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A B S T R A C T   

Practical but accurate methods that can assess the performance of photovoltaic (PV) systems are essential to all 
stakeholders in the field. This study proposes a simple approach to extract the solar cell parameters and 
degradation rates of a PV system from commoditized power generation and weather data. Specifically, the 
teaching-learning-based optimization algorithm was used to estimate the single-diode model parameters of a 
monocrystalline silicon PV module from a handful of power production data points that capture the operating 
current and voltage under real working temperatures and irradiance levels. These parameters can reproduce the 
solar panel’s actual behavior under all operating conditions and provide insights into its underlying degradation 
mechanisms. The results were validated by site measurements as well as a sensitivity analysis, thus offering 
exciting possibilities for the future of PV performance analysis, power forecasting, and remote fault detection for 
real-life applications.   

1. Introduction 

As the International Energy Agency [1] puts it, solar is the “power-
house of growth” in renewable energy. Researchers, companies, and 
countries are all racing to build high-efficiency low-cost panels and 
make way for large-scale solar deployment. But as the global PV fleet 
grows in installed capacity and age, more and more importance is being 
accorded to Operation & Maintenance (O&M) and repowering services, 
particularly in Europe, where PV plants have been operating for years 
[2]. In this context, PV performance modeling and monitoring play an 
important role in evaluating the technical and economic viability of a PV 
plant over its lifetime. 

The cornerstone of PV modeling is the choice of a reliable equivalent 
circuit model. Once the model is selected – typically the single- or 
double-diode model – different techniques exist to estimate its param-
eters. The accuracy of these parameters is critical because it delimits the 
accuracy of the simulation results. Generally speaking, the diode model 
parameters are not provided by the manufacturer and cannot always be 
measured experimentally. Nevertheless, several methods can estimate 
these parameters from basic current-voltage (IV) characteristics. 

Analytical methods use implicit algebraic equations to solve for solar 
cell parameters from key IV curve points or datasheet properties. These 
parameters are usually extracted at standard test conditions and can 
then be adjusted to the operating conditions based on their physical 
dependence on temperature and irradiance [3-8]. They have the 
advantage of being straightforward, fast, and suitable for practical ap-
plications. However, their calculation strategy relies on specific points 
and often involves approximations that may compromise accuracy, 
especially if one or more of these points is not properly specified [9]. 

Instead of relying on select points, numerical methods can derive 
solar cell parameters using iterative algorithms that typically feed on 
larger amounts of data. They do so by solving the diode model equation 
in an explicit form and fitting it to this data, thus turning the parameter 
extraction problem into an optimization problem that can be solved 
using deterministic or heuristic techniques. Deterministic methods such 
as the Newton-Raphson [10] and least-squares [11] methods have been 
proposed to extract solar cell parameters, but they are sensitive to the 
initialization process and may fall into local optima [12]. An increased 
interest is thus being given to more robust population-based (meta) 
heuristic techniques, which are well suited for this type of problem. A 
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plethora of heuristic approaches have been applied to extract solar cell 
parameters, including particle swarm optimization, genetic algorithms, 
and teaching-learning-based optimization among many others [12-20]. 
Some authors also improve on established heuristic methods with 
additional features [21,22], while others resort to hybrid algorithms 
that merge two or more of these methods [23-26]. 

Most of these heuristic algorithms are easy to implement and suc-
cessfully extract solar cell parameters from IV curve data. However, 
even though IV curves are an effective way to assess PV performance, 
they are rarely measured in residential, commercial, or utility-scale solar 
farms, which makes it difficult to apply these studies to real-life appli-
cations. In contrast, power production data (i.e. time-series that list the 
operating current and voltage of deployed PV systems at various tem-
peratures and irradiance levels) is an often overlooked but information- 
rich resource that has become increasingly accessible – as it can be 
measured and recorded by commercial PV equipment such as inverters 
and data loggers. 

This article shows how power production data can be used to 
determine the solar cell parameters and degradation rates of a PV sys-
tem. First, the single-diode model is selected to simulate the perfor-
mance of a monocrystalline PV module under given operating 
conditions. Next, the Teaching-Learning-Based Optimization (TLBO) 
algorithm [27] is chosen to find a set of model parameters that can 
reproduce the panel’s actual behavior using just a few power production 
data points. These parameters are then translated into IV characteristics 
to determine the module degradation rates. Different filters are sug-
gested to clean the electrical and environmental data, and the possibility 
of using weather data in the absence of on-site temperature and irradi-
ance measurements is also validated (see Supplemental Information). 
The modeling results are backed by site measurements, and a sensitivity 
analysis (see Supplemental Information) is included to check their 
robustness. 

2. Methodology 

2.1. PV model 

The Single-Diode Model (SDM) is a simple yet effective model that is 
widely-used to describe a solar cell. Derived from physical principles, it 
relates the cell output current to the voltage at its terminals using the 
following governing equation [28]: 

I = IL − I0[exp(
V + IRs

nVT
) − 1] −

V + IRs

Rsh
(1) 

For a given set of operating conditions (i.e. solar irradiance and cell 
temperature), the SDM depends on five primary parameters: the light- 
induced current (IL), diode reverse saturation current (I0), series resis-
tance (Rs), shunt resistance (Rsh), and ideality factor (n, typically be-
tween 1 and 2 [28]). VT is the thermal voltage given by VT = kBTc

q , where 
kB is Boltzmann’s constant, Tc the cell temperature, and q the elementary 
charge. 

Even though the PV cell is the primary power generation unit, solar 
panel specifications are more accessible, and module-level modeling 
significantly reduces the computational cost. If we assume that all the 
cells of a solar panel comprising Ns cells in series are identical and under 
uniform and equal irradiance and temperature (i.e. they generate the 
same current and voltage), we get IM = Icell and VM = Ns × Vcell, where 
IM and VM represent the module current and voltage, respectively. The 
governing equation becomes [29]: 

IM = IL − I0

[

exp
(

VM + IMNsRs

a

)

− 1
]

−
VM + IMNsRs

NsRsh
(2) 

The modified ideality factor a is simply the product of the ideality 
factor n, number of cells in series Ns, and thermal voltage VT: a = n×
Ns × VT. 

Here, PV modeling is done at the module level using the pvlib Python 
package [30]. In other terms, a PV module is represented by a set of five 

Fig. 1. Schematic of the SIRTA PV test bench. In this study, only the FranceWatts c-Si module is considered.  
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SDM parameters at Standard Test Conditions (STC)1. After adjusting 
these parameters to the operating conditions using the De Soto model 
[4], the module’s IV curve can be simulated to find the DC output cur-
rent, voltage, and power at the Maximum Power Point (MPP). The full 
procedure is described in the Supplemental Information and can be 
adapted to any PV system. 

2.2. PV test bench 

This study is based on the data collected at the SIRTA (Site Instru-
mental de Recherche par Télédétection Atmosphérique) observatory’s 
[31] PV test bench [32] located in Palaiseau, France (48.7 N, 2.2E) on 
the Ecole Polytechnique campus and portrayed in the schematic of 
Fig. 1. The test bench was installed in 2014 and hosts five commercial 
solar panels of different technologies. The panels are installed in a free- 
standing configuration, facing South with a 27◦ tilt. 

Agilent DC electronic loads (6060B) measure IV curves roughly every 
40 s, from sunrise to sunset. These curves are translated into time-series 
of the short-circuit current Isc, open-circuit voltage Voc, fill factor FF, cell 
efficiency η, series resistance Rs, and shunt resistance Rsh for each panel. 
Due to a voltage drop along the junction line and the transient mode of 
measurement, an uncertainty of ± 7.2% should be considered for power 
measurements [32]. 

In terms of environmental measurements, four-wired class A plat-
inum sensors (PT100) measure the module backside temperatures using 
the same time interval. The measurement uncertainty is ± 0.4 ◦C, and 
the difference between the cell temperature and the glued probe on the 
back is always less than 2 ◦C [32]. These sensors are read by a digital 
multimeter (Tektronix DMM 3700A). The global in-plane irradiance 
(GPOA) is also measured every 5 s using a a second class solar radi-
ometer (Hukseflux SR01) installed in the same plane of the modules. 
This device is compliant with the ISO 9060 s class specifications and is 
expected to have a daily uncertainty ≤ 1% [32]. Several other param-
eters are measured on site, but they are beyond the scope of this study. 

Here, only the FranceWatts crystalline silicon (c-Si) PV module 
(second one from the left in Fig. 1) is considered. The analysis period2 is 
set from 07/01/2021 to 30/09/2021. 

2.3. Performance analysis 

The “ideal” or initial reference SDM parameters of the FranceWatts c- 
Si PV module (i.e. IL,i, I0,i, Rs,i, Rsh,i, and ai at STC) can be estimated from 
the panel datasheet properties using the California Energy Commission 
(CEC) model and estimation method [6]. These parameters can then be 
used to simulate the module’s theoretical behavior during the analysis 
period. Table 1 compares this ideal PV performance with the measured 
production data in an effort to detect and quantify any system 

underperformance. 
Note that this simulated ideal energy output does not account for the 

natural degradation covered by the FranceWatts performance warranty, 
which in this case guarantees 90% of production capability after 12 
years. These results thus indicate that the c-Si module is functioning 
normally after roughly 7 years of operation and during the entirety of 
the analysis period – which is not surprising considering that it is part of 
a well-ventilated and isolated PV system. 

While they can help quantify energy losses, the ideal SDM parame-
ters alone do not reveal the root cause of this underperformance – 
regardless of whether it is due to normal or premature solar panel 
degradation. This study shows how a metaheuristic algorithm such as 
the Teaching-Learning-Based Optimization (TLBO) can be used to 
extract the “real” or actual SDM parameters of a PV system from widely 
available power generation and weather data. Along with their ideal 
reference values, these parameters can provide more insight into PV 
degradation. 

2.4. Dataset 

In order to accurately model the PV module, the SDM parameters 
need to be extracted from power production data points that reflect the 
true PV performance to the best extent possible. After filtering out 
cloudy days and outliers from the system uptime, the complete power 
production dataset of this PV module amounts to 21,359 distinct data 
points that capture the module performance under a variety of tem-
peratures and irradiance levels. Each data point consists of a set of 
electrical (the module DC output current, voltage, and power at the 
MPP) and environmental measurements (the GPOA irradiance and 
module temperature) having the same timestamp. See the Supplemental 
Information for more details on the data cleaning procedures and 
dataset characteristics. 

Nonetheless, this study reveals that only a tiny fraction of this pro-
duction history is needed to extract the real SDM parameters of a PV 
system. Here, the training set is built by grouping the data into respec-
tive irradiance and temperature intervals of 100 W/m2 and 5 ◦C, and 
then selecting five random points from each bin – leading to a total of 
130 distinct data points. This represents only 0.6% of the filtered power 
production data. Next, the SDM parameters of the FranceWatts PV 
module are extracted from these data points using the TLBO, which is 
chosen from experience and for its relative simplicity and effectiveness. 

2.5. Teaching-learning-based optimization 

As the name implies, the Teaching-Learning-Based Optimization 
[27] is an optimization technique based on the teaching-learning pro-
cess of a classroom. It is a population-based algorithm in which a 
randomly sampled group of learners learn from a teacher and pass on 
knowledge to one another in order to reach an optimal solution. 

Based on their target values, learners are assessed through an 
objective function called the fitness function F(X). This function can be 
thought of as an error value that should be minimized (and ideally reach 
zero). The performance of a given learner Xi can thus be determined by 
the value of its fitness function, also referred to as the fitness of the 
learner. The fitness of the total population is improved through the 
transfer of knowledge that occurs during the Teacher and Learner phases 
described below. 

In the Teacher stage of the TLBO, the algorithm tries to improve the 
fitness of every learner by moving its value towards that of the classroom 
teacher Xteacher, which is simply the learner with the smallest fitness 
function. The teacher modifies each learner using the mean value of the 
population Xmean according to the following equation: 

Xi,new = Xi + r(Xteacher − TFXmean) (3)  

where i = 1, 2⋯N, with N being the number of learners in the classroom. 

Table 1 
Measured vs. estimated ideal energy production of the FranceWatts 
module during the analysis period.  

Measured Energy Output Ideal Energy Output 

92.93 kWh 99.31 kWh 

The DC energy produced by the FranceWatts c-Si module is taken as the 
product of its output current and voltage at the MPP, integrated over 
time. The analysis period is set from 07/01/2021 to 30/09/2021. For a 
fair comparison, the same timestamps are used in both cases. The only 
data cleaning tools used here are the uptime and outlier filters, which 
are described in the Supplemental Information. 

1 Typically, at an irradiance of 1000 W/m2 and cell temperature of 25◦C.  
2 The analysis period was set solely based on the data availability at the time 

of the project execution. The impact of selecting this period is considered at the 
end of the Results & Discussion section. 

J. Chakar et al.                                                                                                                                                                                                                                  



Energy Conversion and Management: X 15 (2022) 100270

4

The teaching factor TF determines the impact of the population 
average Xmean, whereas the variable r represents the learning rate or 
fraction of knowledge being shared during the teacher-learner interac-
tion. The limit values of 0 and 1 of r represent the two extreme cases 
where a learner either learns nothing or everything from the teacher. 
The values of TF and r affect the amount of knowledge transferred as 
well as the speed of convergence. A small learning rate ensures a more 
thorough exploration of the search space but may come at the expense of 
the computation time. However, if this rate is too high, the training may 
not properly converge. In machine and deep learning applications, the 
training typically starts with a relatively large learning rate to quickly 
“educate” the randomly generated parameters. This rate is then slowly 
decreased during the training to fine-tune them. 

The modified learner Xi,new replaces the current learner Xi only if it is 
found to be “better” (i.e. if it has a smaller fitness function). 

During the Learner phase, learners interact with each other to share 
knowledge between them. Every learner (Xi, i = 1, 2⋯N) interacts with 
another randomly selected learner (Xj, j = 1, 2⋯N) in the population, 
where i ∕= j. If Xi is better than Xj (i.e. F(Xi) < F

(
Xj
)
), the value of Xj 

shifts towards that of Xi, and vice versa. A mathematical representation 
of this interaction is shown below: 

if F(Xi) < F
(
Xj
)
: Xi,new = Xi + r

(
Xi − Xj

)
(4)  

if F(Xi) > F
(
Xj
)
: Xi,new = Xi + r

(
Xj − Xi

)
(5) 

Similarly here, Xi is replaced by Xi,new only if the latter is better than 
the former. 

In this study, each TLBO learner learns five subjects (i.e. IL, I0, Rs, Rsh 
and a at STC). In other terms, each learner Xi is defined as a set of SDM 
parameters that can simulate the electrical performance of the module 
under given operating conditions, using the PV modeling approach 
described earlier and detailed in the Supplemental Information. 

The fitness function is defined as the average Mean Absolute Per-
centage Error (MAPE) between the modeled DC output current, voltage, 
and power and their target values (i.e. the values measured under the 
same operating conditions). During the teacher and learner phases of the 
TLBO, learners are continuously updated such as to minimize this fitness 
function. At the end of the training process, the set of SDM parameters of 
the best learner (i.e. the learner with the smallest fitness function) is 
selected. 

Note that the TLBO algorithm is controlled by five main hyper-
parameters: the population size (i.e. the number of learners), number of 
iterations, search space (i.e. the minimum and maximum allowable 

values for each subject), teaching factor TF, and learning rate r. Here, 50 
learners are trained over 150 iterations. During the initialization stage of 
the learner population, the set of ideal SDM parameters extracted from 
the panel datasheet is included to accelerate the training process. These 
parameters are also used to define the bounds of the parameter search 
space presented in Table 2. In Patel et al. [21], the teaching factor and 
learning rate are not fed as inputs to the algorithm. Based on the findings 
of Rao et al,28 the authors randomly set TF to either 1 or 2 during the 
training. Similarly, they randomly set the value of r between 0 and 1 on 
the fly. In this study however, TF and r are taken as fixed inputs to the 
algorithm. Their values are set to 2 and 0.2, respectively. 

This article describes the results obtained when the above baseline 
configuration and training set are used for the TLBO. The sensitivity of 
this iterative algorithm to the control variables and input data is also 
reported. 

3. Results & Discussion 

3.1. Parameter extraction 

Table 3 lists the SDM parameters that correspond to the best learner 
obtained at the end of the training. To account for the stochastic nature 
of the algorithm, three consecutive TLBO runs are performed, and the 
average parameter values are reported below. Additional statistical in-
formation about the different runs is provided in the Supplemental 
Information. 

Table 2 
Baseline parameter search space.  

Single-Diode 
Model Parameter 

Ideal Reference 
Value 

Minimum 
Allowable Value 

Maximum 
Allowable Value 

IL IL,i = 8.73 A 1
2
IL,i 

1.1× IL,i 

I0 I0,i = 3.45×

10− 10 A 
0.9× I0,i I0,i × 20 

Rs Rs,i = 0.31 Ω 0.9× Rs,i Rs,i × 4 
Rsh Rsh,i = 523.31 Ω 1

20
Rsh,i 

Rsh,i × 1.1 

a ai =

1.57 (n ∼ 1)
Ns × VT (n = 1) Ns × VT × 2 

This table describes the baseline parameter search space of the Teaching- 
Learning-Based Optimization. The single-diode model parameters are ordered 
as follows: light-induced current (IL), diode reverse saturation current (I0), series 
resistance (Rs), shunt resistance (Rsh), and modified diode ideality factor (a). 
The ideal reference values at Standard Test Conditions (STC) listed in the second 
column are estimated from the panel datasheet properties using the California 
Energy Commission model and estimation method [6]. They are assumed to be 
the best possible values of each parameter (with a ± 10% margin to allow for 
change in both directions) and are used to define the parameter bounds.  

Table 3 
Single-diode model parameters estimated from power production data.  

Single-Diode Model Parameter Estimated Value at STC 

IL 8.25 A 
I0 5.82 × 10− 10 A 
Rs 0.32 Ω 
Rsh 178.58 Ω 
a 1.64 

The single-diode model parameters correspond to the best learner (i.e. the 
learner with the lowest fitness function) at the end of the training. The pa-
rameters are estimated at Standard Testing Conditions (STC) and ordered as 
follows: light-induced current (IL), diode reverse saturation current (I0), series 
resistance (Rs), shunt resistance (Rsh), and modified diode ideality factor (a).  

Fig. 2. Position of the fitted parameters w.r.t. their search space limits. A 
value of 0% means that the Single Diode Model (SDM) parameter is equal to its 
lower search space limit, and a value of 100% means that it is equal to its upper 
limit. The parameters are ordered as follows: light-induced current (IL), diode 
reverse saturation current (I0), series resistance (Rs), shunt resistance (Rsh), and 
modified diode ideality factor (a). 
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To better understand these values, the relative position of each SDM 
parameter w.r.t to its respective search space bounds is plotted in Fig. 2. 
A value of 0% means that the extracted parameter is equal to its lower 
limit, whereas a value of 100% means that it is equal to its upper limit. 

Based on these results, it appears that the dark saturation current IL, 
series resistance Rs and ideality factor n have not changed over time. 
However, there seems to be a deterioration of the light-induced current 
IL, along with a considerable drop in the shunt resistance Rsh. 

Using these SDM parameters, the PV module’s actual current-voltage 
properties can be estimated at STC. Given that IV curves are not always 

provided for individual panels, these properties can be compared with 
the ones specified on the datasheet to estimate their linear degradation 
rates, as shown in Table 4. 

As expected, the deterioration of the light-induced current and shunt 
resistance translates into lower short-circuit and MPP currents, and 
consequently a lower power output. Moreover, considering that PV 
performance typically drops in the first year of operation (1% to 3%) 
before steadily decreasing thereafter (0.5% to 1% per year) [33], the 
estimated power degradation rate of this overall healthy module is 
consistent with the equivalent rate of its warranty (roughly 0.83%/ 
year). Though they may be exaggerated due to the modeling inaccura-
cies explained below, the voltage and current degradation rates all fall in 
the ranges reported by Jordan et al [34] for mono-crystalline silicon 
solar cells. They also provide insight into the performance analysis and 
reveal that this rather justified degradation is related to two physical 
parameters that mostly affect the output current. 

To verify their ability to generalize to unseen data, the SDM pa-
rameters extracted from the training set are used to simulate the panel 
output current, voltage, an d power under all the 21,359 operating 
conditions present in the dataset. The training set is included in this 
validation stage since its size is negligible. Using a color map based on 
the frequency of data values, the plots of Fig. 3 show the match between 
the simulated values and measured data. The Mean Absolute Percentage 
Error (MAPE) and the Coefficient of Determination or R-squared (R2) 
are also chosen to evaluate the goodness-of-fit. Simply put, the first 
metric measures how far the modeled values fall from the observed data 

Table 4 
Estimated current-voltage parameters and degradation rates.   

Datasheet Value Estimated Actual Value Degradation Rate 

IMPP 8.21 A 7.63 A 1.00 %/year 
VMPP 30.52 V 31.00 V − 0.22 %/year 
PMPP 250 W 236.55 W 0.80 %/year 
Isc 8.64 A 8.23 A 0.68 %/year 
Voc 37.67 V 38.23 V − 0.21 %/year 

This table compares the datasheet reference values and estimated current values 
of the FranceWatts module’s current-voltage (IV) properties at Standard Testing 
Conditions (STC). The parameters are ordered as follows: output current, 
voltage, and power at the maximum power point (IMPP, VMPP, and PMPP respec-
tively), short-circuit current (Isc), and open-circuit voltage (Voc). A negative 
degradation rate implies improvement.  

Fig. 3. Modeled vs. measured values of the panel output current, voltage, and power (on the clear-sky days of the analysis period). These plots compare the 
values of the FranceWatts module’s output current, voltage, and power at the Maximum Power Point (MPP) that are measured on-site with those simulated using the 
extracted single-diode model parameters. The color map reflects the number of data points represented in each point block. 
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Fig. 4. Simulated vs. measured daily profiles of the module output current, voltage, and power on sample sunny and cloudy days. These plots compare 
measured daily profiles of the FranceWatts module’s output current, voltage, and power (IMPP, VMPP, and PMPP, respectively) with those simulated using the single- 
diode model parameters determined from the power production data. 
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and should be as close to zero as possible, while the second statistical 
measure indicates the degree of linear correlation between the simu-
lated and target values and should ideally be close to 1. 

Overall, there is a strong match between the simulated and observed 
data. In all cases, the MAPE is below 5% and remains within the mea-
surement uncertainty. The R2 value touches 1 in the case of the current 
and power, albeit the diode model seems to be overestimating them at 
lower ranges. The power output also tends to be slightly overestimated 
at higher ranges. At first sight, there seems to be a striking negative 
(positive) bias at higher (lower) voltage ranges, but the low MAPE value 
indicates that this error is relatively small and comparable with the 
precision of the equipment used on site. 

Naturally, when cloudy days are added (49,781 data points in total), 
the MAPE increases slightly – most likely because of the lower signal-to- 
noise ratio. The R2 value is unaffected in the case of the current and 
power, but it marginally decreases in the case of the voltage. Moreover, 
the negative (positive) bias at higher (lower) voltages (currents) is more 
pronounced (see Fig. S3). This is also expected since PV modules typi-
cally operate at higher (lower) voltages (currents) on cold days due to 
their negative (positive) voltage (current) temperature coefficient. 

It is thus safe to say that the SDM parameters extracted from the 
production data can reproduce the module’s behavior on both sunny 
and cloudy days, as illustrated in Fig. 4. 

A closer look at the daily profiles reveals that these observed dis-
crepancies occur throughout the entire analysis period, although they 
are accentuated at higher voltages and low irradiance levels during early 
mornings and late afternoons. This mismatch is largely due to the 
modeling inaccuracies associated with the solar cell parameters’ 
dependence on the different operating conditions (see Supplemental 
Information). 

3.2. Validation with on-site measurements 

The IV curves measured on site can be used to further validate the 
modeling results. As STC have not been met for this module on any clear- 
sky day during the analysis period, data points with a clear-sky GPOA 
irradiance of 1000 ± 1% W/m2 and module backside temperature of 

50 ◦C (±0.4 ◦C) are selected instead (total of 34 points). The below box 
and whisker plot shows that the IV properties modeled using the 
extracted SDM parameters all fall within their respective range of 
measurements (Fig. 5) (see also Table S1). 

These results are consistent with the previous observations. VMPP is 
slightly overestimated here, but the relative error is still below 2% and 
well within measurement uncertainties for all of the IV properties. As 
shown in Fig. 6, the comparison between the modeled and measured IV 
curves at different temperatures and irradiance levels can provide 
additional insight into the ability of the PV model and SDM parameters 
to reproduce the full module behavior. 

At higher irradiance levels, the SDM parameters extracted from the 
production data can successfully model the PV module’s IV curves, 
especially near the MPP. It is also important to keep in mind that the IV 
curves collected on site are measured under real and thus variable 
conditions, rather than in a controlled lab environment. Nonetheless, 
the misalignment at the curve tail as well as the overestimation of Voc 
and Isc at lower irradiance and temperature levels both indicate potential 
flaws in the way the SDM parameters are adjusted according to the 
operating conditions (see Supplemental Information). 

The proposed method also correctly captures the evolution of the 
series and shunt resistances, despite having different initial estimates of 
their STC values. Indeed, the numerical results show that as opposed to 
the series resistance, the shunt resistance has drastically deteriorated 
over time (from 523 Ω to 178 Ω). Similarly, the measurements collected 
during the analysis period suggest that the respective STC values of the 
series and shunt resistances are around 0.59 Ω and 45 Ω, compared with 
0.58 Ω and 249.43 Ω when the panel was purchased and initially 
characterized using a PASAN SPROD IV curve Tester. 

Being able to accurately model the full IV curve is critical for PV 
modeling, especially for bigger and more complex systems that can 
suffer from mismatch. This issue is also important because the nature of 
the deviations in an IV curve can provide valuable clues about potential 
performance problems [35]. As a relevant example, the shunt resistance 
can be used as a means to detect Potential Induced Degradation (PID) 
[36]. 

3.3. Sensitivity analysis 

The SDM is more sensitive to some of its parameters than others (e.g. 
the ideality factor), and different combinations of these parameters exist 
to model the studied PV system. This trade-off between them is also 
affected by the stochastic nature of the TLBO and its configuration (see 
Supplemental Information). However, regardless of the configuration 
used (to a reasonable extent, of course), the end conclusion remains the 
same: there is mainly a current degradation due to a drop in the light- 
induced current and shunt resistance. Considering that the algorithm 
running time on the average computer is around one hour for this spe-
cific application, optimizing its hyperparameters can significantly lower 
the computational cost and convergence time. Moreover, resorting to 
alternative parameter estimation techniques such as Bayesian inference 
can help find the probability distributions of the SDM parameters and 
unravel the correlations between them. 

It is also interesting to note that the proposed methodology is not 
sensitive to the precision of the input working conditions. This being 
said, the same end conclusion is obtained when less accurate but freely 
available weather data and a thermal model (see Supplemental Infor-
mation) are used instead of on-site irradiance and temperature mea-
surements – which is practical for real-life applications. 

Given that only a handful of production data points is needed to 
extract the SDM parameters, this type of study can be repeated regularly 
using shorter analysis periods to observe how these parameters change 
over time and detect any potential degradation early-on. However, since 
the accuracy of the single-diode and De Soto models drops at low irra-
diance and temperature levels, a more robust PV model must be selected 
to get reliable periodic results across the different seasons. In this case, 

Fig. 5. Modeled vs. measured current-voltage parameters. For each 
parameter, the box extends from the first quartile to the third quartile of the 
measured data, with an orange line at the mean. The whiskers extend to the 
minimum and maximum of the measured data, and the green mark corresponds 
to the modeled value. For visualization purposes, all plotted values are 
normalized w.r.t. the median of the measured data. The parameters are ordered 
as follows: output current, voltage, and power at the maximum power point 
(IMPP, VMPP, PMPP and respectively), short-circuit current (Isc), and open-circuit 
voltage (Voc). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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the collected dataset captures PV performance across a wide range of 
temperature and illumination levels – as the PV module was operating 
normally during the 9 months of the analysis period – and most likely 
compensates for these modeling inaccuracies. 

4. Conclusion 

This article demonstrates the exciting possibility of using PV power 
generation data to determine solar cell parameters, simulate IV curves, 
understand PV degradation, and identify faults. It shows how detailed 
information on the electrical performance of a crystalline silicon PV 
module can be extracted using a simple metaheuristic algorithm and just 
a fraction of the production history. The promising results are validated 
with site measurements, and the proposed approach can be scaled up to 
conduct performance analysis of PV systems remotely, in real-time, and 
without any field surveys. These initial findings will hopefully 
encourage researchers to further investigate solar cell models, data 
processing techniques, and algorithms that can leverage the full power 
of the information hidden in the rather overlooked production data of 
different PV systems and technologies. 

Data availability 

The data that support the findings of this study are openly available 
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Appendix A. Supplementary Data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecmx.2022.100270. 

Fig. 6. Modeled vs. measured current-voltage curves at different temperatures and irradiance levels. The simulated current-voltage (IV) curves are repre-
sented by full lines and are calculated at different module temperatures and global plane-of-array (GPOA) irradiance levels. All of the discrete IV curve points 
measured on site are represented by dots. 
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