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Abstract 7 

Mammalian chromosomes are organized at different length scales within the cell nucleus. 8 

Topologically Associating Domains (TADs) are structural units of 3D genome organization 9 

with functions in gene regulation, DNA replication, recombination and repair. Whereas TADs 10 

were initially interpreted as insulated domains, recent studies are revealing that these domains 11 

should be interpreted as dynamic collections of actively extruding loops. This process of loop 12 

extrusion is subsequently blocked at dedicated TAD boundaries, thereby promoting intra-13 

domain interactions over the surroundings within the Hi-C matrix. In this review, we discuss 14 

how mammalian TAD structure can emerge from this dynamic process and we discuss recent 15 

evidence that TAD boundaries can have regulatory functions in this process. 16 
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Introduction 19 

Mammalian interphase chromosomes, together adding up to around 2 meters in length, are 20 

subjected to a wide range of biological processes, including transcription, gene regulation, 21 

repair and replication. Yet, all this activity takes place in the crowded cell nucleus with a 22 

volume of less than 800 μm3. How the 3D organization of chromosomes permits, or facilitates, 23 

these processes, is a topic of intense interest. Whereas initial discoveries on 3D chromosome 24 

organization were made using fluorescent imaging of fixed cells, nowadays a wide range of 25 

approaches are used. These approaches incorporate genomics, super-resolution and live-cell 26 

imaging, the combination of imaging and genomics for spatial and in-situ studies and 27 

biophysical polymer models of chromatin organization [1,2]. 28 

Within the mammalian cell nucleus, 3D organization of chromosomes emerges at 29 

different length scales. At the largest scale, as discovered using fluorescence microscopy, 30 

individual chromosomes occupy discrete zones called chromosome territories [3]. At a finer 31 

scale, the Hi-C assay⎯a combination of Chromosome Conformation Capture and whole-32 

genome sequencing⎯has been instrumental to identify additional levels of organization [4]. 33 

Hi-C first revealed that chromosomes separate into multi-Megabase (Mb) compartments, so-34 

called A and B compartments ([4], Figure 1a). These compartments are characterized by 35 

preferred homotypic interactions between compartments (i.e. A-A or B-B) over heterotypic 36 

interactions (A-B), creating in a checker-board pattern in a Hi-C interaction matrix. At a sub-37 

Mb scale (typically between 500 kb – 1 Mb), a further level of domain organization appears 38 

([5], Figure 1a). The human and mouse genome are divided into several thousands of 39 

Topologically Associating Domains (TADs), which exhibit more frequent intra-domain 40 

contacts over their surroundings. Comparison of TADs between cell types and mammalian 41 

species revealed a considerable degree of conservation, suggesting that TADs are a more 42 

constitutive and structural level of chromosome organization [5-7]. However, insulation 43 

between TADs is relatively limited, as intra-domain contact enrichment is only in the order of 44 

two-fold [5,8]. Within TADs, further structures can be observed, such as sub-TADs, contact 45 

domains and DNA loops between enhancers and promoters [9,10]. In the remainder of this 46 

manuscript, we will focus on the structure and function of 3D genome organization in 47 

mammalian cells at the level of TADs and within. 48 

Main text  49 

TADs as regulatory neighborhoods 50 

Soon after the discovery of TADs, it was reported that enhancer-promoter pairs mostly localize 51 

within the same domain [11]. The insulated nature of TADs may thus create ‘regulatory 52 

neighborhoods’ that restrict inter-TAD loop formation ([8,12], Figure 1a). Indeed, most TAD 53 

boundaries are occupied by the CTCF insulator protein, which previously was recognized for 54 

its enhancer blocking activity [5]. CTCF binds an asymmetric DNA motif and most TADs are 55 

demarcated by convergently oriented motifs, which suggests that binding orientation may play 56 

a role in TAD formation ([6,10,13], Figure 1a and below). Since their initial discovery, TADs 57 

and other domains restricted by CTCF binding have been identified as units of DNA 58 

replication, recombination and repair as well [14-16]. 59 
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The importance of CTCF binding at TAD boundaries to prevent enhancer hijacking⎯the 60 

inappropriate activation of a gene by an enhancer in a neighboring TAD⎯has been confirmed 61 

at several loci (e,g. [17,18]). During embryogenesis, correct hand development requires an 62 

intra-TAD interaction between the EPHA4 gene and its distal enhancer. Various instances of 63 

structural variation involving the CTCF binding sites on either side of the EPHA4 TAD 64 

(inversions, deletions, duplications) create chromatin configurations where separation between 65 

the EPHA4 enhancer and genes in the neighboring TADs is lost (Figure 1b). For certain genes, 66 

this permits their ectopic activation and ultimately the emergence of hand malformations [17]. 67 

In IDH-mutant gliomas, the genome undergoes global hypermethylation, which interferes with 68 

site-specific CTCF binding. CTCF is therefore absent from an insulator that separates the 69 

PDGFRA oncogene from an enhancer in a neighboring TAD, thereby allowing enhancer 70 

hijacking and subsequent PDGFRA activation ([18], Figure 1b). 71 

However, subsequent studies have added further nuance to these observations. 72 

Transcriptome analysis in mouse embryonic stem cells where CTCF was rapidly degraded, 73 

using the Auxin-inducible degron (AID) system [19], revealed that the nearly complete loss of 74 

TAD organization only caused the upregulation of a limited number of genes [20]. Despite their 75 

constitutive presence, TADs may thus only prevent a limited number of ectopic promoter-76 

enhancer loops. Explanations for this observation may be that the cell-type specific activity of 77 

enhancers limits the potential for ectopic activation in a given cell type or that TADs are 78 

required for the establishment of promoter-enhancer loops after mitotic exit but not for their 79 

maintenance [21,22]. In parallel, several studies reported that ectopic gene activation and the 80 

fusion of neighboring TADs required the removal of multiple CTCF binding sites that were 81 

spread out over considerable genomic intervals [23-25]. Conversely, the creation of chromatin 82 

configurations where CTCF binding sites were positioned in-between promoters and enhancers 83 

revealed that the reduction in gene activity was incomplete [25-28]. Many boundaries between 84 

TADs may therefore be composed of sets of CTCF binding sites that are not impermeable and 85 

whose impact is restricted to specific cell types. 86 

TADs as collections of actively extruding loops 87 

The discovery of TADs raised the questions how these insulated domains are formed and how 88 

CTCF binding can act as a directional boundary. An important hint came from the previously 89 

identified colocalization of the Cohesin complex with CTCF [29,30]. The Cohesin 90 

complex⎯well-known for sister chromatid cohesion after DNA replication⎯is a member of 91 

the Structural Maintenance of Chromosomes (SMC) proteins that were proposed to have 92 

motor-protein functions [31]. The role of Cohesin in TAD formation was revealed by polymer 93 

simulations that could replicate the TAD structure in Hi-C matrices [32,33]. In these models, 94 

Cohesin is loaded on the chromosome followed by the bidirectional extrusion of a DNA loop 95 

(Figure 2a). Extrusion creates an increasingly large loop that compacts the chromosome until 96 

two possible events. Either a roadblock is encountered that halts extrusion on that side, but 97 

permits continued extrusion on the other side, or Cohesin dissociates from the chromosome 98 

and the loop dissolves (Figure 2a). Whereas CTCF appears to have evolved as a functional 99 

roadblock in this process, the encounter with large DNA-associated complexes (e.g. RNA 100 

polymerase II) may interfere with loop extrusion as well [6,7,34,35]. Consequently, these 101 
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polymer simulations revealed that TADs are not insulated domains, but rather a collection of 102 

actively extruding loops [32,33]. 103 

Numerous studies have contributed to the experimental validation of TAD formation by 104 

Cohesin-mediated loop extrusion. Live-cell imaging after biochemical reconstitution of the 105 

Cohesin complex has confirmed it possess a motor-protein function for bidirectional extrusion 106 

of DNA loops [36,37]. The recent observation of ‘jet-like’ structures that sprout perpendicularly 107 

from the Hi-C diagonal at narrow sites of Cohesin loading further confirmed the bidirectional 108 

nature of loop extrusion [38]. Multiple Hi-C studies confirmed that TAD structure was lost in 109 

cells where Cohesin was prevented from loading on the chromosome or where it was degraded 110 

(RAD21/SCC1-AID cells) [39-41]. The active and energy-consuming aspect of loop extrusion 111 

was confirmed in cells with Cohesin ATPase mutations [42]. Finally, single-cell Hi-C and 112 

super-resolution imaging studies revealed a large degree of cell-to-cell variation in TAD 113 

structure and intermingling. Instead, to obtain defined TAD structure as observed in a Hi-C 114 

matrix, data from large numbers of cells had to be averaged [43-46]. 115 

Combined with the notion that TADs are collections of extruding loops (see [32,33]), the 116 

observed cellular heterogeneity raised the idea that TADs are statistical properties of chromatin 117 

([47,48], Figure 2b). Here, the observation of discrete TADs in population-averaged data is 118 

explained by chromosomal configurations where loops can be extruded anywhere in-between 119 

two TAD boundaries. In contrast, loops that cross TAD boundaries are rare. Live-cell imaging 120 

studies have determined loop extrusion dynamics, by measuring contacts between pairs of 121 

nearby CTCF binding sites [49,50]. In population-averaged Hi-C matrices, interactions 122 

between such pairs are enriched, creating visible ‘corner dots’ at the summits of TADs (Figure 123 

2b). Although the distance between the CTCF binding sites was different between these studies 124 

(150 kb versus 505 kb), they both detected prolonged periods of contact (in the order of 10-30 125 

minutes). In contrast, the time gap in-between contacts was different and increased with 126 

distance [49-51]. Biophysical modeling of looping kinetics indicated that the fully looped state 127 

(i.e. halting of loop extrusion by both boundaries) was a rare event. Instead, most of the time, 128 

the TADs were in a partially extruded state (i.e. combinations of loops that are being extruded 129 

or halted on one side). These results further confirm that TADs are transient and indicate that 130 

intra-TAD loop density is relatively minor [49-51]. The importance of intra-TAD loops was 131 

nonetheless confirmed by studies of enhancer-promoter loop formation in cells that lack 132 

Cohesin-mediated loop extrusion [52-54]. Whereas local interactions, in the order of 100 kb, 133 

were only mildly affected in the absence of loop extrusion, the formation of long-range loops 134 

(over 500 kb) was essentially lost. The dynamic nature of TADs is therefore essential to form 135 

long-range intra-TAD enhancer-promoter loops, which expands the function of these domains 136 

beyond the prevention of inter-TAD enhancer hijacking. 137 

TAD boundaries as regulatory units 138 

The formation of discrete TADs critically depends on the halting of loop extrusion at dedicated 139 

boundaries. This raises the question if TAD boundaries can influence loop extrusion, thereby 140 

providing means for regulation [8]. Most TADs carry CTCF binding sites in a convergent 141 

orientation at their boundaries, suggesting this has an influence on the blocking process 142 

[5,6,10,13]. Upon rapid depletion of CTCF (using CTCF-AID cells), TAD structure and pairing 143 

of CTCF binding sites was reduced, without interfering with loop extrusion itself [20,41,49,50]. 144 
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Halting of loop extrusion requires the N-terminus of CTCF, which faces the extruding Cohesin 145 

complex when correctly oriented ([55,56], Figure 3). The STAG2 (also known as SA2) and 146 

RAD21/SCC1 subunits of the Cohesin complex can subsequently interact with the N-terminus 147 

of CTCF. Interestingly, the STAG2 subunit is present only in a variant of Cohesin that is 148 

associated with more rapid dissociation and the formation of shorter loops [57,58]. When 149 

bound to Cohesin, CTCF competes with the WAPL protein, which is responsible for the 150 

dissociation of Cohesin from the chromosome. Indeed, without WAPL, TAD structure was 151 

reinforced due to prolonged looping between CTCF binding sites [49,50,59]. For this Cohesin 152 

variant we can therefore envision that the CTCF-mediated halting of loop extrusion on one side 153 

promotes the formation of longer loops on the other side. 154 

In parallel, the STAG1 (or SA1) containing variant of the Cohesin complex, which is 155 

more stably associated with the chromatin, is subject to a different regulation at CTCF binding 156 

sites ([41,57,58,60], Figure 3). The STAG1 variant is acetylated by the ESCO1 protein, 157 

promoting the association of Cohesin with the PDS5A protein. PDS5A interferes with the 158 

ATPase activity of Cohesin, thereby acting as a brake for loop extrusion. Upon halting at a 159 

CTCF binding site, this more stable Cohesin variant therefore reduces loop extrusion in the 160 

other direction as well. Combined with the regulation of Cohesin variant loading or 161 

processivity [61], the balance between loop extrusion promotion (STAG2 Cohesin variant) and 162 

reduction (STAG1 variant) may help to fine-tune the diversity of extruding loops, thereby 163 

regulating TAD structure and function. 164 

Besides protein-protein interactions, CTCF binding at TAD boundaries itself may also 165 

influence the halting of the Cohesin complex. CTCF has an average DNA residence time in the 166 

order of 1-2 minutes, which is about ten-fold shorter than the Cohesin complex [62]. Upon 167 

CTCF dissociation, Cohesin may thus restart extrusion, resulting in the formation of longer 168 

loops. This possibility was confirmed when Cohesin dissociation was perturbed by removing 169 

WAPL, which dramatically increased the contacts between neighboring TADs [59]. The 170 

permeability of CTCF binding sites is further supported by the biophysical modeling of pairing 171 

between nearby CTCF binding sites, which requires the incorporation of a low chance 172 

(~12.5%) of loop extrusion blocking [49]. To improve the chance of successful halting of loop 173 

extrusion at a boundary, thereby improving the separation between neighboring TADs, multiple 174 

CTCF binding sites can be grouped together. Indeed, strong TAD boundaries are characterized 175 

by multiple closely-spaced CTCF binding sites [63,64]. Moreover, the complete intermingling 176 

between certain neighboring TADs is only achieved upon the removal of multiple CTCF 177 

binding sites [23-25]. In summary, the combination of protein-protein interactions, which 178 

particularly reduces loop extrusion capacity of the STAG1 variant, with sequential and 179 

prolonged halting at multiple DNA-encoded CTCF binding sites may sufficiently tip the 180 

balance toward Cohesin dissociation, thereby improving separation between TADs. 181 

Conclusions and future perspectives 182 

The discovery of TADs and their involvement in gene regulation has raised a tremendous 183 

interest in their structure-function relationships. Combinations of genomics, imaging and 184 

biophysical modeling have identified an active and dynamic mechanism for TAD formation 185 

that incorporates the creation of DNA loops through active extrusion by the Cohesin complex, 186 
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with halting at dedicated CTCF binding sites [32,33]. Whereas loop extrusion is essential for 187 

long-range intra-TAD enhancer-promoter loops [53,54], the sequential halting and regulation 188 

of loop extrusion at CTCF binding sites and ultimate the dissociation of Cohesin from the 189 

chromosome is sufficient to create separation between neighboring domains [17,18]. 190 

Combined, this intricately regulated process explains how dynamic and active loop extrusion 191 

can create TADs with stable regulatory functions. 192 

An open question is if loop extrusion can maintain stable regulation over prolonged 193 

periods of time, for instance in post-mitotic human neurons where transcriptional programs are 194 

maintained for decades. Studies in post-mitotic mouse cells, several days after withdrawal from 195 

the cell cycle, confirmed that TAD structure is maintained [20,38,53]. Similarly, a recent Hi-C 196 

comparison of young (2 months) versus geriatric (over 28 months) mouse skeletal muscle stem 197 

cells confirmed that most TAD boundaries were preserved [65]. Yet, a considerable reduction 198 

in insulation at these boundaries was detected as well, suggesting that the efficiency of loop 199 

extrusion halting was compromised. It remains to be determined what is the underlying cause 200 

for this reduction and if this occurs in other post-mitotic cell types as well. 201 
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Figures and legends 623 

 624 

Figure 1: Chromosomal domains and TAD reorganization in disease. 625 

a. Appearance of mammalian chromosomal domains in Hi-C matrices. Top: Hi-C 626 

compartments within an ~ 15 Mb chromosomal region. Hi-C compartments engage in local 627 

and long-range homotypic interactions, resulting in a checker-board pattern of interactions. 628 

Compartment A and B identity is indicated on the top and left. Bottom: Zoom in on TADs 629 

in an ~ 2 Mb chromosomal region. TADs are domains with enriched intra-domain 630 

interactions and frequent convergent CTCF binding at the boundaries. 631 

b. Examples of enhancer hijacking due to TAD boundary perturbations. Top: normal TAD 632 

organization. TAD 1 contains inactive gene 1 and TAD 2 contains active gene 2 that forms 633 

a DNA loop with its enhancer. Middle: Example of a chromosomal inversion that brings 634 

the enhancer and gene 1 together in the same TAD, thereby allowing the formation of a 635 

promoter-enhancer loop and gene activation. Example based on [17]. Bottom: Example of 636 

CTCF binding perturbation, caused by DNA hypermethylation (lollipops), that causes the 637 

fusion of neighboring TADs. Gene 1 and the enhancer are in the same TAD, thereby 638 

allowing the formation of a promoter-enhancer loop and gene activation. Example based 639 

on [18].  640 
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 641 

Figure 2: Loop extrusion and TADs as statistical properties of chromatin. 642 

a. Steps of Cohesin-mediated loop extrusion. Top: The Cohesin ring (purple) loads on the 643 

DNA, followed by bidirectional loop extrusion (arrows). Bottom left: Loop extrusion is 644 

halted on one side when a roadblock is encountered (red arrow: occupied CTCF binding 645 

site in the correct orientation). Loop extrusion will continue unidirectionally on the other 646 

side, until a roadblock is encountered as well. Bottom right: The Cohesin ring dissociates 647 

from the DNA and the extruded loop will dissolve. 648 

b. TADs as statistical properties of chromatin. Left: At a given time, different configurations 649 

of loops are extruded in individual cells. The density of loops is relatively minor and loops 650 

that cross the boundary are rare. Blue and red lines indicate the different regions covered 651 

by two TADs. Orange ovals indicate the boundary. Right: the averaged extruded 652 

configurations from large numbers of cells appear as an insulated TAD in a Hi-C matrix.  653 
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 654 

Figure 3: Different regulation of variant Cohesin complexes at CTCF binding sites. 655 

Left: Promotion of loop extrusion of the SA2/STAG2 variant Cohesion complex at CTCF 656 

binding sites. Unidirectional loop extrusion is promoted through the direct interaction of the 657 

CTCF N-terminal tail with the SA2/STAG2 and RAD21/SCC1 Cohesin complex subunits. This 658 

interaction prevents the interaction of the Cohesin complex with WAPL, thereby preventing its 659 

dissociation from the chromatin. Figure compiled after [57,58]. Right: Reduction of loop 660 

extrusion of the SA1/STAG1 variant Cohesion complex at CTCF binding sites. The SMC3 661 

Cohesin complex subunit is acetylated (stars) by ESCO1, followed by the recruitment of 662 

PDS5A and inhibition of Cohesin ATPase activity. Figure compiled after [58,60]. 663 
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