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Efficiency and Stability Trade-offs in School Choice:
Implementing and Characterizing Nash Equilibria∗

Cyril Rouault†

Abstract

We explore the school choice problem and examine assignments that Pareto-
dominate the student-optimal stable assignment. Utilizing a strategic approach
grounded in Nash equilibria, we highlight the connection between stability and Nash
equilibria which result in assignments that enhance student allocations through the
deferred acceptance mechanism (DA). We demonstrate that for certain assignments,
there exists no Nash equilibrium under DA that leads to these enhanced assignments.
We identify a strategy profile for a given assignment, enabling determination of
whether a Nash equilibrium exists that leads to this assignment. Then, we char-
acterize strategy profiles that are Nash equilibria and lead to assignments of the
efficiency adjusted deferred acceptance mechanism (EADA) introduced by Kesten
(2010). Furthermore, we demonstrate that for each round of EADA, the considered
matching can be achieved with a Nash equilibrium using DA.
JEL Classification: C78, D47, D50, D82.
Keywords: School choice; Matching; Efficiency; Nash equilibrium; Deferred accep-
tance

1 Introduction

There exists a trade-off between stability and efficiency in one-sided matching markets.
Roth (1982) shows that these two properties are incompatible. The deferred acceptance
mechanism (DA), introduced by Gale and Shapley (1962), produces a stable assign-
ment that is the most efficient among all stable assignments. However, DA does not
always yield an efficient assignment, and unstable assignments may Pareto-dominate
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it. Furthermore, DA is strategy-proof, and improving DA assignment would lead to a
non-strategy-proof mechanism. This raises the question: Can agents’ strategies lead to
an efficient Nash equilibrium outcome that Pareto-dominates the student-optimal stable
assignment in DA? We show that the answer is yes.

There are many real-world examples of problems that fit into our framework, but per-
haps the most important is public school choice.1 Many cities worldwide use centralized
mechanisms to assign students to schools. Stability is a crucial concern for many schools
because they must justify the acceptance and rejection of students. In one-sided markets,
stability is a fairness criterion in the sense that a stable assignment eliminates justified
envy (Abdulkadiroğlu and Sönmez, 2003). The fairness justification results from school
priorities and student preferences.2 It is important to note that the standard approach
in the literature on school choice problems analyzes efficiency only from the students’
perspective. The trade-off is then selecting an appropriate mechanism that meets fair-
ness objectives and maximizes student welfare.

In this paper, we study the preference revelation games under DA and the different
strategies for students. School priorities are fixed and known publicly. Although DA
is strategy-proof for students,3 they can interact and coordinate their strategies to im-
prove their assignments. While such manipulation may potentially decrease the welfare
of some students, our focus is on strategies that lead to Pareto improvements in student
assignments. We examine Nash equilibria that result in assignments Pareto-dominating
the student-optimal stable assignment under DA. We use the term implementation of
an assignment to refer to the existence of a Nash equilibrium that yields this assignment
under DA.

Some assignments that Pareto-dominate a stable assignment cannot be implemented
with DA (Proposition 1). In this paper, we identify the origin of this impossibility. The
connection between stability and Nash equilibrium is well-known in the literature. Our
study highlights the connection between stability and Nash equilibria that implement
assignments that Pareto-dominate the student-optimal stable assignment. To achieve
this, we study such Nash equilibria. We show the importance of the school obtained
at the student-optimal stable assignment in blocking profitable deviations of other stu-

1Other problems of allocating doctors to hospitals or children to day-care centers can be considered.
2Priorities are generally designed to respond to social objectives. In the school choice problem, school

priorities are determined by law.
3See Dubins and Freedman (1981).
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dents. However, for some assignments, these schools are not sufficient and other schools
must be ranked in the students’ strategy to guarantee Nash equilibrium.

We generalize the strategy profile for all assignments that Pareto-dominate the student-
optimal stable assignment. This profile is presented in Theorem 1 and consists of each
student reporting a set of schools in her strategy. Therefore, if an assignment is im-
plementable, then this strategy profile is a Nash equilibrium and implements it with
DA. Theorem 1 has two major consequences: First, it highlights the importance of cer-
tain schools in enabling Nash equilibrium. Secondly, for every assignment that Pareto-
dominates the student-optimal stable assignment, if the profile presented is a Nash equi-
librium, then the assignment is implementable. Therefore, to determine whether an
assignment is implementable or not, we need only consider this strategy profile.

In the remainder of the article, we restrict our analysis to assignments that Pareto-
dominate the student-optimal stable assignment and that are considered through the ef-
ficiency adjusted deferred acceptance mechanism (EADA) introduced by Kesten (2010).
EADA is efficient and Pareto-dominates DA; however, it is not strategy-proof. We show
that for any problem, the structure of EADA provides for each round a Nash equilib-
rium and an assignment that Pareto-dominates the student-optimal stable assignment
(Proposition 2). The intuition is that rejection chains are maintained throughout the
algorithm and profitable deviations are blocked. We, therefore, study the applications
that maintain the Nash equilibrium.

We consider the steps of DA and show that it is possible to identify rejection chains that
block deviations from interrupters.4 We refer to blocking applications as the applications
that maintain the existence of this chain. Theorem 2 shows that for each strategy profile
such that interrupters are neutralized, and rejection chains are maintained, the profile
is a Nash equilibrium and implements the assignment with DA. Theorem 2 emphasizes
the connection between stability and the equilibria that implement the assignments that
Pareto-dominate the student-optimal stable assignment. Indeed, rejection chains are
maintained by respecting the priorities of certain students. It is therefore essential for
each student to apply to the school obtained at the student-optimal stable assignment.

4Kesten (2010) identifies interrupters as a source of the incompatibility between efficiency and sta-
bility. These are student applications, which, when withdrawn, do not change the student’s assignment
but improve that of others. We define formally interrupters in Section 4.
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With Proposition 2 and Theorem 2, it is direct that the reasoning applies to all assign-
ments considered throughout EADA. We can, therefore, characterize Nash equilibria
that implement any assignment considered in EADA. To implement the assignment
from round t of EADA, the interrupters of rounds 0 to t must be neutralized, and the
students apply to the blocking applications identified in rounds 0 to t. Another con-
sequence of Theorem 2 is that if there is no blocking application, then each round of
EADA can be implemented with a Nash equilibrium in which each student applies to at
most two schools (Corollary 2).
Finally, in Appendix A, we provide a complementary analysis, characterizing strategy
profiles that are Nash equilibria and lead to a stable assignment with DA.

Related Literature

Our paper is related to the growing literature studying the trade-off between efficiency
and stability. Although many papers propose weaker stability definitions to approach
efficiency, we use the existence of Nash equilibria in DA while maintaining the stan-
dard definition of stability. Works that consider a weakened form of stability include
Morrill (2015) and Troyan et al. (2020), among others. One of the main contributions
to the trade-off between efficiency and stability is by Kesten (2010), who suggests an
algorithm that yields an efficient assignment that Pareto-dominates the student-optimal
stable assignment. Kesten (2010) uses rejection chains to show how applications can be
withdrawn, benefiting other students without reducing overall welfare. This solution is
widely discussed in the literature, with many papers presenting arguments in favor of
EADA outcomes based on fairness criteria. Tang and Yu (2014), Troyan et al. (2020),
Ehlers and Morrill (2020), Tang and Zhang (2021), and Reny (2022) explore this aspect.
Tang and Yu (2014) suggest a simplified algorithm that produces an outcome equivalent
to EADA. However, their algorithm is not based on rejection chains, which are essential
for a strategic approach of DA. Although the welfare objectives of these works are similar
to ours, none of them includes a strategic aspect.

A central motivation of our approach is to characterize the set of Nash equilibria that
lead to an outcome that Pareto-dominates the student-optimal stable assignment. Bando
(2014) proposes a strategic approach to EADA, introducing an algorithm to identify a
strong Nash equilibrium such that the outcome of this algorithm is the EADA outcome.
Our contribution differs in two aspects: First, we study the structure of strategy profiles
that lead to equilibrium. In particular, this allows us to generalize a strategy profile for
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all assignments that can be implemented with DA. Secondly, we characterize the Nash
equilibria that yield the same outcome as EADA, including all rounds that compose
it, whereas Bando (2014) provides only one Nash equilibrium for each EADA outcome.
Dur and Morrill (2020) propose a similar approach. They show that by limiting the
number of applications, students can benefit. Our results complete theirs by proposing
a characterization of Nash equilibria producing an efficient outcome that is absent from
their formulations. Moreover, our results concern all stable assignments and not just
the optimal stable assignment. Additionally, we investigate the number of schools to be
reported in the strategy profiles. This approach brings new results to the work initiated
by Haeringer and Klijn (2009) in a constrained case. However, they do not discuss the
efficiency of outcomes.

The remainder of the paper is organized as follows. We introduce the model in Section 2.
We present our results on implementing an assignment in a Nash equilibrium in Section
3. In Section 4, we introduce EADA. We characterize the Nash equilibria in EADA in
Section 5. Section 6 concludes. We provide additional results on stability in Appendix
A. Proofs are collected in Appendix B.

2 Model

2.1 Assignment Problems

We consider school choice problems with a finite set I = {i1, i2, ..., in} of students and a
finite set S = {s1, s2, ..., sm} of schools. Let i denote a generic element of I, and let s

denote a generic element of S. Let qs denote the capacity of school s and q = (qs)s∈S

denote the capacity vector. If a student is unassigned, we say she is assigned to the
null school ∅,5 which has unlimited capacity. Each student i ∈ I has a strict preference
ordering Pi over S∪{∅}, and Ri represents its symmetric extension. If student i (weakly)
prefers school s to school s′, we write sPis

′ (sRis
′). A school s is acceptable to i if sRi∅.

We denote by P ≡ (Pi)i∈I the strict preference profile. The strict priority order at school
s is denoted by ≻s. If student i has higher priority than student j at s, we write i ≻s j.
We assume that all schools find all students acceptable. We denote by ≻≡ (≻s)s∈S the
priority profile.
A (school choice) problem is a 5-tuple (I, S, P, ≻, q). Throughout I, S, and q are fixed,
then we denote a problem by (P, ≻).

5This outside option can be to stay at home or attend a private school, for instance.
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An assignment is a mapping µ : I ∪ S → S ∪ {∅} ∪ I such that for each student i ∈
I, µ(i) ∈ S ∪ {∅}, for each school s ∈ S, µ(s) ∈ 2I with |µ(s)| ≤ qs, and for each student
i ∈ I, µ(i) = s if, and only if i ∈ µ(s). If µ(i) = ∅, we say that i is unassigned at µ.

2.2 Stability and Pareto Domination

We now introduce standard properties of matchings. An assignment µ is stable if:
• µ is individually rational, i.e., for each i ∈ I, µ(i)Ri∅,
• µ is non-wasteful, i.e., for each i ∈ I and each s ∈ S, sPiµ(i) implies |µ(s)| = qs,
• there is no justified envy, i.e., for each i, j ∈ I with µ(j) = s, sPiµ(i) implies j ≻s i.

It is well known that for any problem (P, ≻), the set of stable assignments is non-empty
and forms a lattice, with the student-optimal and the student-pessimal stable assign-
ments. We denote by µI the student-optimal stable assignment. Formally, for each stu-
dent i and each stable assignment µ, µI(i)Riµ(i). We say that i envy j at µ if µ(j)Piµ(i).

An assignment µ Pareto-dominates an assignment µ′ if for each student i ∈ I, µ(i)Riµ
′(i)

and there exists at least one student i such that µ(i)Piµ
′(i). An assignment is efficient

if it is not Pareto-dominated by any other assignment.

2.3 Assignment Game

An assignment mechanism φ selects an assignment φ(P, ≻) for each problem (P, ≻). An
allocation mechanism is efficient if φ(P, ≻) is efficient for each (P, ≻), and is stable if
φ(P, ≻) is stable for each (P, ≻). Lastly, a mechanism φ Pareto-dominates a mechanism
φ′ if φ(P, ≻) Pareto-dominates φ′(P, ≻) for each (P, ≻).

A mechanism φ naturally defines a game in which students are the players. Let the
strategy Qi be an ordered list of schools corresponding to the preferences of student i

over the set of schools. For instance, we denote the strategy of i by Qi : s1, s2. This is
interpreted as, in her strategy, i ranks s1 higher than s2, and she prefers being unas-
signed rather than being assigned to any other school. We denote by A(Qi) the set of
schools reported by student i under strategy Qi. Then, s /∈ A(Qi) must be interpreted
as student i ranks s as an unacceptable school under strategy Qi. Let Q ≡ (Qi)i∈I

be a strategy profile of students. The outcome is the student assignment obtained with
strategy profile Q as the preference profile. Preferences over assignments determine pref-
erences over outcomes. For strategy profile, we use classic game-theoretic notations; for
instance, Q−i ≡ (Qi′)i′∈I\{i} to denote the strategy profile of students that are not i.
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A strategy profile Q is a Nash equilibrium if for each i ∈ I, Qi is student i’s best response
to the other students’ strategies Q−i. Formally, for each i ∈ I, there is no strategy Q′

i

such that Q′
i ̸= Qi, and we have:

• φ[((Q′
i, Q−i), ≻)](i)Piφ[((Qi, Q−i), ≻)](i).

We now define the implementation in a Nash equilibrium of an outcome, which is central
to our paper.

Definition 1. Given an assignment mechanism φ and a problem (P, ≻), an assignment
µ can be implemented in a Nash equilibrium (or µ is implementable) if there exists a Nash
equilibrium Q such that φ(Q, ≻) = µ. We say that an assignment µ is not implementable
with φ if there is no Nash equilibrium Q such that φ(Q, ≻) = µ.

We extend the definition of implementation to mechanisms. Formally, a mechanism φ′

can be implemented with the mechanism φ if for each problem (P, ≻), there exists a Nash
equilibrium Q, for mechanism φ such that φ(Q, ≻) = φ′(P, ≻).

This paper focuses on implementation using the deferred acceptance algorithm (DA
hereafter) introduced by Gale and Shapley (1962). We denote (the student-proposing)
DA assignment for problem (P, ≻) by DA(P, ≻). It is well known that for each (P, ≻),
we have DA(P, ≻) = µI .6

We define DA for problem (P, ≻) as follows:
Step 1: Each student i proposes to the school ranked first in Pi (if there is no such school
then i remains unassigned). Each school s tentatively assigns up to qs seats according
to its priority order ≻s. The remaining students are rejected.
Step l, l ≥ 2: Each student i that is rejected in Step l − 1 proposes to the next school in
the ordered list Pi (if there is no such school then i remains unassigned). Each school
s considers the new proposers and the students that have a (tentative) seat. School
s tentatively assigns up to qs seats according to its priority order ≻s. The remaining
students are rejected.
The algorithm stops when no student is rejected. Each student is assigned to her final
tentative school. Since the set of students is finite, DA terminates in a finite number of
steps.
The school-proposing deferred acceptance mechanism is defined analogously, replacing
students by schools and schools by students. The resulting assignment is known as the
student-pessimal stable assignment.

6See Gale and Shapley (1962).
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3 Implementability with DA

In this section, we consider assignments that Pareto-dominate the student-optimal stable
assignment µI for a given problem. From the literature, we know that any stable match-
ing can be implemented under DA (Gale and Sotomayor, 1985). However, as shown by
Example 1, there are assignments that Pareto-dominate µI and for which there is no
Nash equilibrium to implement them with DA.

Example 1. Consider a school choice problem with I = {i1, i2, i3, i4}, S = {s1, s2, s3, s4}
and for each s ∈ S, qs = 1. The priorities and preferences are given in the following tables.
The symbol (·) indicates that priorities are irrelevant to the problem.

≻s1 ≻s2 ≻s3 ≻s4

i1 i2 i3 i4
i4 i1 i1 ·
i2 i3 · ·
· · · ·

Pi1 Pi2 Pi3 Pi4

s2 s∗
1 s∗

2 s1
s∗

3 s2 s3 s4
∗

s1

Table 1: Schools’ priorities and students’ preferences.

The table on the right indicates two different potential assignments: µI , which is un-
derlined in students’ preferences, and µ∗ (denoted by stars ∗). It is easy to see that
µ∗ Pareto-dominates µI . In addition, µ∗ is Pareto-efficient. However, we show that no
Nash equilibrium implements µ∗ under DA.7

By contradiction, suppose there exists a Nash equilibrium Q such that DA(Q, ≻) =
µ∗. We assume that A(Qi1) ⊆ {s1, s2, s3}, A(Qi2) ⊆ {s1, s2}, A(Qi3) ⊆ {s2, s3}, and
A(Qi4) ⊆ {s1, s4}. We know that DA(Q, ≻) = µ∗, then s3 ∈ A(Qi1), s1 ∈ A(Qi2), s2 ∈
A(Qi3), and s4 ∈ A(Qi4).
We show that A(Qi4) = {s4}. Otherwise, if s1 ∈ A(Qi4) we know that s1Pi4s4 and
µ∗(s1) = i2 with i4 ≻s1 i2. In words, we know that if i4 applies to s1, she rejects
i2 which contradicts DA(Q, ≻) = µ∗. By construction, we know that i2’s strategy is
either Qi2 : s1, s2 or Qi2 : s1. If i2 ranks s2 preferred to s1 in her strategy, then
DA[(Q, ≻)](i2) = s2 which contradicts DA(Q, ≻) = µ∗. Using the same reasoning, we
know that i3’s strategy is either Qi3 : s2, s3 or Qi3 : s2. If i3 ranks s3 preferred to s2 in
her strategy, then DA[(Q, ≻)](i2) = s3 ̸= µ∗(i3).

7We use a similar method to that proposed by Bando (2014). However, in his example, the deviation
is blocked by the school’s capacity: the student is not rejected because the school’s maximum capacity
has not been reached. In our example, deviation is possible because three students have traded schools,
and i1 has a higher priority than i3 at s2.
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Now consider the strategy of student i1. We know that s2Pi1µ∗(i1). Consider a strategy
Q′

i1 : s2. If Qi2 : s1, s2, and Qi3 : s2, s3, DA((Q′
i1 , Q−i1) is given by:

(
i1 i2 i3 i4

s2 s1 s3 s4

)
.

If Qi2 : s1, and Qi3 : s3, s2, it is easy to see that DA leads to the same assignment.
Finally, if Qi2 : s1, s2, and Qi3 : s2, DA((Q′

i1 , Q−i1) is given by:
DA((Q′

i1 , Q−i1) is given by: (
i1 i2 i3 i4

s2 s1 ∅ s4

)
,

and if Qi2 : s1, DA leads to the same assignment.
Thus, i1 has a profitable deviation from Qi1 using the strategy Q′

i1 . This contradicts Q

being a Nash equilibrium.

Proposition 1. There exists problem (P, ≻) such that µI is Pareto-dominated by µ′

and µ′ is not implementable with DA.

Despite this negative result, which leads to the impossibility of implementing specific
assignments in DA, we show in the rest of the section that if an assignment can be
implemented, then we can design a strategy profile that is a Nash equilibrium and that
implements it. Thus, we study the structure of the strategy profile required to implement
an assignment that Pareto-dominates the student-optimal stable assignment. For this
purpose, we study the schools in the students’ strategies that are used to implement an
assignment. We now consider a new example in which assignments can be implemented.

Example 2. Let consider a school choice problem (P, ≻) with I = {i1, i2, i3, i4, i5},
S = {s1, s2, s3, s4, s5} and for each s ∈ S, qs = 1. The priorities and preferences are
given in the following tables:

≻s1 ≻s2 ≻s3 ≻s4 ≻s5

i1 i2 i3 i4 ·
i2 i3 i4 i5 ·
i4 i1 i2 i3 ·

Pi1 Pi2 Pi3 Pi4 Pi5

s2
† s•†

3 s•
2 s1

† s4
s1

• s1 s4
† s3 s5

•†

s2 s3 s4
•

Table 2: Schools’ priorities and students’ preferences.

The table on the right shows three different assignments. An assignment µI (underlined),
assignment µ• (denoted by bullet •) and, assignment µ† (denoted by dagger †). It is easy
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to see that µI is Pareto-dominated by µ• and µ†. In addition, µ• and µ† are efficient
but are not stable.
Consider µ• first. Suppose the strategy profile is such that for each student i ∈ I, we
have Q•

i : µ•(i), µI(i) if µ•(i) ̸= µI(i) and Q•
i : µI(i) otherwise. We denote this strategy

profile as Q•. The resulting assignment of DA(Q•, ≻) is shown in the table below.

Q•
i1 Q•

i2 Q•
i3 Q•

i4 Q•
i5

s1
• s•

3 s•
2 s4

• s5
•

s2 s3

Table 3: A possible Nash equilibrium to implement µ•.

DA stops at the first round, and DA(Q•, ≻) = µ•. Furthermore, by considering each
student i choosing their dominant strategy (i.e., Pi), and with strategies of other stu-
dents Q•

−i fixed, we can observe that there are no profitable deviations for the students.
Therefore, the strategy profile Q• is a Nash equilibrium.
There are two arguments for applying to the school µI(i) for each i. First, if all students
apply to that school, then the assignment obtained will be weakly preferred. Second, as
illustrated in Example 2, µI(i) for each i blocks profitable deviations.

A question arises: If an assignment is implementable, is it always possible to implement
it with DA with a strategy in which students apply to at most two schools? The answer
is no. To illustrate, consider assignment µ†. We show that µ† cannot be implemented
with a strategy profile similar to the one presented in Table 3 for µ•.

Consider µ† from Table 3 and a strategy profile Q† such that for each i ∈ I, Q†
i :

µ†(i), µI(i) and Q†
i : µI(i) if µ†(i) = µI(i). The resulting assignment of DA(Q†, ≻) is

shown in the table below.

Q†
i1

Q†
i2

Q†
i3

Q†
i4

Q†
i5

s2
† s†

3 s4
† s1

† s5
†

s1 s2 s3 s4

Table 4: Q† does not implement µ†.

Even if DA stops at the first step, there exists a profitable deviation for i3. By ranking
s2 first in her strategy, for instance Q′

i3 : s2, we have DA[((Q′
i3 , Q†

−i3
), ≻)](i3) = s2 and

DA[((Q′
i3 , Q†

−i3
), ≻)](i4) = s4. This is due to the absence of a rejection chain that blocks
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the deviation of i3. For instance, suppose that i4’s strategy is now given by Q′
i4 = Pi4 .

We have DA((Q′
i4 , Q†

−i4
), ≻) = µ†, and (Q′

i4 , Q†
−i4

) is a Nash equilibrium. Considering
the strategy profile (Q′

i4 , Q†
−i4

), if i3 ranks s2 first, then she is reject i1 from s2. Student
i1 then proposes to school s1, resulting in the rejection of i4. Student i4 proposes to
school s3, which in turn rejects i2, and by proposing to s2 rejects i3. The rejection chain,
therefore, blocks the deviation of i3. In the next section, we study the importance of
rejection chains and their impact on the strategy profiles we consider.

Theorem 1 generalizes our approach and identifies a subset of schools for each student,
leading to a Nash equilibrium that implements an assignment µ. This subset is the set
of schools ranked between the school to which the student is assigned in µ and the school
to which she is assigned at the student-optimal stable assignment. Note that preferences
are weak in (i), so both µ(i) and µI(i) are in this subset. The condition (ii) is then that
all students rank these schools according to their preferences. If µ is implementable,
then this profile is a Nash equilibrium.

Theorem 1. Let (P, ≻) be a school choice problem and µ an assignment that Pareto-
dominates µI . The assignment µ is implementable if, and only if a strategy profile Q

such that for each i ∈ I, the following conditions hold:
(i) A(Qi) = {s ∈ S|sRiµ(i) and µ′(i)Ris}, and
(ii) schools in A(Qi) are ranked according to Pi.

is a Nash equilibrium and implements µ with DA.

Theorem 1 has two important consequences. First, the profile designed with (i) and
(ii) is applicable to all assignments that are implementable and that Pareto-dominate
the student-optimal stable assignment. Hence, to determine whether an assignment
is implementable or not, we only need to determine whether the profile described in
Theorem 1 is a nash equilibrium. Note that an alternative proof can be provided for
Proposition 1, where we only need to determine if the strategy profile Q is a Nash
equilibrium or not. This leads to a profitable deviation for student i1 in Example 1.
Second, Theorem 1 provides a structure for some Nash equilibria. Although it does
not characterize all the strategy profiles that are Nash equilibria implementing µ, it
highlights the importance of some schools to prevent profitable deviations. Thus, to
characterize Nash equilibria, we restrict our attention for the remainder of the paper
to the assignments considered throughout the algorithm proposed by Kesten (2010).
Surprisingly, we show that all assignments considered through Kesten’s algorithm are
implementable with DA and Pareto-dominates µI . This restriction allows us to generalize
our approach to all problems.
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4 Rejection Chains and Kesten’s EADA

Rejection chains lead to the incompatibility between stability and efficiency. This can
be illustrated with DA. In DA, the emergence of rejection chains results in a decrease
in students’ preference rankings. However, in our Example 2, we illustrated that these
rejection chains can be used to consider a Nash equilibrium. This section aims to identify
the rejection chains that enable a Nash equilibrium to exist for each assignment that
Pareto-dominates the student-optimal stable assignment. Thus, characterizing Nash
equilibria implementing an assignment is possible.

4.1 EADA and Definitions

In this subsection, we introduce the algorithm proposed by Kesten (2010), namely the
efficiency-adjusted DA (henceforth, EADA).8 We first define interrupters, which are es-
sential in EADA. In DA for a problem (P, ≻), if student i is tentatively assigned to
school s at some step l and is later rejected from s at some step l′ > l, with at least
one student rejected from s at some step r such that l ≤ r < l′, then student i is an
interrupter for school s, and the pair (i, s) is an interrupting pair at step l′.

For any school choice problem (P, ≻), Kesten’s EADA operates as follows:9

Round 0: Run DA for the problem (P, ≻).
Round t, t ≥ 1: Identify the last step of the round-(t − 1) DA procedure in which
interrupter(s) are rejected. Identify all interrupting pairs of this step, and for each pair,
remove the respective school from the interrupter’s preference. After that, rerun DA
(round-t DA) with the new preference profile.
Stop when there are no more interrupters that are rejected.

We denote the EADA assignment for problem (P, ≻) by K(P, ≻). Kesten (2010) shows
that the assignment is efficient by neutralizing specific interrupters, and EADA Pareto-
dominates DA (Theorem 1 of Kesten (2010)). The term neutralize means that a student
who is an interrupter for a school no longer applies to it.10

8Tang and Yu (2014) propose a simplified version of EADA. However, even if outcomes are equivalent,
we use EADA because it uses rejection chains, which are essential in our approach. Similarly, temporary
assignments obtained at each round differ between the simplified EADA and EADA.

9We use "round" for EADA and "step" for DA.
10Kesten differentiates between students who consent to have a modification of their preferences when

they are interrupters for a school and those who do not. In our analysis, we assume that all students
consent.
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In the remainder of this section, we show that EADA can be used to identify Nash
equilibrium that implements assignments in DA. We introduce a new notation for this.
For each round t ≥ 0 of EADA, we denote the temporary assignment by µκ(t) (i.e., the
DA outcome for DA run at round t of EADA). We, therefore, have µκ(0) = µI for any
problem (P, ≻).

A crucial point with the approach proposed by Kesten (2010) is that if a student is
an interrupter for school s, then she is indifferent between applying or not to s, given
the fixed strategies of other students.11 In our context, by considering Nash equilibria,
the assignment is K(P, ≻), and students identified as interrupters have no profitable
deviations. In addition, we show that this is true for all rounds of EADA, following
modifications in preferences profiles.12

Proposition 2. The preference profile used at round t of EADA is a Nash equilibrium
and implements µκ(t) with DA.

Corollary 1. EADA can be implemented with DA.

Corollary 1 directly follows from Proposition 2. As a result, we know that there exists
at least one Nash equilibrium that implements EADA in DA.

We denote K ≡
⋃

t=0,...,p{µκ(t)} as the set of all temporary assignments of EADA, with p

being the last round. Similarly, for each round, we consider the set of interrupting pairs.
Let Ĩt be the set of interrupting pairs identified by EADA at round t. Note that the or-
der of the sets is important, as Kesten (2010) shows, to guarantee to Pareto-domination
of DA.

Each assignment in K can be obtained by neutralizing interrupters.13 For example,
µκ(t) ∈ K can be implemented by using a strategy profile such that each student reports
her true preferences and the interrupters from rounds 0 to t are neutralized. Throughout
EADA, students trade school positions to obtain preferred assignments. We aim to

11This result is given by Proposition 3 of Kesten (2010). The formulation is different. Kesten does
not consider indifference, but the assignment of a consenting student does not change.

12The modification of the preference profile consists of neutralizing interrupters. This means that the
other schools are not removed from the preference profiles. Following Theorem 2, the proof of Proposition
2 is straightforward.

13To stick to the terminology of Kesten and student consents, this means that for any partition of
consenting students, we can implement the associated assignment in EADA under DA.
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identify applications that maintain Nash equilibrium.14 To achieve this, we define the
set of trading students.

Definition 2. Let IT
t be a set of trading students in EADA at round t, where t ≥ 1.

For any pair of students i, i′ ∈ IT
t with i ̸= i′, the following conditions hold:

• µκ(t)(i) = µκ(t−1)(i′), with µκ(t)(i) ̸= µκ(t−1)(i), and
• µκ(t)(i′) = µκ(t−1)(i′′), with i′′ ∈ IT

t , i′′ ̸= i′, and µκ(t)(i′) ̸= µκ(t−1)(i′).

We refer to µκ(t)(i) as a blocking application if, at a later round t′ > t, student i′ is
identified as an interrupter for a school s, and µκ(t)(i) ̸= K[(P, ≻)](i).

The intuition behind this definition is the following: If two students trade their assign-
ments at a round t and one of them is later identified as an interrupter, the school they
traded will maintain a rejection chain and prevent profitable deviations.

4.2 Illustration of Definitions

Example 2 shows that the strategy Q† is not a Nash equilibrium. We build a new
strategy profile by considering the problem presented in Example 2 and the definitions
introduced in the previous subsection.

Example 3. Considering Table 2, EADA proceeds as follows:
• At round 0, the obtained assignment is µI .
• At round 1, student i5 is identified as an interrupter for school s4. We have

Ĩ1 = {(i5, s4)}. School s4 is removed from i5’s preferences (that we denote P ′
i5).

DA is run with the new preference profile. The obtained assignment is µκ(1) and
is underlined in the following table:

Pi1 Pi2 Pi3 Pi4 P ′
i5

s2 s3 s2 s1
s1 s1 s4 s3 s5

s2 s3 s4

Table 5: Assignemnt obtained at the end of round 1

We can observe that students i3 and i4 traded their assignments, therefore, we
have IT

1 = {i3, i4}.
14Erdil and Ergin (2008) introduce improvement cycles using the same reasoning. However, in their

approach, they mainly use these cycles in the set of stable assignments.
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• At round 2, student i3 is identified as an interrupter for school s2. We have
Ĩ2 = {(i3, s2)}. School s2 is removed from i3’s preferences (that we denote P ′

i3).
DA is run with the new preference profile. The obtained assignment is µκ(2) and
is underlined in the following table:

Pi1 Pi2 P ′
i3 Pi4 P ′

i5
s2 s3 s1
s1 s1 s4 s3 s5

s2 s3 s4

Table 6: Assignemnt obtained at the end of round 2

We can observe that students i1, i2 and i4 traded their assignments, therefore, we
have IT

2 = {i1, i2, i4}.
• There is no other interrupter for the following round, and EADA stops with K(P, ≻

) = µ†.
At round 1, students i3 and i4 traded their assignments. In the next round, i3 is identified
as an interrupter. By neutralizing the interrupter, i4’s assignment changed such that
µκ(1)(i4) ̸= µ†(i4). As a result, µκ(1)(i4) = s3 is a blocking application. This example
highlights that blocking applications can be identified, and as mentioned with Example
2, the school s3 allows i4 to maintain the rejection chain.

5 Characterization of Strategy Profiles with EADA

In this section, we characterize strategies profiles to implement assignments that Pareto-
dominate µI and are considered through EADA. As illustrated in Example 3, blocking
applications are essential for characterizing Nash equilibria. Two conditions must be
met to form a rejection chain. The rejection chain is initiated by the rejection of a
student at a school. The rejected student then applies to another school, which in turn
rejects another student. The process continues until the end of the rejection chain. First,
for each rejected student, another student must be rejected when applying to the next
school in their preferences. This means that the school s concerned must have at least qs

students temporarily assigned to it. Secondly, the schools constituting this chain must
be reported in the students’ strategies and ranked according to their preferences. These
two conditions correspond to Lemma 1 and Lemma 2, respectively.

Lemma 1. For any problem (P, ≻), if for s ∈ S, |K[(P, ≻)](s)| = qs then |DA[(P, ≻
)](s)| = qs. In addition, for each s such that for some i ∈ I and t, (i, s) ∈ Ĩt, we have

15



|K[(P, ≻)](s)| = qs.

The main argument for Lemma 1 is stability. It states that if a school s reaches its
capacity qs with EADA, then its capacity qs is also reached in DA. Moreover, all students
involved in an interrupter are involved with schools that have reached their maximum
capacity.

Lemma 2. Let Q be a strategy profile such that for each student i ∈ I, the following
conditions hold:

• µI(i) ∈ A(Qi),
• for each student i ∈ I and each round t such that µκ(t)(i) is a blocking application,

we have µκ(t)(i) ∈ A(Qi), and
• schools in A(Qi) are ranked according to Pi,

Then, there exist rejection chains that block deviations of students involved in an inter-
rupting pair.

Lemma 2 is crucial to characterizing strategy profiles. It identifies, for each student,
the schools that maintain rejection chains. First, the school obtained in µI and the
blocking applications identified throughout EADA. Profitable deviations are, therefore,
prevented. If there is no blocking applications in a problem, each student i only needs
to apply to µI(i) to block deviations, as formulated in Lemma 2.

Theorem 2. For any problem (P, ≻), for each strategy profile Q such that the following
conditions hold:

(i) All the interrupters are neutralized (i.e., for each round t and each pair (i, s) ∈ Ĩt,
we have s /∈ A(Qi)),

(ii) for each student i ∈ I, µI(i), K[(P, ≻)](i) ∈ A(Qi),
(iii) for each student i ∈ I and each round t such that µκ(t)(i) is a blocking application,

we have µκ(t)(i) ∈ A(Qi), and
(iv) schools in A(Qi) are ranked according to Pi,

Q is a Nash equilibrium, and implements K(P, ≻) with DA.

Theorem 2 characterizes all strategy profiles that implement for a problem (P, ≻),
K(P, ≻) with DA. Hence, in all strategy profiles where the interrupters are neutral-
ized, each student applies to the school obtained with µI , K(P, ≻), and all blocking
applications with respect to preference order are Nash equilibria and implement EADA.

Theorem 2 has two important implications. First, when there is no blocking application,
a strategy profile exists in which each student applies to at most two schools, namely
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the school obtained with µI , K(P, ≻), and this profile is a Nash equilibrium and imple-
ments K(P, ≻) with DA. Second, we have the same result for every assignment in K by
combining Proposition 2 and Theorem 2.

Corollary 2. If for a problem (P, ≻) there is no blocking application, then for each
assignment µ ∈ K there exists a Q such that for each i ∈ I, |A(Qi)| ≤ 2 and Q is a Nash
equilibrium that implements µ with DA.

To implement µκ(t) ∈ K, it is then sufficient to include every blocking application of the
previous t round. This is given by (iii) in the statement of Theorem 2.
We have thus characterized Nash equilibria of DA using EADA. These Nash equilibria
lead to an assignment that Pareto-dominates µI . In Appendix A, we characterize other
Nash equilibria that lead to a stable outcome.

6 Conclusion

This paper studies Nash equilibria that implement assignments that Pareto-dominate
the student-optimal stable assignment. We show that implementing assignments that
Pareto-dominate a stable assignment may be impossible with DA. However, if an assign-
ment that Pareto-dominates the student-optimal stable assignment is implementable,
then we identify a strategy profile that implements it in DA. This profile can be used to
determine whether an assignment is implementable with DA: given an assignment, we
can construct the profile, and if this profile is a Nash equilibrium, then the assignment
is implementable in DA.
We then focus on the assignments considered by EADA. Surprisingly, we show that all
assignments considered in rounds of EADA can be implemented with DA. We character-
ize strategy profiles and argue that achieving efficiency with a stable mechanism at Nash
equilibrium is possible using the rejection chain. Through characterization, we identify
the assignments that students must maintain to guarantee Nash equilibrium and effi-
ciency of the outcome. This is reflected in our concept of blocking applications. Thus,
we show that it is always possible to implement assignments that Pareto-dominate the
student-optimal stable assignment in a one-sided market.

Our contribution opens up several opportunities for both theoretical and empirical re-
search. First, the existence of Nash equilibria raises the question of the incentives for
students to implement them. Second, with mechanisms limiting the number of student
applications, we could analyze whether these Nash equilibria are achieved in practice.
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Finally, incorporating incomplete information is another potential extension of our ap-
proach. Ehlers and Massó (2015) study a many-to-one matching market with incomplete
information. They show a link between stable mechanism Nash equilibrium in incom-
plete information and a complete information framework.15

Appendix A: Additional Results on Stability

In this Appendix A, we study Nash equilibrium outcomes to identify conditions that
guarantee stability. For this purpose, we define cycles according to Ergin (2002). Let
Us(j) denote the set of students who have a higher priority at school s than student j,
i.e., Us(j) = {i ∈ I | i ≻s j}.

Definition 3. Let ≻ be a priority structure and q be a vector of quotas. A cycle is
constituted by distinct schools s, s′ ∈ S and students i, j, k ∈ I satisfying the following
conditions:

• Cycle condition: i ≻s j ≻s k ≻s′ i.
• Scarcity condition: there exist (possibly empty) disjoint sets of agents Is, Is′ ⊂

I \ {i, j, k} such that Is ⊂ Us(j), Is′ ⊂ Us′(i), |Is| = qs − 1, and |Is′ | = qs′ − 1.
A priority structure is acyclical if it has no cycles.

We know that in the presence of a cycle, there are DA outcomes that are not Pareto-
efficient (Ergin, 2002). Nash equilibrium outcomes that are not stable can, therefore,
exist in the presence of a cycle, as shown, for instance, by Haeringer and Klijn (2009)
using DA. Let us illustrate with an example that considers cycles.

Example 4. Consider I = {i1, i2, i3} and S = {s1, s2, s3} with for each s ∈ S, qs = 1.
The priorities for the schools and the preferences of the students are given as follows:

≻s1 ≻s2 ≻s3

i1 i2 i1
i2 i1 i3
i3 i3 i2

Pi1 Pi2 Pi3

s2 s3 s3
s3 s1 s2
s1 s2 s1

There are two cycles in the schools’ priorities:
• i2 ≻s2 i1 ≻s2 i3 ≻s3 i2 and i1 ≻s3 i3 ≻s3 i2 ≻s2 i1, for schools s2 and s3.
15More precisely, they show that a Nash equilibrium characterization under complete information

leads to the Nash equilibrium characterization under incomplete information.
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Following the definition of a cycle, we refer to the student j as i1 and i3.
The unique stable outcome is underlined in the students’ preferences. Let us consider a
Nash equilibrium:

Qi1 Qi2 Qi3

s2 s3 s2

s3 s2 s1

s1

We can see that in this situation, there are no profitable deviations. Hence, this is a
Nash equilibrium, and the assignment is not stable. If i3 applies to the school s3, her
assignment does not change, but the strategy of i2 will be modified following a profitable
deviation.

Qi1 Qi2 Qi3

s2 s3 s3

s3 s2 s2

s1 s1

The profitable deviation for i2 is then to apply to s1. If the student i3 applies to s3, the
obtained assignment is stable at Nash equilibrium.
Let us now consider another preference profile and an associated unstable Nash equilib-
rium outcome:

Pi1 Pi2 Pi3

s2 s3 s2
s1 s2 s1
s3 s1 s3

Qi1 Qi2 Qi3

s1 s3 s2
s3 s2 s3

s1

Similarly, if i1 applies to s2 in her strategy Qi1 , then i3 will have a profitable deviation,
which is to apply to s1. Following this deviation, the Nash equilibrium outcome obtained
will be stable. By routine computation, we obtain that for any preference profile, when
the students i1 and i3 apply to s2 and s3, respectively, using the correct ranking, all
Nash equilibrium outcomes are stable.
Note that we only consider Nash equilibria. Strategy profiles may lead to an unstable
outcome where students i1 and i3 apply to s2 and s3, respectively. However, this is not
a Nash equilibrium.

The following theorem generalizes the result of this example.
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Theorem 3. Suppose that for each cycle i ≻s j ≻s k ≻s′ i, we have s ∈ A(Qj), and
schools in A(Qj) are ranked according to Pj . Then, each Nash equilibrium outcome is
stable.

EADA identifies the interrupters to neutralize, and these interrupters involve the student
j in the cycle. Thus, when j is an interrupter for school s, we have if s ∈ A(Qj), the
assignment is stable at Nash equilibrium.16 However, if j does not apply, it is possible to
have an efficient Nash equilibrium outcome under the condition that all other interrupters
are neutralized.
The main consequence of Theorem 3 is that it is sufficient for each student j involved in a
cycle to apply to school s to ensure outcome Nash equilibrium stability. It is important
to note that s /∈ A(Qj) does not imply that it is impossible to have a stable Nash
equilibrium outcome. However, it is possible to guarantee stability by considering the
preferences of students i and k. This is possible when i or k cannot block j within the
cycle. We illustrate Proposition 3 with the following example:

Example 5. Consider the problem given in Example 4, and as presented, there are two
cycles. In the first cycle, i is i2 and k is i3, while in the second cycle, i is i1 and k is
i2. One consequence of our next result is that if preference profiles are such that s3Pi2s2

and s2Pi3s3 or s2Pi1s3 and s3Pi2s2, there exist unstable Nash equilibrium outcomes.
Consider, for instance, the following profile where (·) can be any school:

Pi1 Pi2 Pi3

· · ·
· s2 ·
· s3 ·

·

Considering the preference of i2, all the Nash equilibrium outcomes are stable for each
possible preference of other students P−i2 . Similarly, if s3Pi3s2 and s3Pi1s2; then all the
possible preferences of student i2 lead to only stable Nash equilibrium outcomes.

Proposition 3. Suppose that for each cycle i ≻s j ≻s k ≻s′ i, and for each student i

and k, i ranks sPis
′ or student k ranks s′Pks, or both, in their true preferences. Then,

all Nash equilibrium outcomes are stable.

The stability of Nash equilibrium outcomes can be identified in two situations, and we
can generalize these results as follows:

16This must be true for each cycle. Note that if s is not acceptable to j, then the school should not
be included in j’s strategy.
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• If at least one student among i and k for each cycle has preferences such that sPis
′

or s′Pks, from Proposition 3, then all Nash equilibrium outcomes are stable.
• Otherwise, for the cycles concerned, if s ∈ A(Qj) and schools are ranked according

to Pj , then by Theorem 3, all Nash equilibrium outcomes are stable.
We have identified the applications in the student strategies that guarantee the stability
of the Nash equilibrium outcomes. One of our conditions coincides with the interrupter
notion mentioned above.

Appendix B: Proofs

Proof of Theorem 1

Proof. Let µS denote a stable assignment, µ∗ denote an assignment that Pareto-dominates
µS . We know that there exists I ′ ⊆ I such that for each i ∈ I ′, µ∗(i)PiµS(i) by the
definition of Pareto-domination. Then, there exist i, i′ ∈ I ′ such that µ∗(i) = µS(i′), by
stability of µS .
(if): Suppose µ∗ is implementable. Construct the following preference profile Q: For
each i ∈ I, let

• A(Qi) = {s ∈ S|sRiµS(i) and µ∗(i)Ris}, and
• schools in A(Qi) are ranked according to Pi.

For students such that µ∗(i) = µS(i), A(Qi) is a singleton. It is easy to check that under
the constructed Q, we have DA(Q, ≻) = µ∗, and that DA stops at step 1. We have to
show that the strategy profile Q is a Nash equilibrium.

By contradiction, suppose that Q is not a Nash equilibrium. Then, there exists i1 ∈ I

such that Q′
i1 ̸= Qi1 and DA[((Q′

i1 , Q−i1), ≻)](i1)Pi1DA[(Q, ≻)](i1), and we denote s†

the school to which student i1 is assigned under DA((Q′
i1 , Q−i1), ≻).

We know that s† ̸= ∅ because DA[((Q′
i1 , Q−i1), ≻)](i1)Pi1DA[(Q, ≻)](i1)Ri1µS(i1) as µS

is individually rational. Then, by stability of µS , there exists i2 ∈ I such that i2 ≻s† i1

and µS(i2) = s†. We have two cases:
• Case 1: µ∗(i2) = s†, then by stability of µS we know that i2 ≻s† i1, the profitable

deviation of i1 is blocked by i2 since A(Qi2) = {s†}. Hence, DA[((Q′
i1 , Q−i1), ≻

)](i1) ̸= s†.
• Case 2: µ∗(i2) ̸= s†, we have that µ∗(i2)Pi2s† by Pareto-domination. We know

that there exists i3 such that µ∗(i3) = s†. If i3 = i1, the deviation is not profitable
since µ∗(i1) = s†. If i3 ̸= i1, we have two cases:
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– Case 2.1: i3 ≻s† i1, the deviation is not profitable since it is blocked by i3 as
s† ∈ A(Qi3). Hence, DA[((Q′

i1 , Q−i1), ≻)](i1) ̸= s†.

– Case 2.2: i1 ≻s† i3. We know that µ∗ is implementable, then there exists a
Nash equilibrium Q∗ such that DA(Q∗, ≻) = µ∗, meaning that the deviation
of i1 is blocked under Q∗ but not under Q. To be blocked under Q∗ we know
that a student i4 ∈ I rejects i1 from s†. We therefore have i4 ≻s† i1 ≻s† i3.
We have to show that µ∗(i4)Ri4s†Ri4µI(i4).

If s† is ranked before µ∗(i4) in Q∗
i4 , we know that i4 rejects i3 from s†, and Q∗

does not implement µ∗. If s† is ranked after µI(i4) this means that i4 is rejected
from µI(i4) which contradict the stability of µI . Then µ∗(i4)Ri4s†Ri4µI(i4) and
by construction s† ∈ A(Qi4) meaning that the deviation of i1 is blocked under Q

and Q is a Nash equilibrium.
(only if): The proof is direct because Q is a Nash equilibrium and implements µ∗,
therefore, µ∗ is implementable. ■

Proof of Lemma 1

Proof. By contradiction, suppose that for s we have |K[(P, ≻)](s)| = qs and |DA[(P, ≻
)](s)| < qs and there exists at least one i ∈ I such that K[(P, ≻)](i) = s ̸= DA[(P, ≻)](i).
Since EADA Pareto-dominates DA, DA(P, ≻) is not stable, as there exists a student i

who prefers s to DA[(P, ≻)](i). This violates the non-wastefulness property of the as-
signment. This leads to a contradiction since DA(P, ≻) is stable.

Consider an interrupting pair (j, s) and by contradiction, suppose that |K[(P, ≻)](s)| <

qs. From the definition of an interrupter, another student’s application rejected j from
s. Then, either |K[(P, ≻)](s)| = qs or (j, s) is not an interrupting pair, leading to a
contradiction. ■

Proof of Lemma 2

Proof. Consider a student i who is assigned to school s under EADA, (i.e., K[(P, ≻
)](i) = s), and suppose there exists j ∈ I \{i} such that (j, s) is an interrupting pair. We
know that j ≻s i and sPjK[(P, ≻)](j) (if the school was not involved in an interrupting
pair, then there is no student i′ such that sPi′K[(P, ≻)](i′) and i′ ≻s i). Consider that
s ∈ A(Qj), thus j triggers a rejection chain leading to the rejection of i from school s.
Then, i applies to a school ranked after s in Qi. We denote that school s′:
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• If s′ ̸= µI(i), then this leads to the rejection of a student i′ who was assigned to s′

with EADA, such that K[(P, ≻)](i′) = s′. Then, i′ rejects i′′ from the school ranks
after s′ in Qi′ , and this process continues until j is rejected from s.

• If s′ = µI(i), then this leads to the rejection of a student i′ who was assigned to
s′ with EADA, such that K[(P, ≻)](i′) = µI(i). Then, i′ rejects i′′ from the school
ranks after s′ in Qi′ , and this process continues until j is rejected from s.

By contradiction, suppose that i does not reject anyone or does not generate a rejection
chain that leads to the rejection of j from s.

Consider the stability of DA(P, ≻) and DA. We know that j is an interrupter for s, then
there exists a student k such that s ∈ A(Qk) with µI(k) = s (otherwise k is also an
interrupter for s and is the last interrupter for s to be rejected. Consequently, EADA
identifies k as the interrupter to be neutralized) and causes j to be rejected at a later
step. If k is not in the rejection chain generated by j, then k will apply to s at the same
step of DA at which j is rejected from s. Suppose that (j, s) is neutralized, then i is
rejected at a later step by k and µI(k) = s. Since we have k ≻s j and j ≻s i, it implies
k ≻s i. Therefore, i cannot be assigned to s if i does not generate the rejection chain
that rejects j from s. This means that k is rejected from a school by j’s application to
school s, and k rejects j from s.
Consequently, there exists a school, let us denote it as s∗, to which i applied such that
sPis

∗ and s∗RiµI(i), which generated a rejection chain that rejected j from s. We
consider three cases:

• s∗ ̸= µI(i) and s∗ ̸= K[(P, ≻)](i): i is an interrupter for s∗ because i is not
assigned to s∗ and leads to the rejection of a student from s∗ (which then leads to
the rejection of j from s). According to Lemma 1, i is indifferent between applying
to s∗ or not.

• s∗ ̸= µI(i) and s∗ = K[(P, ≻)](i): i can generate the same rejection chain if
K[(P, ≻)](i) ∈ A(Qi).

• s∗ = µI(i): i can generate the same rejection chain if µI(i) ∈ A(Qi).
Hence, we conclude that i generates its rejection chain (which leads to the rejection of j

from s) by applying to K[(P, ≻)](i) if such a school exists, and µI(i). ■

23



Proof of Theorem 2

Proof. Let Q be a strategy profile that satisfies (i)-(iv). We need to show that there are
no profitable deviations for students.
Let us first show that there are no profitable deviations for students identified as inter-
rupters for a school at some round t. We know that for all s ∈ S such that there exists
i ∈ I with µI(i) = s then there exists i′ ∈ I such that K[(P, ≻)](i′) = s by Lemma 1. By
Lemma 2, we know that a rejection chain leads students to be rejected from the school
for which they are an interrupter. For the other students, we know that the obtained
assignment is Pareto-efficient, and there are no profitable deviations.
Therefore, students identified as interrupters are indifferent between applying to schools
with which they are interrupters or not if a strategy profile satisfies (i)-(iv). The assign-
ment is Pareto-efficient because, for each student i ∈ I, we have K[(P, ≻)](i) ∈ A(Qi).
Moreover, it is a Nash equilibrium. ■

.23

Proof of Proposition 3

Proof. Suppose there is a cycle i ≻s j ≻s k ≻s′ i. Let us denote µ a Nash equilibrium
outcome.
Consider three cases:
Case 1: Suppose sPis

′ and sPks′:
• If µ(i)Pis, then i does not block k. Then, if µ(k) = s, we have µ(j)Pjs; otherwise,

µ(k) ̸= s.
• If sPiµ(i), then i can block k, and i is blocked by a student, denoted as i′, such

that i′ ≻s i and therefore i′ ≻s k.
• If µ(i) = s, then i blocks k if sPkµ(k).

Case 2: Suppose s′Pis and s′Pks:
• If µ(k)Pks′, then k does not block i. Then, if µ(i) = s′, we have no student k′ such

that k′ ≻s′ i and s′Pk′µ(k′).
• If s′Pkµ(k), then k can block i, and k is blocked by a student, denoted as k′, such

that k′ ≻s′ k and therefore k′ ≻s′ i.
• If µ(k) = s′, then k blocks i if s′Piµ(i).

Case 3: Suppose sPis
′ and s′Pks:

• If µ(i) = s and µ(k) = s′. Then it is immediate, and µ is stable.
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• If µ(i) = s and µ(k) ̸= s′. Then, if µ(k)Pks′, µ is stable, and if s′Pkµ(k), we know
that there exists i′ ∈ I such that µ(i′) = s′ and i′ ≻s′ k. We, therefore, have
i′ ≻s′ i; then i cannot block i′.

• If µ(i) ̸= s and µ(k) = s′. Then, if µ(i)Pis, µ is stable, and if sPiµ(i), we know
that there exists i′′ ∈ I such that µ(i′′) = s and i′′ ≻s i. We, therefore, have
i′′ ≻s k; then k cannot block i′′.

• If µ(i) ̸= s and µ(k) ̸= s′. The reasoning is the same as in the previous cases.
In each case, µ is stable. ■

Proof of Theorem 3

Proof. From Theorem 1 by Ergin (2002), we know that if a cycle exists in schools’ priori-
ties, then a preference profile exists that leads to unstable outcomes at Nash equilibrium.
From Proposition 3, we can consider a specific case only such that s′Pis and sPks′. Sup-
pose that s ∈ A(Qj) with a ranking according to Pj .
Let us denote a stable outcome in this proof by µS(i).
Case 1: If µS(j)Pjs: i and k can never benefit from the cycle, as the rejection chain
that blocks j’s application is impossible.
Case 2: If sRjµS(j): by definition, i ≻s j ≻s k. As s ∈ A(Qj), we know that j prevents
potential deviations of k using the rejection chain.
In case 2, k is rejected by the application of j, which guarantees the stability of the
outcome. In case 1, j is indifferent between applying to s or not because, at Nash
equilibrium, she is assigned to a preferred school. Using the reasoning for each cycle
completes the proof. ■
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