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A B S T R A C T   

Power production data can be a valuable resource to analyze photovoltaic (PV) performance without the need for 
field surveys. Recent work has demonstrated the exciting possibility of leveraging this data to extract circuit 
model parameters and current-voltage properties of a PV system, but further development is needed to bolster 
these initial findings. Here, instead of using a classical optimization approach, we switch to the Bayesian 
framework to solve this complex multi-solution problem. This allows us to construct probability distributions 
over the model parameters, get a comprehensive picture of the solution space, and quantify prediction uncer-
tainty. As a result, we can define confidence intervals for the system’s electrical properties and consistently track 
their daily evolution. Our results are validated with laboratory measurements for five silicon and thin-film 
modules, and our scalable approach works with on-site as well as online weather data, which opens new 
prospects for remote PV monitoring, modeling, and degradation analysis for real-life applications.   

1. Introduction 

As the world photovoltaic (PV) fleet continues to grow and age, 
greater attention is being accorded to operations and maintenance 
(O&M) practices to ensure the technical and economic viability of solar 
energy systems over their lifetime. In order to meet production thresh-
olds over more than 20 years, it is becoming increasingly critical to 
effectively monitor these systems to identify and address performance 
issues quickly. Today, thanks to new data analytics techniques, PV 
stakeholders can perform insightful remote analyses using limited but 
easily-accessible data, instead of relying on information-rich but 
expensive, expert-dependent, and interruptive field surveys. 

One valuable online strategy is the modeling of deployed PV systems 
using operational data, as it allows us to understand deviations from the 
expected behavior and assess repowering opportunities. In this context, 
a simple yet effective tool that is often used to represent solar cells as 

well as PV modules is the single-diode model (SDM) [13]. Even though 
the values of its parameters are normally not provided by solar panel 
manufacturers, several methods exist to estimate them from typical 
current–voltage (IV) properties. 

On the one hand, analytical techniques [32,6,7,8,26,2,33] can fit IV 
data using mathematical techniques and physical models that describe 
the behavior of a solar cell. They are generally simple and easy to 
implement but rely on specific assumptions that may not always hold. 
On the other hand, numerical techniques [29,17,25] use iterative 
methods like the Newton-Raphson and Lambert W-function methods to 
extract model parameters from more complex IV information instead of 
handpicked data points. They can handle more realistic scenarios that 
cannot be solved analytically, but they require more computational 
power and suffer from convergence issues due to their sensitivity to 
initial conditions. 

Alternatively, (meta)heuristic algorithms [44,35,27,31,1,43,36, 
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37,42,15,41] – such as the particle swarm, flower pollination, and 
teaching–learning-based optimization algorithms – offer several ad-
vantages over analytical and iterative techniques. They are significantly 
less sensitive to the initialization process, more robust to noise, and able 
to handle larger quantities of multi-dimensional IV data (e.g. with 
temperature and irradiance dependence). Their speed, flexibility, and 
scalability have made them a popular choice among researchers who 
adopted them to extract circuit model parameters [40,3,19,22,21] and 
predict PV performance [28,5,45] from partial or full IV curves 
measured outdoors. However, despite being a valuable tool for evalu-
ating PV performance, IV curves are rarely measured in actual PV in-
stallations, which makes it difficult to implement these studies in real 
life. 

Instead, we recently demonstrated how such techniques can be used 
to extract the SDM parameters and infer IV curves from typical power 
production data [4] (i.e. time-series that list the operating current and 
voltage of a PV system at varying irradiance and temperature) measured 
by commercial solar inverters and data loggers. Specifically, we used the 
teaching–learning-based optimization (TLBO) algorithm to find an 
optimal combination of SDM parameters that can model a mono-
crystalline silicon (mono c-Si) module using a representative sample of 
its production data. Similarly, other researchers have proposed different 
optimization algorithms [38,24] to achieve this using data from the 
National Renewable Energy Laboratory (NREL) and National Institute of 
Standards and Technology (NIST). 

Albeit promising, these initial findings have several common short-
comings. First, they all rely on classical optimization techniques, which 
are limited to finding only one “best” fit for the problem at hand. 
However, based on the desired level of accuracy, complex tasks like 
fitting the SDM can admit multiple solutions, especially when only 
maximum power point (MPP) data is available. Therefore, under the 
same conditions, these algorithms can yield different and often sto-
chastic results depending on their starting point, convergence proper-
ties, and tolerance to noise. Moreover, these studies have so far only 
covered crystalline silicon, which is the predominant but not exclusive 

PV module technology. Last but not least, results reported in the liter-
ature are often validated using outdoor data, which may not be as 
reliable as laboratory data obtained under controlled conditions. 

Here, we reframe the task of extracting circuit model parameters 
from production data as a Bayesian inference problem. Using this 
probabilistic approach, we can explore the parameter search space more 
intelligently by considering a range of possible outcomes. We can then 
update these beliefs as more data become available, which enables us to 
gradually improve the accuracy of our predictions and reduce their 
uncertainty over time. We also extend our study on monocrystalline 
silicon to four other silicon and thin-film module technologies, test our 
new method using both on-site and satellite-based weather data, and 
validate our results using laboratory measurements. 

2. Methodology 

2.1. Data 

We rely on the data collected at the SIRTA (Site Instrumental de 
Recherche par Télédétection Atmosphérique) observatory’s [16] PV test 
bench [9] located at Ecole Polytechnique in Palaiseau, France, and 
illustrated in Fig. 1. The test bench was installed in 2014 and hosts five 
free-standing South-oriented commercial solar panels of different tech-
nologies. The nameplate IV properties of these modules at Standard Test 
Conditions (STC) of 1000 W/m2 and 25 ◦C are reported in Table 1. 

A Class A CMP22 pyranometer (Kipp & Zonen) measures the Plane- 
of-Array (POA) irradiance, and four-wired class A platinum sensors 
(PT100) are used to measure the backsheet temperature of the modules. 
Full outdoor IV curve measurements are recorded by Chroma electronic 
loads roughly every 30 s, but we demonstrate Bayesian inference’s 
capability to extract circuit model parameters using only MPP data. By 
adopting this approach, we can quantify the uncertainty associated with 
this process, and as we accumulate more data over time, we can pro-
gressively narrow down this uncertainty, steering away from the sto-
chastic outcomes typical of traditional optimization techniques [24]. 

Fig. 1. Schematic of the SIRTA PV Test Bench.  
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Since flash tests were performed for all the modules in early April 2022, 
we consider the three-month period preceding them (i.e. since the 
beginning of the year). We then use these lab measurements to validate 
our results. A full description of the measured data and installed 
equipment is available on the open-access GitLab repository of the test 
bench (see Data & Code Availability). More information on data pre- 
processing can also be found in the Supplemental Information. 

2.2. Equivalent circuit model 

The single-diode model (SDM) is a simple physics-based model [13] 
that is commonly used to describe the behavior of a solar cell. Although 
solar cells are the primary power generation unit, PV modeling is usually 
done at the module level to reduce computational complexity and 
because solar panel specifications are more accessible. Assuming all the 
Ns series-connected cells of a PV module to be identical and under 
uniform and equal irradiance and temperature (i.e. they generate the 
same current), the governing equation [39] of the SDM can be written 
as: 

IM = IL − Io

[

exp
(

VM + IMRs

nNsVT

)

− 1
]

−
VM + IMRs

Rsh
(1)  

Given a set of operating conditions (i.e. solar irradiance and cell tem-
perature), the SDM depends on five parameters that relate the module’s 
output current IM to its operating voltage VM: the light-induced current 
(IL), saturation current (Io), series resistance (Rs), shunt resistance (Rsh), 
and ideality factor (n). VT = kBTc

q is the thermal voltage of the cell, where 
kB is Boltzmann’s constant, Tc the cell temperature, and q the elemen-
tary charge. 

Typically, manufacturers do not provide values for the SDM pa-
rameters of PV modules. However, reference values at STC can be esti-
mated from classical datasheet properties using the California Energy 
Commission (CEC) method [8]. This method introduces a sixth param-
eter to the SDM, which is simply a correction factor for the temperature 
coefficient of the short-circuit current. It also relies on the conventional 
De Soto model [7] to adjust the five SDM parameters to the operating 
conditions (i.e. irradiance and temperature). As in [4], we leverage the 
pvlib Python package [10] to compute these models and also factor in the 
series resistance’s dependence on irradiance. 

Once the SDM parameter values are calculated at predetermined 
conditions, the module’s IV response can be simulated to determine its 
key properties – namely the DC output current (IMPP), voltage (VMPP), 
and power (PMPP) at the MPP, as well as the open-circuit voltage (Voc) 
and short-circuit current (Isc). The simulated IV properties can then be 
compared with the measured data to evaluate how accurately the SDM 
parameters can model the PV module (or array). 

2.3. Bayesian inference approach 

Instead of using a classical optimization algorithm to determine the 

single “best” parameter values for the SDM, we opt for the Bayesian 
point of view. This allows us to get probability distributions over every 
parameter, find a set of parameter combinations that can model the PV 
system at hand, and quantify uncertainty over time. This approach is 
based on Bayes’ theorem, which lets us update our prior beliefs about 
the parameters P(θ) as more data d becomes available. 

P(θ|d) =
P(θ)P(d|θ)

P(d)
(2)  

We first define the parameter search space based on the module’s 
datasheet specifications and energy production during the analysis 
period. We assume all the possible parameter combinations (hypothe-
ses) to be initially equiprobable then calculate the likelihood P(d|θi) of 
each parameter combination by comparing its corresponding MPP cur-
rent and voltage with the module’s actual output current and voltage at 
the same measured operating conditions. The normalization constant 
P(d) being the sum of P(θ)P(d|θ) over all the hypotheses, we can 
compute the posterior P(θ|d) using Bayes’ theorem. The full procedure is 
detailed in the Supplemental Information and the code is publicly 
available on GitLab (see Data & Code Availability). 

If we repeat this process on a regular basis while transferring the 
knowledge gained over time (i.e. by setting the posterior distribution 
obtained on the first day as the prior distribution of the following one 
and so on), we can progressively narrow down the 90 % confidence 
interval for our predictions and monitor their evolution over time. This 
temporal transmission of information serves as a safeguard against 
stochastic outcomes that do not reflect real physical daily or seasonal 
variability – a common pitfall of conventional optimization techniques 
found in the literature – thereby promoting stability and consistency in 
the results. 

3. Results 

3.1. Estimation of circuit model parameters 

We first consider the mono c-Si module. Starting with the first day of 
the analysis period, we apply our Bayesian inference process on a daily 
basis (without any distinction between sunny and cloudy days) until the 
end of this 90-day time frame. 

Fig. 2 shows the posterior distributions of the module’s SDM pa-
rameters on the last day of the analysis period (i.e. the probability mass 
functions on March 31st, 2022), which in this case reflect the state of the 
PV module after roughly eight years of operation. The orange dashed 
line represents the reference STC value estimated from the module 
datasheet properties using the CEC estimation method [8], and the 
shaded area accounts for the power tolerance specified by the manu-
facturer (±3 % in this case). In other terms, this area shows how much 
each parameter would need to change to increase (or decrease) the 
module’s rated power by 3 %, assuming the remaining parameters are 
kept constant. Note that this module’s output power becomes insensitive 
to changes in the shunt resistance once the latter’s value exceeds a few 
hundred ohms. 

In the posterior distribution of IL, the shift of the peak from the initial 
datasheet estimate indicates that the module’s degradation is most likely 
induced by a drop in its light-induced and thus short-circuit current. This 
observation is consistent with field experience, which suggests that long- 
term current loss frequently impacts crystalline silicon modules [20,30]. 
Moreover, it appears that the dark saturation current Io and series 
resistance Rs have not degraded over time, while the ideality factor n 
remains around 1. These observations reaffirm the ones we previously 
made [4] – even if the analysis periods are roughly one year apart – as 
this rather stable mono c-Si module has been well maintained since it 
was installed. In contrast, even though the expected value of Rsh is below 
its estimated reference value, there is more uncertainty around this 
parameter. Indeed, the shunt resistance’s impact on the c-Si module’s 

Table 1 
Current and voltage properties of the installed modules at Standard Testing 
Conditions (STC). From left to right: output power (PMPP), voltage (VMPP), and 
current (IMPP) at the maximum power point; open-circuit voltage (Voc); and 
short-circuit current (Isc). From top to bottom: tandem amorphous/microcrys-
talline silicon (a-Si/μ-Si), monocrystalline silicon (c-Si), Copper Indium Selenide 
(CIS), mono c-Si Heterojunction with amorphous silicon Intrinsic Thin layer 
(HIT), and Cadmium Telluride (CdTe).   

PMPP[W] VMPP[V] IMPP[A] Voc[V] Isc[A] 

a-Si/μ-Si module 128 (+10 %/− 5 %)  45.40  2.82  59.8  3.45 
c-Si module 250 (±3 %)  30.52  8.21  37.67  8.64 
CIS module 150 (+10 %/− 5 %)  81.5  1.85  108.0  2.20 
HIT 240 (+10 %/− 5 %)  43.7  5.51  52.4  5.85 
CdTe 82.5 (±10 %)  48.30  1.71  60.80  1.94  
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electrical output is imperceptible once it crosses a certain threshold. This 
underscores the necessity of adopting a probabilistic point of view when 
dealing with complex models that display varying sensitivity to their 
correlated parameters and can yield identical outcomes across different 
parameter combinations – especially when there is limited data and 
sizable manufacturing variability. 

Though the resulting drop in performance is in this instance well 
within the manufacturer’s performance warranty, these plots can pro-
vide us valuable insights into the module’s degradation modes. For 
example, a lower-than-expected value of Isc can generally be an indi-
cation of uniform soiling or delamination, while shunt resistance 
degradation may be a symptom of Potential Induced Degradation (PID) 
[18]. One of the main advantages of switching to the Bayesian frame-
work is that it enables us to identify a set of possible solutions by 
exploring the full parameter search space. In comparison, traditional 
heuristic algorithms used in prior work 
[44,35,27,31,1,36,43,37,38,42,15,41,4,24] are often designed to find 
the single best result using a fixed set of rules. These algorithms 
generally work well for deterministic problems where the outcome of a 
given input is always the same, which is not the case for extracting the 
parameters of a complex circuit model using only MPP data. 

3.2. Estimation of current-voltage properties 

Since we know the probability of each parameter combination 
included in our search space, we can monitor the evolution of the 90 % 
confidence interval for their associated module IV properties throughout 
the analysis period (see Fig. 3). This way, we can better understand how 
changes in the SDM parameters translate to changes in the module 
behavior (and vice versa) in case of a steady or sudden degradation. 

Naturally, the size of the confidence interval starts large and then 
progressively shrinks as more production data becomes available. After 
analyzing several days of production data, the 90 % probability mass 
becomes confined to less than 5 % of the search space. Towards the end 
of the analysis period, it sits in less than 1 % of this space. Nevertheless, 
as we do not distinguish between cloudy and sunny days, occasional 
day-to-day fluctuations and outliers can occur. 

Interestingly, the voltage converges to higher values, and the oppo-
site is true for the current. This reaffirms our previous observation that 
this module’s power degradation is the result of a drop in the current 
rather than the voltage. Furthermore, there is more confidence around 
the values at the MPP than at the open-circuit voltage Voc and short- 
circuit current Isc. This comes as no surprise since we can pair the two 
latter points with different Rs and Rsh values to get IV curves that have 
different shapes but pass through the same MPP. Due to this inherent 
difficulty in determining unique values for the SDM parameters and IV 
properties from MPP data alone, confidence intervals should be 
considered to capture the estimation uncertainty. Given that no PV 
degradation occurs during our analysis period, the changes in the size 

and trend lines of the confidence intervals seen during this short time-
frame are not indicative of any physical changes and only reflect the 
evolution of the uncertainty surrounding the module’s predicted IV 
properties and SDM parameters (see Supplemental Information). In 
more complex cases involving long-term degradation, we would antic-
ipate a gradual shift in trend lines, whereas an abrupt degradation event 
would likely prompt a sudden change in the size of the confidence in-
terval followed by a gradual change in trend lines. 

Besides quantifying uncertainty, another major advantage of using 
Bayesian inference is that it allows us to study short as well as long time 
frames and progressively update the output in a speedy yet consistent 
manner. As we previously noted [4], it would be difficult to obtain such 
results using classical optimization algorithms, since they are designed 
to find a single best and independent fit for each batch of data. This 
becomes even more evident once we look at Li et al.’s results [24], which 
exhibit seasonal variability and stochastic patterns that are atypical of 
rather stable silicon modules and can thus yield different and perhaps 
misleading conclusions depending on the length and size of the analysis 
window. Bayesian inference overcomes this issue because it continu-
ously updates its (prior) beliefs about the system using the best 
consecutive data fits (i.e. the computed likelihoods). 

As for the SDM parameters, we can inspect the distribution of the 
predicted module IV properties (see Fig. 4) to better understand the 
uncertainty surrounding their values at the end of the analysis period. 

At the end of the analysis period, the posterior distributions of the 
predicted module IV properties are concentrated over a small portion of 
the initial SDM parameter search space. The 90 % confidence intervals 
for the module’s output power PMPP, voltage VMPP, and current IMPP at 
STC are within ± 2.2 W, ±0.5 V, and ± 0.13A from their respective 
expected value, which corresponds to impressive precision levels around 

± 1 %. However, the precision is expectedly lower for the open-circuit 
voltage (±3.5 %) and short-circuit current (±2.6 %). Indeed, the pres-
ence of multiple peaks shows how different values of Voc and Isc exist to 
get the same MPP predictions. These findings reaffirm the above ob-
servations and show that module degradation is in this case linked to a 
drop in current, as the voltage remains stable over time. 

3.3. Flash test validation 

Having performed flash tests shortly after the analysis finish date, we 
can evaluate the accuracy of the predicted module IV properties (at STC) 
by comparing their expected values (i.e. weighted averages) with the 
results of these indoor measurements. 

The results of Table 2 show the degradation trends to be predicted 
correctly. However, it appears that the voltage tends to be overestimated 
while the current is more noticeably underestimated, especially at the 
MPP. This is in reality due to the outdoor equipment’s underestimation 
of the modules’ short-circuit and MPP currents (and thus their power 

Fig. 2. Probability distributions of the single-diode model parameters at Standard Testing Conditions (STC) at the end of the analysis period. The dashed line 
represents the value estimated from the datasheet properties. The shaded area accounts for the datasheet power tolerance. From left to right: light-induced current 
(IL), diode reverse saturation current (Io), series resistance (Rs), shunt resistance (Rsh), and ideality factor (n). 
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Fig. 3. Evolution of the 90 % confidence intervals of the module’s current–voltage properties at Standard Testing Conditions (STC) throughout the analysis period. 
Black dots represent less likely outlier values. The colors of the boxes and number of days shown carry no significance and are set solely for visualization purposes. 
From top to bottom: output power (PMPP), voltage (VMPP), and current (IMPP) at the maximum power point; open-circuit voltage (Voc); and short-circuit current (Isc). 

Fig. 4. Probability distributions of the predicted module current–voltage properties at Standard Testing Conditions (STC) at the end of the analysis period. From left 
to right: output power (PMPP), voltage (VMPP), and current (IMPP) at the maximum power point; open-circuit voltage (Voc); and short-circuit current (Isc). 

J. Chakar et al.                                                                                                                                                                                                                                  
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outputs), as the values recorded outdoors at high irradiance (above STC) 
are consistently below those obtained from the flash tests performed in 
the lab at STC (see Supplemental Information). The measurement un-
certainty is expected to be around ± 7.2 % for the site measurements 
[9], but more tests are needed to quantify this particular error and 
determine whether it caused by the equipment measuring the IV curves 
and/or the pyranometer overestimating the irradiance. Nonetheless, our 
analysis successfully detects the decrease in output current and overall 
performance, regardless of whether it is due to system faults and/or 
module degradation. It also provides a glimpse into the heightened 
complexity of remote performance and degradation analysis, as diverse 
and concurrent factors can contribute to the same observed phenomena. 

3.4. Results for other module technologies 

Since we have the flash test results for all the modules installed at the 
PV test bench, we can also check how accurately and precisely this 
approach can estimate the IV properties of the four remaining solar 
panel technologies, namely: tandem amorphous/microcrystalline sili-
con (a-Si/μ-Si), Copper Indium Selenide (CIS), mono c-Si Heterojunction 
with amorphous silicon Intrinsic Thin layer (HIT), and Cadmium 
Telluride (CdTe). 

Overall, the relative errors of the expected values (colored squares in 
Fig. 5) follow similar trend lines across the different PV technologies and 
are still within the measurement uncertainty of the power production 
data, which would increase if we also consider the meteorological data 
uncertainty. All the predicted MPP properties have a narrow 90 % 
confidence interval (black error bars), but the output power and current 
are consistently underestimated. Voltage is in contrast overestimated, 
which explains why PMPP is slightly less underestimated than IMPP is. This 
is mostly due to the outdoor equipment limiting the modules’ output 
currents (i.e. our input data), as explained earlier. 

The error bars are considerably but expectedly higher for the thin- 

film modules. This is not only due to the higher modeling errors (see 
Supplemental Information) but also a difference in the manufacturer 
power tolerance (c.f. Table 1) and sensitivity to the different SDM pa-
rameters. While the flash tests were performed twice and have a low 
measurement uncertainty of ± 0.24 %, their setup is still mostly adapted 
for more prevalent silicon modules. The accuracy of the lab results ob-
tained for the thin-film modules may thus be affected by a mismatch 
with the solar simulator’s spectrum and/or mono c-Si reference cell 
used. 

Despite these shortcomings, the average prediction error is below 5 
% across all five technologies. Taking the power tolerance and mea-
surement uncertainty into account, we can say that the SDM offers a 
good compromise between simplicity and accuracy when extracting 
module IV properties from power production data. 

3.5. Sensitivity analysis 

Knowing that weather data is seldom measured in the field, we 
report the results we get when we replace site measurements for irra-
diance and temperature with online satellite estimates using the same 
databases [23,34,12,14] and thermal model [11] described in our pre-
vious work [4] (see Fig. 6). This adds another layer of uncertainty to the 
input data but helps keep this research project grounded in real life. 

At first sight, the error profiles closely resemble those obtained when 
onsite weather data is used. The main difference is that the power 
estimation error is lower here because the POA irradiance estimated 
using satellite data is lower than the one measured by the pyranometer 
(especially at high irradiance) [4], which results in higher values for the 
predicted output power and current. 

Considering that the choice of weather database and physical models 
is not optimized for this PV test bench, these promising results attest to 
the robustness of this practical approach, which can be scaled to real PV 
systems of any size and technology. 

4. Discussion 

The ability to effectively extract circuit model parameters and IV 
properties from readily available power production and weather data is 
a powerful remote PV monitoring and modeling tool with a wide range 
of benefits for PV stakeholders. It allows system operators to continu-
ously monitor important PV characteristics and detect potential issues 
early on, thus minimizing downtime and maximizing energy produc-
tion. On the one hand, analyzing the evolution of the extracted circuit 
model parameters can provide valuable insights into the underlying 
physical degradation mechanisms, which helps system operators make 
more informed decisions remotely and reduce the need for expensive 
site inspections. On the other hand, DC modeling can be coupled with 
AC modeling to accurately simulate the future performance of grid- 

Table 2 
Comparison between the predicted and lab-measured current–voltage proper-
ties. From top to bottom: output power (PMPP), voltage (VMPP), and current (IMPP) 
at the maximum power point; open-circuit voltage (Voc); and short-circuit cur-
rent (Isc).   

Datasheet Measured 
(Flash 
test) 

Predicted 
(Weighted 
average) 

Predicted vs. 
Measured 

PMPP[W] 250 (±3 
%)  

243.94  234.5  − 3.87 % 

VMPP[V] 30.52  30.47  31.37  2.98 % 
IMPP[A] 8.21  8.01  7.47  − 6.70 % 
Voc[V] 37.67  37.56  38.28  1.93 % 
Isc[A] 8.64  8.49  8.00  − 5.77 %  

Fig. 5. Relative error between the predicted and measured current–voltage properties of all the installed modules at Standard Testing Conditions (STC). The colored 
squares represent the error for the expected value and the error bars correspond to the minimum and maximum errors of the 90 % confidence interval. From left to 
right on the title axis: output power (PMPP), voltage (VMPP), and current (IMPP) at the maximum power point; open-circuit voltage (Voc); and short-circuit current (Isc). 
From left to right on the x-axis: monocrystalline silicon (c-Si), tandem amorphous/microcrystalline silicon (a-Si/μ-Si), Copper Indium Selenide (CIS), mono c-Si 
Heterojunction with amorphous silicon Intrinsic Thin layer (HIT), and Cadmium Telluride (CdTe). 
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connected PV systems and assess the economic viability of replacing 
impacted modules and/or inverters for repowering applications. 

The key advantage of using the probabilistic Bayesian framework lies 
in its ability to uncover all possible degradation scenarios and quantify 
prediction uncertainty. This ensures that no potential outcome is over-
looked and provides a means to evaluate the variability surrounding 
expected returns on investment when making business decisions (e.g. for 
repowering applications). As previously stated, the existing literature 
predominantly relies on deterministic approaches that are ill-suited for 
this multi-solution problem. Such conventional optimization techniques 
ignore alternative possibilities and focus on finding a single optimal set 
of SDM parameter values based on predefined conditions, which likely 
translates to the oversight of critical degradation mechanisms in real- 
world scenarios. 

Whether they are related to the modeling error or breadth of the 
search space, this approach’s aforementioned limitations can be 
addressed to improve the quality of the results. The SDM is widely used 
to describe the behavior of silicon solar cells, which are the dominant PV 
technology, but one may consider alternative models to get improved 
accuracy and physical interpretation, particularly for thin-film tech-
nologies. In our proposed Bayesian inference method, we evaluate the 
same set of parameter combinations for every day of the analysis period, 
and the initial reference parameter values extracted from the solar panel 
datasheet strongly influence the combinations that constitute our search 
space. One way to enhance the final results is to refine the initial 
parameter search and rerun this analysis over and over until a pre- 
defined convergence criterion is met. Or, instead of having a limited 
number of hypotheses (i.e. a discrete parameter space), we can use an 
acquisition function to explore a continuous parameter space. Acquisi-
tion functions can balance global exploration (e.g. exploring solutions 
with larger shunt resistance values for the c-Si module) and local 
exploitation (e.g. refining the value of the light-induced current) of the 
search space by relying on a probabilistic model (typically a Gaussian 
process) that approximates the objective function (the SDM here). While 
these functions help reduce the number of evaluated hypotheses by 
exploring the search space more efficiently, they come with a heavy 
computational cost when compared with pvlib’s implementation of the 
SDM. Furthermore, this adaptive parameter search space strategy 
typical of Bayesian optimization would take away the ability to carry 
posterior distributions over time. In any case, there is only little room to 
improve the accuracy and precision of the Voc and Isc predictions since 
we are limited to MPP data. Ultimately, the choice of model and search 
space exploration strategy depends on the desired level of accuracy and 
computational efficiency for the application at hand. 

Last but not least, while our approach effectively detected that our 
PV system suffers from current losses, it would not have been possible to 
determine which system component was responsible for the overall 
performance loss without performing flash tests for the modules. Indeed, 
the discrepancy between the predicted and lab-measured module IV 
properties does not disprove our predictions but instead confirms that 

our system losses stem from equipment rather than module degradation. 
This simple case highlights the complexity of interpreting overall per-
formance losses and identifying which system components are causing 
changes in the equivalent circuit model parameters extracted from MPP 
data. This said, additional efforts are needed to test this approach on 
larger PV systems, where partial shading, current mismatch, and more 
complex problems are also prevalent. 

5. Conclusion 

In this work, we present an innovative approach to extract the single- 
diode model parameters of a PV system from commoditized production 
and weather data. We shift from the conventional approaches of the 
literature to the more suitable Bayesian point of view, which allows us to 
identify a set of possible degradation mechanisms along with their 
associated probabilities. By automating the definition of the search 
space according to the system specifications and incorporating a transfer 
learning strategy, we steer clear of the stochastic outcomes of classical 
optimization techniques and strengthen the precision and interpret-
ability of the predicted physical properties over short and long time 
frames. Using outdoor measurements and indoor flash tests for silicon 
and thin-film modules, we demonstrate our method’s ability to correctly 
predict degradation patterns and highlight the challenges associated 
with deciphering the results of remote performance analyses. Moreover, 
our broadly-applicable Bayesian inference approach can be scaled to PV 
systems of any size and technology and works equally well with on-site 
weather data and satellite estimates, thus offering promising opportu-
nities for real-life applications. 

6. Experimental procedures 

6.1. Data & code availability 

The data and code that support the findings of this study are publicly 
available on GitLab https://gitlab.in2p3.fr/energy4climate/public/sirta 
-pv1-data. 

6.2. Flash tests 

The flash tests were performed at TotalEnergies laboratory facilities 
using a CetisPV-XF2-M Xenon flasher. Flash duration is 58 ms, and 
average results are reported at 1000 W/m2 and 25 ◦C for four IV curve 
measurements (one forward and one reverse sweep per curve). The ±
0.24 % measurement uncertainty is based on a statistical process control 
(SPC) obtained by continuously measuring the MPP power output of a 
certified mono c-Si reference module. 
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