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Abstract. One of the recent trends in research about abstract argumen-
tation is the study of how incomplete knowledge can be integrated to ar-
gumentation frameworks (AFs). In this paper, we survey main results on
Incomplete AFs (IAFs), following two directions: how hard is it to reason
with IAFs? And what can be expressed with IAFs? We show that two
generalizations of IAFs, namely Rich IAFs and Constrained IAFs, despite
having a higher expressive power than IAFs, have the same complexity
regarding classical reasoning tasks.

Keywords: Abstract argumentation · Uncertainty · Incomplete knowl-
edge · Computational complexity.

1 Introduction

Abstract argumentation [18] has been a prominent formalism in the domain of
Knowledge Representation and Reasoning, allowing an elegant representation
of conflicting information. Classically, an argumentation framework (AF) is a
directed graph where the nodes are arguments and the edges are attacks between
these arguments. Reasoning is then based on the selection of sets of arguments
that can be collectively accepted, named extensions. Since the seminal paper
by Dung, various generalizations of the original framework have been proposed
(using weights on attacks [20] or arguments [34], preferences [1], collective attacks
[32],. . . ) as well as new reasoning methods [8].

We focus on one such generalization of Dung’s framework, namely Incom-
plete Argumentation Frameworks (IAFs) [6, 3, 26], where both arguments and
attacks can have two different natures: either they are certain or they are uncer-
tain. While there exists models where this uncertainty is quantified (mainly, with
probabilities of existence attached to the elements [25]), in IAFs the uncertainty
is purely qualitative: uncertain elements are maybe actually there, maybe not,
but the agent reasoning with such an IAF does no have more information about
the uncertain elements. This kind of uncertainty in abstract argumentation can
be intuitively justified in various ways. An argument or attack can be uncertain,
for instance, in multi-agent contexts where one agent tries to model the knowl-
edge of other agents. Then, it is a reasonable assumption that an agent does
not perfectly know the internal state of other agents. This means that an argu-
ment can be uncertain in situations where the agent is not sure whether other
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agents know this argument (or whether they will choose to use it). Similarly, an
agent usually does not perfectly know the preferences of other agents. So, if an
agents knows that there is a conflict between two arguments a and b, but she
does not know whether her opponent prefers a to b, or b to a, then she does not
know whether there is actually an attack between these arguments in her oppo-
nent’s internal knowledge (in the spirit of Preference-based AFs, where attacks
are somehow “cancelled” when they are contradicted by preferences [1]). This
has motivated the use of IAFs (or more precisely, Control AFs [15, 28], a gen-
eralization of IAFs) for defining automated negotiation protocols where agents
have partial knowledge about their opponent [16, 17].

In this paper, we present the main results in the literature about the complex-
ity of reasoning with IAFs. We describe two families of approaches for defining
the acceptable arguments with respect to an IAF. The first one is based on the
notion of completion (i.e. standard AFs that represent, roughly speaking, the
possible worlds compatible with the uncertain information encoded in the IAF),
and the second one is based on adaptation to IAFs of the basic principles under-
lying classical AF semantics, namely conflict-freeness and defense. We show how
hard it is to reason with IAFs, compared to the classical reasoning approach for
standard AFs. Then, we focus on the expressivity of IAFs. More precisely, we
answer the question “Can any set of AFs correspond to the set of completions
of an IAF?”. We show that it is not the case. A partial solution to increase the
expressivity of the formalism is to add another kind of uncertainty in the model:
uncertainty about the direction of attacks. This model is called Rich IAF [27].
However, even this solution does not allow to represent any set of completions.
Then, we propose the Constrained IAFs [29], where an IAF is attached with
a propositional formula describing the “valid” completions, i.e. any completion
not complying with the formula is not used for defining reasoning methods. We
show that this model allows to represent any set of completions, and in turn this
is a powerful tool for solving representation problems about extensions, in the
context of belief revision or belief merging applied to abstract argumentation
[11, 14]. Finally, we describe some challenges about the CIAF model, regarding
the construction of an optimal CIAF for representing a given set of completions
(or extensions), where optimality can concern either the graph part of the CIAF,
or the syntax of the propositional constraint.

2 Background: Abstract Argumentation Frameworks

Roughly speaking, abstract argumentation [18] is the study of how one can con-
clude a reasonable point of view about conflicting pieces of information. Usually,
an abstract argumentation framework is simply a directed graph where the nodes
represent the pieces of information and the edges represent the conflicts between
them. The exact nature of these pieces of information is ignored. We follow this
approach in this paper, and we assume the existence of a finite set A of atomic
entities called arguments. An argumentation framework is then a directed graph
whose nodes are a subset of A.
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Definition 1 (Argumentation Framework [18]). An argumentation frame-
work (AF) is a pair F = ⟨A,R⟩ with A ⊆ A the set of arguments and R ⊆ A×A
the set of attacks.

For a, b ∈ A, we say that a attacks b if (a, b) ∈ R. If b attacks some c ∈ A,
then a defends c against b. Similarly, a set S ⊆ A attacks an argument b if there
is some a ∈ S that attacks b. Finally, S defends some b ∈ A if S attacks all the
attackers of b.

Example 1. In the AF F = ⟨A,R⟩, with A = {a, b, c, d, e, f, g} and R = {(a, b),
(b, c), (c, d), (d, c), (d, e), (e, f), (f, g), (g, e)} (see Figure 1), c is attacked by b and
d, and it is defended by {a, c} (because {a, c} attacks b and d, more precisely a
attacks b and c attacks d).

a b c d e

f

g

Fig. 1: An Example of AF F

In the seminal paper on abstract argumentation [18], Dung proposes a family
of methods to reason with an AF, based on the notion of extension. An extension
is a set of arguments that can be jointly accepted. The methods for determining
the extensions are called semantics, and they are usually based on two principles:
conflict-freeness and admissibility.

Definition 2 (Conflict-freeness and Admissibility). Given F = ⟨A,R⟩ an
AF, the set S ⊆ A is

– conflict-free iff ∀a, b ∈ S, (a, b) ̸∈ R;
– admissible iff it is conflict-free and ∀a ∈ S, ∀b ∈ A s.t. (b, a) ∈ R, ∃c ∈ S

s.t. (c, b) ∈ R.

Intuitively, a set of arguments is admissible if it is a point of view on the
AF which is internally coherent and can defend itself against all the attacks
it receives. We use cf(F) (respectively ad(F)) to denote the set of conflict-free
(respectively admissible) sets of an AF F . These basic principles are used to
define admissibility-based semantics as follows:

Definition 3 (Admissibility-based Semantics). Given F = ⟨A,R⟩ an AF,
the admissible set S ⊆ A is
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– a complete extension iff S contains all the arguments that it defends;
– a preferred extension iff S is a ⊆-maximal admissible set;
– a grounded extension iff S is a ⊆-minimal complete extension.

A fourth semantics is defined by Dung, that does not directly rely on the
notion of admissibility:

Definition 4 (Stable Semantics). Given F = ⟨A,R⟩ an AF, the conflict-free
set S ⊆ A is a stable extension iff ∀a ∈ A \ S, S attacks a.

We use co(F), pr(F), gr(F) and st(F) for the sets of (respectively) com-
plete, preferred, grounded and stable extensions. Notice that, for any F , st(F) ⊆
pr(F) ⊆ co(F), pr(F) ̸= ∅, and |gr(F)| = 1.

Example 2. The extensions of F from Example 1 are provided in the second
column of Table 1.

For further details about these semantics, as well as other semantics that
have been defined subsequently, we refer the reader to [18, 2].

From the set of extensions of an AF, we can determine the acceptability
status of an argument. Two classical reasoning modes have been defined, namely
Credσ(F) =

⋃
σ(F) (respectively Skepσ(F) =

⋂
σ(F)) which denotes the set of

credulously (respectively skeptically) accepted arguments of F .

Example 3. The credulously and skeptically accepted arguments in F from Ex-
ample 1 are given in Table 1 (third and fourth columns).

Semantics σ σ(F) Credσ(F) Skepσ(F)

gr {{a}} {a} {a}
st {{a, d, f}} {a, d, f} {a, d, f}
co {{a, d, f}, {a, c}, {a}} {a, c, d, f} {a}
pr {{a, d, f}, {a, c}} {a, c, d, f} {a}

Table 1: Extensions and acceptable arguments of F , for σ ∈ {gr, st, co, pr}.

The corresponding decision problems are defined by:

σ-CA Given F = ⟨A,R⟩ and a ∈ A, does a belong to some σ-extension of F?
σ-SA Given F = ⟨A,R⟩ and a ∈ A, does a belong to each σ-extension of F

3 Incomplete Argumentation Frameworks

This section introduces formal definitions related to Incomplete AFs, as well a
complexity results and short description of SAT-based computational approaches
for the main reasoning problems.
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3.1 Formal Definitions

Definition 5 (Incomplete Argumentation Framework). An incomplete
argumentation framework (IAF) is a tuple I = ⟨A,A?,R,R?⟩ with A,A? ⊆ A
disjoint sets of arguments and R,R? ⊆ A×A disjoint sets of attacks.

The partition of arguments and attacks in two sets correspond to the two
possible natures of elements in an incomplete AF: A and R correspond to argu-
ments and attacks for which it is sure that they exist. On the contrary, A? and
R? are uncertain arguments and attacks.

Example 4. In I from Figure 2, A = {a, b} is the set of certain arguments, and
A? = {c} is the set of uncertain arguments. Plain arrows represent the certain
attacks, i.e. R = {(c, b)}, and dotted arrows represent the uncertain attacks, i.e.
R? = {(b, a)}.

a b c

Fig. 2: An Example of IAF I

Classical reasoning methods for IAFs are based on the notion of completion,
which are standard AFs that somehow correspond to a possible way to solve the
uncertainty encoded in the IAF.

Definition 6 (Completion). Given an IAF I = ⟨A,A?,R,R?⟩, a completion
is an AF F∗ = ⟨A∗,R∗⟩ such that A ⊆ A∗ ⊆ A ∪ A? and R|A∗ ⊆ R∗ ⊆
(R∪R?)|A∗ .1

Example 5. Continuing the previous example, we see that I has four comple-
tions. In F∗

1 , none of the uncertain element is included, while on the contrary
F∗

4 includes all the uncertain elements. In the middle, F∗
2 and F∗

3 include either
the argument c, or the attack (b, a).

3.2 Reasoning with IAFs

Completion-based Reasoning. The main approach for reasoning with IAFs
consists in verifying whether some property of interest (e.g. the credulous or
skeptical acceptability of a given argument, or the fact that a given set of ar-
guments is an extension) is true in some completion (possible reasoning) or in
each completion (necessary reasoning). This means that each decision problem

1 For R a set of attacks and A a set of arguments, we define the projection of R on A
by R|A = R ∩ (A×A).
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a b

(a) F∗
1

a b c

(b) F∗
2

a b

(c) F∗
3

a b c

(d) F∗
4

Fig. 3: The Completions of I

studied in the literature on AFs can be adapted in two ways when IAFs are con-
sidered. This approach was first studied for subclasses of IAFs, namely Attack-
Incomplete AFs [4] (IAFs where only attacks can be uncertain, i.e. A? = ∅) and
Argument-Incomplete AFs [7] (IAFs where only arguments can be uncertain, i.e.
R? = ∅). These first works have been generalized to the full IAF model in [6, 3].

In this paper, we focus on acceptability problems studied in [5], i.e.2

σ-PCA Given I = ⟨A,A?,R,R?⟩ an IAF and a ∈ A, is there a completion
F∗ = ⟨A∗,R∗⟩ such that a is credulously accepted in F∗ under σ?

σ-NCA Given I = ⟨A,A?,R,R?⟩ an IAF and a ∈ A, for each completion F∗ =
⟨A∗,R∗⟩, is a a credulously accepted in F∗ under σ?

σ-PSA Given I = ⟨A,A?,R,R?⟩ an IAF and a ∈ A, is there a completion
F∗ = ⟨A∗,R∗⟩ such that a is skeptically accepted in F∗ under σ?

σ-NSA Given I = ⟨A,A?,R,R?⟩ an IAF and a ∈ A, for each completion F∗ =
⟨A∗,R∗⟩, is a a skeptically accepted in F∗ under σ?

Example 6. Continuing the previous example, observe that a is possibly cred-
ulously accepted, as well as possible skeptically accepted, under most classical
semantics. Indeed, a belongs to the single (grounded, stable, preferred, complete)
extension of F∗

1 , F∗
2 and F∗

4 , but it is not accepted in F∗
3 . No argument is nec-

essarily accepted: a is not accepted in F∗
3 , b is not accepted in F∗

2 and F∗
4 , and

c is not accepted in F∗
1 and F∗

3 .

Direct Reasoning. It is possible to propose reasoning methods for IAFs which
do not require to consider the notion of completion. It was first proposed for so-
called Partial AFs (which correspond to Attack-Incomplete AFs, and were first
defined in [10] where they are used during a process of merging several AFs), the
main idea is that basic notions of conflict-freeness and defense can be re-defined
to take into account uncertain knowledge. These basic notions can be combined
to obtain various versions of admissibility [9]. It has been proposed recently to
generalize this approach to IAFs [30].

One can summarize the approach from [30] by saying that conflicts where
uncertainty is involved can either be considered as serious or not. This yields
two families of semantics.
2 See [31] for an overview of other relevant decision problems.
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Definition 7 (Weak Admissibility [30]). Given an IAF I = ⟨A,A?,R,R?⟩,
a set S ⊆ A∪A? is weakly conflict-free if ∀a, b ∈ S ∩A, (a, b) ̸∈ R. Then, given
a ∈ A ∪ A?, S weakly defends a if ∀b ∈ A such that (b, a) ∈ R, ∃c ∈ S ∩ A
s.t. (c, b) ∈ R. Finally, S is weakly admissible if it is weakly conflict-free and it
weakly defends all its elements.

Weak conflict-freeness means that two arguments can be accepted together
when there is an uncertain conflict between them, i.e. either one of the arguments
involved in the conflict is uncertain, or the attack between them is uncertain. If
we consider that uncertain conflicts are not serious threats in the reasoning, then
there is no need to defend an argument against uncertain attacks and uncertain
attackers, hence the definition of weak defense.

Definition 8 (Strong Admissibility [30]). Given an IAF I = ⟨A,A?,R,R?⟩,
a set S ⊆ A ∪ A? is strongly conflict-free if ∀a, b ∈ S, (a, b) ̸∈ R ∪ R?. Then,
given a ∈ A∪A?, S strongly defends a if ∀b ∈ A∪A? such that (b, a) ∈ R∪R?,
∃c ∈ S ∩ A s.t. (c, b) ∈ R. Finally, S is strongly admissible if it is strongly
conflict-free and it strongly defends all its elements.

Contrary to the weak version, strong admissibility assumes that all internal
conflicts are bad, and all attackers must be counter-attacked (even the uncer-
tain ones). [30] then defines the weak and strong versions of the preferred and
complete semantics, and proposes also an adaptation of the stable semantics to
this setting. For σ ∈ {cf, ad, co, pr, st}, we use respectively σS and σW to denote
the strong and weak counter-parts of these semantics.

Example 7. Consider again the IAF from Figure 2. The set of arguments S =
{a, b, c} is weakly admissible. Indeed, none of the conflicts is certain (either the
attack is uncertain, namely (b, a), or the attacker is uncertain, namely c). So
S is weakly conflict-free, and moreover, none of the arguments requires to be
defended, so they are (trivially) weakly defended as well. Notice that this set
is not strongly conflict-free. Now assume the existence of a certain argument
d ∈ A, such that (d, c) ∈ R. This time, c is not weakly defended because it has
one certain attacker which is not counter-attacked. But S′ = {a, b, d} is weakly
conflict-free, and weakly admissible.

Complexity and algorithms Table 2 presents the complexity for the various
decision problems discussed earlier. See [31] for an overview of other complexity
results regarding IAFs. Given a semantics σ, σ-CA (respectively σ-SA) corre-
sponds to credulous (respectively skeptical) acceptability for AFs, while σX -CA
(respectively σX -SA) is the corresponding problem for the σX semantics of IAFs
(where X ∈ {S,W}).

For C a complexity class of the polynomial hierarchy, C-c means C-complete,
i.e. the corresponding problem is one of the hardest problem of the class C.
“Trivial” means that the answer to the question is trivially “no” for all instance.
It comes from the fact that ∅ is always an admissible set, hence there is no
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σ σ-CA σ-SA σ-PCA σ-NCA σ-PSA σ-NSA σX -CA σX -SA

ad NP-c trivial NP-c ΠP
2 -c trivial trivial NP-c trivial

st NP-c coNP-c NP-c ΠP
2 -c ΣP

2 -c coNP-c NP-c coNP-c
co NP-c P NP-c ΠP

2 -c NP-c coNP-c NP-c in coNP
gr P P NP-c coNP-c NP-c coNP-c ? ?
pr NP-c ΠP

2 -c NP-c ΠP
2 -c ΣP

3 -c ΠP
2 -c NP-c ΠP

2 -c

Table 2: Complexity of acceptability for AFs and IAFs.

skeptically accepted argument with respect to ad. Finally, the question marks
indicate open questions.

For the various reasoning tasks described previously, computational approaches
based on SAT have been proposed, and experimental studies have shown their
scalability [3, 30].

4 Constrained Incomplete Argumentation Frameworks

4.1 The Disjunction Problem

An important question with reasoning formalisms is “What can be represented
with this formalism?”. In the case of abstract argumentation, this question has
arisen in a context of belief revision and belief merging, adapted for argumen-
tation frameworks [11, 14]. These works propose two step processes to revise or
merge argumentation frameworks: first revise (or merge) the extensions, using
an adaptation of propositional belief revision (or merging) operators [23, 24].
Then, from the revised (or merged) extensions, generate a set of argumentation
frameworks that correspond to these extensions. Indeed, it is necessary to use
a set instead of a single AF, because it is known that some sets of extensions
cannot be represented by a single AF [19]. However, from a purely logical point
of view, it is not surprising: the result of a revision (or merging) can be a dis-
junction of several (equally plausible) pieces of information. In the case of AFs,
if the result of the first step is {{a}, {a, b}}, then it makes sense to have two AFs,
one where a attacks b, and one where this attack does not exist. This set of AFs
can be seen as a “disjunction” of its elements. We have thus been interested in
the question whether IAFs would be a suitable formalism for representing any
set of extensions, or any set of AFs, i.e. given F a set of AFs, is there an IAF
I such that comp(I) = F. The answer to this question is negative, as shown in
this example (borrowed from [29]).

Example 8. Suppose that the result of revising an AF is the set F = {F1 =
⟨{a, b}, {(b, a)}⟩,F2 = ⟨{a, c}, {(c, a)}⟩}. The question is to determine whether
this set can be compactly represented by a single IAF. Towards a contradiction,
suppose that there is an IAF I = ⟨A,A?,R,R?⟩ s.t. comp(I) = F. Since a
belongs to both F1 and F2, it must belong to the certain arguments A. On the
contrary, the uncertain arguments are A? = {b, c}, each of them belongs to some
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(but not all) completions. A = {a} and A? = {b, c} imply the existence of some
completions that only contain a, and some completions that contain the three
arguments a, b, c. This is not the case in F. So I does not exist.

4.2 Towards Higher Expressiveness: Rich IAFs

Control Argumentation Frameworks (CAFs) [15, 28] introduce several novelties
to IAFs. One of them is a new kind of uncertain information, namely conflicts
with uncertain direction. In [27], we borrow this new kind of uncertainty and
add it to IAFs, thus defining Rich IAFs (RIAFs).

Definition 9. A Rich Incomplete Argumentation Framework (RIAF) is a tuple
rI = ⟨A,A?,R,R?,↔?⟩, where A and A? are disjoint sets of arguments, and
R,R?,↔?⊆ (A ∪ A?) × (A ∪ A?) are disjoint sets of attacks, such that ↔? is
symmetric.

The new relation ↔? borrowed from CAFs [15] is a symmetric (uncertain)
conflict relation: if (a, b) ∈↔?, then we are sure that there is a conflict between
a and b, but not of the direction of the attack. This new relation impacts the
definition of completions.

Definition 10 (Completion of a RIAF). Given rI = ⟨A,A?,R,R?,↔?⟩, a
completion of rI is F∗ = ⟨A∗,R∗⟩, such that

– A ⊆ A∗ ⊆ A ∪A?;
– R|A∗ ⊆ R∗ ⊆ R|A∗ ∪R?

|A∗∪ ↔?
|A∗ ;

– if (a, b) ∈↔?
|A∗ , then (a, b) ∈ R∗ or (b, a) ∈ R∗ (or both).

Example 9. Assume the RIAF rI = ⟨A,A?,R,R?,↔?⟩, described by Figure 4.
Its completions are shown at Figure 5.

a b c

Fig. 4: The RIAF rI

In [27] we also proved that RIAFs are strictly more expressive than IAFs, in
the sense that there are sets of AFs that can be the completions of a RIAF, but
not of an IAF.

Proposition 1 (Relative Expressivity of IAFs and RIAFs). RIAFs are
strictly more expressive than IAFs, i.e.

– for any IAF I, there exists a RIAF rI such that comp(I) = comp(rI);
– there exists a RIAF rI such that there is no IAF I with comp(I) = comp(rI).

However, one can also prove that some sets of AFs cannot be represented
by a RIAF. Indeed, the additional expressiveness of RIAFs does not solve the
problem illustrated by Example 8.
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a b c

(a) F1

a b c

(b) F2

a b c

(c) F3

a b

(d) F4

a b

(e) F5

a b

(f) F6

Fig. 5: The Completions of rI

4.3 Constrained IAFs

To improve the expressiveness of the formalism, instead of adding different types
of attacks, we add a propositional formula which serves as a constraint over the
set of completions. The idea is to restrict the set of completions of the IAF which
can be used for possible and necessary reasoning.

Definition 11 (Constraint). Given A a set of arguments, we define the set of
propositional atoms PropA = ArgA ∪ AttA where ArgA = {arga | a ∈ A} and
AttA = {atta,b | (a, b) ∈ A × A}. Then, LA is the propositional language built
from PropA with classical connectives {¬,∨,∧}.

The satisfaction of a constraint by an AF is defined as follows.

Definition 12 (Constraint Satisfaction). Given A a set of arguments, and
ϕ ∈ LA a formula, the set of models of ϕ is denoted mod(ϕ). An AF F = ⟨A′,R⟩
with A′ ⊆ A and R ⊆ A′ × A′ satisfies ϕ iff there is a model ω ∈ mod(ϕ) s.t.
A′ = {a ∈ A | ω(arga) = ⊤}, and R = {(a, b) ∈ A×A | ω(atta,b) = ⊤)}.

Definition 13 (Constrained IAF). A Constrained Incomplete Argumenta-
tion Framework (CIAF) is a tuple cI = ⟨A,A?,R,R?, ϕ⟩, where ⟨A,A?,A,A?⟩
is an IAF, and ϕ ∈ LA∪A? is a constraint.

The constraint ϕ is used to select a subset of the completions of the IAF
IcI = ⟨A,A?,R,R?⟩. The completions of a CIAF are then defined as follows.

Definition 14 (Completions of a CIAF). Given cI = ⟨A,A?,R,R?, ϕ⟩
a CIAF, we define its set of completions by comp(cI) = {c ∈ comp(IcI) |
c satisfies ϕ} where IcI = ⟨A,A?,R,R?⟩.

Example 10. Let cI = ⟨A,A?,R,R?, ϕ⟩ be a CIAF s.t. IcI = ⟨A,A?,R,R?⟩ is
the IAF from Figure 6, and ϕ = atte,a ∧ argf . The completions of IcI are given
in Figure 7. Only two of them satisfy ϕ, namely F5 (Fig. 7e) and F6 (Fig. 7f). So
comp(cI) = {F5,F6}. This means, for instance, that f is necessary skeptically
accepted with respect to cI, while it is not with respect to IcI .

Now we recall the result from [29] about the expressiveness of CIAFs. This
result is based on Definition 15, which introduces a constraint satisfied by only
one AF.
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a b

c de f

Fig. 6: The IAF I

a b

c de

(a) F1

a b

c de f

(b) F2

a b

c de f

(c) F3

a b

c de

(d) F4

a b

c de f

(e) F5

a b

c de f

(f) F6

Fig. 7: The Completions of I

Definition 15. Given A a set of arguments, and F = ⟨A′,R⟩ with A′ ⊆ A,
and R ⊆ A′ ×A′, we define ψF ∈ LA as

ψF = (
∧

a∈A′

arga) ∧ (
∧

a∈A\A′

¬ arga) ∧ (
∧

(a,b)∈R

atta,b) ∧ (
∧

(a,b)∈(A×A)\R

¬ atta,b)

Proposition 2. Let F = {F1 = ⟨A1,R1⟩, . . . ,Fn = ⟨An,Rn⟩} be a set of AFs.
There is a CIAF cI = ⟨A,A?,R,R?, ϕ⟩ s.t. comp(cI) = F.

Intuitively, a simple CIAF that does the job consists of all the arguments
and attacks from F defined as uncertain, and then ϕ is the disjunction of the ψF
formulas, for F ∈ F. Let us prove this result with a simple illustration of a well
suited CIAF.

Proof. Let us build a CIAF cI = ⟨A,A?,R,R?, ϕ⟩ s.t. comp(cI) = F. To do that,
we first choose A = ∅ and A? =

⋃n
i=1 Ai, i.e. all the arguments that appear in

an AF from F are uncertain. Similarly, all the attacks are uncertain, i.e. R = ∅
and R? =

⋃n
i=1 Ri. With all these choices, we define an IAF that has all the

possible completions on arguments and attacks from F. In order to restrict the
completions to exactly the AFs in F, we define ϕ =

∨n
i=1 ψFi

, where ψFi
is the

formula that is only satisfied by the AF Fi, following Definition 15. The AFs
that satisfy ϕ are exactly the ones in F, so we have comp(cI) = F.

A consequence of this result is that any set of extensions can be represented
by an IAF.
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Proposition 3. Let E = {E1, . . . , En} be a set of non-empty extensions, and
σ ∈ {co, pr, st, gr}. There is a CIAF cI = ⟨A,A?,R,R?, ϕ⟩ s.t.

⋃
c∈comp(cI) σ(c) =

E.

Proof. First, let us define A =
⋃n

i=1Ei, i.e. it is the set of all the arguments
that appear in some extension. Then, for each Ei ∈ E, we define Fi = ⟨A,Ri⟩
s.t. Ri = {(a, b) | a ∈ EI , b ∈ A \ Ei}, i.e. each argument in Ei is unattacked,
and it attacks all the arguments that are not in the extension. For any σ defined
in this paper,3 Ei is the only extension of Fi. Thus,

⋃n
i=1 σ(Fi) = E. From

Proposition 2, there is cI s.t. comp(cI) = {F1, . . . ,Fn}. This concludes the
proof.

Corollary 1. Let E = {E1, . . . , En} be a set of extensions, and σ ∈ {co, pr, gr}.
There is a CIAF cI = ⟨A,A?,R,R?, ϕ⟩ s.t.

⋃
c∈comp(cI) σ(c) = E.

Proof. For non-empty extensions, Proposition 3 can be applied. If some Ei ∈ E
is empty, then simply build Fi = ⟨A,Ri⟩ where Ri = {(a, a) | a ∈ A}, i.e. each
argument is self-attacking. The unique σ-extension of Fi is Ei = ∅.

From Propositions 2 and 3 and Corollary 1, we deduce that the result of any
revision or merging operator from [11, 14] can be represented by a CIAF, or said
otherwise any set of extensions is realizable [19] when CIAFs are used as the
knowledge representation formalism instead of AFs. The same result has been
demonstrated independently in [22].

Besides the interest of CIAFs for representing the result of revision or merging
operators, more generally they allow to represent the epistemic state of any agent
about the current and future states of a debate. Assume than agent A is debating
with agent B regarding two arguments a and b which are mutually exclusive.
Agent A knows that agent B has some preferences over these arguments, but
she does not know exactly agent B’s preferences. This means that in agent B’s
state of mind, either a attacks b, or b attacks a, but not both. These two possible
AFs corresponding to agent A’s knowledge about B cannot be encoded into a
single (R)IAF, but the result described in this section show that they can be
represented by a single CIAF.

4.4 Complexity

In the previous section, we have shown that RIAFs are strictly more expressive
than IAFs, and CIAFs even more, since any set of AFs (or extensions) can be
represented by a CIAF. However, this expressiveness does not come at the price
of an increased complexity, compared to the complexity of standard IAFs. More
precisely, [29] has shown that the complexity of the decision problems PCA and
NSA are the same as in the case of IAFs. The complexity of other decision
problems for CIAFs remains an open question.

3 And arguably most semantics defined in the literature.
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5 Related Work

As mentioned previously, Control Argumentation Frameworks [15, 28] are a gen-
eralization of IAFs (or more precisely, of RIAFs). The additional component,
namely the control part of the CAF, represents arguments and attacks that can
be used by an agent to influence the outcome of the argumentation process.
Complexity and algorithms were provided in [15, 28, 33], and an application of
this framework to automated negotiation was proposed in [16, 17]. CAFs are in-
trinsically made for strategic applications of argumentation (and in this sense,
they are more general than IAFs), but they do not have the maximal expres-
siveness of CIAFs regarding their set of completions. For this reason, combining
CIAFs and CAFs is an interesting future work.

In IAFs (and the related frameworks discussed in this paper), uncertainty
is purely qualitative, in the sense that the agent knows that some argument or
attack may exist or not, but without a possibility to quantify how plausible is the
existence of this element. Probabilistic Argumentation Frameworks (PrAFs) [25]
can be seen as an enriched version of IAFs, where the existence of each element
is associated with a probability. In the case where such a probability is available,
it allows to have more precise inference, for instance because some completions
are more probable than other ones. A probabilistic version of CAFs has also been
defined [21]. The relation between PrAFs and IAFs has been discussed in [3].

6 Conclusion

There are interesting research tracks regarding CIAFs. In particular, the method
described in this paper to exhibit a CIAF corresponding to a set of AFs (or
extensions) only works for proving the existence of this CIAF, but it may not
be suited to real application of this formalism. For instance, in the case of belief
revision or merging, a classical principle is minimal change: we expect the result
to be as close as possible to the initial knowledge. To ensure that the graph
structure of the CIAF (i.e. the sets A, A?, R and R?) is as close as possible to
the input graph, one can use techniques similar to distance minimization used
in the literature [10, 12]. Regarding the constraint, there are two aspects. The
first one applies in the case where the initial knowledge of the agent is a CIAF,
and not simply an AF. In this case, one can expect that the constraint in the
revised CIAF is close to the constraint in the initial CIAF. Then, we can see
that the formula defined in the proof of Proposition 2 can be exponentially large
in the worst case. To avoid this kind of issue, one can apply techniques from
knowledge compilation, in order to obtain an equivalent formula that would be
more succinct [13]. Among other future works, one can mention the combination
of CIAFs with CAFs or PrAFs, which would allows better representation of the
epistemic states of agents participating in a negotiation [16, 17, 21].
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