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Abstract
In this study, we used a predator-enabled metagenomics strategy to sample the virome of a remote
and difficult-to-access densely forested African tropical region. Specifically, we focused our study on
the use of army ants of the genus Dorylus that are obligate collective foragers and group predators
that attack and overwhelm a broad array of animal prey. Using 209 army ant samples collected from
29 colonies and the virion-associated nucleic acid-based metagenomics approach, we showed that
a broad diversity of bacterial, plant, invertebrate and vertebrate viral sequences were accumulated
by army ants: including sequences from 157 different viral genera in 56 viral families. This suggests
that using predators and scavengers such as army ants to sample broad swathes of tropical forest
viromes can shed light on the composition and the structure of viral populations of these complex
and inaccessible ecosystems.
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Introduction 

Viruses are likely the most abundant and diverse biological entities on Earth (Mokili et al., 2012; 
Geoghegan & Holmes, 2017; Zhang et al., 2019) and are arguably the most successful inhabitants of the 
biosphere (Wasik & Turner, 2013). Despite this, the current inventory of known virus diversity is likely a 
vanishingly small and unrepresentative fraction of the total diversity, abundance, and population 
structures of all extant viruses (Wren et al., 2006; Geoghegan & Holmes, 2017; Greninger, 2018; Harvey & 
Holmes, 2022). Hence, while the overall total number of eukaryotic virus species on Earth is estimated to 
be in excess of several million (Geoghegan & Holmes, 2017), only 10,434 virus species (including eukaryotic 
and prokaryotic viruses) are presently recognized by the International Committee on Taxonomy of Viruses 
(Walker et al., 2022). Our perception of the true extent and properties of the virosphere is further clouded 
by the fact that this minuscule sample of global virus diversity is heavily biased towards virus species that 
directly impact humans and the organisms that we tame and farm (Wren et al., 2006; Harvey & Holmes, 
2022). 

The best studied components of the virosphere are those that include the plant, animal, fungi and 
bacteria-infecting viral agents – called viromes – within or upon human bodies, human food sources 
(especially domesticated plants and animals) and human habitats (especially urban homes, hospitals, 
schools and farms). Conversely, the least studied components of the virosphere are those of natural 
environments, particularly remote ecosystems such as those found in deep tropical forests. Crucially, even 
when metagenomic projects have explored the viromes in such regions, these studies have been 
geographically and taxonomically biased. Hence, samples were only accessible via forest roads or tracks, 
and derived from the subset of plant or animal species that are likely to host viruses with some medical or 
agricultural relevance. Such sampling biases are understandable in that most future viral diseases of 
humans and their domesticated plants and animals will likely emerge from host species living or wandering 
in their vicinity. In addition, future emerging diseases will often be related to viruses already known to 
cause diseases in humans, and domesticated plants and animals. However, it is important to keep in mind 
that a less human-centric assessment of viral diversity at the ecosystem-scale could i) illuminate the natural 
host-ranges, ecological contexts and evolutionary processes underlying the diversification of viruses 
related to those that have already emerged to cause diseases that impact humans, and ii) identify the yet 
unknown viruses with properties such as broad host ranges or high incidences that could potentially pose 
future threats to humans (Elena et al., 2014; French & Holmes, 2020). More generally, the paucity of 
information on virus diversity in natural environments is hampering our understanding of both the roles of 
viruses within wild ecosystems, and how natural- or human- mediated disturbances of such ecosystems 
might impact these roles (Lefeuvre et al., 2019; French & Holmes, 2020; Sommers et al., 2021). 

Densely forested tropical regions account for 40 % of the world’s 4 billion hectares of forests (Poker & 
MacDicken, 2016) and provide, as a consequence of human activities surrounding these forests, major 
interfaces where humans interact with the world’s remaining wilderness areas. Besides accessibility issues, 
studying viromes in these habitats poses several additional challenges. The spatial pattern of sampling 
schemes, the establishment of a list of organisms to sample, and the developmental stages and/or 
symptom statuses of these organisms are all important considerations as they may or may not yield 
metagenomic data representative of the diversity of viruses circulating within the targeted area (Maclot et 
al., 2020). An interesting “meta-sampling” strategy that provides an alternative to classical human-centric 
assessment of viral diversity in inaccessible sampling sites is to rely on proxy samplers such as highly mobile 
predator/scavenger animals that naturally accumulate animal-, fungal- and plant-derived biomass within 
their digestive tracts during feeding (Ng et al., 2011; Temmam et al., 2014; Grubaugh et al., 2015; 
Brinkmann et al., 2016; Fauver et al., 2018). Rather than aiming for completely random sampling of 
biological material within a given environment, the general intention of this approach, -which is variously 
referred to as “xenosurveillance” or “vector-enabled metagenomics” (VEM) - is to shift the causes of 
unrepresentative sampling from human choice biases to the feeding-choice biases of the chosen mobile 
scavenger/predator that is intimately involved with the targeted environments (Ng et al., 2011; Temmam 
et al., 2014; Grubaugh et al., 2015; Brinkmann et al., 2016; Fauver et al., 2018). While feeding-choice biases 
are unavoidable with such meta-sampling schemes, they are biologically meaningful in that viral cargos of 
blood-feeding, sap-feeding and insectivorous insects are themselves inherently representative of viral 
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mobility within ecosystems. Insectivorous arthropods, so-called top-end insect predators, are potentially 
particularly useful samplers in this regard. Indeed, the diversity of viruses that they ingest via their prey 
should be partly representative of the viruses that are ferried within insects throughout the ecosystem. In 
addition, sampling top-end insect predators will avoid the capture (and sometimes sacrifice) of animals 
that are protected for ethical, legal or cultural reasons. Among xenosurveillance approaches, Predator 
Enabled Metagenomics (PEM), using for example dragonflies (Rosario et al., 2012) or damselflies, (Dayaram 
et al., 2016) has proved more efficient with respect to collecting a wide diversity of viral sequences than 
Vector-Enabled Metagenomics (VEM) using exclusively plant sap-feeding insects (e.g. whiteflies (Ng et al., 
2011)) or blood-feeding insects (e.g. mosquitoes (Grubaugh et al., 2015; Brinkmann et al., 2016; Fauver et 
al., 2018). 

In this study, we propose a PEM strategy using army ants of the genus Dorylus (Kronauer, 2009; Brady 
et al., 2014) as top-end insect predators. These nomadic insects are obligate collective foragers and group 
predators that attack a broad array of animal prey including crickets, cockroaches, earthworms, and even 
vertebrates. Although nomadic, they do have temporary nests around which they daily forage areas of 
~1km2 (Kronauer, 2009; Schöning et al., 2011; Brady et al., 2014). Army ants generally live in colonies 
containing between 104 to 107 workers (Chandra et al., 2021) with a daily colony-wide intake of 
prey/scavenged biomass of up to 2 kg (Powell, 2011). In addition to preying on an extremely diverse array 
of animal species, army ants also scavenge on the carcasses of large vertebrates and feed directly on plants 
(Schöning et al., 2008; Powell, 2011; Schöning et al., 2011).  

Here we test the overarching hypothesis that army ants hunting live invertebrate and vertebrate prey 
in the deep forest ingest and accumulate a diverse array of plant and animal viruses in the areas around 
their temporary nests. 

Materials and Methods 

Army ants sampling 
In July 2019, two sampling surveys were conducted in the Ogooué-Ivindo region (Northeast Gabon). 

Over 250 individual ants from 29 colonies were collected along roadsides between Mekambo and 
Mendemba villages, immediately stored in liquid nitrogen and further transferred to Montpellier (France) 
where they were stored at -80°C. Two-hundred and nine samples, including 145 samples containing only 
one ant and 64 samples each containing pools of 2 to 13 individual ants (Table 1 and Supplementary Table 
1) were further processed using the virion-associated nucleic acid based (VANA) metagenomics approach 
(Moubset et al., 2022). 

Virion-associated nucleic acid-based viral metagenomics 
Each of the 209 collected samples was processed using the VANA viral metagenomics approach that is 

comprehensively detailed in François et al. (2018) (François et al., 2018). It is noteworthy that the VANA 
approach is suited to the detection of both DNA and RNA viruses, and includes several steps that aim at 
both removing host nucleic acids and maximizing the yield of virion-associated nucleic acids (Moubset et 
al., 2022). Briefly, ants were first ground using tissue homogenizer and sterile steel beads. Viral particles 
from individual or pooled ant samples were first isolated using centrifugation and filtration techniques and 
they were further concentrated by ultracentrifugation. Contaminating non-encapsidated nucleic acids 
were then digested by DNase and RNase digestion treatments. Following this, encapsidated DNA and RNA 
molecules resistant to the DNase and RNase treatments were extracted. A series of molecular amplification 
was subsequently carried out, including reverse transcription, Klenow fragment treatment, and 
amplification of the viral DNA and RNA using barcoded PCR primers. Finally, amplification products were 
pooled into 3 libraries. Five negative controls, each containing 8 ml of 1x Hanks’ buffered salt solution, 
were also added to the three libraries. The ant samples and the negative controls were further sequenced 
by Genewiz (Leipzig, Germany) using a single lane on an Illumina HiSeq 3000/HiSeq 4000 sequencer (2 × 
150 bp sequencing). Bioinformatics analyses were performed as described previously (François et al., 
2018).  
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Table 1 – Characteristics of the army ant samples. P21/P23 means that colonies P21 and P23 were 
pooled. The species assignation is based on Cytochrome oxidase I reads and contigs analysis. “nd” 
means non determined. 

 

 
Briefly, demultiplexing was performed with the agrep command-line tool to assign reads to the samples 

from which they originated (Wu & Manber, 1992). Adaptors were removed and the reads were filtered for 
quality (q30 quality and read length >45 nt) using Cutadapt 3.1 (Martin, 2011). The cleaned reads were 
assembled de novo into contigs using SPAdes 3.6.2 (Bankevich et al., 2012). Putative virus reads obtained 
using BLASTx (Altschul et al., 1990) against the GenBank non-redundant protein database with e-values < 
0.001 were retained. Amplification products (amplicons) of four samples (N° 166, 185, P13-3.2 and P17-
2.2, Supplementary Table 1) were also sequenced in parallel using the recently developed Flongle (flow cell 
dongle) sequencing system (Oxford Nanopore Technologies, Oxford, UK). These amplicons were purified 
using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA). Library construction for the Flongle 
sequencing system was performed using the SQK-LSK109 Kit, following the manufacturer’s instructions. 
Four Flongle Flow Cell (R9.4.1) were used for sequencing. The bioinformatics analysis of the Nanopore 
reads was carried out as follows: accurate base calling was performed using Guppy (v5.0.16; available 
online at https://nanoporetech.com/). Adapter and primer (Dodeca linker) removal was then performed 
using Porechop v0.2.4 (available online at https://github.com/rrwick/Porechop). The quality of reads was 
investigated using NanoPlot v1.33.0 (De Coster et al., 2018). Taxonomic assignment was achieved on 
cleaned Nanopore reads through searches against the NCBI nr protein database using DIAMOND 0.9.22 
with an e-value threshold of < 0.001 (Buchfink et al., 2015). Read analyses of the five negative controls 
were performed and numbers of virus reads were determined. Indicative of cross-sample contamination, 
virus reads assigned to the virus families mostly represented in the ant samples (i.e. Parvoviridae, 
Microviridae, Dicistroviridae, Circoviridae, Iflaviridae, Polycipiviridae, Retroviridae, Bidnaviridae and 
Nodaviridae) as well as cruciviruses were found associated with the negative control, with a mean of 15 
reads per virus family. This result suggests that a minimum of 15 reads assigned to these 10 virus families 
would be a conservative threshold above which a sample should be considered as likely containing viral 
sequence assigned to these families. On the other hand, no “read threshold” was used for the virus families 
for which no evidence of cross-sample contamination was identified. 

Dorylus sp. cytochrome oxidase I reads inventory and taxonomic assignment 
Illumina reads assigned to Dorylus sp. cytochrome oxidase I gene using BLASTx searches were recovered 

and further assembled using SPAdes (Bankevich et al., 2012). Contigs and representative cytochrome 
oxidase I gene sequences of Dorylus sp. specimens representing all six recognized subgenera (Kronauer et 
al., 2007) were subsequently aligned using MUSCLE with default settings (Edgar, 2004). A phylogenetic tree 
was constructed using the maximum likelihood method implemented in PhyML 3.1 (Guindon et al., 2010). 
The HKY85 substitution model was selected assuming an estimated proportion of invariant sites of 0.542 

 

Ant 

colony 

number 

Nb. of 

samples 

Genus Species Foraging 

niche 

Collection 

date 

Collection location GPS coordinates 

FM1 4 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-07 Mendemba nd 

FM2 4 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-07 Mendemba nd 
FM3 4 Dorylus sp. nd nd 2019-07-07 Between Ntolo and Mekouma nd 

FM4 4 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-07 Between Ntolo and Mekouma nd 
FM5 4 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-07 Mekouma nd 

FM6 4 Dorylus sp. nd nd 2019-07-07 Between Mekouma and Malassa nd 

FM7 4 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-07 Mekambo nd 

FM8 4 Dorylus sp. nd nd 2019-07-07 Mekambo nd 

P1A 9 Dorylus sp. nd nd 2019-07-08 Mekambo 00°57.214' - 013°58.396' 
P2A 5 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-08 Komambela 00°49.865' - 013°58.846' 

P3A 8 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-09 Mekambo 00°56.681' - 013°59.032' 

P4A 8 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-09 Between Ibong and Zoula 01°02.872' - 014°00.951' 
P5 8 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-09 Between Ibea and Zoula 01°04.409' - 014°03.100' 

P6 
8 Dorylus sp. D. opacus/kohli clade leaf-litter 

2019-07-09 
Between Zoula and Grand 
Etoumbi 01°08.545' - 014°06.826' 

P7 

8 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-09 Between Massombo and 

Egopouma 01°16.394' - 014°06.873' 
P8A 9 Dorylus sp. nd nd 2019-07-09 Between Ibea and Zoula 01°04.086' - 014°02.629' 

P9 9 Dorylus sp. nd nd 2019-07-09 Between Ibea and Zoula 01°03.571' - 014°02.068' 

P10 9 Dorylus sp. nd nd 2019-07-10 Between Mbessa and Malassa 00°54.502' - 014°01.582' 
P11 9 Dorylus sp. nd nd 2019-07-12 Between Malassa and Mekouma 00°51.149' - 014°04.198' 

P12 9 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-12 Between Ntolo and Mekouma 00°49.975' - 014°04.212' 
P13 9 Dorylus sp. nd nd 2019-07-10 Between Mekouma and Ntolo 00°48.731' - 014°04.110' 

P14 9 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-10 Between Mekouma and Ntolo 00°44.720' - 014°05.251' 

P15 9 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-11 Mekambo 00°59.282' - 013°57.916' 

P16 9 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-11 Mekambo 00°58.182' - 013°58.277' 
P17 9 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-11 Mekambo 00°57.042' - 013°58.532' 

P18 9 Dorylus sp. nd nd 2019-07-11 Mbeza 00°55.154' - 013°59.798' 
P19 9 Dorylus sp. nd nd 2019-07-12 Between Mekambo and Mbeza 00°56.939' - 013°58.605' 

P21/P23 5 Dorylus sp. D. sjoestedti/wilverthi clade surface swarms 2019-07-12 Mbeza 00°55.167' - 013°59.793' / 00°52.804' - 014°03.581' 
P24 10 Dorylus sp. nd nd 2019-07-12 Between Malassa and Mekouma 00°52.253' - 014°03.609' 
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and 4 gamma-distributed rate categories to account for rate heterogeneity across sites. The gamma shape 
parameter was estimated directly from the data (gamma=1.219). Support for internal branches was 
assessed using the aLRT test (SH-Like). 

Inventory of virus contigs and putative taxonomic assignment 
One of the critical aspects of using BLAST-based searches to assign contigs to viral families is the 

minimum length of the contig being queried. We have recently conducted a simulation experiment that 
has revealed that the accuracy of the BLASTx virus family and genus assignations are high, i.e. >97.9% and 
>90.6%, respectively, when contigs have lengths ≥200 nt (Moubset et al., 2022). We therefore selected 
contigs with lengths ≥200 nt and retained viral BLASTx assignations of these contigs wherever they yielded 
e-values < 0.001. 

Statistical analyses 
The taxonomic assignations of ≥200 nt long virus contigs at the genus level (as determined by best 

BLASTx hits) were scored for individual ants, including 67 individual workers and 78 individual soldiers. 
Differences between the number of viral genera associated with workers and soldiers were compared using 
Mann-Whitney U-tests. Differences between the number of viral genera associated with individual ants 
belonging to the Dorylus sjoestedti/wilverthi clade (n = 76) and to the Dorylus opacus/kohli clade (n = 6) 
were also compared using Mann-Whitney U-tests. Finally, differences between the number of viral genera 
associated with individual ants from 20 Dorylus colonies (4 ≤ n ≤ 8) were compared using the Kruskal-Wallis 
H test. 

Phylogenetic analyses of most prevalent virus families 
Contigs assigned to the families Bidnaviridae, Dicistroviridae, Hepeviridae, Iflaviridae, Microviridae, 

Nodaviridae, Picobirnaviridae, Polycipiviridae, Tombusviridae, Tymoviridae and Solemoviridae, as well the 
Picorna-like virus group and the CP-based sequence grouping of viruses called cruciviruses (de la Higuera 
et al., 2020), were translated and conserved protein sequences were extracted (the even more prevalent 
parvo- and cycloviruses are analysed separately, see next sections). These protein sequences together with 
representative sets of protein sequences belonging to the virus groups/families to which the sequences 
were taxonomically assigned, were aligned using MUSCLE with default settings (Edgar, 2004). Neighbor 
joining phylogenetic trees were generated using MEGA version X (Kumar et al., 2018) using alignments of 
major capsid protein sequences (Bidnaviridae and Microviridae), capsid protein sequences (CP; 
cruciviruses), RNA-dependent RNA polymerase sequences (RdRp; Dicistroviridae, Nodaviridae, 
Picobirnaviridae and Solemoviridae), polyprotein sequences (Hepeviridae, Iflaviridae, Picorna-like viruses, 
Tombusviridae and Tymoviridae), and ORF5 sequences (Polycipiviridae). One thousand bootstrap replicates 
were performed to quantify branch support. 

Phylogenetic analyses of parvovirus-related sequences 
We attempted to evaluate the genetic relationships of the parvovirus-related sequences (PRS) that 

were by far the most abundant virus sequences amplified from the army ant samples. To reconstruct the 
evolutionary relationships of the various major parvovirus lineages we focused exclusively on the SF3 
(Super Family 3) helicase domain of parvovirus protein, NS1. The SF3 helicase domain is highly conserved 
in all known parvoviruses and is therefore typically used for phylogenetic analyses of divergent 
parvoviruses (Cotmore et al., 2014; François et al., 2016). NS1 BLASTx assignations (with e-values < 0.001) 
were initially retained and translated in silico using ORF finder (cut off ≥ 500 bp) 
(http://www.ncbi.nlm.nih.gov/projects/gorf/). NS1 protein sequences that were ≥200 aa in length were 
then selected and processed using the software Interproscan which predicted the presence of functional 
domains (Jones et al., 2014). Four-hundred and three SF3 protein sequences were further selected and 
combined with both 125 representative SF3 protein sequences of viruses from publicly available transcript, 
genome and protein databases that were classified as belonging to the Parvoviridae family (François et al., 
2016) and 155 SF3 protein sequences collected from available genomes of viruses classified in the 
Parvoviridae family from the NCBI genome database. The 683 SF3 protein sequences were aligned using 
MUSCLE with default settings (Edgar, 2004). A Neighbor-Joining tree was produced using MEGA version X 
(Kumar et al., 2018) with 1000 bootstrap replicates to quantify branch support. Specifically, NS1 protein 
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sequences that were ≥200 aa in length and which were assigned to the genus Chaphamaparvovirus were 
aligned together with 32 representative protein sequences from this genus using MUSCLE with default 
settings (Edgar, 2004). A phylogenetic tree was constructed using the maximum likelihood method 
implemented in PhyML 3.1 (Guindon et al., 2010). The WAG substitution model was selected by PhyML 3.1 
assuming an estimated proportion of invariant sites of 0.075 and four gamma-distributed rate categories 
to account for rate heterogeneity across sites. The gamma shape parameter was estimated directly from 
the data (gamma=1.337). Support for internal branches was assessed using the aLRT test (SH-Like). 

Sequencing and phylogenetic analyses of complete cyclovirus genomes 
Four hundred and seventy-two contigs ≥ 200 nt in length that shared similarity with members of the 

Circoviridae family were identified using BLASTx searches with e-values < 0.001 (Supplementary Table 2). 
These contigs were initially aligned using MUSCLE and clustered in 22 genetic groups (data not shown). 
Abutting primer pairs were designed that were specific to these genetic groups (Supplementary Table 3) 
to enable the recovery of full viral genomes using polymerase chain reaction (PCR) with HiFi HotStart DNA 
polymerase (Kapa Biosystems, USA) using cycling conditions per the manufacturer's instructions. The 
amplicons were resolved on a 0.7% agarose gel using electrophoresis, and amplicons approximately 2–3 
kb in size were excised from the gel and purified using the Quick-spin PCR Product Purification Kit (iNtRON 
Biotechnology, Korea). The amplicons were further cloned in pJET1.2 cloning plasmid (ThermoFisher 
Scientific, USA), and the recombinant plasmids were then transformed into XL1 blue Escherichia coli 
competent cells. The resulting plasmids from the transformants were purified using a DNA-spin Plasmid 
DNA Purification kit (iNtRON Biotechnology, Korea), and then sequenced by primer walking at Macrogen 
Inc. (Korea). Specifically, 45 translated Rep sequences recovered from 45 complete genome sequences and 
representative cyclovirus Rep protein sequences were aligned using MUSCLE with default settings (Edgar, 
2004). A phylogenetic tree was constructed using the maximum likelihood method implemented in PhyML 
3.1 (Guindon et al., 2010). The LG+I+G substitution model was selected assuming an estimated proportion 
of invariant sites of 0.075 and 4 gamma-distributed rate categories to account for rate heterogeneity across 
sites. The gamma shape parameter was estimated directly from the data (gamma=1.337). Support for 
internal branches was assessed using the aLRT test (SH-Like). 

Results and discussion 

Classification of army ants using mitochondrial cytochrome oxidase I gene 
Before examining the diversity of viruses associated with the army ant samples that we collected from 

Gabon, we attempted to determine the Dorylus species that the ants belonged to by examining their 
mitochondrial cytochrome oxidase I genes. Ninety-nine reads from 24/209 of the ant samples, representing 
17/29 of the ant colonies, that shared identity with the cytochrome oxidase I gene were recovered from 
the Illumina sequencing run. Sixty-four of these 99 reads were further assembled into five contigs with 
lengths ranging from 123 nt to 225 nt. Two maximum likelihood phylogenetic trees containing these contigs 
together with partial sequences of the cytochrome oxidase I gene of 38 Dorylus sp. specimens (representing 
all six recognized Dorylus subgenera) indicated that four contigs (contigs #1, #3, #4 and #5) clustered with 
Dorylus sjoestedti, Dorylus wilverthi and Dorylus rubellus whereas the last contig (contig #2) clustered with 
Dorylus opacus, Dorylus kohli and Dorylus helvolus (Supplementary Figure 1). While contig #2 comprised 
seven reads obtained from two samples of colony P6, contigs #1, #3, #4 and #5 were composed of 57 reads 
obtained from 23 samples from 15 colonies (Table 1 and Supplementary Table 1).  

In addition, 266 reads that shared identity with the cytochrome oxidase I gene were recovered from 
four Nanopore sequencing runs. These Nanopore reads shared high identity with Dorylus sjoestedti and 
Dorylus wilverthi suggesting that ant samples from the FM1 (not assigned by Illumina reads), FM2 and P17 
colonies were also related to these two army ant species. Finally, no cytochrome oxidase I reads were 
identified from eleven ant colonies that, therefore, remained taxonomically unassigned (Supplementary 
Table 1).  

Dorylus sjoestedti, Dorylus wilverthi and Dorylus rubellus are army ant species that are considered 
“swarm foragers” (most commonly known as driver ants) on the forest floor and in the lower vegetation 
(Kronauer et al., 2007). In contrast, Dorylus opacus and Dorylus kohli which hunt small invertebrates and 
worms in the leaf-litter are more closely related to subterranean species of Dorylus sp., than to the surface 
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swarm foraging ants (Kronauer et al., 2007). Overall, the mitochondrial cytochrome oxidase I gene analysis 
confirmed that the army ants collected in our study were mostly of the genus Dorylus and that they were 
therefore suitable for testing our overarching hypothesis that army ants hunting live invertebrate and 
vertebrate prey in the deep forest ingest and accumulate numerous plant and animal viruses present in an 
area around their temporary nests. 

Genetic and morphological factors influence the army ant virome 
The three sequencing libraries each contained an average of 50 million reads following removal of 

short (<15 nt) sequences and individual sequence regions with low quality scores. Overall, 443,645 
contigs that were ≥200 nt in length were assembled and 46,377 of these contigs (10.5%) exhibited 
sequence similarity to viruses (BLASTx e-values < 0.001). Among these 46,377 contigs, 11,146 were 
assigned at the viral realm level, 1,377 were assigned at the viral order level and 11,448 were assigned at 
the viral family level. Only 22,406 of the 46,377 contigs (48.3%) exhibited sequence similarity to viral genera 
recognized or in the process of being recognized by the International Committee on Taxonomy of Viruses. 
These apparently virus-derived contigs yielded detectable homology to viruses of 157 different viral genera 
in 56 viral families (Supplementary Table 2); overall, a higher diversity than the 29 virus families identified 
from queens from 49 colonies of North American red fire ant Solenopsis invicta (Brahma et al., 2022). It is 
noteworthy that the most frequently amplified viral sequences belonged to families containing viruses that 
are known to infect invertebrates, including Circoviridae, Dicistroviridae, Iflaviridae, Polycipiviridae and 
Parvoviridae (Figure 1, Supplementary Table 2). However, plant-, bacteria- and vertebrate-associated 
viruses were also detected (Figure 1, Supplementary Table 2). While the diversity of the detected virus 
genera was apparently important, several virus genera that are ubiquitous worldwide (such as 
Amalgavirus, Endornavirus) were either undetected or rarely detected. This may be attributable to  the 
metagenomics approach that was used being based on the analysis of virion-associated nucleic acids: an 
approach that is potentially biased towards the semi-purification of viral capsids that are resilient to harsh 
conditions within the digestive tracts of the ants and the organisms that they prey on. This may explain 
why capsidless RNA viruses of fungi, oomycetes and plants, such as those in the families Amalgaviridae 
(not detected), Deltaflexiviridae (1 contig detected), Endornaviridae (2 contigs detected), Hypoviridae (no 
contigs detected), Mitoviridae (no contigs detected), Narnaviridae (1 contig detected) and Polymycoviridae 
(no contigs detcetd) (Mart Krupovic & Koonin, 2017; Fermin, 2018) were either undetected or only rarely 
detected in this study. 

The taxonomic assignations of virus contigs ≥200 nt in length at the genus level were scored for 
individual ants belonging to 20 Dorylus colonies, including 67 individual workers and 78 individual soldiers. 
No significant difference between the number of virus genera identified from individual ants of the 20 
Dorylus colonies were found (p-value = 0.1067), suggesting that our roadside sampling survey in the 
Ogooué-Ivindo region of Gabon was reasonably homogeneous. Remarkably, ants belonging to the Dorylus 
opacus/kohli clade yielded contigs with homology to viruses in significantly fewer genera (median = 4.5, SD 
= 2.32) than ants assigned to the Dorylus sjoestedti/wilverthi clade (median = 9, SD = 4.02; p-value = 
0.0057).  

While ant species in the Dorylus opacus/kohli clade hunt in leaf-litter and forage on forest floors and 
on vegetation, the driver ant species from the Dorylus sjoestedti/wilverthi clade are swarm raiders 
(Chandra et al., 2021) that prey on invertebrates and  occasionally on vertebrates (Kronauer et al., 2007). 
These driver ants therefore potentially hunt a wider diversity of prey that may result in the intake of a 
larger diversity of viruses. This result needs to be further confirmed, however, since only eight ants from 
the Dorylus opacus/kohli clade could be analyzed in this study (Table 1).  

Finally, we found that contigs obtained from worker ants that were homologous to known viruses 
represented significantly fewer virus genera (median = 7, SD = 3.52) than those obtained from soldier ants 
(median = 10, SD = 4.27; p-value = 0.00007). Whereas worker ants specialize in hunting and collecting food, 
soldier ants have powerful mandibles and specialize in colony defence. In addition, the workers have 
smaller body sizes than soldier ants. 
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Figure 1 – Sequence identity distribution analysis of viral sequences from the army ant virome. Each 
dot represents an assembled sequence contig with the corresponding protein identity (best BLASTx 
e-values < 0.001) to plant (top) and animal virus (bottom) in the GenBank nonredundant database. 

At this stage, we have no clear explanation as to why the diversity of viruses was higher in the soldier 
ants than in the worker ants. We can hypothesise that i) soldiers simply eat more than workers, ii) soldiers 
ingest a greater diversity of organisms than workers because some of the animals that are attacked during 
defence are not necessarily food for the colony, and/or iii) have an immune system that is more permissive 
of viral infections. Of relevance is also the fact that host body size frequently shows a positive correlation 
with parasite species richness (Poulin, 1995; Kamiya et al., 2014), large-bodied soldier ants may provide 
greater cellular capacity for viral storage/replication than small-body worker ants. Whatever the 
explanation, this observation suggests that driver-ant soldiers may be ideal candidates for the surveillance 
of viruses circulating in tropical forest ecosystems. 
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A broad diversity of bacterial, plant, invertebrate and vertebrate viruses is accumulated by army ants 

Bacteriophages 
Overall, 583 contigs ≥200 nt in length (mean size = 286 nt) were assigned to five bacteriophage families 

(Herelleviridae, Microviridae, Namaviridae, Picobirnaviridae and Tectiviridae) and three “unclassified 
Caudoviricetes” (recently abolished Myoviridae, Podoviridae and Siphoviridae families (Walker et al., 
2022)) with Microviridae accounting for 83.7% (488) of these: a result suggesting that the VANA approach 
may not efficiently detect bacteriophages with a head and tail structure (Supplementary Table 2). 
Phylogenetic analyses of the major capsid protein sequences of 30 contigs assigned to the Microviridae 
revealed that these could be subdivided into three groups (Figure 2): (1) one comprising 21 contigs 
branching with an unclassified Gokushovirinae isolate (isolate Bog1183 53; accession number: 
YP_009160331) recovered from a sphagnum-peat soil (Quaiser et al., 2015); (2) one comprising four contigs 
clustering with Spiroplasma virus SpV4; Acc. Nbr: NP_598320); and (3) one comprising five contigs grouping 
with two unclassified microviruses (Alces alces faeces associated microvirus MP21 4718 isolated from 
moose feces [Acc. Nbr: YP_009551424] and Fen7940 21 [Acc. Nbr: YP_009160412] isolated from a 
sphagnum-peat soil).  

Additionally, 33 contigs were assigned to the Picobirnaviridae family (Supplementary Table 2) that 
comprises viruses putatively infecting prokaryotes (Krishnamurthy & Wang, 2018). Our phylogenetic 
analyses showed that three army ant contigs (for which we obtained RdRp sequences >130 aa) were 
unambiguously nested within the picobirnavirus clade (Supplementary Figure 2). 

Stramenopiles/alveolates/Rhizaria viruses 
A total of 152 contigs ≥200 nt in length (mean size = 282 nt) were assigned to the crucivirus group 

(Supplementary Table 2): a growing group of viruses that appear to have originated through recombination 
between circular Rep-encoding ssDNA (CRESS-DNA) viruses and RNA tombusviruses  that may infect 
members of the stramenopiles/alveolates/Rhizaria supergroup (de la Higuera et al., 2020). Phylogenetic 
analyses of the predicted capsid protein sequences of three crucivirius-like contigs (for which we obtained 
CP sequences >440 aa) and representative sequences of cruciviruses showed that the ant-derived 
sequences clustered with two unclassified cruciviruses (Crucivirus 250 [Acc. Nbr: MT263579] and Crucivirus 
268 [Acc. Nbr: MT263584]) isolated from water and sediments in New Zealand (Supplementary Figure 2). 

Plant viruses 
Overall, 101 contigs ≥200 nt in length were assigned to 22 genera in 14 plant virus families (Figure 1, 

Supplementary Table 2). The size of these contigs ranged from 203 nt to 745 nt (mean = 298 nt), suggesting 
that they may have originated from degraded plant virus nucleic acids. This degradation could likely be a 
consequence of the digestion process, either from plants directly consumed by the ants, or along the 
trophic chain that ended in their eventual presence within the sampled army ants. Alternatively, the low 
yield of reads/contigs assigned to plant viruses may have been due to the sequencing depth being 
insufficient for the detection of low abundance viruses within communities sometimes comprising ten or 
more virus species present at widely different titres. Plant virus contigs were recovered from 30/145 
individual ants (20.7%), including 22/78 soldiers (28.2%) and 8/67 workers (11.9%), suggesting that, as with 
other viruses, plant viruses tended to accumulate more in soldiers. Contigs with detectable homology with 
plant virus families containing economically relevant crop pathogens (e.g., Reoviridae, Tombusviridae, 
Geminiviridae, Solemoviridae, or Alphaflexiviridae Figure 1) were identified in this study and in a recent 
study focusing on North American red fire ant Solenopsis invicta (Brahma et al., 2022).  

This confirms that a broad diversity of plant viruses can potentially be detected within the viromes of 
top-end predators like army ants that feed on a wide range of herbivorous insects such as whiteflies, 
aphids, leafhoppers and thrips. Interestingly, possible translations of several contigs shared high amino 
acid identity (86-98%) with two well studied plant viruses: Peach virus D (PeVD; Tymoviridae family; 
Marafivirus genus) and Sowbane mosaic virus (SoMV; Solemoviridae family; Sobemovirus genus). While 
PeVD-like and SoMV-like contigs (≥ 200 nt) were respectively recovered from four and five ant colonies, 
smaller (100 - 200 nt) PeVD-like and SoMV-like contigs were respectively identified from 11 and 9 colonies. 
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Figure 2 – Phylogenies of the sequences of the viruses in the families Microviridae, Solemoviridae, 
Tymoviridae, Nodaviridae and Dicistroviridae. Sequences in red refer to army ant-associated contigs. 
Neighbor joining phylogenetic trees were generated using alignments of Microviridae major capsid 
protein sequences ranging from 306 aa to 761 aa, Dicistroviridae RNA-dependent RNA polymerase 
protein sequences (694-2775 aa), Nodaviridae RNA-dependent RNA polymerase protein sequences 
(656-1033 aa), Solemoviridae RNA-dependent RNA polymerase protein sequences (262 aa) and 
Tymoviridae polyprotein protein sequences (117 aa). One thousand bootstrap replicates were 
performed to quantify branch support. The scale bar depicts the number of amino acid substitutions 
per site. 
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These two plant viruses thus appear highly prevalent in the hunting areas of the sampled army ants. 
Mapping of Illumina and Nanopore reads and contigs assigned to PeVD and SoMV against reference 
genomes enabled the assembly of partial genome scaffolds respectively covering 39% (2576/6612 nt) and 
79.4% (3163/3983 nt) of the PeVD and SoMV full length genomes. Phylogenetic analyses of the SoMV-like 
RdRp sequences and the PeVD-like polyprotein sequences confirmed that these army ant-associated 
viruses respectively clustered with known SoMV and PeVD isolates (Figure 2). Even though contigs assigned 
to 22 genera in 14 plant virus families were obtained from army ant samples, it is questionable whether 
these top-end predators are the best samplers for plant metavirome-focused studies. Using herbivorous 
insects such as caterpillars that directly feed on a wide variety of plants or using predators such as 
dragonflies (Rosario et al., 2012), damselflies (Dayaram et al., 2016) or ladybug larva that prey on a wide 
variety of herbivorous insects, would probably be more efficient with respect to analysing the metaviromes 
of plants within an environment.  

 

Figure 3 – Phylogenies of the sequences of the viruses in the families Iflaviridae, Bidnaviridae, 
Hepeviridae and Polycipiviridae, as well as Picorna-like viruses. Sequences in red refer to army ant-
associated contigs. Neighbor joining phylogenetic trees were generated using alignments of 
Iflaviridae polyprotein protein sequences ranging from 965 aa to 3229 aa, Hepeviridae polyprotein 
protein sequences (669 aa), Picorna-like viruses polyprotein protein sequences (2487-2858 aa), 
Bidnaviridae major capsid protein sequences (515-615 aa) and Polycipiviridae ORF5 protein 
sequences (1479-2331 aa) . One thousand bootstrap replicates were performed to quantify branch 
support. The scale bar depicts the number of amino acid substitutions per site. 

Invertebrate-infecting viruses 
Besides recovering a diverse array of vertebrate-, plant- and prokaryote-associated virus sequences, 

we also identified a large number of highly diverse contigs with detectable homology to known 
invertebrate-infecting viruses. These included single-strand positive-sense RNA viruses of the Nodaviridae 
(82 contigs, mean size = 678 nt), Dicistroviridae (643 contigs, mean size = 496 nt) and Iflaviridae (1067 
contigs, mean size = 549 nt) families (Supplementary Table 2 and Figures 2 and 3), branching with 
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previously known viral sequences associated with or infecting invertebrates. We also found 1273 contigs 
sharing detectable homology with the order Picornavirales (Supplementary Table 2), including unclassified 
Picorna-like viruses (793 contigs, mean size = 609 nt) and viruses assigned to the Sopolycivirus and 
Chipolycivirus genera of the Polycipiviridae family (480 contigs, mean size = 481 nt; Figure 3), two genera 
of non-segmented, linear, positive-sense RNA viruses that have previously been found associated with ants 
(family Formicidae) (Olendraite et al., 2019). Finally, we recovered 103 contigs (mean size = 793 nt) that 
were assigned to the Bidnaviridae family: a virus family that is composed of bipartite ssDNA viruses 
infecting invertebrates. Interestingly, it has been suggested that bidnaviruses may have arisen by 
integration of an ancestral parvovirus genome into a large virus-derived DNA transposon from the polinton 
family (M. Krupovic & Koonin, 2014). We here propose that the bidnavirus-like contigs recovered from 
army ants in our study are likely derived from diverse bipartite bidnaviruses, because these contigs are 
scattered all through the bidnavirus phylogenetic tree (Figure 3). 

Vertebrate-infecting viruses 
Because Dorylus species have been reported to occasionally prey on vertebrates and scavenge on 

vertebrate carcasses, we logically investigated the presence of vertebrate viruses. Besides contigs assigned 
to cyclovirus and parvovirus taxonomic groups that are known to infect vertebrates (see below for a 
detailed analysis of these two taxa), we found 12 contigs that shared high nucleotide identity with the 
Hepeviridae family (mean size = 491 nt), including 4 contigs assigned to the Orthohepevirus genus 
(Supplementary Table 2). The family Hepeviridae includes five genera whose members infect salmonid fish, 
mammals and birds (Purdy et al., 2017). Specifically, a 2017 nt long contig shared 72.73% identity (e-value 
= 1.10-70) with Hepevirus Mystacina/New Zealand/2013/3 (Acc. Nbr: KM204384), a hepevirus that was 
discovered associated with New Zealand lesser short-tailed bats (Mystacina tuberculata) (Wang et al., 
2015). This result was further confirmed by phylogenetic analyses (Figure 3), and supports the hypothesis 
that the viromes of army ants can include viruses derived from the vertebrates upon which they prey and 
/or scavenge. 

Foraging army ants are reservoirs of a large diversity of parvoviruses and cycloviruses  
We focused on two viral families that have been extensively studied in recent years in the context of 

metagenomics studies: Parvoviridae and Circoviridae. Both are ssDNA virus families with member species 
sharing many biological, epidemiological and ecological characteristics. During the last decade, 
parvoviruses (in particular chapparvoviruses) and circoviruses (in particular cycloviruses) have been 
characterized from various fluid (e.g. blood) and excretion samples (e.g. feces) from vertebrates (Smits et 
al., 2013; Phan et al., 2015; Roediger et al., 2018; Fahsbender et al., 2019). Some of these studies have 
further demonstrated that some chapparvoviruses and cycloviruses can actually infect vertebrate hosts 
(Smits et al., 2013; Phan et al., 2015; Roediger et al., 2018). However, due to the wide distribution of both 
viral families also in invertebrates, their natural host-ranges and the pathological characteristics of these 
viruses remain largely uncertain. For this reason, we were particularly interested in determining the 
phylogenetic relationships between parvovirus- and cyclovirus sequences found in army ants and those of 
close relatives that have been sampled previously from vertebrates and invertebrates. 

Parvoviruses 
The family Parvoviridae is composed of animal-infecting viruses which can collectively infect almost all 

major vertebrate clades and both proto- and deuterostome invertebrates (Pénzes et al., 2020). Parvovirus-
related sequences (PRS) were by far the most abundant virus sequences amplified from the army ant 
samples and accounted for 17,419 contigs (77.8% of all virus contigs ≥200 nt in length, mean size = 469 nt). 

Four hundred and three army ant-associated SF3 helicase domain sequences (a subdomain of the 
parvovirus NS1 protein) were scattered around the parvovirus SF3 phylogenetic tree and clustered with 
SF3 sequences from viruses in almost all parvovirus genera with the notable exception of those in genera 
of the Parvovirinae subfamily (Figure 4). This suggests that a range of animals infected by a broad diversity 
of parvoviruses was likely preyed or scavenged upon by army ant colonies. These animals were likely 
predominantly invertebrates including arthropods, molluscs, annelids, nematodes, and cnidarians (Figure 
4). This phylogenetic analysis also revealed parvoviruses that might infect army ants. Specifically, some 
clades contained only army ant-derived SF3 sequences (see for instance the clade located between the two 
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ambidensovirus groups, depicted with an ant and a question mark in Figure 4) and it is plausible that the 
parvoviruses from which these sequences were derived may have been directly infecting the army ants.  

 

Figure 4 – Phylogeny of the sequences of the viruses in the family Parvoviridae. The Neighbor joining 
phylogenetic tree was generated using alignments of SF3 protein sequences with 500 bootstrap 
replicates to quantify branch support. Sequences in red refer to army ant-associated contigs. Putative 
hosts of several parvoviruses are depicted at the extremity of the branches. Specifically, an ant and a 
question mark are depicted nearby the clade located between both ambidensovirus groups, because it 
is plausible that the parvoviruses from which these sequences were derived may have been directly 
infecting the army ants. Genera of the Parvoviridae family are also indicated. The scale bar depicts the 
number of amino acid substitutions per site. 

We further focused on the genetic relationships of the NS1 proteins of chapparvovirus isolates because, 
while these parvoviruses have been primarily identified by metagenomic studies of animal feces, they have 
also been both isolated from the tissues of vertebrates (including reptiles, mammals, and birds (Souza et 
al., 2017; Fahsbender et al., 2019) and found as endogenous parvoviral elements (EPVs) within invertebrate 
genomes (Pénzes et al., 2019). Recently, this parvovirus group was split into two distinct sub-groups 
corresponding to two newly established genera: Ichthamaparvovirus and Chaphamaparvovirus (Pénzes et 
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al., 2020). While ichthamaparvoviruses are known to infect fishes and potentially also invertebrates, 
chaphamaparvoviruses have only so far been found in vertebrates (Pénzes et al., 2019).  

Among the parvovirus-like contigs from army ants were several lineages of highly diverse 
chapparvoviruses (Figure 5) that likely reflect the wide range of prey and carrion upon which these ants 
feed. These apparently chapparvovirus-derived contigs clustered with invertebrate EPVs (Mesobuthus 
martensii, Catajapyx aquilonaris and Nephila pilipes) and sequences recovered from bird swabs and a 
human plasma sample (Figure 5). This suggests that the diversity of chapparvoviruses that infect army ants 
potentially resulted from the ingestion of infected invertebrates and that chapparvoviruses isolated from 
animal feces or human plasma may have been derived directly from either parasitic or ingested 
invertebrates 

 

Figure 5 – Phylogeny of the chapparvoviruses. The maximum likelihood tree was generated using 
alignments of NS1 protein sequences ranging from 214 aa to 823 aa and the WAG substitution model 
assuming an estimated proportion of invariant sites (of 0.075) and 4 gamma-distributed rate 
categories to account for rate heterogeneity across sites. The gamma shape parameter was estimated 
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directly from the data (gamma=1.337). Support for internal branches was assessed using the aLRT 
test (SH-Like). Sequences in red refer to army ant-associated contigs. Putative hosts of several 
parvoviruses are depicted to the right of the branches. The two genera of the chapparvovirus group 
are also indicated. The scale bar depicts the number of amino acid substitutions per site. 

Cycloviruses 
Four hundred and seventy-two contigs ≥ 200 nt in length (mean size = 417 nt) with detectable homology 

to sequences of viruses in the family Circoviridae (that comprises two genera: Circovirus and Cyclovirus) 
clustered in 22 genetic groups (data not shown). Here, we were able to obtain potentially complete 
genomes of 45 isolates representing the 22 genetic groups from 17 army ant colonies. These genomes, 
with lengths ranging from 1,723 to 2,024 nt, contained two ORFs predicted to encode a replication-
associated protein (Rep) and a capsid (CP) protein. A conserved nonanucleotide motif (TAGTATTAC) that is 
typical of the members of the Circoviridae family was identified on the cp-encoding strand of the 45 
genomic sequences. Similarly, all genomes contained two intergenic regions, one located between the 5′ 
ends of the rep and cp ORFs, and another between the 3′ ends of the cp and rep ORFs: again genomic 
features common in the Circoviridae family. Finally, ten out of the 45 Circoviridae genome sequences have 
an apparent intron in the rep coding region that is possibly spliced to yield a functional Rep. A phylogenetic 
analysis showed that the 45 translated Rep sequences are all nested within the phylogenetic tree that 
included Rep sequences of representative isolates of the Cyclovirus genus (Figure 6). Thirty-eight out of the 
45 army ant-associated cyclovirus Rep sequences clustered in four groups that respectively contained 
seven isolates (cluster I in Figure 6), eleven isolates (cluster II in Figure 6), ten isolates (cluster III in Figure 
6) and ten isolates (cluster VI in Figure 6).  

Given that viruses within the Circoviridae family are classified into species based on genome-wide 
pairwise identities with an 80% species demarcation threshold (Rosario et al., 2017), the 45 army ant-
associated cycloviruses could reasonably be classified into nine new species (Army ant associated cyclovirus 
1, 2, 3, 4, 5, 6, 8, 9 and 10) and two existing Cyclovirus species. Specifically, the seven isolates of cluster I 
(Army ant associated cyclovirus 11) shared 90.8-91.8% identity with Pacific flying fox associated cyclovirus 
3 (Acc. Nbr. KT732787, KT732788 and KT732789) and Army ant associated cyclovirus 7 (Acc. Nbr 
ON324106) shared 80.6% with Bat cyclovirus isolate CyVLysokaP4_CMR_2014 (Acc. Nbr MG693174) which 
was isolated in Cameroon from fecal samples of Eidolon helvum, a fruit-eating bat (Yinda et al., 2018). 
Interestingly, a Rep sequence recovered from one of the army ant samples (Army ant associated cyclovirus 
10, Acc. Nbr. ON324073) shared 262/278 amino acids (94% identity) with a human cyclovirus (isolate 
VS5700009, Acc. Nbr. YP_008130363) isolated from a patient with an unexplained paraplegia from Malawi 
(Smits et al., 2013). The CP sequence predicted from the same assembled genome-length contig shared 
162/185 aa (88% identity) with an unclassified cyclovirus (isolate ZM36a, Acc. Nbr. YP_009104365) 
detected within the intestinal contents of a shrew in Zambia (Sasaki et al., 2015). Cyclovirus ZM36a was 
also closely related to cycloviruses initially identified from human patients with central nervous system 
manifestations (Tan le et al., 2013). These results stress the need to better monitor and understand the 
circulation of cycloviruses between invertebrates, humans and rodents, and the potential of army ants as 
natural samplers: perhaps even of viruses directly related to human diseases. 

Conclusion 

This study suggests that predators and scavengers such as army ants can be used to sample broad 
swathes of environmental viromes including viruses infecting plants, invertebrates and vertebrates. 
Although not completely unbiased (insects will still have feeding preferences that preclude the sampling of 
all viruses in an ecosystem), using army ants to sample tropical forest viromes will likely yield sequence 
data from a more diverse array of viruses than if plants or animals with less diverse diets than army ants 
were sampled. Army ants will be a particularly good tool for sampling invertebrate viruses in such 
environments given that they carry what appears to be an extraordinary diversity and abundance of 
sequences related to known invertebrate-infecting viruses. Although how thoroughly army ants sample 
the complete invertebrate-associated viromes in the areas surrounding their temporary nests is still 
unclear, it is undisputable that these top-end predators are probably sampling a non-negligible fraction 
thereof.  
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Figure 6 – Phylogeny of the cycloviruses. The  maximum likelihood tree was generated using 
alignments of Rep protein sequences and the LG+I+G substitution model. Support for internal 
branches was assessed using the aLRT test (SH-Like). Branches in red, grey and blue refer to army ant-
associated, classified and unclassified cyclovirus Rep sequences. The scale bar depicts the number of 
amino acid substitutions per site. Branches with <0.8 aLRT support have been collapsed with 
TreeGraph 2 (Stover & Muller, 2010). Zoomed-in views of four regions of the phylogenetic tree are 
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depicted on the right side of the figure to better localize isolates of Cluster I (dark green area), Cluster 
II (light blue area), Cluster III (dark orange area) and Cluster IV (dark red area). 

Longitudinal metagenomic analyses of army ant-associated viral nucleic acids in agro-ecological 
interfaces such as tropical forest areas that bound managed farmlands or human settlements could be a 
highly convenient means of gaining insights into the ecosystem-scale impacts of natural or human-
mediated environmental changes on virus population compositions and structure. Conversely, monitoring 
of changes in the relative diversity and prevalence of different viral lineages within the invertebrate-
associated virome (and even within plant- and vertebrate-associated viromes) over time could provide a 
sensitive “leading” indicator of changes in tropical forest ecosystem stability that could foreshadow more 
obvious changes in these ecosystems due to climate change and other human-mediated disturbances (Neo 
& Tan, 2017). 
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