈ S ∩A such that (b, a) ∈ R.

Weakly and strongly stable extensions of an IAF I are denoted by st x (I), where x ∈ {w, s}.

Example 10. Continuing Example 9, we observe that the weakly preferred extension S = {a, c, d, e} is weakly stable as well: the argument e ∈ S ∩ A (certainly) attacks all the arguments in A \ S = {b}. It is not strongly stable, since it is not strongly conflict-free. The same applies to {a, d, e}, {a, d, e, f } and {a, c, d, e, f } which are also weakly conflict-free and certainly attack b.

On the contrary, the strongly preferred extension S ′ = {c, d} is not strongly stable, since it does not attack all the arguments in (A ∪ A ? ) \ S (e.g. a is not attacked by S ′ ).

In Dung's framework, although admissibility is not directly involved in the definition of the stable semantics, any stable extension is actually an admissible set. Example 10 shows that weak stable extensions are not weakly admissible in general: {a, c, d, e, f } is weakly conflict-free, but it does not weakly defend f , thus it is not weakly admissible. But we prove here that it is the case for strong stable semantics of IAFs.

Proposition 4 (Admissibility of Strong Stable Extensions). For any IAF I = ⟨A, A ? , R, R ? ⟩, st s ⊆ ad s (I).

Proof. Consider S a strongly stable extension of I. Again, strong conflictfreeness is implied by the definition, so we just need to prove that S strongly defends all its elements. Consider any a ∈ A ∪ A ? such that (a, b) ∈ R ∪ R ? , for some b ∈ S. By definition of strongly stable extensions, there is some c ∈ S ∩ A such that (c, a) ∈ R. Thus S strongly defends a, and then all its elements. We can conclude that it is strongly admissible.

Another classical result that still holds for the strong stable semantics semantics is the relationship between stable and preferred extensions.

Proposition 5 (Preferredness of Strong Stable Extensions). For any IAF I = ⟨A, A ? , R, R ? ⟩, st s ⊆ pr s (I).

Proof. Consider S ∈ st s (I). Proposition 4 implies the strong admissibility of S. Suppose the existence of S ′ ∈ ad s (I) with S ⊂ S ′ . Take a ∈ S ′ \ S; the strong stability of S implies the existence of b ∈ S ∩ A such that (b, a) ∈ R, thus violating the strong admissibility of S ′ . We reach a contradiction, and conclude that S ′ does not exist, hence S ∈ pr s (I).

Example 10 and Proposition 5 imply that st s (I 2 ) = ∅. The non-existence of stable extensions in Dung's framework is one of the main differences between this semantics and the ones based on admissibility. We can simply show a similar example for the weakly stable semantics as well: the IAF I = ⟨{a}, ∅, {(a, a)}, ∅⟩ has a single weakly conflict-free set (the empty set), which is not weakly stable.

Relations between Weak and Strong Semantics

From Definition 7, we can observe that strong conflict-freeness implies weak conflict-freeness. Formally, Observation 1. For any IAF I = ⟨A, A ? , R, R ? ⟩, cf s (I) ⊆ cf w (I).

In this part of the paper, we establish similar relationships between the weak and strong variants of other semantics. Indeed, the same observation can be made about the two concepts of defense.

Observation 2. For any IAF I = ⟨A, A ? , R, R ? ⟩, S ⊆ A ∪ A ? and a ∈ A ∪ A ? , if S strongly defends a then S weakly defends a.

These two observations imply that strong σ-extensions are also weak σextensions for some of the semantics studied in this paper. Proposition 6. For any IAF I = ⟨A, A ? , R, R ? ⟩ and σ ∈ {ad, st}, σ s (I) ⊆ σ w (I).

Proof. For σ = ad, the proof is obvious, following Observations 1 and 2. Now, consider E ∈ st s (I). From the definition, E ∈ cf s (I) ⊆ cf w (I). Then, we know that for each a ∈ (A ∪ A ? ) \ S, some b ∈ S ∩ A certainly attacks a. This implies that for each a ∈ A \ S, some b ∈ S ∩ A attacks a, and then S is weakly stable.

However, this result is not true for the complete and preferred semantics. However, Proposition 7 implies some relationship between strong complete (and preferred) extensions and weak complete (and preferred) extensions: indeed, each strong extension is included in a weak one. Proposition 7. For any IAF I = ⟨A, A ? , R, R ? ⟩ and σ ∈ {co, pr}, for each S ∈ σ s (I), there is a S ′ ∈ σ w (I) such that S ⊆ S ′ .

Proof. Let S be a strong complete (or preferred) extension of I. From the definition of the semantics, S is strongly admissible, then from Proposition 6 S is weakly admissible. This implies that S is included in some weakly preferred extension (which are the ⊆-maximal weakly admissible sets), which is a particular weak complete extension (Proposition 3). Hence the result.

We summarize the inclusion schemes between the semantics in Table 4. For a cell with coordinates (σ 1 , σ 2 ),

• ✓ means that, for any I, σ 1 (I) ⊆ σ 2 (I),

• ✠ means that, for any I, ∀S ∈ σ 1 (I) ∃S ′ ∈ σ 2 (I) such that S ⊆ S ′ .

Computational Issues

Computational Complexity

In this section, we study the complexity of the variants of verification, existence, credulous acceptability, skeptical acceptability and non-emptiness for IAFs. Formally, for σ ∈ {cf, ad, co, pr, st} and x ∈ {w, s}: σ x -Ver Given an IAF I = ⟨A, A ? , R, R ? ⟩ and S ⊆ A, is S ∈ σ x (I)? σ x -Exist Given an IAF I = ⟨A, A ? , R, R ? ⟩, is σ x (I) ̸ = ∅? σ x -Cred Given an IAF I = ⟨A, A ? , R, R ? ⟩ and a ∈ A ∪ A ? , does a belong to some x-σ-extension of I?

σ 1 σ 2 cf w cf s ad w ad s co w co s pr w pr s st w st s cf w ✓ cf s ✓ ✓ ad w ✓ ✓ ad s ✓ ✓ ✓ ✓ co w ✓ ✓ ✓ co s ✓ ✓ ✓ ✓ ✠ ✓ ✠ pr w ✓ ✓ ✓ ✓ pr s ✓ ✓ ✓ ✓ ✠ ✓ ✠ ✓ st w ✓ ✓ st s ✓ ✓ ✓ ✓ ✠ ✓ ✠ ✓ ✓ ✓
Table 4: Summary of the Inclusions between Semantics σ x -Skep Given an IAF I = ⟨A, A ? , R, R ? ⟩ and a ∈ A ∪ A ? , does a belong to each x-σ-extension of I? σ x -NE Given an IAF I = ⟨A, A ? , R, R ? ⟩, is there some S ⊆ A ∪ A ? such that S ̸ = ∅ and S ∈ σ x (I)?

Lower Bounds

We can prove that reasoning with our semantics for IAFs is (at least) as hard as reasoning with the corresponding semantics for AFs. This can be done by showing that any AF F = ⟨A, R⟩ can be transformed into an IAF I F that has the same extensions.

Definition 12 (IAF Associated with an AF). Given F = ⟨A, R⟩ an AF, the IAF associated with F is I F = ⟨A, ∅, R, ∅⟩.

Now we prove the correspondence of extensions, i.e. σ(F) = σ w (I F ) = σ s (I F ), for any σ ∈ {cf, ad, pr, co, st}.

Proposition 8 (Dung Compatibility). Given F = ⟨A, R⟩ an AF, σ ∈ {cf, ad, pr, co, st} and x ∈ {w, s}, σ(F) = σ x (I F ), where I F follows Definition 12.

Proof. Observe that a set S ⊆ A is conflict-free (in F) iff it is weakly and strongly conflict-free (in I F ). Then, a set S ⊆ A defends an argument a ∈ A against all it attackers (in F) iff it weakly and strongly defends a against all its attackers (in I F ). These facts imply ad(F) = ad w (I F ) = ad s (I F ), which in turn imply the equivalence of complete and preferred extensions of F with the (weak and strong) complete and preferred extensions of I F . Given S ⊆ A, the equivalence between the conditions for S being stable in F and (weakly or strongly) stable in I F is straightforward. This allows to prove that the complexity of reasoning with AFs provides a lower bound of the complexity of reasoning with IAFs. Proposition 9. Given σ ∈ {cf, ad, pr, co, st}, x ∈ {w, s}, and P ∈ {Ver, Exist, Cred, Skep, NE}, if σ-P is C-hard, then σ x -P is C-hard.

Proof. Proposition 8 provides a polynomial-time and logarithmic-space reduction from σ-P to σ x -P.

Upper Bounds for Extension Verification

Similarly to Dung's classical setting, most of the properties of extensions can be verified in polynomial time for our IAF semantics.

Lemma 2. Given an IAF I = ⟨A, A ? , R, R ? ⟩ and a set of arguments S ⊆ A ∪ A ? , the following tasks are doable in polynomial time and logarithmic space:

1. check whether S is weakly (respectively strongly) conflict-free, 2. check whether S weakly (respectively strongly) defends some argument a ∈ A (respectively a ∈ A ∪ A ? ), ) such that (b, a) ∈ R (respectively (b, a) ∈ R ∪ R ? ) only requires to iterate over the arguments in A (respectively A ∪ A ? ), and then polynomially check the membership to R (respectively R ∪ R ? ). Then, for each of these attackers b, iterate over the arguments c ∈ S ∩ A and check the membership of (c, b) to R (respectively R ∪ R ? ). All the iterations are polynomially bounded.

Finally, for item 3., enumerate all the pairs (a, b) such that a ∈ S ∩ A and b ∈ A \ S (respectively b ∈ (A ∪ A ? ) \ S), and then check whether (a, b) ∈ R.

Combining these operations allows to check whether a set of arguments is an extension, for most of the semantics studied in this paper.

Proposition 10. For σ ∈ {cf, ad, co, st} and x ∈ {w, s}, σ x -Ver is doable in polynomial time and logarithmic space.

Proof. The result straightforwardly follows Lemma 2.

Following Proposition 9, the verification of (weakly or strongly) preferred extensions is intractable (under the usual assumptions of complexity theory). The following results proves that it remains at the first level of the polynomial hierarchy, similarly to Dung's preferred semantics. Proposition 11. For x ∈ {w, s}, pr x -Ver is in coNP.

Proof. Given S ⊆ A ∪ A ? , proving that S is not a weakly (respectively strongly) preferred extension is doable with the following non-deterministic polynomial algorithm:

1. Check whether S is weakly (respectively strongly) admissible. If not, then S is not weakly (respectively strongly) preferred.

2. Otherwise, guess a proper superset of S, i.e. S ⊂ S ′ ⊆ A ∪ A ? . Verifying whether S ′ is a weakly (respectively strongly) admissible set is doable in polynomial time with a deterministic algorithm. If S ′ is weakly (respectively strongly) admissible, then S is not a weakly (respectively strong) preferred extension.

This algorithm proves that the complementary problem is in NP, thus we conclude that pr x -Ver ∈ coNP for x ∈ {w, s}.

Upper Bounds for Existence

We recall that ∅ is weakly and strongly admissible (and naturally, weakly and strongly conflict-free as well) for any IAF. This implies that for any I, ad x (I) ̸ = ∅, for x ∈ {w, s}. The existence of some ⊆-maximal elements in ad x (I) is then guaranteed, i.e. pr x (I) ̸ = ∅, and finally since pr x (I) ⊆ co x (I), we obtain co x (I) ̸ = ∅ as well. This means that our semantics have another common point with their counterpart in Dung's framework: all of them, except the stable semantics, induce a non-empty set of extensions for any IAF. We show that the question of existence for the stable semantics is NP-complete (NP-hardness follows Proposition 9, so we focus on NP-membership).

Proposition 12. For x ∈ {w, s}, st x -Exist is in NP.

Proof. The proof is based on a classical NP algorithm:

1. non-deterministically guess a set of arguments S ⊆ A ∪ A ? , 2. check in polynomial time (Proposition 10) whether it is a (weak or strong) stable extension.

Hence the result.

Upper Bounds for Acceptability

First, consider the case of cf x , for x ∈ {w, s}. An argument a is credulously accepted w.r.t. cf x iff {a} ∈ cf x (I). This can be easily checked, by verifying that (a, a) ̸ ∈ R and (a, a) ̸ ∈ R ? . This is doable in polynomial time and logarithmic space. Thus cf x -Cred ∈ L, for x ∈ {w, s}. Skeptical acceptability is even easier: since ∅ is weakly (respectively strongly) conflict-free, there is no skeptically acceptable argument w.r.t. cf x for any IAF. The reasoning is the same for ad x -Skep.

Proposition 13. For σ ∈ {ad, co, st, pr} and x ∈ {w, s}, σ x -Cred is in NP.

Proof. For σ ∈ {ad, co, st}, guess a set of arguments that contains the queried argument a, and check (in polynomial time, see Proposition 10) whether it is a x-σ-extension. This is a NP algorithm for deciding σ x -Cred. For σ = pr, notice that an argument belongs to some weakly (respectively strongly) preferred extension iff it belongs to some weakly (respectively strongly) admissible set, hence the result. Proposition 14. For σ ∈ {co, st} and x ∈ {w, s}, σ x -Skep is in coNP.

Proof. Guess a set of arguments that does not contain the queried argument a and check (in polynomial time) whether it is a x-σ-extension, i.e. a is not skeptically accepted w.r.t. σ x . This is a NP algorithm, thus σ x -Skep is in coNP.

Proposition 15. For x ∈ {w, s}, pr x -Skep is in Π P 2 . Proof. Analogous to the proof of Proposition 14, except that the higher complexity of verification under the (weakly or strongly) preferred semantics (recall Proposition 11) yields a higher complexity upper bound for skeptical acceptability as well.

Upper Bounds for Non-Emptiness

Finally, we focus on the non-emptiness problem. We prove that it is doable in polynomial time and logarithmic space for (weak and strong) conflict-freeness, and NP-complete for other semantics. Again, NP-hardness results are implied by Proposition 9.

Proposition 16. cf x -NE is in L, for x ∈ {w, s}.

Proof. First consider weak conflict-freeness. If a set S ⊆ A ∪ A ? is weakly conflict-free, then every singleton {a} ⊆ S is weakly conflict-free as well, so we focus on singletons. If a ∈ A ? , then {a} is trivially weakly conflict-free, so if A ? ̸ = ∅, the answer is "YES". This can be checked in polynomial time and logarithmic space. Now assume A ? = ∅, i.e. we consider singletons {a} with a ∈ A. {a} is weakly conflict-free iff (a, a) ̸ ∈ R, which can be checked in polynomial time and logarithmic space. Now, considering strong conflict-freeness, we can also focus on singletons, and simply check (again, in polynomial time and logarithmic space) that at least one argument a ∈ A ∪ A ? is not (certainly or uncertainly) self-attacking, i.e. (a, a) ̸ ∈ R ∪ R ? . Proposition 17. σ x -NE is in NP, for σ ∈ {ad, st, co, pr} and x ∈ {w, s}.

Proof. First, we consider σ ∈ {ad, st, co}, and solve the problem with a simple NP algorithm:

1. non-deterministically guess a non-empty set of arguments S ⊆ A ∪ A ? .

2. check (in polynomial time, see Proposition 10) whether S ∈ σ x (F).

Hence the result for these semantics. Then, observe that the existence of a non-empty (weak or strong) admissible set implies the existence of a non-empty (weak or strong) preferred extension, which means that pr x -NE has the same complexity as ad x -NE.

Discussion

Our complexity results are summarized in Table 5. We have proved that, in spite of the higher expressivity of IAFs compared to standard AFs, the complexity of most classical reasoning tasks remains the same. The only exception is skeptical acceptability under (weakly or strongly) complete semantics, for which we only have a coNP upper bound, while it is polynomial in standard Dung's AFs. We plan to study a counterpart of the grounded semantics for IAFs, which could bring new insights for the complete semantics. Finally, notice that using the weak or strong counterpart of our semantics does not have an impact on the complexity of reasoning.

Semantics σ x σ x -Ver σ x -Cred σ x -Skep σ x -Exist σ x -NE cf x in L in L trivial trivial in L ad x in L NP-c trivial trivial NP-c st x in L NP-c coNP-c NP-c NP-c co x in L NP-c in coNP trivial NP-c pr x coNP-c NP-c Π P 2 -c trivial NP-c
Table 5: Complexity of σ x -Ver, σ x -Exist, σ x -Cred, σ x -Skep and σ x -NE for σ ∈ {cf, ad, st, co, pr} and x ∈ {w, s}. C-c means C-complete.

SAT-based Computational Approach

We follow the classical approach, initiated by [START_REF] Besnard | Checking the acceptability of a set of arguments[END_REF], which consists in associating an AF with a propositional formula such that there is a bijection between the extensions of the AF and the models of the formula. Its has been applied with success for developing argumentation solvers [START_REF] Lagniez | CoQuiAAS: A constraint-based quick abstract argumentation solver[END_REF][START_REF] Niskanen | µ-toksia: An efficient abstract argumentation reasoner[END_REF].

In the following, we consider an IAF I = ⟨A, A ? , R, R ? ⟩, and we define a set of propositional variables X A∪A ? = {x a | a ∈ A ∪ A ? }. Intuitively, an interpretation ω corresponds to the set of arguments S = {a ∈ A ∪ A ? | ω(x a ) = ⊤}. We will provide in the rest of this section propositional formulas such that their models correspond to desirable sets of arguments (e.g. weakly or strongly conflict-free sets or extensions). This means that obtaining one (or each) extension can be done thanks to a SAT solver, providing one (or each) model of the formula. Credulous acceptance of an argument a can be checked by verifying that ϕ ∧ x a is satisfiable (where ϕ is the formula corresponding to the chosen semantics), and skeptical acceptance corresponds to the unsatisfiability of ϕ ∧ ¬x a .

Conflict-freeness Recall that a set of arguments is weakly conflict-free if there is no certain attack between two certain arguments in it, while it is strongly conflict-free if there is no attack at all (neither certain nor uncertain) between any element of the set. This is encoded, respectively, by the following formulas ϕ w cf and ϕ s cf :

ϕ w cf = a,b∈A,(a,b)∈R (¬x a ∨ ¬x b ) ϕ s cf = a,b∈A∪A ? ,(a,b)∈R∪R ? (¬x a ∨ ¬x b )
Admissibility Weak (respectively strong) admissibility is based on weak (respectively strong) conflict-freeness, and weak (respectively strong) defense. We introduce a formula δ w (respectively δ s ) which characterizes sets of arguments that weakly (respectively strongly) defend all their elements.

δ w = a∈A∪A ?
x a → b∈A,(b,a)∈R c∈A,(c,b)∈R

x c δ s = a∈A∪A ?
x a → b∈A∪A ? ,(b,a)∈R∪R ? c∈A,(c,b)∈R

x c
Then, weak and strong admissibility are encoded in

ϕ x ad = ϕ x cf ∧ δ x
where x ∈ {w, s}.

Notice that δ w and δ s are not directly written as CNF formulas, but can be easily translated into ones: where X and Y are A and R (for δ w ) or A ∪ A ? and R ∪ R ? (for δ s ).

Complete Extensions

The formulas δ w and δ s characterize sets of arguments that (weakly or strongly) defend all their elements. To characterize complete extensions, we just need to replace the implication by an equivalence, which yields sets of arguments that defend all their elements and contain everything they defend. Formally,

ϕ x co = ϕ x cf ∧ δ ′
x where x ∈ {w, s}, and

δ ′ w = a∈A∪A ?
x a ↔ b∈A,(b,a)∈R c∈A,(c,b)∈R

x c δ ′ s = a∈A∪A ?
x a ↔ b∈A∪A ? ,(b,a)∈R∪R ? c∈A,(c,b)∈R

x c

For translating these formulas into CNF, we add auxiliary variables, using a technique similar to the one from [START_REF] Lagniez | CoQuiAAS: A constraint-based quick abstract argumentation solver[END_REF]. For a given argument a, define y a as a variable that is true when one of the certain attackers of a is accepted. This is encoded in the formulas by: a∈A∪A ? Stable Extensions We recall that weakly (respectively strongly) stable extensions are weakly (respectively strongly) conflict-free sets that attack all the certain arguments (respectively all the arguments) that they do not contain. Said otherwise, it means that an argument which is not attacked by (a certain argument in) the extension belongs to the extension. It can be characterized as follows:

ϕ w st = ϕ w cf ∧ a∈A (( b∈A,(b,a)∈R ¬x b ) → x a ) ϕ s st = ϕ s cf ∧ a∈A∪A ? (( b∈A,(b,a)∈R ¬x b ) → x a )
Preferred Extensions Finally, weakly and strongly preferred semantics cannot (under the usual assumptions of complexity theory) be directly encoded as propositional formulas, since the complexity of reasoning with weak and strong preferred semantics is higher than the complexity of Boolean satisfiability (especially, skeptical acceptability is Π P 2 -complete). However, other techniques related to propositional logic have been used in the past for computing preferred extensions, e.g. quantified Boolean formulas [START_REF] Egly | Reasoning in argumentation frameworks using quantified boolean formulas[END_REF], maximal satisfiable subsets [START_REF] Lagniez | CoQuiAAS: A constraint-based quick abstract argumentation solver[END_REF] or CEGAR (CounterExample Guided Abstraction Refinement) [START_REF] Niskanen | µ-toksia: An efficient abstract argumentation reasoner[END_REF]. These techniques could be adapted for solving classical reasoning problems under weakly or strongly preferred semantics.

Implementation and Experimentation

Implementation Details

We have implemented the approach described in Section 4.2, and conducted an empirical evaluation to assess the scalability of the approach. More precisely, we have solved the problem of producing one extension of an IAF (called SEσ x , see e.g. [START_REF] Lagniez | Introducing the fourth international competition on computational models of argumentation[END_REF][START_REF] Lagniez | Design and results of ICCMA[END_REF]) for the semantics σ x with σ ∈ {st, co} and x ∈ {w, s}. This corresponds to obtaining one model (with a SAT solver) of the formula ϕ x σ . Recall that other classical reasoning tasks can be performed with a SAT solver as well:

• EE-σ x : enumerate all the σ x extensions is done by enumerating the models of ϕ x σ ; • CE-σ x : counting the σ x extensions is done by counting the models of ϕ x σ ; • DC-σ x : deciding whether a given argument a is credulously accepted with respect to the semantics σ x is done by checking whether ϕ x σ ∧ x a is satisfiable;

• DS-σ x : deciding whether a given argument a is skeptically accepted with respect to the semantics σ x is done by checking whether ϕ x σ ∧ ¬x a is unsatisfiable.

We can expect that DC-σ x and DS-σ x will be more or less equivalent to SEσ x regarding the hardness of practical resolution. Indeed, all these problems are solved by a single call to a SAT solver, with almost the same CNF as input of the SAT solver. On the contrary, enumeration and counting problems are in general much harder. These general intuitions about the relative difficulty of reasoning with abstract argumentation are in line with the results of the International Competition on Computational Models of Argumentation (ICCMA): we can observe that the scores of the solvers, during the last edition of the competition, are generally higher for the problems SE, DS and DC than for CE [START_REF] Lagniez | Design and results of ICCMA[END_REF]. The same remark applies for the problem EE, as can be seen from the results of the 2017 edition of ICCMA [START_REF] Sarah | Design and results of the second international competition on computational models of argumentation[END_REF].

We have implemented a Python script that reads a text file describing an IAF (using the same format as [START_REF] Niskanen | Deciding acceptance in incomplete argumentation frameworks[END_REF][START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF]), 7 and produces the CNF encoding corresponding to ϕ x σ . This SAT instance is solved by the Python API PySAT [START_REF] Ignatiev | PySAT: A Python toolkit for prototyping with SAT oracles[END_REF], and the model obtained is then decoded in order to provide the extension to the user. Our code and its documentation are available online. 8 

Benchmark Generation and Experimental Setup

The goal of this preliminary experimentation is to assess the scalability of the approach, and to observe whether some parameters may influence the runtime. 7 See https://bitbucket.org/andreasniskanen/taeydennae/src/master/. 8 See https://github.com/jgmailly/SAT-IAFs/.

We have generated IAFs with the following method, based on Erdös-Rényi [START_REF] Erdös | On random graphs. i. Publicationes Mathematicae[END_REF] (ER) graphs, i.e. random graphs built with two parameters: the number of nodes (n), and the probability, for two given nodes a and b, that there is an edge from a to b (p). This type of graph has been widely used in the literature on argumentation, including some past editions of the International Competition on Computational Models of Argumentation (ICCMA) [START_REF] Sarah | Design and results of the second international competition on computational models of argumentation[END_REF]. For our experiments, we have used n ∈ {50, 100, 150, 200} and p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}:

• For each (p, n), generate 5 AFs

• For each AF F = ⟨A * , R * ⟩, generate four IAFs by selecting some arguments or attacks to be uncertain:

-I 1,1 = ⟨A * , ∅, R * , ∅⟩, i.e. all arguments and attacks are certain;

-I 1,0.5 = ⟨A * , ∅, R, R ? ⟩ s.t. R ∪ R ? = R * , and each attack in R * has a probability 0.5 to be added to R ? ; -I 0.5,1 = ⟨A, A ? , R * , ∅⟩, s.t. A ∪ A ? = A * , and each argument in A * has a probability 0.5 to be added to A ? ; -I 0.5,0.5 = ⟨A, A ? , R, R ? ⟩ s.t. R ∪ R ? = R * , and each attack in R * has a probability 0.5 to be added to R ? and A ∪ A ? = A * , and each argument in A * has a probability 0.5 to be added to A ? .

This generation model allows to test our SAT-based approach with various types of IAFs, and to observe whether the presence or absence of uncertain elements has an impact on runtime.

We have run the experiments on macOS 11.5, with a M1 Soc (3.2GHz) and 8GB of RAM.

Results

Tables 6 and7 describe the results of the experiments for the (weak and strong) stable semantics and the (weak and strong) complete semantics, respectively. Lines correspond to pairs of values (p, n) used for generating the graphs, columns labeled by I X,Y (with X, Y ∈ {1, 0.5}) correspond to the groups of instances defined in the previous section (with different ratios of arguments or attacks being uncertain), and the columns labeled "All" correspond to the union of the four previous groups. Reported numbers are the average runtime, rounded to 1 millisecond, for solving all the instances of one group.

The general observation made from this data is that our approach scales up well. Indeed, it solves the SE-σ x problem in a few seconds in the worst case, for IAFs with 200 arguments (and even less than 1 second in most of cases).

Then, for each semantics in this experiment, we observe a correlation between the density of the graph (i.e. the probability p) and the runtime: a higher probability seems to imply a higher runtime (ceteris paribus). On the contrary, increasing the uncertainty seems to decrease the runtime: instances where half the arguments and half the attacks are uncertain (I 0. [START_REF] Dimopoulos | Control argumentation frameworks[END_REF][START_REF] Mailly | Possible controllability of control argumentation frameworks[END_REF][START_REF] Niskanen | Controllability of control argumentation frameworks[END_REF] are highly related to IAFs. They add another kind of uncertainty (about the direction of an attack), and a "control part", which is a set of arguments and attacks that must be selected by the agent, the goal being to enforce the acceptability of a set of arguments in each (or some) completion, by means of the selected control arguments. Reasoning with CAFs is (again) only based on completions, and generally the computational complexity is high (at least the same as reasoning with completions of IAFs, and sometimes higher). Reasoning with weighted AFs (i.e. AFs with weights on the attacks) [19] consists, somehow, in relaxing conflict-freeness in order to jointly accept conflicting arguments, as soon as the total amount of conflict (i.e. the sum of the weights of the attacks) is lower than a given inconsistency budget. We could adapt this principle for IAFs, by accepting only a given amount of conflict in extensions. Notice that weighted AFs, as defined in the literature, do not allow to distinguish between two types of arguments or attacks, which would be necessary to capture uncertain arguments or attacks. Other frameworks have "conflict tolerant" semantics, where sets of accepted arguments may not be conflict-free with respect to the initial attack relation, like Preference-based AFs [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF], Valued-based AFs [START_REF] Trevor | Value-based argumentation frameworks[END_REF] or Strength-based AFs [START_REF] Rossit | United we stand: Accruals in strength-based argumentation[END_REF]. In all cases, the presence of conflicting arguments in the same extension can be explained by their relative priority: when the target has a higher priority than its attacker, then they can appear in the same extension. This is not the same intuition as ours, since only uncertainty justifies conflict-tolerance of our weak semantics.

The work by [START_REF] Grossi | On the graded acceptability of arguments in abstract and instantiated argumentation[END_REF] shares some of the basic intuitions of our own contribution. The notions of conflict-freeness and self-defense are re-defined to take into account the number of attackers and defenders of arguments. Then, combining different types of conflict-freeness and self-defense induces different types of admissibility-based semantics. Moreover, this work introduces constraints to ensure that the semantics behave well (namely, that some extensions exist). These constraints can be reminiscent of the fact that, here, the notion of defense should be as strong as the notion of conflict-freeness to induce a "fundamental" (in the sense of Dung's fundamental lemma) notion of admissibility. However, the contribution of focuses on standard AFs, i.e. no concept of uncertainty is involved. Adapting this approach to IAFs would then be an interesting research topic, that may provide intermediate solutions between our weak and strong semantics.

Finally, let us mention the work by [START_REF] Li | Probabilistic argumentation frameworks[END_REF] on Probabilistic Argumentation Frameworks (PrAFs). The relation between PrAFs and IAFs has already been discussed in the literature. Indeed, from the probability attached to arguments and attacks in a PrAF, one can deduce the probability of its completions (called induced AFs there), and then the probability that a set of arguments is an extension. So, reasoning with such PrAFs can be seen as a probabilistic extension of completion-based reasoning with IAFs [7, Section 8]. Intuitively, our direct approach for reasoning with IAFs (without relying on completions) could be extended to PrAFs as well, for instance, weak conflict-freeness could be parameterized by the probability of conflicts that can be tolerated in the set of arguments.

Conclusion

In this paper, we have continued an effort started by [START_REF] Cayrol | Handling ignorance in argumentation: Semantics of partial argumentation frameworks[END_REF], and defined extensionbased semantics for Incomplete Argumentation Frameworks (IAFs) that do not rely on the completions of the IAF. We have studied the properties of our new semantics, and provided complexity results and logical encodings for them. We have proven that the complexity of reasoning with these semantics is not harder than reasoning with classical extension-based semantics for abstract argumentation frameworks (in spite of the higher complexity of IAFs), and an experimental study shows that reasoning can be done efficiently thanks to modern SAT solving techniques.

Future work include, naturally, missing complexity results (i.e. tight results for the skeptical acceptability under weakly and strongly complete semantics) and a deeper experimental evaluation of the approach (e.g. using other types of graphs like Barabási-Albert [START_REF] Albert | Statistical mechanics of complex networks[END_REF], Watts-Strogatz [START_REF] Watts | Collective dynamics of "smallworld" networks[END_REF] or thoses from the last ICCMA competition [START_REF] Lagniez | Design and results of ICCMA[END_REF], or solving other problems than SE-σ). In particular, deeper experiments will allow to determine more accurately the impact of the number of uncertain elements on the runtime, as well as the impact of the choice of the semantics. Regarding the implementation, we have focused on the semantics that can be solved by a "simple" use of a SAT solver, i.e. such that the corresponding decision problem is at the first level of the polynomial hierarchy. The comparison of the various methods that reach the second level the polynomial hierarchy (e.g. CEGAR-style algorithms [START_REF] Dvorák | Complexity-sensitive decision procedures for abstract argumentation[END_REF], QBFs [START_REF] Egly | Reasoning in argumentation frameworks using quantified boolean formulas[END_REF] or maximal satisfiable subsets [START_REF] Lagniez | CoQuiAAS: A constraint-based quick abstract argumentation solver[END_REF]) for computing the preferred extensions is an enthralling question. The study of the grounded semantics will fulfill our study of Dung-style semantics for IAFs. Further theoretical results can be interesting, like e.g. a principle-based study in the spirit of [START_REF] Van Der | The principle-based approach to abstract argumentation semantics[END_REF]. A fundamental question concerns the weak stable semantics. The fact that weak stable extensions are not weakly admissible is quite surprising. The principle-based study will allow to determine whether the weak stable semantics satisfies interesting properties all the same, or whether an alternative definition is desirable (in particular, an alternative definition that would imply weak admissibility). We also plan to apply this kind of semantics to Control Argumentation Frameworks [START_REF] Dimopoulos | Control argumentation frameworks[END_REF][START_REF] Mailly | Possible controllability of control argumentation frameworks[END_REF], which would be a possible method to decrease the complexity of controllability. This requires to take into account the additional type of information, namely the uncertainty about the direction of attacks. The link with weighted AFs, i.e. integrating an inconsistency budget in the weak variants of our semantics, is also a promising line for future research.
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 1 Argumentation Framework). An argumentation framework (AF) is a pair F = ⟨A, R⟩ with A ⊆ A the set of arguments and R ⊆ A × A the set of attacks. For a, b ∈ A, we say that a attacks b if (a, b) ∈ R. If b attacks some c ∈ A, then a defends c against b. Similarly, a set S ⊆ A attacks (respectively defends) an argument b if there is some a ∈ S that attacks (respectively defends) b. Example 1.
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  e. the AF obtained by simply ignoring the uncertain elements): see e.g. {a, b, c} exhibited in Example 6, which is not a set of arguments in F min (since c ̸ ∈ A). Definition 8 (Weak and Strong Defense). Let I = ⟨A, A ? , R, R ? ⟩ be an IAF. Given a set of arguments S ⊆ A ∪ A ? and an argument a ∈ A ∪ A ? , • S weakly defends a iff ∀b ∈ A such that (b, a) ∈ R, ∃c ∈ S ∩ A s.t. (c, b) ∈ R; • S strongly defends a iff ∀b ∈ A ∪ A ? such that (b, a) ∈ R ∪ R ? , ∃c ∈ S ∩ A s.t. (c, b) ∈ R. Example 7. Considering again I 2 from Example 6, we observe that S = {a} weakly defends a, since there is no x ∈ A s.t. (x, a) ∈ R. On the contrary, a is not strongly defended by S, because there is no argument in S ∩ A that attacks b. But S ′ = {a, e} strongly defends a: e ∈ S ′ ∩ A (certainly) attacks b.
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 117 Figure 7: Counterexample for the relationship between strong and weak σ semantics, σ ∈ {co, pr}
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 3 check whether each argument in A\S (respectively (A∪A ? )\S) is attacked by an argument in S ∩ A. Proof. For item 1., weak (respectively strong) conflict-freeness is checked by iterating over {(a, b) ∈ S × S}, and verifying whether (a, b) ∈ R (respectively (a, b) ∈ R ∪ R ? ). There are |S| 2 such pairs (a, b), and verifying the membership to R (respectively R ∪ R ? ) is bounded by |A ∪ A ? | 2 (i.e. the maximal number of possible attacks in an IAF). For item 2., identifying the arguments b ∈ A (respectively b ∈ A ∪ A ?

  x a → b∈X,(b,a)∈Y c∈A,(c,b)∈R x c ≡ b∈X,(b,a)∈Y ¬x a ∨ c∈A,(c,b)∈R x c

  y a ↔ b∈A,(b,a)∈R x b which is easily translated into CNF, since y a ↔ b∈A,(b,a)∈R x b ≡ (¬y a ∨ b∈A,(b,a)∈R x b ) ∧ ( b∈A,(b,a)∈R ¬x b ∨ y a ) Then, δ ′ w and δ ′ s can be written in CNF: x a ↔ b∈X,(b,a)∈Y y b ≡ ( b∈X,(b,a)∈Y ¬x a ∨ y b ) ∧ (x a ∨ b∈X,(b,a)∈Y ¬y b ) where, again, either X = A and Y = R, or X = A ∪ A ? and Y = R ∪ R ? .

Table 1 :

 1 use Cred σ (F) (respectively Skep σ (F)) to denote the set of credulously (respectively skeptically) accepted arguments of F, i.e. those for which the answer to σ-Cred (respectively σ-Skep) is "YES".Example 3. The credulously and skeptically accepted arguments in F from Example 1 are given in Table1(third and fourth columns). Extensions and acceptable arguments of F, for σ ∈ {gr, st, co, pr}.

	Semantics σ	σ(F)	Cred σ (F) Skep σ (F)
	gr	{∅}	∅	∅
	st	{{b}, {a, c}}	{a, b, c}	∅
	co	{∅, {b}, {a, c}}	{a, b, c}	∅
	pr	{{b}, {a, c}}	{a, b, c}	∅

Table 3 :

 3 Weakly and Strongly Admissible Sets of I 2 .

∈ {w, s} w s ∅, {a}, {c} , {d}, {e}, {a, c}, {a, d}, ad x (I 2 ) {a, e}, {c, d}, {c, e}, {d, e}, {a, c, d}, ∅, {c}, {d}, {c, d} {a, c, e}, {a, d, e}, {c, d, e}, {a, c, d, e}

Table 7 :

 7 Average Runtime in Milliseconds for SE-co x , x ∈ {w, s} they rely on the set of completions of an IAF to define various decision problems[START_REF] Baumeister | Verification in incomplete argumentation frameworks[END_REF][START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF][START_REF] Fazzinga | Reasoning over argument-incomplete aafs in the presence of correlations[END_REF][START_REF] Fazzinga | Reasoning over attack-incomplete aafs in the presence of correlations[END_REF][START_REF] Herzig | Abstract argumentation with qualitative uncertainty: An analysis in dynamic logic[END_REF][START_REF] Mailly | Constrained incomplete argumentation frameworks[END_REF][START_REF] Mailly | maybe, I don't know: Complexity and application of abstract argumentation with incomplete knowledge[END_REF]. Control Argumentation Frameworks (CAFs)

	5,0.5 groups) are

At the exception of skeptical acceptability under the complete semantics, for which we do not have a tight complexity result yet.

If C = P, an additional constraint must be fulfilled, namely f must be computable using logarithmic space with respect to the size of i.

The classes ∆ P i correspond to problems that can be solved by using a polynomial number

However, let us notice that we will sometimes include them in the family of studied semantics, for homogeneity of the presentation, e.g. in the complexity results (see Section 4.1).

This subclass was studied under the name Attack-Incomplete AFs[START_REF] Baumeister | Verification in attack-incomplete argumentation frameworks[END_REF].

The terminology "strong defense" and "strong admissibility" has been used with another meaning in[START_REF] Caminada | Strong admissibility revisited: Theory and applications[END_REF], where it applies to classical AFs, not IAFs.
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solved faster than instances with only arguments or only attack can be uncertain (I 1,0.5 and I 0.5,1 ), which in turn are solved faster than instance where all elements are certain (I 1,1 ). Naturally, these conclusions are only preliminary, given the size of the benchmark. Further study will be conducted for determining whether the claim hold in general. It is interesting to notice that both cases where the average is higher than 1 second are very similar: they are the category of IAFs I 1,1 with p = 0.1 and n = 200, respectively for st w and st s . For all the IAFs in this category, the runtime is higher than 1 second, and up to 3.5 seconds, which is (relatively) much higher than all the other runtimes.

In particular, even for this category of graphs, runtimes for the variants of the complete semantics are below 0.2 second for each instance. Determining the cause of this difference is an interesting question for future work. Finally, let us conclude this analysis of the preliminary experiments by noticing that the chosen semantics (among {st w , st s , co w , co s }) has no strong impact (for the chosen benchmarks) on the average runtime.

Related Work

As mentioned in the introduction, most of the work on incomplete argumentation frameworks are strongly different, by nature, with our contribution, since (0.