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Efficiency in Matching Markets: Application Costs in School
Choice∗

Cyril Rouault†

Abstract

We propose a strategic solution to the tradeoff between stability and efficiency in
one-sided matching markets. We show that every assignment that Pareto dominates
a stable outcome can be implemented in a Nash equilibrium using the deferred
acceptance mechanism (DA). To incentivize students, we introduce application costs
with a student’s payoff lexicographic in the school they attend and the fee they pay.
We establish that it is impossible to set identical costs for all students. Finally, we
examine student incentives resulting from cost implementation in the Boston and
Top Trading Cycle mechanisms showing that costs have no effect.
JEL Classification: C78, D47, D50, D82.
Keywords: School choice; Matching; Pareto efficiency; Nash equilibrium; Deferred
acceptance; Application costs

1 Introduction

There exists a tradeoff between stability and efficiency in one-sided matching markets.
Roth (1982) show that these two properties are incompatible. The deferred acceptance
mechanism (DA) of Gale and Shapley (1962) produces a stable assignment that is the
most efficient among all stable assignments. However, DA does not always yield a
Pareto-efficient assignment and unstable assignments may Pareto dominate it. Numer-
ous papers investigate the origins of DA’s inefficiency (e.g., Ergin, 2002; Kesten, 2010).
A question arises: Is it possible to consider that agents’ strategies can lead to an equilib-
rium outcome that is Pareto-efficient and that Pareto dominates the students’ optimal
stable assignment? We show that the answer is yes.
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Morgan Patty, and Olivier Tercieux for their valuable comments.
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There are many real-world examples of problems that fit into our framework, but perhaps
the most important is public school choice.1 Many cities around the world use centralized
mechanisms to assign students to schools. Stability is a crucial concern for many schools
because they must justify the acceptance and rejection of students. In one-sided markets,
stability is a fairness criterion in the sense that a stable assignment eliminates justified
envy (Abdulkadiroğlu and Sönmez, 2003). The fairness justification results from school
priorities and student preferences. It is important to note that the standard approach
in the literature analyzes efficiency only from the student’s perspective in school choice
problems. The tradeoff is then selecting an appropriate mechanism that meets fairness
objectives and maximizes student welfare.
This paper studies students’ strategic incentives in DA and the possible equilibria for
a given problem. Since DA suggests the stable assignment that all students prefer, we
focus on Nash equilibrium outcomes that Pareto dominate the students’ optimal stable
assignment. We argue that these equilibria are crucial from a welfare perspective. We
propose an approach based on implementing application costs to incentivize students to
reach these equilibria.
Our first results show that an assignment that Pareto dominates a stable assignment
can be implemented in a Nash equilibrium under DA (Theorem 1). This is, therefore,
true for the students’ optimal stable assignment. However, due to uncertainty, students
do not always play a Nash equilibrium in practice. For this reason, we study a solution
that incentivizes students to consider desired equilibria. We propose an approach based
on application costs.
There are different interpretations of application costs. Costs could be financial but not
only, we can consider exams required for applications as costs. For example, in New York,
students must pass an exam at each high school they apply. A centralized mechanism
is then used to assign students to high schools. Similarly, preparing an application by
writing a cover letter or practicing for an interview is costly.2

In our approach, we set the application costs to be low. The objective of these costs
is to incentivize students without negatively impacting them. Thus, a school will not
be valued less by a student because of its application cost.3 We consider a student’s
payoff to be lexicographic in the school they attend and the fee they pay. We then show

1Other problems of allocating doctors to hospitals or children to day-care centers can be considered.
2Several centralized platforms require specific forms to apply to some schools. In France, for instance,

this is the case with the Parcoursup and Mon Master platforms: https://www.parcoursup.fr/ and
https://www.monmaster.gouv.fr/.

3The interpretation is that preferences are unchanged. Costs do not alter the order of schools in
students’ preferences.
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that there is always a cost profile that incentivizes students to reach an equilibrium
such that the outcome Pareto dominates the students’ optimal stable assignment. Costs
incentivize students by modifying their dominant strategies (Theorem 2).
To study DA equilibria, we consider Kesten’s (2010) Efficiency-Adjusted Deferred Accep-
tance Mechanism (EADAM).4 Proposition 1 illustrates the equilibrium structure that
leads to a Pareto-efficient outcome equilibrium using DA. In this approach, we con-
sider a strategy in which students apply to both the school they are assigned to using
EADAM and their students’ optimal stable assignment. We identify a condition where
other schools must be added to the student’s strategy to ensure equilibrium. The intu-
ition is that all inefficiency in DA is attributable to rejection chains that worsen student
outcomes. These chains can be avoided by directly proposing to the school obtained
through EADAM. It is necessary to include the optimal stable assignment of students in
their strategies; otherwise, students involved in a blocking pair may have an incentive to
change their strategies. This incentive disappears when students list their optimal sta-
ble school because any deviation by a student triggers a rejection chain that ultimately
results in the student’s rejection.5 Additional schools can be added to the strategy, but
they do not change the equilibrium outcome if students rank them according to their
true preferences. Furthermore, we show that under a single condition, students can only
apply to two schools to ensure equilibrium (Proposition 1).
We then study the structure that costs must have to ensure the existence of equilibria
leading to an outcome that Pareto dominates the students’ optimal stable assignment.
Theorem 3 suggests that costs must be carefully designed. Suppose it is costly for
a student to apply to her optimal stable assignment, and that student is assigned to
another school using EADAM. In that case, there is no equilibrium outcome where the
student prefers that assignment over her optimal stable assignment, and that outcome
Pareto dominates the students’ optimal stable assignment. Therefore, it is impossible
to implement a Pareto-efficient assignment that Pareto dominates the students’ optimal
stable assignment under this cost profile. The consequence is the impossibility of treating
students equally. Some students have to bear the application cost in a given school,
while others do not. With such costs, students being assigned to preferred schools are
incentivized not to apply to their optimal stable assignment. As a result, the rejection
chain is not possible, and profitable deviations exist for some students.

4EADAM Pareto dominates DA. Therefore, we can identify the assignments that Pareto dominate
the students’ optimal stable assignment.

5A rejection chain is a succession of rejections of students tentatively assigned to a school in the DA
procedure. Articles use this concept to introduce a form of fairness. Unstable assignments can be fair
in this sense. See, for instance, Troyan et al. (2020).
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We show that even low costs impact the equilibria when using DA. Costs can reinforce
or hinder the existence of certain equilibria. This phenomenon raises a question about
the impact of costs on other mechanisms and their possible equilibria. We find that costs
do not have an impact on the equilibria outcomes of the Boston mechanism and the Top
Trading Cycle mechanism (Propositions 3 and 4). Regarding the Boston mechanism,
experimental studies show that, in practice, the outcome is more efficient than that
of DA (Featherstone and Niederle, 2016). Thus, our study demonstrates that we can
incentivize students in DA, whereas it is impossible to do so in Boston with costs.
Therefore, we believe that application costs can incentivize students and enhance the
efficiency of DA.
We provide in Appendix A additional results to study the tradeoff between our approach
and stability. These results coincide with our efficiency results.

Related Literature

Our article is related to the literature on studying the sources of inefficiency in DA.
We use preference and priority structures for this purpose. Ergin (2002) introduces the
concept of cycles in school priorities which can lead to unstable outcomes in DA. Simi-
larly, Kesten (2010) proposes the EADAM to identify sources of inefficiency in DA.6 In
EADAM, the objective is to limit interrupters to improve student assignments.7 Kesten’s
main contribution is that if all students consent, meaning they are willing to modify their
reported preferences, EADAM produces a Pareto-efficient outcome that dominates DA.
Kesten mainly uses rejection chains to show that the student interrupter is not assigned
to the school with which it interrupts, thus preserving the student’s assignment. To
the best of our knowledge, no paper studies student strategies leading to equilibrium
outcomes that Pareto dominate the students’ optimal stable assignment under DA.
Our study is also related to the literature on constrained matching. Haeringer and
Klijn (2009) investigate Nash equilibria under constraints in popular mechanisms such
as DA, Boston, and Top Trading Cycles, focusing on quota games. In contrast, our
study introduces constraints on students’ reports to schools and examines the impact
of application costs on Nash equilibrium outcomes. Moreover, our analysis considers
rational self-constraint by students at equilibrium, while Haeringer and Klijn assume an
exogenous constraint. Our results coincide with those of Dur and Morrill (2020), but we

6Liu et al. (2014) propose a simplified version of EADAM. The two mechanisms are equivalent. The
simplified version directly eliminates rejection chains. However, our approach cannot be implemented in
their mechanism.

7The term interrupter describes students who cause the rejection of other students before being
rejected themselves. We provide a formal definition in Section 4.
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provide a characterization of equilibria that lead to outcomes that Pareto dominate the
students’ optimal stable assignment under DA.
Finally, we consider the inclusion of application costs. Chade et al. (2014) examine
the impact of costs on students’ application strategies in an incomplete information
framework, while He and Magnac (2022) empirically study the implementation of ap-
plication costs on student assignments. However, neither work explores equilibria. To
our knowledge, our paper is the first to consider application costs in improving students’
assignments within an equilibrium framework.
The remainder of the paper is organized as follows. We introduce the model in Section
2. We present our main result on implementing an assignment in a Nash equilibrium in
Section 3. In Section 4, we introduce costs and EADAM. We design costs in Section 5.
In Section 6, we study the impact of costs on the Boston and TTC mechanisms. Section
7 concludes. We provide additional results on stabilities in Appendix A. All proofs are
collected in Appendix B.

2 Model

2.1 Assignment Problems

There is a nonempty finite set of students I with a typical element i and a nonempty
finite set of schools S with a typical element s. For each s ∈ S, we denote the school’s
capacity by qs, which is the number of students that can be assigned to it. We denote
by q ≡ (qs1 , ..., qsn) the capacity vector of schools. Each student i is to be assigned to
one school in S ∪ {i}, where i is interpreted as some outside option.8 The outside option
is not scarce, meaning that each student can remain unassigned.
The preference relation Pi of student i is a linear order (a complete, transitive, and
antisymmetric relation) over S ∪ {i}. We denote sRis

′ if student i weakly prefers school
s to school s′, meaning sPis

′ or s = s′. A school s is acceptable to i if sRii. Let us
denote the strict preference profile by P = (Pi)i∈I . Let ≻s denote the priority order (a
complete, transitive, and antisymmetric relation) of school s over I ∪ ∅. Being assigned
to ∅ is interpreted as having no student assigned to the school. Let us denote the strict
priority structure by ≻= (≻s)s∈S .
An assignment is a function µ : I ∪S → S ∪2I that maps each student to either a school
or a set of unassigned students. We denote µ(i) as the assignment of student i under
assignment µ. Formally, an assignment is a function µ satisfying:

8This option can be to stay at home or attend a private school, for instance.
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(i) ∀i ∈ I, µ(i) ∈ S ∪ {i};
(ii) µ(s) ∈ 2I ;
(iii) ∀s ∈ S, |µ(s)| ≤ qs;
(iv) µ(i) = s if and only if i ∈ µ(s) ∪ {i}.

For i ∈ I, if µ(i) = s ∈ S, then student i is assigned to s under µ. If µ(i) = i, we say
that i is unassigned under µ. For s ∈ S, if µ(s) ⊆ I, then the subset of students µ(s) is
assigned to s under µ. Student i is assigned to s under µ if i ∈ µ(s).
A school choice assignment problem is a tuple (I, S, P, ≻, q). Because I, S, and q are
fixed, a school choice assignment problem is given by (P, ≻).
We now introduce standard properties of matchings. An assignment µ is stable if:

• it is individually rational, i.e., for each i ∈ I, µ(i)Rii,
• it is non-wasteful, i.e., for each i ∈ I and each s ∈ S, sPiµ(i) implies |µ(s)| < qs,
• there is no justified envy, i.e., for each i, j ∈ I with µ(j) = s ∈ S, sPiµ(i) implies

j ≻s i.
Another desirable property for an assignment is Pareto efficiency. We say that µ′ Pareto
dominates µ if:

• ∀i ∈ I, µ′(i)Riµ(i) and for at least one i ∈ I, µ′(i)Piµ(i).
An assignment µ is Pareto efficient if it is not Pareto dominated by any other assignment.

2.2 Assignment Game

A mechanism φ is a function associating an assignment to each problem (P, ≻). A
mechanism φ naturally defines a game where students are the players. Let the strategy
Qi be an ordered list of school preferences of student i over the set of schools. For
instance, we denote the strategy of i by Qi : s1, s2. This is interpreted as, in her
strategy, i ranks s1 higher than s2, and she prefers being unassigned rather than being
assigned to any other school. We denote by A(Qi) the set of schools reported by student
i under strategy Qi. Then, s /∈ A(Qi) must be interpreted as student i ranks s as an
unacceptable school under strategy Qi. Let Q ≡ (Qi)i∈I be a strategy profile of students.
The outcome is the student assignment obtained with strategy profile Q as the preference
profile. Preferences over outcomes are given by the preferences over assignments. For
strategy profile, we use classic game-theoretic notations; for instance, Q−i ≡ (Q′

i)i′∈I\{i}.
We denote the DA assignment for problem (P, ≻) by DA(P, ≻), and we denote the
students’ optimal stable assignment by µSOSM .
A mechanism φ is strategy-proof if no student can ever benefit by unilaterally misrep-
resenting their preferences, meaning for any P , i ∈ I, and Qi ̸= Pi, we have for any

6



Q−i:
• φi((Pi, Q−i), ≻)Riφi((Qi, Q−i), ≻).

A strategy profile Q is a Nash equilibrium if for each i ∈ I, Qi is student i’s best response
to the other students’ strategies Q−i. Formally, for each i ∈ I, there is no strategy Q′

i

such that Q′
i ̸= Qi, and we have:

• φi((Q′
i, Q−i), ≻)Piφi((Qi, Q−i), ≻).

We now define the implementation in Nash equilibrium of an outcome, which is central
to our paper.

Definition 1. Given an assignment mechanism φ and a preference profile P , an assign-
ment µ can be implemented in a Nash equilibrium (implemented for short) if there exists
a Nash equilibrium Q such that φ(Q, ≻) = µ.

3 Equilibrium under DA and Pareto Domination

It is well-known from the literature that DA suggests the assignment µSOSM for a prob-
lem (P, ≻).9 However, there exist assignments that Pareto dominate µSOSM , and we
consider them in this section.

Example 1. Let us consider a school choice problem (P, ≻) with four students I :=
{i1, i2, i3, i4} and four schools S := {s1, s2, s3, s4}, each having one seat (for each s ∈
S, qs = 1). The priorities and preferences are given in the following tables. The symbol
(·) indicates that the school does not have a priority over the student set and accepts all
students who apply to it.

≻s1 ≻s2 ≻s3 ≻s4

i3 i4 i1 ·
i4 i1 i2 ·
i1 i2 i3 ·
i2 i3 i4 ·

Pi1 Pi2 Pi3 Pi4

s1
∗† s1 s2

∗ s3
∗

s2
• s2 s3

•† s1
•

s3 s3 s1 s2
†

s4 s4
∗•† s4 s4

Table 1: Schools’ priorities and students’ preferences.

The table on the right shows four different assignments. An assignment µSOSM (under-
line), assignment µ• (denoted by bullet •), assignment µ† (denoted by dagger †) and µ∗

(denoted by stars ∗). The DA assignment is µSOSM and is not Pareto efficient. It is easy
to see that it is Pareto dominated by µ•, µ† and µ∗. In addition, µ∗ is Pareto-efficient.
However, these three assignments are unstable.

9See Gale and Shapley (1962).
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Let us consider µ† for now. Suppose the strategy profile is such that for each student
i ∈ I, we have Q†

i : µ†(i), µSOSM (i) if µ†(i) ̸= µSOSM (i) and Q†
i : µSOSM (i) otherwise.

We denote this strategy profile as Q†. The resulting assignment is shown in the table
below.

Qi1 Qi2 Qi3 Qi4

s1
†

s3
†

s3 s1 s2
†

s4
†

Table 2: A possible equilibrium to implement µ†.

Using DA for the problem (Q†, ≻), the algorithm stops at the first round, and the
obtained assignment is µ†. Furthermore, by considering each student i choosing their
dominant strategies Pi, and with the strategies of other students Q†

−i fixed, it is easy
to see that there are no profitable deviations for the students. Therefore, the strategy
profile Q† is an equilibrium.

The same reasoning applies to the other assignments presented in this example. Our
first theorem generalizes this point.

Theorem 1. Let (P, ≻) be a school choice problem, and let µ be an assignment that
Pareto dominates a stable assignment µ′. Then µ can be implemented using DA.

Theorem 1 extends the observation of Example 1 to all stable assignments. As the
proof suggests, replacing µSOSM with another stable assignment for each Qi is sufficient.
However, in the rest of the paper, we only consider assignments that Pareto dominate
µSOSM .
The intuition of Theorem 1 is that by reducing the number of applications, we reduce
the number of cycles. In Example 1, we can observe a rejection chain: student i1

was previously rejected from school s1 due to the application of student i4, student i4

was rejected from school s3 due to the application of student i3, and student i3 was
rejected from school s2 due to the application of student i2. Thus, the rejection chain
is not initiated by considering a strategy for i2 in which s2 /∈ A(Qi2). We use the same
reasoning for the other rejection chains in the DA procedure.
For each student i ∈ I, it is necessary to have µSOSM (i) ∈ A(Qi) in order to prevent
profitable deviations of students causing rejection chains. If student i2 applies first to
school s3 in her strategy, then student i3 is rejected and applies to s1, which leads to
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the rejection of student i1, who applies to s3, and ultimately results in student i2 being
rejected from school s3. The incentive for student i2 to deviate disappears when, for
each i ∈ I, µSOSM ∈ A(Qi), as it triggers a rejection chain that cycles back to i2, making
s3 unachievable.

4 Application Costs and Kesten’s EADAM

4.1 Application Costs

As mentioned in the introduction, it is well-known that equilibria in the DA algorithm
are rarely implemented in practice.10 For this reason, we need to incentivize students
to apply to specific schools to reach an equilibrium outcome that Pareto dominates the
students’ optimal stable assignment. Here, we suggest fixing low application costs. The
idea is that these costs should not modify students’ preferences.11 The costs depend
on the school and the student. For simplification, the costs are either strictly positive
or zero. The cost profile is the |I| × |S|-dimensional matrix C, where each element
ci,s represents the application cost of student i to school s. If the application cost for
student i to school s is zero, then ci,s = 0, and if the cost is positive, ci,s = 1. Let
cQi = ∑

s∈A(Qi) ci,s denote the sum of the application costs to be paid by i when using
the strategy Qi under the cost profile C.12

We use a lexicographic criterion to determine each student’s payoff (µ(i), cQi). The
primary criterion is the assigned school, and the secondary criterion is the sum of costs
associated with their strategy. Thus, the student chooses the least costly strategy among
those that result in the same assignment. We have (µ(i), cQi) ⋗ (µ(i)′, c′

Qi
) if and only

if:
• µ(i)Piµ(i)′ or µ(i) = µ(i)′ and cQi < c′

Qi
.

We define a problem with costs. Using a cost profile C, a problem with costs is given by
(P, ≻, C). We consider a problem without costs by (P, ≻) to simplify notation.

10See for instance He and Magnac (2022) and Featherstone and Niederle (2016).
11Considering such application costs is realistic because these costs are generally low. In addition,

students prefer to pay a low cost to be assigned to a preferred school.
12This simplification assumes that costs are comparable. We consider the number of costly applica-

tions in the chosen strategy. In the article, students pay a maximum of one application fee at equilibrium.
This illustrates the incentive nature of costs rather than their harmfulness.
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4.2 Kesten Algorithm

To identify assignments that Pareto dominates the students’ optimal stable assignment,
we consider Kesten’s EADAM. The algorithm focuses mainly on interrupters, which we
define as follows:

Definition 2. In the DA procedure of a school choice problem, if student i is tentatively
accepted by school s at some round t and is later rejected by school s at some round t′ > t

and at least one other student is rejected by school s at some round l such that t ≤ l < t′,
then student i is an interrupter for school s, and the pair (i, s) is an interrupting pair
of round t′.

Kesten (2010) show that the assignment is Pareto efficient by neutralizing specific inter-
rupters, and EADAM Pareto dominates DA. The term neutralize means that a student
who is an interrupter for a school no longer applies to it.13 However, if a student is an
interrupter for school s, then she is indifferent between applying or not to s, given the
fixed strategies of other students.14 Our contribution is considering the strategic aspect
of the different equilibria.

For any school choice problem (P, ≻), Kesten’s EADAM operates as follows:15

Step 0: Run DA for the problem (P, ≻).
Step t, t ≥ 1: Identify the last round of the step-(t − 1) DA procedure in which inter-
rupter(s) are rejected. Identify all interrupting pairs of this round, and for each pair,
remove the respective school from the interrupter’s preference. After that, rerun DA
(step-t DA) with the new preference profile.
Stop when there are no more interrupters that are rejected.

For each step t ≥ 0 of EADAM, we denote by µκ(t) the temporary assignment, and µκ

the final assignment. We denote K(P, ≻) ≡
⋃

t=0,...,n µκ(t) as the set of all temporary
assignments. Similarly, for each step, we consider the set of interrupting pairs.

Definition 3. Let Ĩt be a set of interrupting pairs identified by EADAM at step t. For
each pair (i, s) ∈ Ĩt, we denote st

i as the school for which i is an interrupter.
13Kesten differentiates between students who consent to have a modification of their preferences when

they are interrupters for a school and those who do not. In our analysis, we assume that all students
consent.

14This result is given by Proposition 3 of Kesten (2010). The formulation is different. Kesten does
not consider indifference, but the assignment of a consenting student does not change.

15We use "step" for EADAM and "round" for DA.
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Note that the order of the sets is essential. All assignments in K(P, ≻) can be obtained by
neutralizing interrupters. For example, µκ(t) ∈ K(P, ≻) can be obtained by neutralizing
the interrupters identified in steps 0 to t.
Throughout the Kesten algorithm, students trade school positions to obtain more pre-
ferred assignments. We aim to identify applications that maintain equilibrium. To
achieve this, we introduce the following definition:

Definition 4. Let IT
t be a set of trading students in EADAM at step t, where t ≥ 1.

For any pair of students i, i′ ∈ IT
t with i ̸= i′, the following conditions hold:

• µκ(t)(i) = µκ(t−1)(i′), with µκ(t)(i) ̸= µκ(t−1)(i), and
• µκ(t)(i′) = µκ(t−1)(i′′), with i′′ ∈ IT

t , i′′ ̸= i′, and µκ(t)(i′) ̸= µκ(t−1)(i′).

We refer to µκ(t)(i) as a blocking application if, at a later step t′ > t, student i′ is
identified as an interrupter for school s, and µκ(t′) ̸= µκ.

In words, we consider all students who traded their assigned school from DA run at
step t − 1 to step t. Note that several distinct sets IT may exist at a given step t.
This reflects the neutralization of several interrupters at the beginning of step t. Using
this set, we can identify the application that will prevent the deviation of the interrupter
identified at a later step. The condition µκ(t′) ̸= µκ allows us to consider problems where
the neutralization of (i′, st′

i′) modifies the assignment.16 If this is not the case, then the
application µκ(t)(i) is not blocking. Moreover, we can restrict this definition to cases
where an interrupter i′ is assigned to a different school under µSOSM and µκ.

4.3 Illustrative Example

In the rest of this section, we illustrate through two examples how EADAM proceeds
and how to implement costs. That also highlight the use of our definitions.

Example 2. Consider the school choice problem (P, ≻) from Example 1. EADAM
proceeds as follows:

• At step 0 of EADAM, the obtained assignment is µSOSM according to the prefer-
ence profile. The strategy of i2 is given by: Qi2 : s1, s2, s3, s4.

16There are interrupters that, when neutralized, do not change the assignment. However, it is possible
that after their neutralization, an interrupter is identified in a subsequent step, such that its neutralization
improves the student’s assignment. For this reason, we consider the final step of EADAM rather than
step t′ + 1.
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• The identified set of interrupting pair is Ĩ1 = {(i2, s3)}. In step 1, the obtained
assignment is µ• according to the preference profile. The strategy of i2 is given by:
Q′

i2 : s1, s2, s4.
• The identified set of interrupting pair is Ĩ2 = {(i2, s2)}. In step 2, the obtained

assignment is µ∗ according to the preference profile. The strategy of i2 is given by:
Q′′

i2 : s1, s4.
The DA outcome run at the end of step 2 is Pareto-efficient.
Let Q be a strategy profile such that for each i ∈ I \ {i2}, Qi = Pi, and Qi2 : s1, s4, and
let Q′

i2 = Pi2 . The DA outcome for the problem (Q, ≻) and the problem ((Q′
i2 , Q−i2), ≻)

are underlined in the following tables.

Qi1 Qi2 Qi3 Qi4

s1 s1 s2 s3
s2 s3 s1
s3 s1 s2
s4 s4 s4 s4

Qi1 Q′
i2 Qi3 Qi4

s1 s1 s2 s3
s2 s2 s3 s1
s3 s3 s1 s2
s4 s4 s4 s4

Table 3: Outcomes of DA(Q, ≻) and DA((Q′
i2 , Q−i2), ≻).

We can see that µSOSM (i2) = µ∗(i2), so Q and (Q′
i2 , Q−i2) are equilibria. Now let us

consider the implementation of application costs. Let C be a cost profile such that for
each i ∈ I \ {i2} and for each s ∈ S, ci,s = 0. For i2, we have ci2,s1 = ci2,s4 = 0, and
ci2,s2 = ci2,s3 = 1. Costs are positive only for interrupting pairs. We can compare the two
equilibrium outcomes by considering the lexicographic payoff of i2. The outcomes for i2

are (s4, 0) for DA(Q, ≻, C) and (s4, 2) for DA((Q′
i2 , Q−i2), ≻, C). The two assignments

are identical, but the costs are different. Thus, i2 prefers the outcome of DA(Q, ≻, C),
and (Q′

i2 , Q−i2) is no longer an equilibrium due to the implementation of the cost profile
C.

In this example, we have set the costs to incentivize student i2 not to apply to schools
s2 and s3. The next section investigates whether a more general cost profile design is
possible.
Definition 4 cannot be illustrated in Example 2. This is because student i2, which is
the only interrupter in this problem, is assigned to school s4 in both DA and EADAM.
There is, therefore, no assignment trading with student i2. Let us introduce a different
example.

Example 3. Consider a school choice problem (P, ≻) with five students I := {i1, i2, i3, i4, i5}
and five schools S := {s1, s2, s3, s4, s5}, each having one seat (for each s ∈ S, qs = 1).
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The priorities and preferences are given in the following tables, and we describe the
EADAM steps.

≻s1 ≻s2 ≻s3 ≻s4 ≻s5

i3 i4 i2 i1 ·
i4 i1 i3 i5 ·
i1 i2 i4 i2 ·

i3 ·

Pi1 Pi2 Pi3 Pi4 Pi5

s1
♮ s2 s2

♮ s3
♮ s4

s2
◦ s4

◦♮ s3
◦ s1

◦ s5
◦♮

s4 s3 s1 s2

Table 4: Schools’ priorities and students’ preferences.

• At step 0 of EADAM, the obtained assignment is µSOSM and is underlined in the
preference profile.

• The identified set of interrupting pair is Ĩ1 = {(i5, s4)}. In step 1, the obtained
assignment is denoted by ◦ (denoted µ◦) in the preference profile. The strategy of
i5 is given by: Q′

i5 : s5.
• The identified set of interrupting pair is Ĩ2 = {(i2, s2)}. In step 2, the obtained

assignment is denoted by ♮ (denoted µ♮) in the preference profile. The strategy of
i2 is given by: Q′

i2 : s4, s3.
The DA outcome run at the end of step 2 is Pareto-efficient.
Following Definition 4, we have IT

1 = IT
2 = I \ i5, and IT

3 = i1, i3, i4. Student i2 is in a
set of trading students and is an interrupter for s2 at step 2. Let us now consider the
blocking applications. We have that the pairs (i3, i2) and (i1, i2) satisfy both conditions,
and µ◦ ̸= µ♮. Hence, µκ(1)(i1) = s2 and µκ(1)(i3) = s3 are blocking applications.

5 Costs design

In this section, we determine the conditions under which the cost profile leads to a
Pareto-efficient outcome at equilibrium using DA. Example 2 shows that the resulting
assignment is Pareto-efficient by setting a positive cost for each interrupting pair. We
must set identical costs for each student to generalize the cost profile.
An important observation in Example 2 is that the costs modified the set of possible
equilibria. Indeed, (Q′

i2 , Q−i2) is no longer an equilibrium with the cost profile C. How-
ever, the equilibrium Q is preserved. Theorem 1 shows that all the assignments that
Pareto-dominate µSOSM are implementable. We now determine that there is always a
cost profile that preserves these equilibria.
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Theorem 2. Let (P, ≻) be a school choice problem such that the students’ optimal stable
assignment is not efficient. Then there exists a cost profile C and a Nash equilibrium
Q such that DA(Q, ≻, C) Pareto dominates the students’ optimal stable assignment.
Additionally, truthful revelation is no longer a dominant strategy for some students.

Theorem 2 immediately states that if µSOSM is not efficient, then there is a cost profile
that maintains an equilibrium such that the outcome is Pareto-efficient and Pareto dom-
inates µSOSM . Furthermore, costs impact students’ strategies, and certain equilibria are
no longer possible. We now need to determine the structure of this cost profile. Theo-
rem 1 of Kesten (2010) states that when all the interrupting pairs are neutralized, the
resulting assignment is Pareto-efficient and dominates DA. Furthermore, Proposition 3
of Kesten (2010) states that students who are interrupters for a school are indifferent
between applying to that school or not. To determine the structure of the cost profile,
we need to identify the strategies that lead to an equilibrium with Pareto-efficient out-
comes. We know that interrupting pairs must be neutralized, and we ensure that no
interrupter has a profitable deviation. To do this, we must maintain rejection chains,
guaranteeing their rejection from the school for which they are interrupters. Finally,
each student applies to their assigned school in µκ. The following example illustrates
this strategy profile.

Example 4. Consider the school choice problem (P, ≻) from Example 1. We can observe
that students i1, i3 and i4 are never assigned to s4. Thus, they are indifferent to including
s4 in their strategies. In this example, we illustrate that the assignment µ∗ can be
implemented with at most two schools in each student’s strategy. To illustrate this,
consider Qi1 : s1, s3 and Qi3 : s3, s2. Then let us study the possible strategies for i4 and
i2, an interrupter for s2 and s3.
For student i4, we study the strategies denoted Qi4 and Q′

i4 such that Qi4 : s3, s1, s2 and
Q′

i4 : s3, s2. For student i2 we study the strategies Qi2 : s1, s2, s4 and Q′
i2 : s1, s4.

i2

i4 Qi4 Q′
i4

Qi2 µ(i2) = s4; µ(i4) = s1 µ(i2) = s4; µ(i4) = s2
Q′

i2 µ(i2) = s4; µ(i4) = s3 µ(i2) = s4; µ(i4) = s3

Table 5: Assignment comparison of i2 and i4 according to their strategies.

In each outcome, i2 is assigned to s4. Therefore, if i4 does not apply to s1, student i2

is still assigned to s4. By setting a positive cost to i2’s application to s2, the strategy
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is Q′
i2 , as suggested in Theorem 2. Knowing this, i4 is indifferent between Qi4 and Q′

i4 .
The fact that i2 has no interest in applying to s2 when i4 does not apply to s1 is because
i4 applies to s2 and i4 ≻s2 i2. Following this argument, the application that blocks the
deviation of i2 is s2 ∈ A(Qi4). We can use the same reasoning for other students. The
strategy profiles can therefore be as follows.

Qi1 Qi2 Qi3 Qi4

s1 s1 s2 s3
s2

s3 s3 s1 s2
s4

Qi1 Q′
i2 Qi3 Qi4

s1 s2 s3

s3 s1 s2
s4

Table 6: Strategy profiles with Q′
i2 as suggested by Theorem 2.

However, this is not always possible. Consider Example 3, using a strategy profile, such
that for each i ∈ I, Qi : µ♮, µSOSM . A profitable deviation exists for student i2, who can
apply to s2. This deviation does not exist yet if we have s2 ∈ A(Qi1) or s3 ∈ A(Qi3).
The following result generalizes Example 4 and provides the structure of possible strate-
gies leading to equilibrium.

Proposition 1. Let Q be such that for each student i ∈ I,
(i) for each s ∈ S, if s = st

i, for some t in the EADAM, st
i /∈ A(Qi),

(ii) µSOSM (i) ∈ A(Qi) if µSOSM (i) = µκ(i), and µSOSM (i), µκ(i) ∈ A(Qi) otherwise,
(iii) for each t such that µκ(t)(i) is a blocking application, we have at least one student

i′ ∈ IT
t with IT

t ∋ i such that µκ(t)(i′) is a blocking application and µκ(t)(i′) ∈
A(Qi′),

(iv) for any school s ∈ A(Qi), the schools are ranked according to true preferences.
Then Q is a Nash equilibrium, and DA(Q, ≻) Pareto dominates µSOSM and is Pareto-
efficient.

We also generalize the result to each assignment in K(P, ≻).17

Proposition 2. Let Ĩ ′
t ⊆

⋃
t∈{1...n} Ĩt be a subset of interrupting pair. There exists k

such that for each h ≤ k, (i, sh
i ) ∈ Ĩ ′

t and (i, sk+1
i ) /∈ Ĩ ′

t. Let Q be a strategy profile
such that for each student i′ is Qi′ = Pi′ and only all the interrupting pair in Ĩ ′

t are
neutralized such that st

i /∈ A(Qi′). Then, the obtained assignment is µκ(k), and Q is an
equilibrium using DA.

17The proof of Proposition 2 is immediate from Proposition 1.
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The significant consequence of Proposition 1 is that if there are no blocking applications
(as presented in (iii)), there is always an equilibrium where students apply to at most
two schools. This result simplifies the design of the cost profile, making it more general.
In the following, we analyze why the schools assigned under µSOSM must be included in
each student’s strategy and the implications of this for the cost profile design.

Example 5. Let (Q, ≻) be the problem presented in Table 6 (Example 4). Let C

be a cost profile such that for each i ∈ I, and for each s ∈ S we have ci,s = 1 if
s ̸= µSOSM (i) and ci,s = 0 if s = µSOSM (i). Considering the problem (Q, ≻, C), the left-
hand strategy profile is no longer an equilibrium. The right-hand strategy, by contrast,
is an equilibrium. This illustrates that the cost can be positive for assigned schools in µκ.
Using the lexicographic payoff, we have for each i ∈ I\{i2} that (µκ(i), 1)⋗(µSOSM (i), 0).
For student i2, knowing that for each i ∈ I \ {i2}, µSOSM (i) ∈ A(Qi), and the cost is
positive for each school except s4, the strategy of student i2 is Qi2 : s4.
Let us now consider a new cost profile C ′, such that there exists a student i where
µSOSM (i) ̸= µκ(i) and c′

i,µSOSM (i) = 1. As an illustration, consider that for each student
i ∈ I, we have c′

i,s3 = 1. We have therefore c′
i1,s3 = 1.

Qi1 Qi2 Qi3 Qi4

s1 s2 s3

s3 s1 s2
s4

Q′
i1 Qi2 Qi3 Qi4

s1 s2 s3

s1 s2
s4

Table 7: Strategy profiles with C ′.

We compare the strategy profiles Q and (Q′
i1 , Q−i1). Knowing the strategy of other

student Q−i1 , and that c′
i1,s3 = 1, student i1 has a profitable deviation in problem

(Q, ≻, C ′). We have DA(Q, ≻, C ′) = DA((Q′
i1 , Q−i1), ≻, C ′) and (s1, cQ′

i1
) ⋗ (s1, cQi1

).
Hence, with Q−i1 being fixed, i1 chooses strategy Q′

i1 . The strategy profile Q is not an
equilibrium. Note that student i4 does not change her strategy. Indeed, even though it
is now costly for i4 to apply, she prefers s3 to s2. Considering now the profile (Q′

i1 , Qi2)
and C ′. There is a profitable deviation for i2, for example Q′

i2 : s2.
Therefore, (Q′

i1 , Qi2) is not an equilibrium when the cost profile is C ′. Note that strategy
profile (Q′

i1 , Q′
i2 , Qi3 , Qi4) is not an equilibrium because student i1 has a new profitable

deviation, which is to apply to s3 even if the cost is positive.

The reasoning is similar for blocking applications, as presented in Example 3, except
that only one student is needed from each IT

t to block deviations. Thus, considering
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a cost profile such that ci1,s2 = 1 and ci3,s3 = 1, then no equilibrium leads to µ♮. We
generalize these observations in the following results.

Theorem 3. Suppose there exists a student i ∈ I, such that µSOSM (i) ̸= µκ(i) and
ci,µSOSM (i) = 1. Then, there is no equilibrium outcome µ that Pareto dominates µSOSM ,
such that µ(i)Piµ

SOSM (i) with the cost profile.

Therefore, it only needs one student i with a different assignment in µSOSM and µκ, with
a positive cost at µSOSM (i), to prevent any equilibrium with an outcome that Pareto
dominates µSOSM , such that the outcome is preferred by i to µSOSM (i), from existing.
The consequence of Theorem 3 is, therefore, that it is necessary to discriminate between
students when designing the cost profile. More precisely, some students may have a
positive application cost for a given school, while others may not.

Corollary 1. Suppose there exists a student i ∈ I, such that µSOSM (i) ̸= µκ(i) and
ci,µSOSM (i) = 1. Then, there is no equilibrium outcome that Pareto dominates µSOSM ,
which is Pareto-efficient with the cost profile.

These results have two consequences. First, suppose there exists a school s such that
µSOSM (s) ̸= µκ(s) and s has a positive application cost for every student, i.e., for each
i ∈ I, ci,s = 1. Then, there is no equilibrium such that the outcome Pareto dominates
µSOSM and is Pareto efficient. This impossibility result outlines the importance of cost
profile design. Second, suppose that application fees are positive for each application.
Then only the stable assignments are implementable under DA. We, therefore, show that
costs can have an incentive effect on students. This last result concerns the blocking
applications presented in Example 3. Proposition 1 suggest they have a similar role to
the schools obtained with µSOSM .

Corollary 2. Suppose there exists t such that for each i ∈ IT
t such that µκ(t)(i) is a

blocking application, and µκ(t)(i) ̸= µκ(i), we have ci,µκ(t)(i) = 1. Then, there is no
equilibrium outcome that Pareto dominates µSOSM , which is Pareto-efficient with the
cost profile.

We propose a generalization of cost profiles. To ensure the existence of an equilibrium
outcome that Pareto dominates µSOSM , it is necessary for each student i ∈ I to have
ci,µSOSM (i) = 0 if µSOSM (i) ̸= µκ(i). We showed that a positive cost is sufficient to
incentivize students who are interrupters to a school. Thus, for each student i and each
school s such that for some t in the EADAM procedure, we have (i, st

i) ∈ Ĩt with s = st
i,

then ci, st
i = 1. If there exist blocking applications for some t, then for at least one
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student i ∈ IT
t such that µκ(t)(i) is a blocking application, we must have ci,µκ(t)(i) = 0.

Our results show that other costs do not impact incentives. Thus, for any cost profile
satisfying these three conditions, there is always an equilibrium outcome where students
are incentivized to reach it.

Implementing a cost profile is difficult because of the difference in application costs
required for a given school. One possibility would be for students to apply to some schools
for free. These schools might be obtained under µSOSM and the blocking applications.
However, it is difficult for students to know to which school they will be assigned.
Moreover, students could be incentivized to apply only to these free schools, leading
to inefficient assignments. Students need to be incentivized to apply to the right school.
Grants could then be offered to cover the application fees.

6 The Boston Mechanism and the Top Trading Cycles
Mechanism with Costs

We observe that in DA, costs have an impact on Nash equilibria. We have discussed
the potential Pareto improvements that can be achieved by implementing application
costs. This section examines whether similar effects can be expected in other mecha-
nisms commonly discussed in the literature. Specifically, we study the implementation
of application costs in the Boston mechanism and the Top Trading Cycles (TTC) mech-
anism.

6.1 The Boston Mechanism

The Boston mechanism is extensively studied in the literature.18 In this section, we
investigate whether the introduction of application costs can incentivize students in
this mechanism. Ergin and Sönmez (2006) demonstrate that every Nash equilibrium
in the Boston mechanism leads to a stable outcome. Hence, we aim to determine if
implementing application costs can create an equilibrium in this mechanism. Another
contribution by Haeringer and Klijn (2009) show that every Nash equilibrium outcome
in the Boston mechanism is achievable when each student can only apply to one school.
Let Qβ denote a strategy profile using the Boston mechanism.

18The Boston mechanism is also known as the "immediate acceptance" mechanism. The term Boston
mechanism is used in the context of school choice (Abdulkadiroğlu and Sönmez, 2003).
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Proposition 3. Suppose µβ is a Pareto-efficient assignment using the Boston mecha-
nism. For every cost profile C, there exists a Nash equilibrium Qβ

C that leads to µβ in
the problem (P, ≻, C) if and only if there exists a Nash equilibrium Qβ that leads to µβ

in the problem (Qβ, ≻).

In DA, students use their strategies to block deviations by applying to their obtained
school in µSOSM . This generates a chain of rejections that guarantees equilibrium.
However, blocking deviations is not possible in the Boston mechanism. Our definition
of costs implies that they cannot alter the ranking of schools in students’ preferences.
Without a rejection chain, Proposition 3 follows directly.
Empirical and experimental studies indicate that, in practice, the Boston mechanism
suggests assignments preferred by students over those suggested by DA. For example,
Featherstone and Niederle (2016) compare the two mechanisms through experimental
analysis and conclude that the Boston mechanism yields assignments that students pre-
fer. Our findings differ for the two mechanisms. With DA, costs can influence equi-
librium outcomes and provide incentives, while in the Boston mechanism, incentives
through costs are not possible. Experimenting with application costs could then change
the result of Featherstone and Niederle (2016). The assignment suggested by DA may
then be preferred to that of Boston by the students.

6.2 The Top Trading Cycles Mechanism

From the literature, we know that there exist TTC equilibrium outcomes that are not
Pareto-efficient. Haeringer and Klijn (2009) provide conditions under which all equi-
librium outcomes are Pareto-efficient.19 Similar to the Boston mechanism, the set of
equilibrium outcomes in the TTC mechanism does not depend on the number of schools
reported in students’ preferences (Haeringer and Klijn, 2009). All equilibrium outcomes
are possible even when students rank only one school in their preferences. We have
shown that in DA, some strategy profiles are no longer equilibria in the presence of
costs. This raises the question of whether implementing costs can eliminate inefficient
equilibrium outcomes in the TTC mechanism. The following result provides the answer.
Let Qτ denote a strategy profile using the TTC mechanism.

Proposition 4. Suppose µτ is not a Pareto-efficient assignment using the TTC mech-
anism. For every cost profile C, there exists a Nash equilibrium Qτ

C that leads to µτ in
19They show that efficient Nash equilibrium outcomes can be guaranteed if, and only if, schools’

priorities satisfy the X-acyclicity condition.
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the problem (P, ≻, C) if and only if there exists a Nash equilibrium Qτ that leads to µτ

in the problem (Qτ , ≻).

Similar to the Boston mechanism, costs do not influence equilibrium outcomes in the
TTC mechanism. Therefore, the introduction of costs cannot prevent inefficient equilib-
rium outcomes.

7 Conclusion

In this paper, we have examined the implementation of Nash equilibrium outcomes
that Pareto dominate the students’ optimal stable assignment in DA. We have shown
that such implementation is possible for any assignment that Pareto dominates a stable
assignment. Furthermore, we have proposed the implementation of application costs
as a means to incentivize students. We have used Kesten’s EADAM to determine the
application costs that must be set. Our analysis has demonstrated that application costs
can reinforce or hinder equilibria in the DA mechanism. However, a precise design of the
cost profile is necessary to ensure the existence of Pareto-efficient equilibrium outcomes.
Complete information is therefore required for the implementation of costs.
We have also investigated the impact of costs on the Boston mechanism and the TTC
mechanism. Our results indicate that costs do not affect the equilibrium outcomes in
these mechanisms. Consequently, introducing costs does not alter the equilibria out-
comes in the Boston and TTC mechanisms. This article is the first to characterize
equilibria in the presence of bid costs.
Future research could explore experimental and empirical comparisons of different mech-
anisms, considering application costs. The costs introduced as incentives in our theoret-
ical framework could be used to enhance the efficiency of the DA mechanism in practice.
The cost design is different from that proposed by He and Magnac (2022) and may
produce new results.
The incorporation of incomplete information is another potential extension of our model.
Ehlers and Massó (2015) study a many-to-one matching market with incomplete informa-
tion. They show a link between stable mechanism equilibrium in incomplete information
and complete information framework.20 Investigating the impact of application costs on
students in an incomplete information framework would provide valuable insights for
policy implementation.

20More precisely, they show that an equilibria characterization under complete information leads to
the equilibria characterization under incomplete information.
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In Appendix A, we explore the relationship between stability and efficiency in more
detail. We identify conditions that guarantee the stability of an equilibrium outcome,
which coincide with the concept of interrupters used in this paper. These results could
be applied to a model with incomplete information.

Appendix A: Additional Results

In this Appendix A, we study equilibrium outcomes to identify conditions that guarantee
stability. For this purpose, we define cycles according to Ergin (2002). Let Us(j) denote
the set of students who have a higher priority at school s than student j, i.e., Us(j) =
{i ∈ I | i ≻s j}.

Definition 5. Let ≻ be a priority structure and q be a vector of quotas. A cycle is
constituted by distinct schools s, s′ ∈ S and students i, j, k ∈ I satisfying the following
conditions:

• Cycle condition: i ≻s j ≻s k ≻s′ i.
• Scarcity condition: there exist (possibly empty) disjoint sets of agents Is, Is′ ⊂

I \ {i, j, k} such that Is ⊂ Us(j), Is′ ⊂ Us′(i), |Is| = qs − 1, and |Is′ | = qs′ − 1.
A priority structure is acyclical if it has no cycles.

We know that in the presence of a cycle, there are outcomes that are not Pareto-efficient
(Ergin, 2002). Equilibrium outcomes that are not stable can therefore exist in the
presence of a cycle, as shown, for instance, by Haeringer and Klijn (2009) using DA. Let
us illustrate with an example that considers cycles.

Example 6. Consider I = {i1, i2, i3} and S = {s1, s2, s3} with for each s ∈ S, qs = 1.
The priorities for the schools and the preferences of the students are given as follows:

≻s1 ≻s2 ≻s3

i1 i2 i1
i2 i1 i3
i3 i3 i2

Pi1 Pi2 Pi3

s2 s3 s3
s3 s1 s2
s1 s2 s1

There are two cycles in the schools’ priorities:
• i2 ≻s2 i1 ≻s2 i3 ≻s3 i2 and i1 ≻s3 i3 ≻s3 i2 ≻s2 i1, for schools s2 and s3.

Following the definition of a cycle, we refer to the student j as i1 and i3.
The unique stable outcome is underlined in the students’ preferences. Let us consider
an equilibrium:
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Qi1 Qi2 Qi3

s2 s3 s2

s3 s2 s1

s1

We can see that in this situation, there are no profitable deviations. Hence, this is an
equilibrium, and the assignment is not stable.
In this equilibrium, if i3 applies to the school s3, her assignment does not change, but
the strategy of i2 will be modified following a profitable deviation.

Qi1 Qi2 Qi3

s2 s3 s3

s3 s2 s2

s1 s1

The profitable deviation for i2 is then to apply to s1. Hence, if the student i3 applies to
s3, the obtained assignment is stable at equilibrium.
Let us now consider another preference profile and an associated unstable equilibrium
outcome:

Pi1 Pi2 Pi3

s2 s3 s2
s1 s2 s1
s3 s1 s3

Qi1 Qi2 Qi3

s1 s3 s2
s3 s2 s3

s1

Similarly, if i1 applies to s2 in her strategy Qi1 , then i3 will have a profitable deviation,
which is to apply to s1. Following this deviation, the equilibrium outcome obtained
will be stable. By routine computation, we obtain that for any preference profile, when
the students i1 and i3 apply to s2 and s3, respectively, using the correct ranking, all
equilibrium outcomes are stable.
Note that we only consider equilibria. Strategy profiles may lead to an unstable outcome
where students i1 and i3 apply to s2 and s3, respectively. However, this is not an
equilibrium.

The following theorem generalizes the result of this example.

Theorem 4. Suppose that for each cycle i ≻s j ≻s k ≻s′ i, we have s ∈ A(Qj), where
s is ranked according to j’s true preferences in her strategy. Then each equilibrium
outcome is stable.
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EADAM identifies the interrupters to neutralize, and these interrupters involve the stu-
dent j in the cycle. Thus, when j is an interrupter for school s, we have if s ∈ A(Qj),
the assignment is stable at equilibrium.21 Still, if j does not apply, it is possible to have
a Pareto-efficient equilibrium outcome under the condition that all other interrupters
are neutralized.
The main consequence of Theorem 4 is that it is sufficient for each student j involved
in a cycle to apply to school s to ensure outcome equilibrium stability. It is important
to note that s /∈ A(Qj) does not imply that it is impossible to have a stable equilibrium
outcome. However, it is possible to guarantee stability by considering the preferences
of students i and k. This is possible when i or k cannot block j within the cycle. We
illustrate Proposition 5 with the following example:

Example 7. Consider the problem given in Example 6, and as presented, there are two
cycles. In the first cycle, i is i2 and k is i3, while in the second cycle, i is i1 and k is i2.
One consequence of our next result is that if preference profiles are such that s3Pi2s2 and
s2Pi3s3 or s2Pi1s3 and s3Pi2s2, there exist unstable equilibrium outcomes. Consider, for
instance, the following profile where (·) can be any school:

Pi1 Pi2 Pi3

· · ·
· s2 ·
· s3 ·

·

Considering the preference of i2, all the Nash equilibrium outcomes are stable for each
possible preference of other students P−i2 . Similarly, if s3Pi3s2 and s3Pi1s2; then all the
possible preferences of student i2 lead to only stable equilibrium outcomes.

Proposition 5. Suppose that for each cycle i ≻s j ≻s k ≻s′ i, and for each student i

and k, i ranks sPis
′ or student k ranks s′Pks, or both, in their true preferences. Then

all equilibrium outcomes are stable.

The stability of equilibrium outcomes can be identified in two situations, and we can
generalize these results as follows:

• If at least one student among i and k for each cycle has preferences such that sPis
′

or s′Pks, from Proposition 5, then all equilibrium outcomes are stable.
21This must be true for each cycle. Note that if s is not acceptable to j, then the school should not

be included in j’s strategy.
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• Otherwise, for the cycles concerned, if s ∈ A(Qj) ranked according to true prefer-
ences, then by Theorem 4, all equilibrium outcomes are stable.

We have identified the applications in the student strategies that guarantee the stability
of the equilibrium outcomes. One of our conditions coincides with the interrupter notion
mentioned above.

Appendix B: Proofs

Lemmata

Lemma 1. Using EADAM, if µκ(s) ̸= ∅, then µSOSM (s) ̸= ∅. Additionally, for each
s ∈ S where s is equal to st

i for some step t in EADAM and such that (i, st
i) ∈ Ĩt, then

µκ(st
i) ̸= ∅.

Proof. By contradiction, suppose that µSOSM (s) = ∅ and µκ(s) ̸= ∅. This implies
µSOSM (s) ̸= µκ(s). Therefore, µSOSM is not stable, as there exists a student i who
prefers s to their assigned school µSOSM (i). This violates the non-wastefulness property
of the assignment. Hence, student i has a profitable deviation by being assigned to s.
Therefore, if µκ(s) ̸= ∅, then µSOSM (s) ̸= ∅.
Consider an interrupter (j, s∗). Suppose that there exists i such that µSOSM (i) = s∗ and
assume, by contradiction, that no student under EADAM is assigned to s∗, i.e., there is
no i′ ∈ I such that µκ(i′) = µSOSM (i). From the definition of an interrupter, we know
that j has been rejected by the application of another student. Then, either µκ(s∗) ̸= ∅
or (j, s∗) is not an interrupting pair, leading to a contradiction. ■

Lemma 2. Let Q be a strategy profile such that for each student i ∈ I we have:
• µSOSM (i) ∈ A(Qi),
• for each IT

t such that a blocking application exists, at least one student i ∈ IT
t ,

such that µκ(t)(i) is a blocking application, µκ(t)(i) ∈ A(Qi), and
• schools are ranked according to true preferences.

Then, there exists a rejection chain that blocks the deviations of students involved in an
interrupting pair.

Proof. Consider a student i who is assigned to school s at the end of EADAM, i.e.,
µκ(i) = s, and suppose there exists j ∈ I \ {i} such that (j, s) is an interrupting pair.
We know that j ≻s i and sPjµκ(j) (if the school was not involved in an interrupting pair,
then there is no student i′ such that sPi′µκ(i′) and i′ ≻s i). Consider that s ∈ A(Qj),
thus j triggers a rejection chain leading to the rejection of i from school s.
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Then, i applies to a school ranked after µκ(i).
• If this school is µκ(t)(i) ̸= µSOSM (i), then this leads to the rejection of a student i′

who was assigned to µκ(t)(i) using EADAM, such that µκ(i′) = µκ(t)(i). Then, i′

rejects i′′ from the school ranks after µκ(i′) in Qi′ , and this process continues until
j is rejected from s.

• If this school is µκ(t)(i) = µSOSM (i), then this leads to the rejection of a student
i′ who was assigned to µSOSM (i) using EADAM, such that µκ(i′) = µSOSM (i).
Then, i′ rejects i′′ from the school ranks after µκ(i′) in Qi′ , and this process con-
tinues until j is rejected from s.

By contradiction, suppose that i does not reject anyone or does not generate a rejection
chain that allows j to be rejected from s.
Let us consider DA(P, ≻) temporarily. We know that j is an interrupter for s, so there
exists a student k such that s ∈ A(Qk) and causes j to be rejected at a later step. We
know that k is assigned to s, such that µSOSM (k) = s, otherwise k is also an interrupter
(and k is the last interrupter for s to be rejected, and consequently, EADAM identifies
k as the interrupter to be neutralized). If k is not in the rejection chain generated by
j, then k will apply to s at the same step when j is rejected. Suppose that (j, s) is
neutralized, then i is rejected at a later step by k and µSOSM (k) = s. Since we have
k ≻s j and j ≻s i, it implies k ≻s i. Therefore, i cannot be assigned to s if i does not
generate the rejection chain that rejects j from s. This means that k is rejected from a
school by j’s application to school s, and k rejects j from s.
Consequently, there exists a school, let us denote it as s∗, to which i applied such that
sPis

∗ and s∗Riµ
SOSM (i), which generated a rejection chain that rejected j from s. We

consider three cases:
• s∗ ̸= µSOSM (i) and s∗ ̸= µκ(t)(i): i is an interrupter for s∗ because i is not

assigned to s∗ and leads to the rejection of a student from s∗ (which then leads to
the rejection of j from s). According to Lemma 1, i is indifferent when applying
to s∗.

• s∗ ̸= µSOSM (i) and s∗ = µκ(t)(i): i can generate the same rejection chain if
µκ(t)(i) ∈ A(Qi).

• s∗ = µSOSM (i): i can generate the same rejection chain if µSOSM (i) ∈ A(Qi).
Hence, we conclude that i generates its rejection chain (which leads to the rejection of j

from s) by applying to µκ(t)(i) if such a school exists, and µSOSM (i). ■
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Proof of Theorem 1

Proof. Let µS denote a stable assignment and µ∗ denote an assignment that Pareto dom-
inates µS . We know that there exists I ′ ⊂ I such that for each i ∈ I ′, µ∗(i)PiµS(i) by the
definition of Pareto domination. If no student i strictly prefers µ∗(i) to µS(i), then the
proof is immediate, and an equilibrium exists. Otherwise, there exist i and i′ in I ′ such
that µ∗(i) = µS(i′). Suppose that for each i ∈ I, Qi is such that µ∗(i), µS(i) ∈ A(Qi)
and all the schools in Qi are ranked according to Pi. In addition, each student applies
to her blocking application if such a school exists. Then, it is clear that by using DA,
the algorithm stops at round 1, and for each student, the outcome is µ∗(i). We then
need to show that this strategy is an equilibrium when using DA.

Suppose that Q is not a Nash equilibrium. Then, there exists i1 ∈ I such that Q′
i1 ̸= Qi1

and DA(Q′
i1 , Q−i1)Pi1DA(Q), and we denote s† as the school to which student i1 is

assigned under Q′
i1 . If i1 applies only to s†, then the assignment does not change.

Formally, DA({s†}, Q−i1) = DA(Q′
i1 , Q−i1).

Using Lemma 1 of Alva and Manjunath (2019), we have s† ̸= ∅. By the construction of
DA and stability, there exists i2 ∈ I such that i2 ≻s† i1:

• If µS(i2) = s†, then µ∗(i2)Pi2s†. We know that there exists i3 such that µ∗(i2) =
µS(i3). If i3 = i1, then the deviation is not profitable. If i3 ̸= i1, there exists i4

such that µ∗(i3) = µS(i4).
• If µS(i2) ̸= s†, then there exists s ∈ A(Pi2) such that s = s†. Through the

DA procedure, i2 rejects i1 from s†. We know that there exists i3 such that
µ∗(i2) = µS(i3). If i3 = i1, then the deviation is not profitable. If i3 ̸= i1,
there exists i4 such that µ∗(i3) = µS(i4). Hence, s† ∈ A(Qi2) as s† is a blocking
application.

By generalizing the reasoning, ik cannot reject ih, with k > h > 1; otherwise, µS is not
stable. Then, ik rejects i1. We conclude that there is no profitable deviation for student
i1 by applying to s†. Thus, Q is an equilibrium, and the outcome is µ∗. ■

Proof of Theorem 2

Proof. Let Pi denote the true preference list and Qi denote any generic preference list
for each student i. For any Q, let KQ

i be the list Qi where the schools s such that (i, s)
is an interrupting pair have been dropped from Qi. We know that under DA, we have:

(i) DA is strategy-proof by Gale and Shapley (1962): DAi(Pi, Q−i)RiDAi(Qi, Q−i), ∀Qi, ∀Q−i,
(ii) By Proposition 3 of Kesten (2010), DAi(KQ

i , Q−i) = DAi(Qi, Q−i), ∀Qi, ∀Q−i,
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(iii) By Theorem 1 of Kesten (2010), DA((KP
i )i=1,...,n) Pareto dominates DA((Pi)i).

Statements (i) and (ii) implies that DAi(KP
i , KP

−i) = DAi(Pi, KP
−i)RiDAi(Qi, KP

−i), ∀Qi.
It follows that (KP

i )i=1,...,n is an equilibrium, and the outcome Pareto dominates the DA
outcome under P , as stated in (iii). According to our definition of costs, this equilibrium
exists. Example 1 completes the proof by showing that costs have an impact on the
dominant strategy. ■

Proof of Proposition 1

Proof. Let Q be a strategy profile that satisfies (i)-(iv). We need to show that there are
no profitable deviations for students.
Let us first show that there are no profitable deviations for students identified as inter-
rupters for a school at some step t. We know that for all s ∈ S such that µSOSM (s) ̸= ∅,
we have µκ(s) ̸= ∅ by Lemma 1. Thus, it is necessary to have a rejection chain that
leads students to be rejected from the school for which they are an interrupter, as shown
in Lemma 2. For the other students, we know that the obtained assignment is Pareto-
efficient, and there are no profitable deviations because i obtains the same assignment
using Pi.
From Lemma 1, we know that there exists a student i′ ∈ I such that µSOSM (i) = µκ(i′).
By being rejected from µSOSM (i), student i′ applies to the school ranks after µκ(i′). If
there is no blocking application, this school is µSOSM (i′); otherwise, it is µκ(t)(i′). Using
Lemma 2, we have the same reasoning; the rejection chain continues until j is rejected
from s. Considering a strategy where each student i ∈ I has, if it exists, such a school
µκ(t)(i) ∈ A(Qi), and µSOSM (i) ∈ A(Qi), is therefore sufficient to block j from being
assigned to s.
Thus, j is indifferent between applying to school s or not if a strategy profile satisfies
(i)-(iv). Therefore, the assignment is Pareto-efficient because, for each student i ∈ I, we
have µκ(i) ∈ A(Qi). Moreover, it is an equilibrium. ■

Proof of Theorem 3

Proof. By contradiction, suppose there exists an equilibrium outcome µ that Pareto
dominates µSOSM such that µ(i)Piµ

SOSM (i) with µSOSM (i) ̸= µκ(i) and ci,µSOSM (i).
Let us denote that equilibrium by Q. We know that student i is assigned to µ(i) in
DA(Q, ≻, C). Then, if we have:

• µSOSM (i) ∈ A(Qi), there exists a profitable deviation for i because µ(i)Piµ
SOSM (i)

and ci,µSOSM (i). Then we have DAi({µ(i)}, Q−i, ≻, C) = µ(i).
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• µSOSM (i) ̸= Qi, then by Proposition 1 and Theorem 1, we know that there exists
a profitable deviation for a student i′ ∈ I \ {i}.

Hence, Q is not an equilibrium. ■

Proof of Corollary 1

Proof. We denote by µSOSM the outcome of the equilibrium QT such that QT = P , and
µP E the outcome of the equilibrium QP E , which is Pareto-efficient. Consider i ∈ I such
that µSOSM (i) ̸= µP E(i). We denote s = µSOSM (i), and we know that µP E(i)Pis as
preferences are strict. Using equilibrium QP E , i is assigned to µP E(i). We denote by
QP Ei the strategy of i under the equilibrium QP E . If we set a positive cost such that
ci,s = 1, we know that considering QP E−i , i prefers the strategy Q′

P Ei
to the strategy

QP Ei with s /∈ A(Q′
P Ei

), µP E(i) ∈ A(Q′
P Ei

), and s, µP E(i) ∈ A(QP Ei). As the outcome
of QT is stable and the outcome of QP E is unstable, we know that ∃j ∈ I such that
j ≻µP E(i) i and µP E(i)PjµP E(j). Considering the strategy profile (Q′

P Ei
, QP E−i), it is

no longer an equilibrium since j has a profitable deviation to be assigned to µP E(i)
because the rejection chain is stopped since s /∈ A(Q′

P Ei
) (from Theorem 1, Lemma 1,

and Lemma 2). Note that this is true even if the application cost cj,µP E(i) is positive.
The statement is valid as long as QT produces a stable assignment. Since the assignment
suggested by DA is stable, according to reported preferences, we consider it in the
proof. ■

Proof of Corollary 2

Proof. By contradiction, suppose there exists i ∈ IT
t such that i is an interrupter iden-

tified at a step t′ > t. For each i′ ∈ IT
t such that µκ(t)(i′) is a blocking application, we

have ci′,µκ(t)(i′) = 1 and µκ(t)(i′) ̸= µκ(i′). Let us denote by µ the assignment that is
Pareto-efficient and Pareto dominates µSOSM . As µκ(t)(i′) ̸= µκ(i′), we know that for
each i′ ∈ IT

t , µ(i′)Pi′µκ(t)(i′). Then, knowing that ci′,µκ(t)(i′) = 1, there is a profitable
deviation for each i′, which is µκ(t)(i′) ∈ A(Qi′). The rest of the proof follows the proof
of Corollary 1. ■

Proof of Proposition 3

Proof. Let us note µβ(i) for each student i the assignment obtained with an equilibrium
Qβ, and µβP E(i) the assignment obtained which is Pareto-efficient, using the Boston
mechanism for problem (P, ≻). We consider the following cases in the absence of costs.
Proposition 5.2 of Haeringer and Klijn (2009) allows us to consider strategies for each
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student with a single school.

Case 1: The assignment obtained at equilibrium provides a Pareto-efficient outcome.
Then ∀i ∈ I, µβ(i) = µβP E(i). Then, according to our definition of costs, all the cost
profiles maintain this equilibrium.
Case 2: The equilibrium outcome is not Pareto-efficient. Then ∃i ∈ I such that µβ(i) ̸=
µβP E(i). From Theorem 1 in Ergin and Sönmez (2006), we know that the set of Nash
equilibrium outcomes equals the set of stable assignments under the true preferences.
Then we know that ∀i ∈ I, ∀s such that sPiµ

β(i), ∃i′ ∈ I \ {i} such that i′ ≻s i. By
contradiction, let us suppose that there exists a cost profile, C, that allows an equilibrium
Q∗ with an outcome µ∗β such that ∀i ∈ I, µ∗β(i)Riµ

β(i) and ∃i ∈ I, µ∗β(i)Piµ
β(i). We

denote by Qi : µβ(i) and Q∗
i : µ∗β(i) the student i strategies under the equilibrium Q and

Q∗, respectively. Let us consider a student i such that µ∗β(i) ̸= µβ(i). By definition, we
have µ∗β(i)Piµ

β(i). By stability and the rural hospital theorem Roth (1986), we know
that ∃j ∈ I such that µ∗β(i) = µβ(j). It follows that, at Q∗, we have µ∗β(j)Rjµβ(j).
Then, the obtained assignment is no longer stable, and a student can be assigned to the
school by ordering the school to the first position in her strategy. Therefore, either Qβ

or Q∗ is not an equilibrium, which leads to a contradiction.
Hence, costs do not generally lead to a Pareto-efficient equilibrium outcome unless the
equilibrium outcome is Pareto-efficient without costs. ■

Proof of Proposition 4

Proof. From Haeringer and Klijn (2009), we know that all equilibrium outcomes are
possible with only one school using the TTC in the students’ strategy. Then we consider
that ∀i ∈ I, Qτ

i : µτ (i), with µτ (i) being the school to which i is assigned at equilibrium
Qτ . We have two cases:

Case 1: µτ is Pareto-efficient. We know that the costs are low, so the order of schools
in students’ preferences cannot be changed due to the implementation of costs. Then
every cost profile maintains this equilibrium.
Case 2: µτ is not Pareto-efficient. Suppose that a cost profile C exists such that µτ

is Pareto-efficient and it is the outcome of equilibrium Qτ ′ . We know that the costs
are low, so the order of schools in students’ preferences cannot be changed due to the
implementation of costs. Then Qτ is also an equilibrium, and the outcome is Pareto-
efficient in the absence of costs, which is a contradiction. ■
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Proof of Proposition 5

Proof. Suppose there is a cycle i ≻s j ≻s k ≻s′ i. Let us denote µ an equilibrium
outcome.
Consider three cases:
Case 1: Suppose sPis

′ and sPks′:
• If µ(i)Pis, then i does not block k. Then, if µ(k) = s, we have µ(j)Pjs; otherwise,

µ(k) ̸= s.
• If sPiµ(i), then i can block k, and i is blocked by a student, denoted as i′, such

that i′ ≻s i and therefore i′ ≻s k.
• If µ(i) = s, then i blocks k if sPkµ(k).

Case 2: Suppose s′Pis and s′Pks:
• If µ(k)Pks′, then k does not block i. Then, if µ(i) = s′, we have no student k′ such

that k′ ≻s′ i and s′Pk′µ(k′).
• If s′Pkµ(k), then k can block i, and k is blocked by a student, denoted as k′, such

that k′ ≻s′ k and therefore k′ ≻s′ i.
• If µ(k) = s′, then k blocks i if s′Piµ(i).

Case 3: Suppose sPis
′ and s′Pks:

• If µ(i) = s and µ(k) = s′. Then it is immediate, and µ is stable.
• If µ(i) = s and µ(k) ̸= s′. Then, if µ(k)Pks′, µ is stable, and if s′Pkµ(k), we know

that there exists i′ ∈ I such that µ(i′) = s′ and i′ ≻s′ k. We, therefore, have
i′ ≻s′ i; then i cannot block i′.

• If µ(i) ̸= s and µ(k) = s′. Then, if µ(i)Pis, µ is stable, and if sPiµ(i), we know
that there exists i′′ ∈ I such that µ(i′′) = s and i′′ ≻s i. We, therefore, have
i′′ ≻s k; then k cannot block i′′.

• If µ(i) ̸= s and µ(k) ̸= s′. The reasoning is the same as in the previous cases.
In each case, µ is stable. ■

Proof of Theorem 4

Proof. From Theorem 1 in Ergin (2002), we know that if a cycle exists in schools’
priorities, then a preference profile exists that leads to unstable outcomes at equilibrium.
From Proposition 5, we can consider a specific case only such that s′Pis and sPks′.
Suppose that s ∈ A(Qj) with the correct ranking.
Let us denote a stable outcome in this proof by µSOSM (i).
Case 1: If µSOSM (j)Pjs: i and k can never benefit from the cycle, as the rejection
chain that blocks j’s application is impossible.
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Case 2: If sRjµSOSM (j): by definition, i ≻s j ≻s k. As s ∈ A(Qj), we know that j

prevents potential deviations of k using the rejection chain.
In case 2, k is rejected by the application of j, which guarantees the stability of the
outcome. In case 1, j is indifferent between applying to s or not because, at equilibrium,
she is assigned to a preferred school. Using the reasoning for each cycle completes the
proof. ■
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