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Abstract

Local additive explanation methods are increasingly used to understand the
predictions of complex Machine Learning (ML) models. The most used ad-
ditive methods, SHAP and LIME, suffer from limitations that are rarely
measured in the literature. This paper aims to measure these limitations on
a wide range (304) of OpenML datasets using six quantitative metrics, and
also evaluate emergent coalitional-based methods to tackle the weaknesses
of other methods. We illustrate and validate results on a specific medical
dataset, SA-Heart. Our findings reveal that LIME and SHAP ’s approxi-
mations are particularly efficient in high dimension and generate intelligible
global explanations, but they suffer from a lack of precision regarding local ex-
planations and possibly unwanted behavior when changing the method’s pa-
rameters. Coalitional-based methods are computationally expensive in high
dimension, but offer higher quality local explanations. Finally, we present a
roadmap summarizing our work by pointing out the most appropriate method
depending on dataset dimensionality and user’s objectives.
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1. Introduction

Machine Learning (ML) represents a real revolution in various domains,
such as finance, insurance, healthcare, biomedical. However, machine learn-
ing models give a prediction without necessarily being accompanied by an
understandable explanation. These models, often referred as ”black-boxes”,
raise the challenging question of how humans can understand the determi-
nants of the prediction. Explainability is also more than a technological
problem, it raises ethical, societal and legal issues. In healthcare, this may
involve the professional being able to explain to the patient how the algo-
rithm works and the criteria for the decision process. The results of ML
models must therefore be expressed in a way that can be understood by
domain-experts, like medical practitioners [1, 2]. Since SHAP [3], machine
learning experts show a very clear interest for the additive methods as a
huge number of works using these methods are published each year. The
local additive methods include LIME [4], SHAP [3] and more recently the
coalitional-based methods [5] which use subsets of features (coalitions) to
approximate explanations. They are called ”local” because they produce an
explanation for each data instance (e.g. each patient) and ”additive” because
the sum of the influence of each feature for a given instance approximates
the prediction of the model. The user-friendly representation of explanations,
based on the influences of features, allows domain and non-domain experts
to better understand models’ predictions [6]. Existing explanation methods
are model-specific or model-agnostic depending on whether they can be ap-
plied to some or all types of machine learning models, with local or global
explanations to understand either an individual prediction or the behaviour
of the model as a whole. While these methods have been evaluated in a
number of contexts, no in-depth evaluation is available for a rational choice
of one technique over another.

The objective of our previous work [7] was to study the advantages and
disadvantages of using each additive method, considering the effects of both
the ML models used and the type of dataset on the influences of features
(both at the instance and feature level). In this paper, we complete our work
with six different metrics, computed for each model and dataset, providing
insight on computational time, feature importance, robustness, readability
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and clusterability of explanations.
The paper is organised as follows. Section 2 describes the four addi-

tive methods to be compared along with existing work on classification and
comparison of local explanation methods with associated metrics. Section 3
presents the methodology of our experiments, including the datasets and
ML models used, and the six metrics retained to compare local explanation
methods. Section 4 presents the experiments where we study the explana-
tion characteristics and the impact of the predictive model on explanation
profiles. Section 5 highlights the behavior of explanation methods based on
a practical medical use case (SA-Heart) with a focus on the impact of hy-
perparameters of studied methods on the generated influences. Conclusive
lessons-learned are then detailed in Section 6, while future axis of work are
identified in Section 7.

2. Related Works

We first present the additive methods we use through this paper (Section
2.1) as well as an overview of works that aim to compare and evaluate them
(Section 2.2). Finally, in Section 2.3, we discuss the current limits of the
metrics used to compare explanations.

2.1. Additive methods

Additive methods are described as explanation models that produce for
a single instance a vector of weights to represent the contribution of each
feature to the prediction. The sum of these contributions (also called influ-
ences) approximates the prediction of the original model. In this section,
we explore several existing methods that fit this definition. We focus on
post-hoc methods that deliver their explanations for a given model already
trained. Methods used in this study are all agnostic, meaning that they can
be applied to any kind of machine learning model, except for the TreeSHAP
method [8] that is designed specifically for tree-based models.

To illustrate how local additive methods work, we give an example of
these explanations for the well-known Iris dataset (4 attributes and 150 in-
stances). As the Iris dataset is an easy problem, it can be modeled by a
small decision tree, described in Figure 1 and explanations can be compared
to this classification.

In this example, Figure 2 shows the influence of each attribute for the
class ”Versicolor” for a Versicolor iris. The petal width is the attribute with

3



the greatest influence on the prediction ”Versicolor”, followed by the petal
length. When analyzing the decision tree, the same attributes seem the most
important to distinguish each iris class. On the other hand, sepal width and
length do not have a huge impact on the prediction as their influences are
close to 0. As these attributes are not relevant for differentiating classes
based on the decision tree, it seems consistent that they have little influence
on the prediction. Based on the Figure 2, users can understand that, for this
instance, petal measures are the most important to determine the class of
the iris while sepal measures are almost unnecessary with low influences on
the prediction.

Figure 1: Decision tree trained for the iris classification [9].

Figure 2: Example of local additive explanations for one instance from the iris dataset for
the class ”Versicolor”.

2.1.1. LIME

LIME is a well-known local explanation method described in [4]. LIME
uses explainable models to locally approximate a complex black-box model
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and, for each instance, explain the influence of each feature on the pre-
diction. For each instance to be explained, LIME generates new data in a
close neighborhood and computes the predictions of these new instances with
the black-box model. A linear regression model, an interpretable model, is
trained with the new dataset. This local model is then used to explain the
prediction of the instance of interest in the form of a weight vector associat-
ing each feature with its influence on the prediction. A well-known limitation
of LIME is the restrictive hypotheses on which LIME is based, such as local
linearity and feature independence [10, 11]. Defining the locality around an
instance of interest can also be a challenge, as the fitness of the surrogate
model has a significant impact on the accuracy of the explanations [12] as
well as their stability [13].

The full implementation of LIME is available on GitHub1.

2.1.2. Shapley Values (complete method)

To explain individual predictions, a method based on Shapley values is
described in [14, 15, 16]. Shapley values ’fairly’ weight groups of features
according to their relative importance to a defined gain [17]. In machine
learning, the gain can be linked to the prediction made by the model. In-
fluences of each feature are computed based on its impact on the prediction
for each coalition of features. The explanation method based on Shapley
values is called the complete method. All coalitions are evaluated with and
without each feature and the change on the prediction is used to compute
the influence of the feature. The complete method can be used as a baseline
to compare other methods as it is an exhaustive method close to the original
intuition behind feature influence [5]. This method is however very expen-
sive to compute, with an exponential complexity in relation to the number
of features in the dataset.

Several more recent methods, including SHAP [3] and coalitional methods
[5], are based on Shapley values with the aim to solve limitations of the
complete method.

2.1.3. SHAP

SHAP (SHapley Additive exPlanations) [3] method worked on improving
computation time and explanation precision, especially for tree-based models

1https://github.com/marcotcr/lime
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[8]. It combines LIME [4] and Shapley values [16], along with other methods
from the literature [18, 19, 20, 21], in a unique framework to produce local ex-
planations. The main idea is to create perturbations to simulate the absence
of a feature and to use a linear local model to approximate the change in the
prediction, as in LIME. This avoids retraining the complex model without
the feature of interest. Local explanations can be aggregated to explain the
global behaviour of the model. Global and local explanations are then con-
sistent with each other as they have the same foundation. SHAP includes an
agnostic explainer, KernelSHAP, as well as model-specific explainers, such as
TreeSHAP, LinearSHAP or DeepSHAP for tree-based models, linear models
and deep models respectively. While commonly used in Machine Learning
context [22], SHAP still suffers from lack of precision [10, 23] mostly due
to their restrictive hypothesis (local linearity and feature independance) as
with LIME. Moreover, computation time is still high for other models than
tree-based models [24].

The full implementation of SHAP is available on GitHub2.

2.1.4. Coalitional-based method

Another agnostic explainer based on Shapley values, the coalitional method,
was introduced to take into account the interdependence of features and
solve some restrictions of SHAP. It uses grouping methods such as Principal
Component Analysis (PCA), Spearman correlation factor (Spearman) and
Variance Inflation Factor (VIF) to select amongst all the possible groups
of features those that would be the most interesting for explanations [5].
These groups are then used as coalitions to compute Shapley values as in the
complete method. The influence of each feature is defined as its impact on
the prediction only on these groups of features, approximating the complete
method and reducing the computational time. Grouping methods are defined
with a parameter that changes the number and size of feature groups in order
to prioritise a lower computational time or a higher accuracy. As for SHAP,
local explanations can be aggregated into global explanations to study global
and local behavior of the model.

The full implementation of Coalitional-based method is available on GitHub3.

2https://github.com/slundberg/shap
3https://github.com/kaduceo/coalitional_explanation_methods
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2.2. Describing and comparing the additive methods
Few works [25, 26] exist in the literature to classify and categorize machine

learning explanation methods. In [6], a complete description of explanation
approaches from literature is given. The author explain their advantages and
disadvantages, giving an overview of their limits in general. For example,
even if the LIME and SHAP approaches are model-agnostic and human-
friendly, they suffer from a lack of consideration of feature correlation and
possible instability of the explanations. Another paper tackling the limits of
the additive methods (LIME and SHAP) is presented in [10]. Biased classi-
fiers can fool explanation methods, whose problem is even more accentuated
on LIME.

Comparative studies between local explanation methods are also avail-
able, such as [27, 28, 5, 29]. Most works focus only on SHAP and LIME
when comparing local methods. In [29], the authors compare LIME, SHAP
and Scoped rules using the ranking of features by importance. However, they
use a single metric with a single prediction model, on a single dataset, which
limits the generalisability of results. In [5], a new additive method was pro-
posed based on Shapley values and taking into account feature correlation,
described in section 2.1. This method was compared with LIME and SHAP
considering computation time and accuracy score, and show that their pro-
posal is competitive with the literature. In [28], LIME and SHAP are used
in a context of feature selection and compared to a Mean Decrease Accuracy
(MDA) approach. They show that these explanation methods can also be
used as feature selection methods with better results than the literature. In
[27], the authors compare six local model-agnostic explanation techniques
using custom quantitative measures evaluated on two tabular and two text
datasets. From these experiments, no single method stands out for all met-
rics and all datasets. According to the metrics considered, each method has
its own strengths and weaknesses, the choice being dependant on both the
user’s goal and dataset content.

However, none of these previous works clearly indicates in which situation
a method should be preferred to another one, nor what are the strengths and
weaknesses of each method. Most previous works focus on a specific case
(dataset) and metrics, which makes generalization difficult. Consequently,
our aim is to give the key factors to make an informed decision among the
existing additive methods. To improve generalization, we evaluate metrics
on several different prediction models with a large number of widely different
datasets.
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2.3. Metrics for evaluating explanation methods
In the machine learning explanation field, one challenge is to define what

is a good explanation and how to show mathematically their relevance. [30]
indicates that evaluating explanations methods is very subjective and no con-
sensus yet exists to propose relevant metrics. Nevertheless, the authors sum-
marize criteria for a good human-friendly explanation such as contrastive-
ness, social adaptation, focus on the abnormal, truthfulness or consistency
with prior beliefs. They present their work as general guidelines to objec-
tively define good explanations. [31] also defined properties for individual
explanations to help characterize good explanations, like accuracy, fidelity,
representativity, understandability or consistency. Explanations that com-
ply with these properties can be good explanations as they can be seen as
true to the model or the data, trustworthy and easy to understand for the
end-users. However, all these characteristics are mainly subjective as they
are not defined mathematically and it is not obvious how to measure them.
The definition of a good explanation can also differ based on the end-user,
the application domain, the objectives for the use of explanations, making it
difficult to objectively assess the quality of the explanations [30].

Other papers define more precise metrics to evaluate explanations and
apply them on some use-cases. In [27], the authors define similarity, bias
detection, execution time, and trust as quantitative measures to evaluate
explanations. These metrics are generic as the authors aim to compare a wide
range of explainability techniques. They are evaluated on several tabular and
text datasets. However, only an intuitive description of the metrics is given
and no mathematical implementation is provided, making it difficult to re-use
them.

Through this paper, we focus on local additive explanation methods,
which produce, for each instance to be explained, one vector of attribute
influences. This allows for quantitative metrics to evaluate and compare ex-
planations based on their influence vectors, and are sometimes referred to
as attribution-based metrics. In particular, in [32] the authors define mono-
tonicity and effective complexity to evaluate explanation qualities. Mono-
tonicity is particularly interesting as it evaluates the relationship between
the values of an explanation and its expectations. Effective complexity is
related to conciseness, evaluating the minimum number of features necessary
to the explanation. Robustness is another frequently mentioned metric over
the literature, defined as the capacity of the explanation to be similar when
inputs are similar. Several mathematical formulations of this metric exist,
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based on how authors determine what similarity means and how to compute
it [33].

These multiple implementations produce metrics that are efficient to eval-
uate each explanation method specifically. However, it can be confusing to
compare measures that have not been calculated in the same way or to find
inconsistent definition of the same metrics over the literature. One challenge
then lies in the ability to find metrics that are applicable to all the methods
to be compared. The lack of unified metrics and the differences between
explanations methods mean that only similar methods can be easily com-
pared thus increasing the complexity of selecting metrics and evaluating and
comparing explanations [33, 34, 35].

Another approach is to compare the evaluated methods to a baseline and
measure the error between the two. This technique compares multiple expla-
nation methods at once, based on the same metric as long as the methods
produce similar outputs [5, 36]. The error is computed as the distance be-
tween the baseline and each method, allowing the use of any existing distance
that can be applied on all the methods to be evaluated. Although this ap-
proach solves the problem of finding a metric relevant to all explanations, it
raises the problem of defining a trustable and consensual baseline.

In this paper, we propose metrics based on desirable properties mentioned
earlier. As we are comparing methods that all produce the same kind of
output - a vector of influences for each instance of a data set - we also provide
the exact formula used to compute each metric. Therefore, a major strength
of our metrics is that they are systematically applicable to any method that
produce a vector of influence for one instance, and any machine learning
model as long as the method is model-agnostic. The main objective of this
paper is not to qualify each explanation method in absolute, but to compare
their relative performances.

3. Methodology

In this section, we describe our methodology for comparing the explana-
tion methods presented in the previous section. The goal is to identify the
general behavior of each method and how this behavior eventually differs
across the predictive models (learned from data) and the dimensionality of
the data (number of features). Section 3.1 presents the experimental protocol
we use, and we define in section 3.2 the six metrics we use to compare the
explanation methods.
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3.1. Experimental protocol

All experiments are run on an Intel Xeon Gold 6230 processor with 125
GB of RAM using Python 3.9.7. All runs are performed on a single core of
CPU for optimization and reproducibility. To compare explanation methods,
we apply them to a wide range of 304 datasets available on OpenML4. Due
to computational constraints of explanation methods, we only considered
datasets with at most 13 features, and at most 10 000 instances. We also
only considered classification tasks to use comparable predictive models and
metrics. We describe the amount and size of datasets per number of features
in Table 1.

As an explanation method needs a model to be applied to, we choose
four widely used types of ML models for classification: Logistic Regression
(LR), Support Vector Machines (SVM), Random Forests (RF) and Gradient
Boosted Machines (GBM). For the first three, we use the implementation
of Python library scikit-learn version 1.0.1. For GBM, we use the Python
library XGBoost version 1.5. We use default values for model hyperparam-
eters. For explanation methods, we use Python libraries shap 0.40 and lime
0.2.0.1.

In Section 3.2, we present six metrics that will be used for this study to
compare the explanations.

3.2. Metrics of interest

Through this paper, to evaluate explanation methods performances and
compare them over a high number of datasets, we use six different metrics
that only consider the influence values given by the method. In all the
following definitions, let X be a given dataset with n instances and d the
number of features, and f an explanation method that can be applied to
each instance of the dataset given a machine learning model (that we omit
for conciseness).

The first metric is the mean computation time per instance, which is the
amount of time taken by a given method to compute the local influences of
a whole dataset, divided by the number of instances in the dataset.

4www.openml.org
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Number of datasets Number of instances
Number
of fea-
tures

Min Max Mean

1 5 130 9100 3079
2 21 52 5456 901
3 43 60 9989 1729
4 23 96 8641 1016
5 35 62 7129 941
6 27 51 9517 949
7 33 54 4052 499
8 32 52 8192 1473
9 23 52 1473 484
10 37 57 5473 712
11 8 66 4898 942
12 12 123 8192 1175
13 5 178 506 293
Total 304 51 9989 1035

Table 1: Datasets description
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The second one is a quantification of the average deviation of the influence
given by a method from the Complete method (see Section 2.1). It is very
similar to the error metric used in [9].

Definition 1. Error with regards to the Complete method
Let fk(x) be the influence of a feature k produced by an explanation method

f for a given instance x, and a given machine learning model, and fC
k (x) the

influence given by the Complete method for the same model, same feature
and same instance. We define the mean error of the explanation method as:

err(f,X) =
1

n

n∑
i=1

1

p

d∑
k=1

∣∣fk(Xi)− fC
k (Xi)

∣∣ (1)

The third metric is inspired from the principle of effective complexity
defined in [32]. However, it benefits from the absence of any parameter. It
evaluates the conciseness of an explanation given the distribution of feature
importance. Feature importance (mean absolute value of influence assigned
to instances for a given feature) is ranked in decreasing order, then cumulative
sum is calculated. For example, in a dataset with 2 features, if a method
gives 80% of the importance to the most important feature (and so 20%
to the second), it would have a cumulative importance proportion vector of
[0, 0.8, 1]. We can then define the normalised Area Under Curve (AUC) as:

Definition 2. Area under the cumulative feature importance curve
Let C ∈ [0; 1]d+1 be the cumulative importance proportion vector given by

an explanation method over a dataset, with Ci the total importance propor-
tion taken by the i most important features. We define the area under the
cumulative feature importance curve as:

AUC(X) =
1

d

d−1∑
i=0

Ci + Ci+1

2
(2)

This metric shows whether an explanation method favours the attribution
of great importance to a few features or, on the contrary, a more homogeneous
distribution among a larger number of features. As this cumulative sum is
sorted by decreasing value, this value is bound between 0.5 and 1. A value
of 0.5 means that the explanation method gives the same importance to all
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features, while a value of 1 means that the explanation method gives non-zero
influences only to a single feature, explaining the model’s predictions with a
single feature.

The fourth metric is a measure of robustness of the method. A method
is robust if similar instances lead to similar explanations. Formalized in [33],
we use the discrete version of the local Lipschitz estimation.

Definition 3. Robustness (local Lipschitz estimation)
Let Nϵ = {xj ∈ X|∥xi − xj∥ ≤ ϵ} the ϵ-neighborhood of the instance xi.

L̃X(xi) = max
xj∈Nϵ(xi)≤ϵ

∥f(xi)− f(xj)∥2
∥xi − xj∥

(3)

A high value of L̃X(xi) means that the explanation method is not robust
for the instance xi over the dataset X, and a low value means that the
explanation is robust for the instance xi over the dataset X. We average
this value over all instances of a dataset to get the value of the metric for a
method for a dataset.

The fifth metric is a measure of readability of the global explanation.
It is inspired from the monotonicity metric defined in [32], but rather than
looking at the correlation between the absolute values of the attributions
and the expectations (that we cannot compute), we look at the correlation
between the data values and the influences for an attribute. Even if the
explanations are calculated for each instance, we want these explanations to
make sense when comparing one to another. To evaluate that, we look at the
relationship between the value of a feature, and the value of the explanation
for this feature, for all instances using the Spearman correlation r.

Definition 4. Readability
Let Xi ∈ Rn be the dataset feature i, f(Xi) ∈ Rn the explanation of each

instance for such feature i and r(X, Y ) the Spearman correlation coefficient of
two vectors of equal size. We define the readability of an explanation method
over a dataset X as:

R(X) =
1

d

d∑
i=1

|r(Xi, f(Xi))| (4)

In Figure 3, we show a visual example of what we consider readable or
unreadable according to our definition.
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(a) (b)

Figure 3: (a) Example of a readable explanation. Each dot corresponds to an instance.
On the right (compact representation), the color represents the value of the feature. (b)
Example of an unreadable explanation

The sixth and last metric measures the pairwise feature interaction as
captured by the explanations. In order to do that, for each pair of features
within a global explanation, we use a clustering method to create a partition
of the explanation of all instances for the pair of features, and then evaluate
the quality of the clustering created this way. We average this value over all
pairs of features and name this metric (2-dimensional)-clusterability:

Definition 5. Clusterability
Let f(Xi) ∈ Rn the explanation of each instance for a feature i, K be a

clustering function, and S an evaluation function for a clustering. We define
clusterability as:

Cl(X) =
2

d ∗ (d− 1)

∑
i,j∈[1,...,d]

i ̸=j

S(K(f(Xi), f(Xj))) (5)

A high clusterability score means that the explanation method draws
relationships between pairs of features for their joined contribution to the
predictions. For our experiments, we use K-Means as the clustering method
and the Silhouette score for the clustering quality measure.

Through this paper, we will refer to these six metrics as, in order, Com-
putation time, Error, AUC, Robustness, Readability and Clusterability

4. Results

In this section, following the methodology previously described, we present
the results in two ways. Section 4.1 aims to compare the four additive meth-
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ods introduced in Section 2.1. In particular, we use two distinct coalitional-
based methods: the Complete method, which serves as reference for an influ-
ence deviation measurement (Definition 1), and the Spearman method with
a threshold of 25% of all groups of features. Regarding SHAP, we use the
model-agnostic KernelSHAP on all datasets. As this method is very slow
to execute if we use the whole dataset as background samples for permu-
tations, we choose to follow SHAP ’s recommendation5 by doing a K-Means
clustering on the input dataset, and then taking the centroids as background
samples. We choose K = 10 clusters for each dataset. In addition, for the
two tree-based predictive models XGBoost and Random Forests, we use the
model-specific explainer TreeSHAP by two implementations. The first one
determines SHAP values with background samples, similarly to KernelSHAP
but optimised for tree-based methods. We use the whole dataset as back-
ground samples for this method. The second one approximates SHAP values
by considering the trees structures, and does not need background samples
in input, so we name it TreeSHAPapprox. Last, we consider LIME, which
requires a number of perturbed samples to be created for explaining each
instance. We choose to set this number to 100 samples for all datasets. With
similar methodology, Section 4.2 identifies the impact of the predictive model
on specific explanation methods.

Supplementary data referenced through the rest of the paper are available
on Github6.

4.1. Additive method comparison

Computation time

We show in Figure 4 the evolution of the computation time of each method
for each predictive model, averaged over datasets that share the same number
of features.

LIME, having a linear complexity with the number of features, is compu-
tationally expensive compared to other methods in low dimension (few fea-
tures), but is less expensive than coalitional-based methods and KernelSHAP
in higher dimensions. LIME also seems to have very low inter-dataset time
variability, resulting in smaller error bars on the graph.

5KernelSHAP documentation includes recommendation to use K-Means algorithm
to speed up computation time https://shap-lrjball.readthedocs.io/en/latest/

generated/shap.KernelExplainer.html
6https://github.com/EmmanuelDoumard/local_explanation_comparative_study
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Coalitional-based methods show an exponential complexity with the num-
ber of features, having high execution time in high dimension, but have a
similar execution time with other methods in low dimension.

Spearman method execution time seems naturally correlated to the Com-
plete method execution time, taking a fraction of the time (roughly 25%) of
the Complete method.

KernelSHAP, despite a limitation on the amount of background samples,
has a high execution time in high dimension, comparable to coalitional-based
methods for non-tree based methods.

For tree-based methods, KernelSHAP is slower in low dimension, but
faster in high dimension than coalitional-based methods.

Last, tree-based explainers seem to have constant execution time per
instance no matter the number of features, and the approximate tree path
dependent version of TreeSHAP has the lowest execution time per instance.

Figure 4: Execution time of each method per instance, averaged by number of features,
for each model

Error

Regarding the error, Figure 5 shows the average absolute difference in
influence between each method and the Complete method (reference). First,
we can see that overall, the more features there are in a dataset, the closest
(measured by the second metric) the influences are to the Complete method.
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This is probably due to the fact that usually, the more features there are,
the less influence amplitude each individual feature has in the prediction.
We also note that no matter the model, methods are ranked in the same
way. In low dimension (less than 6 features), KernelSHAP is the closest to
the Complete method, followed by Spearman, while LIME is the farthest.
In higher dimensions, Spearman becomes more precise than KernelSHAP.
TreeSHAP (both the approximate and the data dependent version) is more
precise than KernelSHAP, but still less precise than Spearman in high di-
mensions. Note that the approximate version of TreeSHAP is not showed on
the graph for XGBoost because its implementation forces its SHAP values
to be in log odds instead of probabilities, making it impossible to compare
to other methods.

Figure 5: Mean absolute difference of each method with the Complete, averaged by number
of features, for each model

AUC

We show in Figure 6a the graphical representation of an example of the
cumulative feature importance proportion. The figure shows the averaging
of the cumulative importance proportion of the most-important features for
the 37 datasets having 10 features. This way, for each predictive model and
for each method, we obtain a curve from which we compute the third metric:
the AUC of the curve.
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We see on the figure that some methods present steeper curves than
others. For example, with Logistic Regression and SVM, LIME gives less
proportion of the total importance to the few first most-important features,
compared to coalitional-based and SHAP methods. For tree-based models,
we see that SHAP, no matter the method, gives much more importance to
the first few most-important features than the other methods.

(a) (b)

Figure 6: (a) Most-important features cumulative importance proportion by method, for
each model. Only influences computed on datasets with 10 features are shown. (b) AUC
of each method, averaged by number of features, for each model

According to the method for computing AUC illustrated in Figure 6a, we
represent the average values of AUC for datasets from 2 to 13 features for
each ML model and explanation method in Figure 6b. For all models, we
can see that SHAP methods tend to produce influences with a higher AUC
compared to other methods. This means that SHAP methods tend to assign
most of the feature importance to fewer most-important features, while other
methods tend to distribute the feature importance more uniformly over all
features. The two coalitional-based methods seem to generate similar AUCs
for the features importance. Finally, LIME tends to produce influences with
lower AUCs for non-tree-based methods, while it produces AUCs closer to
the coalitional-based methods for tree-based methods.
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Robustness

Regarding robustness, we show in Figure 7 the local Lipschitz estimates
for each model, grouped by method. We used formula 3 with ϵ = 0.3. We
show in supplementary data that different values of ϵ did not change the
relative order of results. Overall, the explanation method doesn’t impact
the robustness so much, except for LIME with the Logistic Regression and
SVM models, for which the method is far less robust. We can also see that
the Spearman method is slightly less robust than the Complete and SHAP
methods.

Figure 7: Local Lipschitz estimate for each model, grouped by method. Each box rep-
resents the results aggregated for all datasets. The white dot represents the mean value.
Due to far outliers, we cropped the plot at L̃X(X) = 4

Readability

Figure 8, similarly, represents the readability for each model, grouped by
method. The explanation method does not impact so much readability. The
Complete and Spearman methods have a slightly lower readability than the
other ones. It means that the link between a feature and its explanations
tends to be less obvious with these methods than with the others. This is
possibly due to the coalitional nature of these methods: by focusing on coali-
tions, these methods are often able to capture complex interactions between
multiple features, meaning that the marginal contribution of a feature is too
complex to be explained only by the feature value.

Clusterability

Finally, we show in Figure 9 the two-dimensional clusterability of the
methods applied to each model. We can see that LIME has significantly lower
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Figure 8: Readability for each model, grouped by method. Each box represents the results
aggregated for all datasets. The white dot represents the mean value.

clusterability than the other methods, which have themselves similar clus-
terability. It means that LIME tends to capture fewer interactions between
pairs of features by groups of instances. It may be due to the discretization
imposed by LIME on each feature independently of the others.

Figure 9: Clusterability for each model, grouped by method. Each box represents the
results aggregated for all datasets. The white dot represents the mean value.

4.2. Machine Learning model explanations comparison

Computation time

We show in Figure 10 the computational time per instance needed to
compute the explanations of each predictive model, for each explanation
method.
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Figure 10: Execution time of each model per instance, averaged by number of features,
for each method

We can see that LIME ’s execution time has almost no inter-model vari-
ability: the computation time per instance is the same no matter the model.
For the other methods, the ranking of the method’s computational perfor-
mances according to the model is roughly the same, from slowest to fastest:
Random Forests, XGBoost, SVM and Logistic Regression. SVM has overall
higher variability, presenting steeper curves and higher error bars. SVM even
presents outlying results when applied to KernelSHAP in higher dimensions.
Overall, we do not observe specific behavior of method’s computation time
in regards to the model used, except for TreeSHAPapprox where Random
Forests are faster to compute. This may be related to the fact that Tree-
SHAPapprox only considers tree structures, as Random Forests tree struc-
tures are simpler than XGBoost’s. In general, the faster a model is to train
and predict values and the simpler it is, the faster the explanations are to
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compute, no matter the method.

Error

We present in Figure 11 the error for each method for each model. The
figure does not present the results for TreeSHAPapprox because the only
relevant model for this method is Random Forests, there is no other model
to compare the results with.

For the three model-agnostic methods (LIME, KernelSHAP and Spear-
man), the Logistic Regression and SVM models generate the most precise
explanations compared to the Complete method on the same models. We
can see that the explanations based on Logistic Regression are usually more
precise than SVM’s, especially in low dimensions. XGBoost explanations are
less precise than Random Forest’s, except for the Spearman method (similar
results are observed). Overall, it seems that the simpler the model, the more
precise it is in regards to the Complete method.

Figure 11: Mean absolute difference of each method with the Complete, averaged by
number of features, for each model

AUC

Regarding the AUC, we present all the results in Figure 12. We observe
that for LIME and KernelSHAP, there is no significant difference between
the AUC of the model’s explanations. However, for the coalitional-based
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methods, we can see a clear separation between tree-based methods and non
tree-based methods: the latter have higher AUC than the others. This means
that, when using coalitional-based methods, one should be aware that differ-
ent models may yield different importance distributions over the features. For
the tree-specific methods, we can see that XGBoost generates explanations
with slightly higher AUCs than Random Forests on average.

Figure 12: AUC of each model, averaged by number of features, for each method

Regarding robustness, readability, and clusterability, we use the same
graphs presented in the previous part to analyze the impact of the model on
the explanations regarding these three metrics.

Robustness

We look again at Figure 7 to compare the robustness of the methods
applied to each model. We confirm that, except for LIME, the Logistic
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Regression and SVM models produce much more robust explanations than
Random Forests and XGBoost models. This is probably tied to the complex-
ity of the models. On a one hand, a more complex model is usually harder
to explain even for model-agnostic explanation methods, and on the other
hand, a more complex model leads to highly non-linear functions, meaning
that instances that are close to each other may have different predictions and
therefore, different explanations.

Readability

For readability, Figure 8 shows that the explanations made on the Logistic
Regression model are much more readable than the ones on the other models.
Explanations made on the SVM model fall between the Logistic Regression
and the tree-based models in term of readability for most explanation meth-
ods. This is probably due to the fact that simpler models tends to draw
relationships between individual features and the output without necessar-
ily considering the interaction between features, producing explanations that
can be read feature by feature.

Clusterability

Finally, we look at the clusterability of the explanation applied to the
ML models by looking at Figure 9. We can see that all models have sim-
ilar clusterability between them. This may indicate that the model is not
important in determining particular subpopulations of explanations by pairs
of features, or that it depends more on the considered dataset than on the
model.

5. Use-case study and parameters exploration

In this section, we focus on a specific example that a user could face while
analyzing their data and building or using explainability tools. In Section 5.1,
we show visual representations of the explanations obtained with the different
methods on a specific dataset. In Section 5.2, we use the same dataset to
present some important parameters for the different methods and visually
represent their impact on the explanations.

5.1. Example on a medical dataset

Amongst the OpenML datasets previously studied, we choose a medical
dataset, SA-Heart, to compare the explanations given by the different addi-
tive methods on an example. This way, we aim to both illustrate and validate
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the conclusions of the previous sections regarding explanation methods char-
acteristics. We also aim to highlight practical differences that we can see on
the influences of different methods for the same model and dataset.

SA-Heart is a dataset extracted from a larger database of South-Africans
detailed in a 1983 study [37]. The extracted dataset is a retrospective sam-
ple of males in a heart-disease high-risk region of the Western Cape, South
Africa. The dataset is composed of 462 individuals for 10 features. The
main objective is to predict the binary target feature ’chd’, a coronary heart
disease, according to 9 explanatory factors: tobacco (cumulative consump-
tion tobacco), age (at the onset), ldl (low density lipoprotein cholesterol),
adiposity (estimation of the body fat percentage), obesity (through the
body mass index), family (family history of heart disease, present or ab-
sent), alcohol (current alcohol consumption), sbp (systolic blood pressure)
and type-A (Type-A behavior scale). After model training, the different
explanatory profiles obtained between the different methods of explanation
are compared. By considering a reflection on the end-user side, the health
care practitioners, explanatory profiles should be used 1) at the population
level (global explanations), for example to highlight high-risk patient profiles,
develop new prevention programs, develop new physio-pathological hypothe-
ses but also 2) at the instance level (local explanations), for personalized
medicine.

For conciseness in this paper, we limit the analysis to a single machine
learning model. We choose Random Forests, as every explanation method
that we consider is applicable to it. We present the results with SVM, Logistic
Regression and XGBoost models in supplementary data.

In Table 2, we show the values of each metric on the SA-Heart dataset. To
enforce the robustness of the results, we calculated the explanations 10 times
for each method and averaged the metrics. TreeSHAP looks promising, giv-
ing the best score in AUC, Robustness and Clusterability, while maintaining
correct performances in Computation Time, Error and Robustness. Con-
firming trends seen in the previous section, Spearman is the most precise
method w.r.t the Complete method, the approximate version of TreeSHAP
is the fastest, and LIME produce the most readable explanations.

To compare the explanations of the different additive methods, we look
at global explanations given by each method. We use SHAP -like represen-
tations to visualize global explanations by aggregating local explanations on
the same representation. This way, we build different figures. The first one,
in Figure 13, represents a global explanation of the predictive model, given by
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LIME Complete Spearman KernelSHAP TreeSHAP TreeSHAPapprox

Time per instance 0.062 0.141 0.036 0.061 0.011 <0.001
Error 0.046 0.000 0.026 0.034 0.029 0.033
AUC 0.604 0.560 0.550 0.623 0.625 0.614
Readability 0.686 0.499 0.427 0.679 0.652 0.621
Robustness 0.116 0.099 0.146 0.086 0.080 0.095
Clusterability 0.460 0.485 0.506 0.521 0.522 0.520

Table 2: Metrics applied to explanations of Random Forests on SA-Heart

each explanation method, by plotting the explanation profile of each feature
on a separated line. For each method, the features are sorted in decreasing
feature importance, the top one being the most contributing feature on av-
erage, while the bottom one being the least contributing feature on average.
For each feature, each dot represents an individual from the dataset, its color
representing the value of the associated feature. Its position on the x-axis
represents the contribution of the feature to the prediction of this individual,
and overlapping dots are jittered on the y-axis.

Figure 13: Summary plots of each method on the SA-Heart dataset

We can see that most of the features have similar ranking among the
different methods: tobacco and age are the two most important features ex-
cept for the Spearman method which ranks age 5th. On the opposite side,
alcohol, spb, and type-A are always in the 4 least important features. These
features have also similar explanation profiles. Conversely, some other fea-
tures exhibit more marked difference depending on the methods. The most
important difference is observed on the binary feature family history of heart
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disease. This feature is assigned fairly low importance by the coalitional-
based method, relatively high importance (3rd most important feature) by
SHAP methods, and very high importance by LIME (most important fea-
ture). Obesity and adiposity have also different influences depending on the
method: obesity is ranked second least contributing by LIME and SHAP,
but more important by the coalitional-based methods. It is important to
note that obesity and adiposity are highly correlated (Spearman’s correla-
tion r=0.72). We hypothesize that it may be the reason for such differences.
Overall, the three SHAP methods give similar explanations and have almost
identical ranking of the features. From a global perspective, we can also see
that SHAP and LIME present a more homogeneous ”gradient” of colors for
the explanations, where coalitional-based methods present mixed up colors
in the explanations. This means that LIME and SHAP ’s explanations are
more locally monotonic, in the sense that the influence value of a feature for
an individual is more locally correlated to the value of the feature for LIME
and SHAP than it is for coalitional-based methods. This also illustrates well
the values of readability seen in Table 2.

The second visualization that we present are Partial Dependence Plots
(PDP). PDPs focus on the relationship between a feature and the influence
of this feature on the model’s prediction by plotting each pair of feature value
and influence value on a 2-dimensional axis. We compare the PDPs of several
important features in Figure 14.

Looking at the PDPs for the age feature, we show that LIME seems to
form clusters of points around specific cut-off age values. To a lesser extent,
this phenomenon can also be seen on the other SHAP methods. Conversely,
coalitional-based methods have similar PDPs, and do not seem to find such
cut-offs. However, it seems to be a special behavior of the explanation at
specific ages. For example, subjects around 50 years have a marked lower
contribution of this feature to the prediction of the presence of coronary heart
disease than people even slightly younger or older. This may hint at an over-
fitting of the machine learning model that would not have been captured by
the other explanation methods. The explanation of the tobacco feature also
largely differs among explanation methods. Where all the methods agree
on attributing a low value to non-smoking individuals, the evolution of the
contribution varies with the quantity of tobacco. Once again, LIME and
SHAP explanations seem to find a cut-off value for tobacco consumption,
of around 7 and 9 respectively, while coalitional-based methods capture a
non-monotonic, more complex relationship.
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Figure 14: Partial dependence plots of age, tobacco, adiposity and obesity for each method

We also look at adiposity PDPs. Once again, the three SHAP explana-
tions are close to each other. Interestingly, they capture a non-monotonic
relationship between the feature and the outcome, giving people around 30%
of adiposity a higher influence for this feature (in absolute value) than people
close to this value. This relationship seems to be captured in a lesser extent
by coalitional-based methods, but not captured at all by LIME. We also note
that the Complete and Spearman influences are more scattered, which means
that more variance exists amongst subjects of the same adiposity for these
methods than for the others.

Lastly, looking at obesity PDPs, LIME and SHAP methods find a nega-
tive relationship between obesity and the chd prediction. This seems counter
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intuitive, as obesity is a strong known comorbidity factor of heart diseases. As
previously mentioned, obesity and adiposity are strongly correlated (r=0.72),
and it may be the reason for such observation. Furthermore, we have men-
tioned in section 2.1 that SHAP works under the hypothesis that features
are independent, but with such correlation, it is very unlikely that obesity
and adiposity are independent. To better understand the relationship be-
tween these two features, as found by the methods, we plot in Figure 15 the
influence values of adiposity and obesity given by each method.

Figure 15: Influence value of adiposity against the influence value of obesity

The Complete and Spearman methods seem to find a positive correlation
between the influences of the two features: when an individual is assigned a
high influence value for obesity, a high influence value for adiposity is usually
assigned, and conversely. We can even distinguish two clusters of individuals:
one for individuals that have a high influence value for both features, and
one for individuals that have a low influence value for both features. Such
pattern is not found by LIME or SHAP, thus confirming the lack of ability
of these methods to consider dependent features. This shows the limits of
clusterability as a global metric to evaluate explanations. As seen in Table 2,
on this dataset, the three SHAP methods have an overall higher clusterability
than coalitional-based methods. However, when we consider pairs of features
individually, we see that coalitional-based methods can capture clusters that
SHAP fails to capture.

On a more global scale, we see that LIME and SHAP produce expla-
nations that are easier to read at a first glance compared to Complete and
Spearman explanations. However, LIME and SHAP seem to capture differ-
ent cut-offs and relationships, and it is hard to confirm such values without
further biological knowledge. Coalitional-based methods seem to produce
explanations that are harder to read on a global scale, but more precise at
an individual level and able to take into account the dependencies between
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features. PDPs for all features are available in supplementrary data.

5.2. Hyperparameter exploration for the explanation methods

Most explanation methods have several parameters that can change the
way the explanations are generated, and so their values. Previously, we
showed results for a single set of parameters for each method. In this section,
we present new results on the SA-Heart dataset by taking different values of
several parameters. For conciseness, we present the results for only a single
model, Random Forests, although we observe similar results on the other
models as well.

5.2.1. LIME

The first parameter we investigate is one of LIME ’s most important pa-
rameters: the number of samples drawn from the distribution to generate the
local linear model to explain an instance. Its default value is 5000, but as the
computation time scales linearly with this number, we limited this number of
samples to 100 in our previous experiments. In Figure 16, we visually show
the effect of different values of this parameter on the explanations.

Figure 16: Summary plot of the explanations given by LIME on the SA-Heart dataset
with different values for the number of samples drawn to create the local model for each
explanation.

We can immediately see that the number of samples impacts the global
explanations for the dataset. However, looking at the relative importance
of the features, knowing they are sorted in descending importance from top
to bottom, we can see that this parameter does not change the feature im-
portance so much. As the number of samples increases, we can see for each
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feature that LIME’s explanations are grouped by features values around spe-
cific influence values. This creates vertical stripes that get thinner when the
number of samples increases for each explanation. To have a better visual-
isation of this phenomenon, we look at the partial dependence plot of the
age feature in Figure 17. LIME tends to discretize age values, with influence
values more and more grouped and homogeneous as the number of samples
increases. This goes to an extreme case when taking 10000 samples, with
the same influence values for an entire age group. As we see that the age
category of an individual defines almost entirely the influence value given by
LIME for this feature. This can be an incorrect explanation, as this would
mean that the model does not consider any interaction between the age and
other features to make a prediction, while we know that Random Forests use
tree depth and node successions to take into account the relationship between
features. This would also mean that the model has not enough granularity
to consider the features as continuums and instead considers only categories,
which again is certainly incorrect regarding Random Forests. However, when
looking at the relationship between the number of samples and the local Lip-
schitz estimate in Figure 18, the robustness increases with the number of
samples per explanation. This underlines the limits of robustness and, in a
broader extent, the limits of objective metrics to evaluate the explanations.
Despite being systematically measurable on all the explanations, they must
be taken as a whole to qualify and compare explanations. Human and expert
reading are always necessary to validate the quality of the explanations.

Figure 17: Partial dependence plot of the explanations given by LIME for the feature age
on the SA-Heart dataset with different values for the number of samples drawn to create
the local model for each explanation.

Another important parameter for LIME is the kernel width. The kernel
is used by LIME to weight the samples drawn to create the local linear model
considering their distance to the instance for which we want to explain the
prediction. The farthest the drawn sample is from the instance, the less
weight it has in the local linear model. This enforces the notion of locality
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Figure 18: Local Lipschitz estimate of LIME explanations on the SA-Heart dataset ac-
cording to the number of samples drawn for each explanation.

for the linear model, and the higher the kernel width, the less local the
linear model is. In [38], the authors insist on the trade-off between stability
(the equality of the local model’s coefficient through repeated trials) and
adherence (the R2 performance of the local model). The article shows that
such trade-off is mainly determined by the value of the kernel width. The
base value is 0.75×

√
d with d the number of features (2.25 for the SA-Heart

dataset)7. We show in Figure 19 a partial dependence plot of the age feature
for different values of kernel width, but we observe very similar results for
each feature as shown in supplementary figures.

Figure 19: Partial dependence plot of the explanations given by LIME for the feature age
on the SA-Heart dataset with different values for the kernel width.

We can see that the main impact of the kernel width is the amplitude
of the explanations: lower values of kernel width results in flattened values

7LIME documentation

32

https://lime-ml.readthedocs.io/en/latest/lime.html#module-lime.lime_tabular


of influence that mix together in an unreadable fashion, while higher values
of kernel width leads to the usual ”boxes” that LIME creates for the expla-
nations. The default value (2.25 for SA-Heart) seems to be on the higher
end. This could mean that the default value of kernel width makes the linear
model not local enough, giving a high weight to samples that are far from
the instance we want to explain. A more appropriate kernel width value, for
this dataset and model, may be closer to a value of 1.

5.2.2. Spearman

For the Spearman method, we look at its single parameter: the proportion
of subsets of features (or coalitions) taken into account by the method to
compute the contributions. This parameter is called rate and it goes from 0
excluded (we need at least a coalition) to 1 included. A rate of 1 gives exactly
the same algorithm than the Complete method. We show in Figure 20 the
partial dependence plot of the age feature for different values of rate, and
again we observe very similar behaviors on other dependence plots.

Figure 20: Partial dependence plot of the explanations given by the Spearman method for
the feature age on the SA-Heart dataset with different values for the rate.

We can see that a higher rate produce less scattered explanations. How-
ever, after 0.5, the change is barely visible. We can conclude that the rate
effectively controls the degree of approximation, and on this dataset and
model, the Spearman method with a rate of 0.25 is a good approximation of
the Complete method, and it is a very good approximation for rates of 0.5
and more.

5.2.3. SHAP

Next, we look at the KernelSHAP method. When using it, a so-called
”background” dataset must be used to provide relevant samples to train the
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explainer. However, this can heavily slow down the process as the method
draws samples around each of the background samples. As advised by the
documentation, if the method takes too much time to compute, we can use a
clustering method (namely KMeans) to extract the few most relevant samples
in the train dataset to represent the data distribution. We then refer to this
number of ”most relevant samples” as ”Number of background samples”. We
observe in Figure 21 the age feature dependence plot for different values of
number of background samples.

Figure 21: Partial dependence plot of the explanations given by the KernelSHAP method
for the feature age on the SA-Heart dataset with different values for the number of back-
ground samples.

We can see that even with 2 background samples, the explanations are
already close to the one with 10 background samples, and that there is almost
no difference between 3, 5 and 10 background samples. While this obviously
depends on the dataset number of samples and distribution, we can still
make the hypothesis that in most cases, we can drastically reduce the number
of background samples with the KMeans algorithm in order to reduce the
amount of time taken by the method to compute the explanations.

Finally, we look at the number of samples drawn from the distribution
(based on the background samples previously mentioned) by creating pertur-
bations. This parameter is called nsamples and its default value is 2d+2048,
with d the number of features in the dataset (2066 for the SA-Heart dataset)8.
We show in Figure 22 the age feature dependence plot for different values of
nsamples.

As we increase the number of samples, we can see that we quickly reach
a plateau around 300 nsamples. Under this value, we can still see the shape
of the explanation, but we can also see many samples that are given an
influence of 0, which is incorrect. Nevertheless, we can firmly say that the

8KernelSHAP documentation
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Figure 22: Partial dependence plot of the explanations given by the KernelSHAP method
for the feature age on the SA-Heart dataset with different values for the number of drawn
samples.

default value (2066) is too many samples for this dataset and model, and
that we can reduce this number a lot to compute the explanations.

Overall, we find that the impact of the parameters really depends on the
method, and each parameter has a different impact. Spearman has a main
parameter that can control the trade-off between the degree of approximation
and the computation time of the method. KernelSHAP and LIME have
several parameters, allowing the user to control the robustness, computation
time and the locality of the explanations to some extent, but they require
good knowledge of the explanation method.

6. Lessons-learned for the use of additive local methods

Method name Advantages Drawbacks

Coalitional
based

Complete
Consider feature
interdependence

Exact shapley values Slow in high dimension
Global explanations
can be hard to read

Spearman
Parameter α to control

the level of approximation
Less robust on

tree-based models

LIME
Fast in high dimension

Various parameters to control
robustness and locality trade-offs

Slow in low dimension
Low quality explanations

Tends to miss non linear and
non monotonic influences

Not robust with simple models
Can miss relationship between pairs of features

SHAP
KernelSHAP

Easy to interpret
global explanations

Various parameters
Approximations may

be inprecise

Slow in high dimension
TreeSHAP Very fast in low

and high dimensions
Tree-based models

specificTreeSHAPapprox

Table 3: Summary table of advantages and drawbacks of each method (v2)

Table 3 summarizes advantages and drawbacks of each method studied
in this paper. Overall, we highlight the fact that coalitional-based meth-
ods should be better at producing precise local explanations while SHAP
should be better at producing coherent and easily interpretable global ex-
planations. It is also confirmed by the fact that SHAP tends to assign more
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Figure 23: Roadmap for the most appropriate use of methods

importance to few features than other methods, producing global explana-
tions that more concise, but potentially hiding other feature contributions
and inter-dependences. Spearman’s explanations are overall slightly less ro-
bust than the other methods, and coalitional-based methods are slightly less
readable. LIME has several drawbacks, one of the most distinguishable being
its tendency to miss the interactions between features as well as the complex
influences. Regarding method parameters, each method offers different num-
ber and types of parameters. Spearman’s α allows users to easily control the
trade-off between computation time and degree of approximation. LIME ’s
parameters, numerous and complex, allows a fine-tuning of the method, but
requires an extensive knowledge of LIME ’s behavior regarding these param-
eters and the model and dataset considered. KernelSHAP ’s parameters are
similar to LIME ’s, but they seem to induce less important changes in the
resulting explanations, allowing them to be used to reduce computation time
without much degrading explanation quality.

We use all the results presented in this paper to show a simplified roadmap
in the form of a decision tree in Figure 23 with the intent to help readers
finding the most suitable explanation method according to their datasets and
objectives.

On this figure, high dimension represents the number of features present
in the studied dataset. Indeed, there is no ”hard” cut-off to define when
it goes from low to high dimension, but with our experiments, we can con-
sider this cut-off somewhere between 11 and 15 features, depending on the
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dataset complexity and the user computational time and material available.
”Accurate tree-based model” represents the ability of training a satisfactory
(defined by the user’s objectives) tree-based model on the dataset. The model
can then be explained thanks to the optimization done in TreeSHAP. If the
desired model is not tree-based, we advise the user to look at KernelSHAP
and LIME ’s parameters to reduce the number of background samples and
perturbation samples respectively, until the explanations are computed in a
reasonable time. However, we warn about the potential loss of precision and
robustness induced by such method approximations.

Finally, we show that SHAP and LIME can make important approxima-
tions in some cases, and that coalitional-based methods cannot be executed
in reasonable time in high dimension. This leaves an empty space for high
dimension precise explanations that is not yet addressed to our knowledge.

7. Conclusion and perspectives

In this paper we performed a practical analysis of several local explainabil-
ity methods for tabular data. Our findings indicate that there is not a single
method that is the most appropriate for every usage. Therefore, this thor-
ough analysis allowed to identify strengths and limitations of each method
along with practical recommendations on which method is most suitable for
the use case of the user.

We have seen that the choice of the predictive machine learning model
does not impact the general behavior of the explanation methods much.
However, except with LIME, simpler predictive models tends to produce
more readable and robust explanations, but tree-based models allow for the
use of TreeSHAP which is more efficient.

Regarding explanation methods, the Complete is of course the most ac-
curate but suffers from very long computational time. Nevertheless, Coali-
tional -based methods allow an acceptable computation time while maintain-
ing a strong precision of explanations. On the contrary, LIME and SHAP
methods offer a more intelligible global view of feature effects.

The greatest problem arises when high dimension (i.e., high number of
features) is involved, as it is often the case in statistics and machine learning.
In this case, the exponential complexity of Coalitional-based methods make
them too long to compute. Indeed, the worst case scenario is the need for
high precision local explanations in high dimension since there is a clear
lack of methods addressing this problem in the current literature. However,
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it is still possible to have local explanations with limited quality in high
dimension, with the level of quality mostly depending on the time available
for the user to generate such explanations. It is thus a very interesting
future axis of work to benchmark the performances, in terms of precision of
local explanations, of every local explainability method in a high dimension
context under the constraint of a time limit. This would add value to our
recommendations by filling out the ’high-precision in high-dimension’ gap
identified in our study. It would also be interesting to look into other machine
learning models, especially deep neural networks which are more and more
used. The high complexity of this type of models hints at a different behavior
for the explanation methods, but also an increase in computation time.
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