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Abstract: This contribution reviews the evidence for terrestrial organisms during the 

Ordovician (microbial, land plant, fungal, animal) and for the nature of the terrestrial biota. 

The evidence regarding the origin and early diversification of land plants combines 

information from both fossils and living organisms. Extant plants can be utilised in: (i) 

phylogenetic analyses to provide evidence for the nature of the algal-land plant transition and 

the characteristics of the most basal land plants; (ii) Evo-Devo studies of the characters that 

enabled the invasion of the land; (iii) molecular clock analysis to provide evidence regarding 

timing of the origin and diversification of land plants. We conclude that the Ordovician was a 

critical period during the terrestrialization of planet Earth that witnessed the transition from a 

microbial terrestrial biota to one dominated by a vegetation of the most basal land plants. 
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Palaeontological research aimed at reconstructing life in the Ordovician has historically 

focussed on the marine environment and reconstructing the ‘Great Ordovician 

Biodiversification Event’ and effects of the ‘End Ordovician Mass Extinction’. Studies on 

life in terrestrial environments has largely been neglected (but see reviews by Gray 1985; 

Richardson 1996; Wellman 1999; Retallack 2000; Steemans 2000; Strother 2000; Wellman 

& Gray 2000; Steemans & Wellman 2004; Wellman et al. 2013; Servais et al. 2019). In part 

this is a consequence of the paucity of Ordovician non-marine sediments and hence a 

dismally poor fossil record of non-marine organisms (except for those that have been 

transported into marine settings). But it also reflects historical research agendas based on 

assumptions that the first land plants did not appear until the Silurian. Since the 1980s this 

latter view has been challenged and evidence has accumulated suggesting that land plants 

first appeared in the Ordovician and may have been accompanied by the first animals to 

emerge from the oceans (either directly or migrating into brackish-freshwater environments 

and finally venturing onto the land). More recently evidence emanating from molecular 

biology, including phylogenetic, molecular clock and evo-devo analyses, has added to this 

growing body of evidence for an Ordovician terrestrial biota. In this chapter we will discuss 

the evidence for this terrestrial biota and attempt to reconstruct it. We argue that the 

Ordovician was a critical period during the terrestrialization of planet Earth. 

 

An Early Ordovican terrestrial microbial world 

The earliest terrestrial ecosystems were essentially microbial comprising freshwater 

ecosystems, periodically inundated microbial mats adjacent to rivers and lakes, and microbial 

crusts developed on rudimentary soils (reviewed in Wellman & Strother 2015). Such 

ecosystems are well documented from billion-year-old Lagerstätten: The Torridonian of 

Scotland (Strother et al. 2011) and the Nonesuch Formation of the USA (Strother & Wellman 

2021). They have also been shown to have persisted into the Silurian after land plants 

(embryophytes) had evolved and begun to colonise the continents (Tomescu & Rothwell 

2006; Tomescu et al. 2006, 2008, 2009, 2010). The aquatic biotas included primary 

producers such as photosynthetic cyanobacteria (including both benthic and planktonic 

forms) (Strother & Wellman 2015) and a variety of other prokaryotic and eukaryotic 



 
 

 

 

 

 

organisms (e.g. Strother et al. 2021). The microbial mats and microbial crusts were 

established around photosynthetic cyanobacteria. At present there is little evidence for a 

significant fungal or lichen component (discussed below). It seems likely that such microbial 

ecosystems dominated Ordovician terrestrial ecosystems until the origin of land plants in the 

Middle Ordovician. Fig. 1 illustrates an assemblage of microbial fossils recovered from an 

Early Ordovician terrestrial deposit. The components are essentially identical to those 

described from the billion-year-old terrestrial deposits of the Torridonian Group and 

Nonesuch Formation. 

 

The fossil record of land plants 

Historically research on terrestrialization in the Ordovician has relied heavily on the fossil 

record. Regarding land plants this includes plant megafossils, dispersed spores, and 

disarticulated fragments of the plants. The latter two fossil types are generally recovered by 

palynological acid maceration techniques. A major hindrance to research has been the paucity 

of non-marine deposits recorded from the Ordovician worldwide. Land plant megafossils can 

be transported into marine deposits but the expectation is that they will be much rarer than in 

terrestrial deposits due to their allochthonous nature. Also they are mixed with marine fossils 

and it can be difficult to distinguish between fossils deriving from marine and non-marine 

organisms. Dispersed microfossils (spores and phytodebris) are readily transported into 

marine environments where they may be abundant. Again, however, the problem is that the 

non-marine provenance of biologically ambiguous forms cannot be confirmed. 

 

Plant megafossils 

The oldest generally accepted plant megafossils are rhyniophytoid plants, preserved as 

coalified compressions, from the Silurian (Wenlock) (Edwards et al. 1983; Libertin et al. 

2018). These show evolutionary continuity with younger Silurian forms that possess 

unequivocal spore-containing sporangia, stomata and conducting tissues (in some cases true 

tracheids) (Edwards et al. 1992). Approximately 25-or-so Silurian localities preserve such 

plant megafossil assemblages and by the Lower Devonian (Lochkovian) they are abundant 



 
 

 

 

 

 

with at least 30 assemblages known worldwide (most recently reviewed by Edwards & 

Wellman 2001; Wellman et al. 2013). The coalified compressions preserve little anatomical 

detail. However, the anatomy of these plants is now well known due to Lagerstätten yielding 

exquisitely preserved charcoalified remains: Ludford Lane of late Silurian (Pridoli) age and 

North Brown Clee Hill of Early Devonian (Lochkovian) age, both from the Anglo-Welsh 

basin of the UK (e.g. Morris et al. 2018). The Lower Devonian (Pragian-?earliest Emsian) 

silicified plants from the Rhynie chert Lagerstätten are also important in preserving exquisite 

anatomical detail of early land plants (e.g. Edwards et al. 2017). 

There are regular and numerous claims for pre-Silurian plant megafossils. However, 

these are discounted as they can be proven to be fragments of other organisms (e.g. Kenrick 

et al. 1999) or they lack sufficient characters to be unequivocally assigned to land plants (e.g. 

Salamon et al. 2018; Naugolnykh 2019; Retallack 2019). Throughout the 1960s-1980s 

Banks, Chaloner and others thoroughly catalogued and discredited such claims (e.g. Chaloner 

1960, 1970; Banks 1975a,b). This procession continues to this day and it is still doubtful that 

any claimed pre-Silurian land plant possesses sufficient unequivocal plant characters to be 

confidently and unequivocally proven to be a land plant. As noted by Edwards et al. (2021a) 

“…when diagnostic features are absent, such fragmentary organic materials can be 

misinterpreted, leading to implausible attribution (e.g. Retallack, 2019).”. 

Occasionally spore masses or even partial sporangia have been recovered during 

palynological processing of Ordovician deposits (Wellman et al. 2003; Abuhmida & 

Wellman 2017). From the Late Ordovician (Katian) of Oman Wellman et al. (2003) report 

spore masses, including some enclosed within a homogenous covering, and partial sporangia 

with fragments of sporangial wall attached (Fig. 2). The enclosed spores can be identified 

among dispersed forms (see below). These plant remains provide a tantalizing insight into 

Ordovician land plants and, if nothing else, demonstrate that they produced vast numbers of 

spores within sporangia that were extremely small but clearly highly fecund. 

 

Dispersed spores 

Spores encased in a resistant sporopollenin wall are a synapomorphy of land plants and it 

seems likely that the invasion of the land by plants was coincident with development of a 



 
 

 

 

 

 

subaerial reproductive strategy that utilised such spores (Blackmore & Barnes 1987; 

Wellman 2004). They have an excellent fossil record because they are produced in vast 

numbers, capable of dispersal over huge distances by wind and water and are relatively 

resistant to degradation. Research by the early palynological pioneers established by the 

1970s a continual record of dispersed land plant trilete spores from the early Silurian 

(Llandovery) onwards (e.g. Richardson & McGregor 1986; Streel et al. 1987). These spores 

are often identical to those reported in situ from the earliest rhyniophytoid-rhyniophyte land 

plant megafossils (see above). However, in a series of ground-breaking papers Jane Gray and 

colleagues reported on a new group of dispersed spores, extending back into the Ordovician, 

that were subsequently proven to be the spores of land plants (Gray & Boucot 1971; Gray et 

al. 1982; Gray 1985, 1991) produced by eophyte plants (Edwards et al. 2021a,b,c). These 

were called cryptospores because they occur in unusual configurations (e.g. permanent dyads 

and tetrads) (Richardson 1988) (Fig. 2). 

The oldest reported occurrence of cryptospores clearly related to land plants is 

currently considered to be in the Middle Ordovician (Dapingian or Darriwilian) suggesting 

that land plants had successfully invaded the land by this time. They have now been reported 

continuously from this time point, with records from most palaeocontinents, extending 

through time until the end Pragian after which they become extremely rare in the fossil record 

(see Table 1 and Figs. 3-6). Cryptospores include monads, dyads and tetrads that are either 

naked or enclosed within an envelope. The envelope may be laevigate or ornamented. 

Cryptospore taxonomy utilises the following characters: the number of units (monad, dyad, 

tetrad), the nature of attachment of these units (fused or unfused), the presence/absence of an 

envelope, the infraornament/ornament of the wall and/or envelope. A number of Ordovician 

cryptospores (dispersed and in situ) have been examined ultrastructurally and their gross 

structure/wall ultrastructure evaluated with regard to evidence for biological affinities (see 

Table 2) (Fig. 2). More recently Ordovician cryptospores have also been examined using a 

synchrotron light source (Guizar-Sicairos et al. 2015). 

Very similar cryptospore assemblages have been reported throughout the Ordovician 

(spatially and temporally). Biostratigraphic schemes have been proposed, but these tend to be 

rather coarse with respect to time resolution (e.g. Richardson 1988; Steemans et al. 2000). 

This is a consequence of the morphological simplicity of cryptospores (and hence lack of 



 
 

 

 

 

 

characters compared to trilete spores) and their seemingly slow pace of acquisition of novel 

morphological characters. The palaeogeographical spread, consistency and relative stasis 

exhibited by cryptospore assemblages have been taken to indicate that the first flora to invade 

the land consisted of cosmopolitan generalists that occupied a wide range of environments 

and evolved relatively little throughout the course of the Ordovician (Gray 1985; Wellman 

1996). 

Probable non-marine palynomorphs that occur as irregular clusters of dyads and other 

polyads (in packets) have been described from Early Ordovician (Tremadocian) and earlier 

Cambrian deposits (Strother & Foster 2021). These have been included with the cryptospores 

by some authors but are excluded by others. This is largely a semantic debate as several very 

different definitions for the term cryptospore have been proposed (see discussion in Servais et 

al. 2019). This debate centres on whether cryptospores are defined as the spores of land 

plants (our preferred interpretation) or represent palynomorphs produced by any non-marine 

organisms. The most recent interpretation for the enigmatic Cambrian-Early Ordovician 

palynomorphs is that they represent charophyte algal remains (Strother & Foster 2021) and 

may thus represent intermediate organisms on the freshwater green algal to terrestrial land 

plant lineage. 

The first trilete spores, similar to those produced by Silurian rhyniophytoid plants, 

first appear in low numbers in the Ordovician (Steemans et al. 2009). They are difficult to 

identify because spores physically removed from cryptospore tetrads often bear a false trilete 

mark resulting from physical tearing as the polyads are broken apart. Similar to trilete spores, 

hilate cryptospores are produced by the natural dissociation of a polyad, but in this case a 

dyad (Richardson 1988). On their proximal surface they bear a circular contact area (hilum) 

formed where they were in contact with the other spore in the dyad. Like trilete spores, these 

naturally dissociated spores are common in the Silurian. They occur rarely in the Ordovician 

and again can be easily mistaken for spores physically separated from permanent dyads 

(Steemans et al. 2000). 

Trilete spores only become common in dispersed spore assemblages in the Late 

Silurian whereupon they rapidly increase in abundance and diversity and have stratigraphical 

continuity with living trilete spore-producing plants. It has been proposed that this pattern 



 
 

 

 

 

 

reflects the origin and diversification of vascular plants (tracheophytes), because most 

Silurian-Devonian vascular plants have been shown to produce trilete spores (as do many 

extant basal groups of vascular plants) (e.g. Gray 1985; Wellman & Gray 2000; Wellman et 

al. 2013). The rare reports of trilete spores from the Ordovician-early Silurian may have 

derived from various non-vascular plants as trilete spores are known to be produced by some 

extant non-vascular plants (see Steemans et al. 2009) and various plant groups are likely to 

have evolved this basic character independently. 

 We can only speculate as to where the first land plants appeared and the course of 

their spread across the continents. The earliest generally accepted reports of cryptospores are 

all currently from Gondwana which has led to speculation that they may have evolved on this 

continent before rapidly spreading out across the other continents of the planet (Steemans et 

al. 2010; Wellman 2010). 

 

Phytodebris 

Plants shed organs naturally during their lifetime and on death begin to rot and disassociate. 

These processes produce recalcitrant fragmentary remains that are dispersed by gravity, wind 

and water and are ultimately incorporated into sediment from which they can be recovered by 

palynological processing. Such fragmentary plant remains, composed of recalcitrant 

biomacromolecules that survive as fossils, are termed phytodebris. They include plant 

cuticles composed of cutin, lignified tissues such as tracheids and reproductive propagules 

composed of sporopollenin (spores, megaspores, ovules and seeds), in addition to a number 

of more enigmatic remains. The fossil record and interpretation of phytodebris produced by 

early land plants was recently reviewed by Wellman & Ball (2021). 

 There are surprisingly few reports of Ordovician phytodebris, perhaps reflecting the 

dearth of non-marine deposits examined (Fig. 2). Silurian non-marine deposits usually yield a 

diverse array of phytodebris. These include cuticles (sometimes with stomata) and tracheids 

that clearly derive from land plants. More enigmatic are cuticle-like sheets and tubular 

structures (including banded tubes) that are now known to derive from nematophytes. 

Nematophytes were recently demonstrated to have fungal and possibly also lichen affinities 

(Edwards & Axe 2012; Edwards et al. 2013, 2018; Honegger et al. 2013, 2017). Related 



 
 

 

 

 

 

nematophyte remains appear not to extend back into the Ordovician. Rare cuticle-like sheets 

have been reported (Gray et al. 1982; Strother et al. 1996) (see Fig. 2). Ordovician tubular 

structures are usually smooth walled forms (Burgess & Edwards 1991; Strother et al. 1996) 

with the reported banded tubes unconvincing (reviewed in Taylor & Wellman 2009). Because 

all of the reported Ordovician phytodebris are from marine deposits it is difficult to prove if 

they derive from terrestrial organisms rather than any variety of marine organism. 

 Regarding the biological affinities of the Ordovician phytodebris, the cuticle-like 

sheets may possibly derive from early nematophytes, although these have not been 

convincingly reported from the Ordovician.  They may derive from early land plants, but in 

the absence of a megafossil record it is difficult to make comparisons. The smooth-walled 

tubular structures may derive from nematophytes or land plants. It is also possible that they 

represent cyanobacterial sheathes such as those described from the Silurian by Tomescu and 

colleagues (e.g. Tomescu & Rothwell 2006). 

 

Geochemical biomarkers 

In recent years reports on the first searches for early land plant biomarkers have begun to 

appear. For example, Romero-Sarmiento et al. (2011) analysed Gondwanan Late Ordovican-

Early Devonian sediments for the presence of aliphatic and aromatic biomarkers indicative of 

the presence of land plants (Versteegh & Riboulleau 2010). Spaak et al. (2017) reported on 

the presence of benzonaphthofurans and delta δ13C-depleted mid-chain n-alkanes that they 

interpreted as indicative of the presence of bryophyte-like early land plants. This may be a 

fruitful area for future research as analytical techniques continue to improve in precision and 

we gain a better understanding of the biological affinities of the earliest land plants and their 

likely biomarker trails. 

 

Evidence from extant land plants 

 

Phylogenetic analysis 



 
 

 

 

 

 

In the early 1980s the first cladistic analyses of land plants began to appear in publications, 

more-or-less coincident with the recognition of an Ordovician flora (Gray et al. 1982). These 

pioneering cladistic analyses considered only extant plants and utilised 

morphological/anatomical characters (e.g. Mishler & Churchill 1985). The majority of these: 

(i) recovered a member of the charophycean green alga as sister group to the monophyletic 

embryophytes (land plants); (ii) indicated that the bryophytes were paraphyletic with the 

liverworts basal and a sister group relationship between vascular plants and either hornworts 

or mosses. For several decades these analyses were hugely influential providing a model for 

the physiological/anatomical aquatic algal-subaerial land plant transition (e.g. Graham 1993; 

Graham & Gray 2001) and also the nature of the earliest land plants (Gray 1984, 1985, 1991). 

The charophycean green algae-liverwort transition was seen to mirror the origin of subaerial 

land plants from freshwater aquatic green algal ancestors (e.g. Graham 1993). The liverworts 

were regarded as the most basal extant land plants and used as a broad model for the 

morphology/anatomy, physiology and ecology of the first land plants (e.g. Gray 1985). 

 The many subsequent morphology-based analyses that followed often mirrored these 

findings, although just about every possible relationship among the embryophytes 

(liverworts, hornworts, mosses, vascular plants) was been proposed at some point (reviewed 

in Kenrick & Crane 1997). A significant advance was the inclusion of fossil data in cladistic 

analyses. Fossil data were important in recognising a group of fossil plants 

(Protracheophytes) that fell between the paraphyletic ‘bryophytes’ and vascular plants 

(Kenrick & Crane 1997). These included various Rhynie chert plants that preserve exquisite 

anatomical detail including some rather unusual character combinations, such as more-or-less 

isomorphic gametophyte and sporophyte generations, tracheids and stomata present in both 

generations, etc. (Edwards et al. 2017). Nevertheless, liverworts remained the model of 

choice for the earliest land plants. 

As the molecular revolution dawned, the use of sequence data in cladistic analyses 

became possible. Initial analyses seemed to support the existing favoured topology. However, 

as more sequence data became available and ever-refined analytical techniques emerged, the 

tree topologies generated began to diverge from this model (recently reviewed by Wickett et 

al. 2014; Puttick et al. 2018; OTPTI 2019). Firstly, it began to appear that the 

zygnematophycean green algae were the most likely sister group to the embryophytes. 



 
 

 

 

 

 

Secondly, embryophyte tree topologies changed significantly with monophyletic bryophytes 

and tracheophytes emerging as sister groups. Within the bryophytes the hornworts appeared 

as most basal and sister to a ‘setaphyte clade’ consisting of the liverworts and mosses. 

The newly accepted topologies have important implications. Regarding the algal sister 

group, it suggests that many of the extant zygnematophycean algae, some of which are 

unicellular, are highly reduced (Puttick et al. 2018; Cheng et al. 2019; Jiao et al. 2020; 

Donoghue & Paps 2020; Rensing 2020). This makes modelling of the algal-plant transition 

problematic based solely on consideration of the living zygnematophycean algae. In terms of 

the basal embryophytes, it means that the most basal of the extant vascular plants (lycopsids) 

are as closely related to the stem group land plants as the earliest diverging extant bryophytes 

(hornworts) (Puttick et al. 2018). It also suggests that the bryophyte groups are reduced and 

have lost certain characters (e.g. liverwort stomata) or are secondarily simplified (e.g. 

possibly bryophyte conducting tissues). A critical next step will be the inclusion of fossil data 

into the new phylogenetic schemes. It is important to assess the position of the Rhynie chert 

protracheophytes. For example, if Aglaophyton can be shown to be sister group to the 

[bryophytes + tracheophytes] (i.e. a stem group embryophyte) it would suggest that stem 

group embryophytes may have been more complex than previously anticipated, possessing a 

more-or-less isomorphic gametophyte and sporophyte, with both generations possessing 

stomata and containing conducting tissues (possibly of Aglaophyton-type). 

Recently Edwards et al. (2021a,b,c) recognised a new group of plants, called 

eophytes, among their charcoalified late Silurian-Early Devonian plant Lagerstätte (see 

above). These diminutive plants exhibit a primitive anatomy based on sporophytes with food 

conducting cells that yield in situ cryptospores. It is highly likely that these were parasitic on 

gametophytes characterised by transfer cells. Both stages of the lifecycle were likely 

poikilohydric, and thus able to desiccate and rehydrate, bearing ecological/physiological 

similarities to extant bryophytes as opposed to most vascular plants. Edwards et al. (2021a, 

fig. 8) place the eophytes as stem group polysporangiates, although we consider that they 

may represent stem group embryophytes that have a sister group relationship with a clade 

comprising both the bryophytes and vascular plants. Again their relative position in the 

phylogeny with respect to Rhynie chert plants such as Aglaophyton is critical in influencing 

our perception of the earliest stem embryophytes. It seems likely that they are more basal 



 
 

 

 

 

 

than Aglaophyton and provide the best current model for the earliest stem group 

embryophytes. 

 

Molecular clock analyses 

In the early 2000s the first molecular clock analyses began to appear concerning the dating of 

the origin of land plants and the major land plant groupings (reviewed in Morris et al. 2018). 

Initial results indicated land plant origins far earlier than that suggested by the fossil record 

(as described above). Subsequently molecular clock techniques have rapidly evolved, and 

different strategies have been employed and a variety of palaeontological calibration systems 

experimented with. These analyses have provided highly variable results (reviewed in Table 

3), and nearly all are incongruent with the fossil record, although the discrepancy is 

decreasing in some of the most recent analyses. An early origin of land plants as suggested by 

some molecular clock analyses would require that these plants left no fossil record for a 

condiderable period of Earth history, which seems unlikely if they reproduced by 

sporopollenin-walled spores, unless they were only present in very restricted environments 

and/or a very confined palaeogeographical area. 

 

Fungi and lichens (including nematophytes) 

Phylogenetic analyses and molecular clock evidence indicate that fungi originated in the 

Mesoproterozoic (e.g. Parfrey et al. 2011), but it is not clear when they first appeared in 

terrestrial settings (aquatic or subaerial). Fungal remains are well known from the Silurian 

where they occur in palynological preparations as dispersed fungal spores and hyphae (e.g. 

Sherwood-Pike & Gray 1985). Such remains have rarely been reported from the Ordovician, 

but this may reflect the paucity of non-marine deposits available for analysis. Thusu et al. 

(2013) report the enigmatic Tortotubulus protuberans from the Late Ordovician. This tubular 

structure has been interpreted as a fungus (Smith 2016), although more precise affinities are 

not possible (Auxier et al. 2016). Most of the other reported fungal remains from pre-Silurian 

strata are more contentious (reviewed in Taylor et al. 2015; Berbee et al. 2020; Wellman & 

Ball 2021). However, it is worth noting that recent molecular development research on extant 



 
 

 

 

 

 

charophycean algae and land plants suggests that fungal symbioses may have been crucial to 

the colonisation of the land by plants (Berbee et al. 2011). 

 Lichenization has evolved numerous times involving different combinations of fungi 

and algal/cyanobacterial host (Lűcking & Nelsen 2018). However, recent phylogenetic 

analysis suggests that lichens may not have evolved until after the evolution of vascular 

plants (Nelson et al. 2020). 

 The enigmatic Silurian-Devonian nematophytes have recently been demonstrated to 

have fungal, and possibly also lichen, affinities (Edwards & Axe 2012; Edwards et al. 2013, 

2018; Honegger et al. 2013, 2017). These occur as megafossils (Lang 1937; Strother 1988) 

and dispersed microfossils in the form of ‘cuticle-like sheets’ and tubular structures, 

including ‘banded tubes’ (recently reviewed by Wellman & Ball 2021). However, no 

convincing nematophyte remains have been reported from the Ordovician thus far. 

 

Land animals in the Ordovician 

Silurian continental deposits have yielded a diverse array of fossil evidence for land animals 

indicative of diverse and complex ecosystems developed in both freshwater aquatic and fully 

terrestrial settings. These fossils include whole organisms such as fish (e.g. Blom et al. 2002) 

and arthropods (e.g. Jeram et al. 1990), dispersed arthropod cuticles recovered using 

palynological techniques (e.g. Gray & Boucot 1994), coprolites (e.g. Edwards et al. 1995) 

and a variety of trace fossil evidence (e.g. McCoy et al. 2012). 

Similar evidence for Ordovician terrestrial organisms is much rarer, almost certainly 

reflecting the paucity of Ordovician non-marine deposits available for study. To date all 

reported Ordovician fish remains are considered to be from fish inhabiting nearshore shallow 

marine environments (Davies & Sansom 2009). There are rare reports of potential non-

marine arthropods, but these are all controversial with questions remaining regarding either 

their age or habitat (e.g. McNamara & Trewin 1993). There are several reports of potential 

non-marine trace fossil assemblages. However, these are all from terrestrial deposits that are 

either doubtful or closely associated with nearshore marine deposits, making judgements on 

the habitat and mode of life of their makers doubtful. For example, it has been suggested that 



 
 

 

 

 

 

purported millipede burrows in Ordovician palaeosols described by Retallack & Feakes 

(1987) are possibly of marine origin (Davies et al. 2010). Ordovician non-marine arthropod 

traces described by Johnson et al. (1994) have also been re-interpreted as marine in origin 

(Shillito & Davies 2019), and the trackways in Cambrian-Ordovician aeolian deposits 

described by MacNaughton et al. (2002) are from a marginal marine setting. It has recently 

been suggested that the exquisite trace fossils from the Tumblagooda Sandstone of Australia 

(Trewin & McNamara 1994) were deposited in a littoral setting and are possibly of Silurian 

age (Shillito & Davies 2020). 

Molecular clock studies have also been employed to ascertain when the various 

terrestrial arthropod groups appeared. To date most of these studies suggest that terrestrial 

arthropod groups invaded the land much earlier than the fossil record would indicate and by 

at least the Cambrian (Lozano-Fernandez et al. 2016). Terrestrial trace fossil assemblages 

from the Cambrian and earlier are all considered doubtful (reviewed by Minter et al. 2016). 

 

Ordovician non-marine sediments, soils and terrestrial environment 

As emphasised throughout this review globally Ordovician non-marine deposits are 

extremely rare. The reasons for this are not clear (Davies & Gibling 2010) but is usually 

considered to be a consequence of high sea levels and the difficulties involved in identifying 

Ordovician non-marine evidence that relies largely on absence of evidence. Davies & Gibling 

(2010) summarise the sedimentology of the best known Ordovician non-marine deposits. It is 

clear that many of these are actually very near shore and are often interdigitated with marine 

deposits making it difficult to ascertain the degree of marine influence. None-the-less, some 

Ordovician palaeosols are reported (summarised by Retallack 2000). 

 There has been considerable debate regarding the influence of Ordovician terrestrial 

life, which transitioned from microbial mat communities to those including the earliest land 

plants (embryophytes), on the nature of sedimentation and soil formation (Davies & Gibling 

2010; Gibling & Davies 2012; Santos et al. 2016; Davies et al. 2017). This avenue of 

research has considered changes to weathering rate (e.g. D’Antonio et al. 2019), sediment 

stabilising properties (e.g. Davies & McMahon 2021), patterns of sedimentation as 

geomorphological agents such as rivers change form (e.g. Ganti et al. 2019), consideration of 



 
 

 

 

 

 

how land plants promoted terrestrial mud deposition (e.g. McMahon & Davies 2018; 

Zeichner et al. 2021), and much more. This debate has also extended to biogeochemical 

effects (Lenton & Daines 2017) and how these impacted atmospheric composition (e.g. 

Adiatma et al. 2019), climate (e.g. Lenton et al. 2012), and so on. One avenue of research 

that has also recently received attention is the effects of increasing land plant cover on 

terrestrial biomass and thus patterns of carbon isotopes in the Ordovician sedimentary record 

(Tomescu et al. 2009; Quinton et al. 2021). 

It should be noted that much of the above debate was focussed on the assumption that 

Ordovician terrestrial floras comprised bryophyte-like (more specifically liverwort-like 

plants). This assumption was based on prevailing land plant phylogenies (see above). Thus 

much of the debate utilised evidence from experiments on extant bryophytes (particularly 

liverworts) (e.g. Quirk et al. 2015). As discussed above recent phylogenetic analyses and the 

recognition of eophyte plants has altered our understanding and perception of the nature of 

the earliest stem group land plants. However, it should be noted that workers such as Jane 

Gray always stressed that the earliest land plants may not be directly related to extant 

bryophytes/liverworts, but that these plants were probably ‘bryophyte-like’ / ‘liverwort-like’ 

in their physiology and ecology (Gray 1985, 1991), and they may thus still provide a 

reasonable analogue (if not ‘nearest living relative’) for the earliest land plants. 

 

Terrestrial life and the End Ordovician glaciation and mass extinction 

The dispersed spore fossil record exhibits no appreciable change from the Late Ordovician 

into the Early Silurian (reviewed by Gray 1985; Richardson 1996; Strother 2000; Steemans et 

al. 2000; Wellman et al. 2013) with a continuous increase in diversity not interrupted by the 

Late Ordovician extinction interval evident among marine invertebrates. Identical dispersed 

spore assemblages have been reported worldwide before, during and after the Hirnantian 

glaciation and End Ordovician mass extinction. This has been taken to suggest that terrestrial 

floras were relatively unaffected by these interconnected events, with speculation that the 

earliest land plants were immune because they were cosmopolitan generalists that flourished 

in a wide range of environments (Gray 1985; Wellman 1996). Indeed dispersed spore 



 
 

 

 

 

 

assemblages are well known from cold, high latitude localities where they are often 

associated with glacial deposits (e.g. Gray et al. 1986).  

 

Conclusions 

It is evident from the above discussion that the Ordovician represents a critical period in 

Earth’s terrestrialisation. It seems likely that is witnessed the transition from a terrestrial, 

microbial soil-vegetation system to one that included the first land plants. At the same time 

non-marine aquatic biotas began to increase in diversity, although it seems that the only 

animals on the land were probably temporary visitors that were not obligate subaerial 

dwellers. Our understanding of Ordovician terrestrial life will continue to improve as refined 

techniques in phylogenetic analysis, molecular clock studies, Evo-Devo research and Earth 

systems modelling become available. But ultimately it seems likely that newly discovered 

fossils will shed most light on this subject area – particularly if convincing Ordovician plant 

remains can be recovered. 
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Figures 

 

Fig. 1. Light Microscope images of microbial remains recovered by palynological processing 

of Ordovician (Floian-?early Dapingian) continental deposits from the Ghudun Formation of 

Oman. (a) Sphaeromorph. (b) Sphaeromorph. (c) Sphaeromorph. (d) Sphaeromorph with 

surface spot. (e) Sphaeromorph with circular ‘hilum’. (f) Sphaeromorph with surface spot 

from which a tube extends. (g) Sphaeromorph. (h) Sphaeromorph. (i) Sphaeromorph with 

surface spot. (j) Sphaeromorph with surface spot. (k) Cluster of Sphaeromorphs. (l) 

Association of tubular structures. (m) Isolated wide tube. (n) Isolated narrow tube (filament). 



 
 

 

 

 

 

(o) Tube with expanded tip. Scale bar: (a-j) = 30 μm; (k-l) = 40 μm; (m) = 30 μm; (n) = 100 

μm; (o) = 30 μm. 

 

 

Fig. 2. Land plant remains recovered by palynological processing of Ordovician (Katian) 

continental deposits from the Hasirah Formation of Oman. (a-e) Light microscope images of 

dispersed spores (cryptospores). (a) Naked permanent fused dyad (pseudodyad). (b) 

Permanent unfused dyad (true dyad) enclosed in a laevigate envelope. (c) Naked permanent 

unfused tetrad. (d) Permanent unfused tetrad enclosed in a laevigate envelope. (e) Permanent 

fused tetrad enclosed in an ornamented envelope. (f-l) Scanning Electron Microscope images 

of dispersed spores (cryptospores). (f) Naked permanent unfused dyad (true dyad). (g) Naked 

permanent unfused tetrad. (h) Permanent unfused tetrad enclosed in a laevigate envelope. (i) 

Naked permanent unfused tetrad. (j) Naked permanent fused dyad (pseudodyad) with 

microgranulate ornament. (k) Naked permanent unfused tetrad. (l) naked permanent unfused 

tetrad. (m-n) Transmission Electron Microscope images of a section cut from an individual 

dispersed spore (Naked permanent unfused dyad). (m) Entire dyad. (n) Close up of left hand 

part of dyad. (o-p) Scanning Electron Microscope images of a spore mass. (o) Entire spore 

mass. (p) Close up of part of the spore mass illustrating the nature of the spores. (q-r) 

Fragments of dispersed cuticle-like sheets. (q) (r) (s-t) Transmission Electron Microscope 

images of sectioned sporangia/spore masses. (s) Sporangium containing spores with wall 

ultrastructure lamellate. (t) Spore mass containing spores with wall ultrastructure 

homogeneous. Scale bar: (a-e) = 25 μm; (f-l) = 25 μm; (m) = 7.25 μm; (n) = 4.6 μm; (o) = 75 

μm; (p) = 25 μm; (q) = 85 μm; (r) = 115 μm; (s) = 1.8 μm; (t) = 2.5 μm. 

 

Fig. 3: Palaeogeographic map of the Dapingian and Darriwilian showing the location of 

dispersed spore assemblages. Locality codes refer to those used in Table 1. Modified from 

Map 80 (CR Scotese, Paleomap Project). 

 



 
 

 

 

 

 

Fig. 4: Palaeogeographic map of the Sandbian showing the location of dispersed spore 

assemblages. Locality codes refer to those used in Table 1. Modified from Map 79 (CR 

Scotese, Paleomap Project). 

 

Fig. 5: Palaeogeographic map of the Katian showing the location of dispersed spore 

assemblages. Locality codes refer to those used in Table 1. Modified from Map 78 (CR 

Scotese, Paleomap Project). 

 

 

Fig. 6: Palaeogeographic map of the Hirnantian showing the location of dispersed spore 

assemblages. Locality codes refer to those used in Table 1. Modified from Map 77 (CR 

Scotese, Paleomap Project).Tables 

 

Table 1: Dispersed spore assemblages reported from the Ordovician. C = conodonts; Ch = 

chitinozoans; G = graptolites, Inv = invertebrates . 

 

Table 2: Cryptospores examined ultrastructurally 

SPORE TAXON MORPHOLOGY LOCALITY AGE REFERENCE 

Tetrahedraletes 

medinensis 

Naked permanent unfused tetrad Ohio, USA Katian Taylor (1995) 

Pseudodyadospora sp. Naked permanent fused dyad Ohio, USA Katian Taylor (1996) 

Segestrespora 

membranifera 

Envelope-enclosed permanent unfused 

dyad 

Ohio, USA Katian Taylor (1996) 

Dyadospora 

murusattenuata 

Naked permanent unfused dyad Ohio, USA Katian Taylor (1997) 

Tetrahedraletes spp. Naked permanent unfused tetrad Oman Katian Wellman et al. (2003) 

Dyadospora spp. Naked permanent unfused dyad Oman Katian Wellman et al. (2003) 

Cryptotetras erugata Naked permanent unfused Saudi Arabia Darriwilian Taylor et al. (2017) 

Pseudodyadospora sp. cf. 

P. laevigata 

Naked permanent fused dyad Saudi Arabia Darriwilian Taylor et al. (2017) 

Monad Naked monad Saudi Arabia Darriwilian Taylor et al. (2017) 

 



 
 

 

 

 

 

 

Table 3: A summary of some proposed age ranges from recent molecular clock analyses 

regarding dating the origin of land plants (embryophytes) and tracheophytes (vascular plants). 

REFERENCE EMBRYOPHYTES VASCULAR PLANTS 

Heckman et al. (2001) 703 (+/- 45) Ma - 

Sanderson (2003) 425-480 Ma - 

Hedges et al. (2004) 968 (+/- 93) Ma 707 (+/- 98) 

Zimmer et al. (2007) 725 Ma - 

Smith et al. (2010) 474-477 Ma 432-434 Ma 

Clarke et al. (2011) 568-815 Ma 425-456 Ma 

Magallón et al. (2013) 475 Ma 424 Ma 

Morris et al. (2018) 515.2-473.5 Ma 450.8-430.4 Ma 

Nie et al. (2020) 486.1 Ma 449.7 Ma 

Su et al. (2021 980-682 Ma 880-593 Ma 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 


