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A thunk is a mutable data structure that offers a simple memoization service: it stores either a suspended

computation or the result of this computation. Okasaki [1999] presents many data structures that exploit

thunks to achieve good amortized time complexity. He analyzes their complexity by associating a debit with

every thunk. A debit can be paid off in several increments; a thunk whose debit has been fully paid off can be

forced. Quite strikingly, a debit is associated also with future thunks, which do not yet exist in memory. Some

of the debit of a faraway future thunk can be transferred to a nearer future thunk. We present a complete

machine-checked reconstruction of Okasaki’s reasoning rules in Iris
$
, a rich separation logic with time credits.

We demonstrate the applicability of the rules by verifying a few operations on streams as well as several of

Okasaki’s data structures, namely the physicist’s queue, implicit queues, and the banker’s queue.

CCS Concepts: • Theory of computation→ Separation logic; Program verification.

Additional Key Words and Phrases: program verification, separation logic, time complexity

ACM Reference Format:
François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével. 2023. Thunks and Debits in

Separation Logic with Time Credits. 1, 1 (October 2023), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In a famous book, Okasaki [1999] presents several data structures for purely functional programs.

These data structures are persistent [Driscoll et al. 1989], that is, apparently immutable. Instead of

mutating its argument, an update operation returns a new data structure, leaving the observable

content of the original data structure intact.

In order to achieve good time complexity, Okasaki uses thunks, also known as suspensions.

A thunk is a mutable data structure that offers a simple memoization service: it stores either a

suspended computation or the result of this computation. The use of thunks does not affect the

functional behavior of a program, but allows delaying a computation until the moment where

its result is definitely needed, while still sharing this result. Thus, the use of thunks can improve

the time complexity of a program, without impacting its final result. For this reason, thunks are
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2 F. Pottier, A. Guéneau, J.-H. Jourdan, and G. Mével

1 type 'a stream = 'a cell thunk

2 and 'a cell = Nil | Cons of 'a * 'a stream

3

4 let nil () : 'a stream =

5 Thunk.create @@ fun () -> Nil

6

7 let uncons (s : 'a stream) : 'a * 'a stream =

8 match Thunk.force s with

9 | Nil -> assert false (* dead branch *)

10 | Cons (x, s) -> x, s

11

12 let rec append (s1 : 'a stream) (s2 : 'a stream) : 'a stream =

13 Thunk.create @@ fun () -> match Thunk.force s1 with

14 | Nil -> Thunk.force s2

15 | Cons (x, s1) -> Cons (x, append s1 s2)

16

17 let rec revl_append (l : 'a list) (c : 'a cell) : 'a cell =

18 match l with

19 | [] -> c

20 | x :: l -> revl_append l (Cons (x, Thunk.create @@ fun () -> c))

21

22 let revl (l : 'a list) : 'a stream =

23 Thunk.create @@ fun () -> revl_append l Nil

Fig. 1. Streams: OCaml Code

accepted as an essential part of the “functional programming” toolbox [Hughes 1989]. In fact, in

the functional programming language Haskell, creating and forcing thunks are implicit operations.

Thunks are a basic building block in the construction of streams, whose definition appears in

Figure 1. A stream is a lazy list: each stream cell is wrapped in a thunk, so it is evaluated only

on demand. Figure 1 presents several functions on streams. The functions Thunk.create and

Thunk.force are used to create and force thunks. The function append (line 12) lazily appends

two streams: a thunk in the stream s1 and s2 is forced only when needed, that is, only when the

corresponding thunk in the result stream is forced. revl (line 22) reverses a list, returning a stream.

It is also lazy, insofar as possible: the expensive list reversal operation (performed by the auxiliary

function revl_append) is carried out only when the first thunk of the result stream is forced.

Okasaki’s complexity bounds are amortized [Tarjan 1985]: that is, the actual cost of an operation

may be higher than its advertised cost. Still, the advertised complexity bounds are sound, and can

be used to compute a safe bound on the global execution time of a program. The basic idea of

amortization [Tarjan 1985] is simple: if the advertised cost of some operations is made slightly

higher than their actual cost, then a sequence of operations accumulates a certain amount of credit,
which can be used to justify an occasional “expensive” operation, whose actual cost exceeds its

advertised cost. One must stress, however, that Okasaki does not reason in terms of credit, and

cannot do so, because he needs thunks to be shareable. Sharing credit leads to an unsound analysis,

as credit can then be spent twice. Instead, Okasaki reasons in terms of debit. With every thunk, he

associates a debit, a nonnegative integer number, which indicates how much one must pay before
this thunk can be forced. In other words, Okasaki ensures that the actual cost of forcing a thunk is
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Thunks and Debits in Separation Logic with Time Credits 3

always paid for in advance. Once its debt has been paid off, a thunk can be forced as many times as

one wishes, essentially “for free”, that is, at cost 𝑂 (1). Even if thunks are shared, this analysis is

sound: indeed, duplicating a debt leads to an over-approximation of a program’s time complexity.

In summary, Okasaki’s thunks with debits support three main operations: creation, forcing, and

paying. When a new thunk is created, its debit is the cost of the suspended computation. If the debit

associated with this thunk becomes zero, then this thunk can be forced. Between these two points

in time, this thunk’s debit can be reduced by paying, in one or more increments. Paying is a ghost

operation: it has no runtime effect, as there is no runtime accounting of debits. Paying decreases

the debit of a thunk from 𝑛 down to 𝑛 −𝑘 and is itself regarded as an operation that costs 𝑘 units of

time. Danielsson [2008] must be credited for this crisp explanation of Okasaki’s analysis technique.

Because every cell in a stream involves a thunk, it is natural to represent the “cost” of a stream

as a sequence of debits, recording the cost of forcing each stream cell, or, more accurately, the

remaining debt associated with each stream cell. The “cost” of each operation on streams can then

be expressed in terms of sequences of debits. For example, the debit sequence of the stream returned

by append is roughly the concatenation of the debit sequences of the two argument streams, plus

an overhead of 𝑂 (1) that is added to the first part of the new debit sequence, so as to account for

the cost of concatenation itself. (Details appear in §6.3 and Figure 16.) As another example, in the

stream returned by revl, the first thunk has debit 𝑂 (𝑛), where 𝑛 is the length of the list l, while
the following thunks have debit zero: indeed, the expensive list reversal operation is performed

when the first thunk is forced, and the remaining thunks require no computation at all.

In this paper, we wish to give a mechanized and foundational account of Okasaki’s debit-based

reasoning discipline. We want our mechanized reasoning rules to be expressive enough to verify

the functional correctness and time complexity of Okasaki’s functional data structures and of

(possibly imperative) client programs that use these data structures. This requires addressing

several challenges:

(1) We need a program logic that can express and verify worst-case bounds on execution time.

This logic must allow debit-based reasoning about thunks, but must not be restricted to

this style of reasoning: code that does not involve thunks typically requires credit-based

reasoning.

(2) Similarly, this logic must allow reasoning not only about purely functional data structures,

but also about imperative data structures and algorithms. In other words, it must support

modular reasoning about mutable state.

(3) As demonstrated by append, it is common to construct a thunk which (when forced) forces

another thunk. Unfortunately, in the presence of mutable state, one can also construct a

reentrant thunk, that is, a thunk that attempts to force itself, resulting (at best) in a graceful

runtime error or (at worst) in undesirable behavior, such as divergence. We want the logic to

statically forbid reentrancy, thereby offering a strong guarantee: a verified program cannot
fail at runtime and must terminate within the advertised time bound.

(4) Although we have written that it is “natural” to associate a sequence of debits with a stream,

this style of reasoning is in fact highly nontrivial, as it involves keeping track of and updating

the debt of future thunks. That is, a thunk’s debit conceptually exists and can be updated (via

a so-called deep payment) before this thunk actually exists in the machine’s memory! As a

key example, we show that streams enjoy an intuitively simple debit forwarding rule, which

allows shifting debits towards the left in a sequence of debits. To illustrate this rule, consider

the composite operation append f (revl r), where f is a stream of length 𝑛 and r is a

list of length 𝑛. Suppose that every thunk in the stream f has debit 𝑂 (1). Then, according
to the specifications of revl and append that we have sketched, this composite operation
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4 F. Pottier, A. Guéneau, J.-H. Jourdan, and G. Mével

produces a stream whose debit sequence is 𝑂 (1) everywhere, except for the central thunk,
whose debit is 𝑂 (𝑛). However, debit forwarding allows us to change our view of this stream

by distributing the high debt of the central thunk onto the preceding thunks. The debit of

every thunk in the first half of the sequence is increased by 𝑂 (1), therefore remains 𝑂 (1),
while the debit of the central thunk is reduced to 𝑂 (1). This nontrivial reasoning step is

carried out before the stream constructed by append f (revl r) is forced. It plays a crucial

role in the verification of the banker’s queue (§7).

Several papers in the literature address some, but not all, of these challenges:

• Danielsson [2008] proposes a type system, embedded in Agda, featuring an abstract type

Thunk 𝑛 𝑎 and a number of operations on this type. The integer parameter 𝑛 is the debit

associated with this thunk; the parameter 𝑎 is the type of its result. This pioneering work

however exhibits several major limitations: it is limited to purely functional programs and

debit-based reasoning; it does not seem to prevent reentrancy or nontermination (§9); and

the proof of type soundness is not formally connected with the API that a user of the library

sees. Finally, deep payment (which we use to justify debit forwarding) appears in the API

but is not covered by the soundness proof. Thus, Danielsson addresses Challenge 4 but not

Challenges 1 to 3.

• Several authors [Atkey 2011; Hoffmann et al. 2013; Charguéraud and Pottier 2017; Haslbeck

and Nipkow 2018; Zhan and Haslbeck 2018; Mével et al. 2019; Haslbeck and Lammich 2021]

use separation logic with time credits to verify worst-case amortized time complexity bounds

for possibly imperative programs. The basic idea is simple: one arranges so that every step

of computation consumes one time credit, where a time credit is a ghost resource. Because

credits can be neither forged nor duplicated, the amount of credits that are initially made

available (in the precondition of a closed program) must be a bound on the total execution

time of this program. Among these authors, only Mével et al. [2019] formalize thunks and

debits; however, their reasoning rules support neither thunks that force thunks nor debit

forwarding. Thus, these works address Challenges 1 and 2 but not Challenges 3 or 4.

Because none of these papers addresses all challenges simultaneously, no foundational verification

of the time complexity of Okasaki’s notorious algorithms [1999] has been carried out until now.

Contributions. To address Challenges 1 and 2, we use Mével et al.’s Iris
$
, a Separation Logic with

time credits that is implemented inside the Coq proof assistant on top of the Iris framework [Jung

et al. 2018]. Inside this existing logic, we verify a “thunk” library, equipped with a rich “debit” API,

which supports nested thunks and deep payment, addressing Challenges 3 and 4. Using this library,

we implement and verify several of Okasaki’s data structures, namely the banker’s queue [Okasaki

1999, §6.3.2] (§7), the physicist’s queue [Okasaki 1999, §6.4.2], and implicit queues [Okasaki 1999,

§11.1] (§8). In each case, we verify functional correctness, termination, and worst-case amortized

time complexity. Thanks to the modularity of Iris
$
, our verified data structures can be used as part

of verified programs that involve time-credit-based reasoning, mutable state, or shared-memory

concurrency. (Our thunks are not thread-safe; our API ensures that they are used sequentially.)

Road Map. Our thunk library is organized in three layers of abstraction. After recalling some

of the concepts of Iris (§2), we present the bottom layer, a novel ghost data structure, the piggy
bank (§3). None of the operations on piggy banks has a runtime effect. The main three operations

on piggy banks, namely creating, paying, and breaking (forcing) a bank, are ghost updates. The

corresponding reasoning rules distill the essence of Okasaki’s debit-based reasoning. In the second

layer (§4), we implement thunks and establish reasoning rules that match Okasaki’s informal rules.

These rules include Thunk-Conseqence (Figure 5), which, together with Thunk-Pay (Figure 6),
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justifies deep payment. This key rule is absent in Mével et al.’s earlier work. Our construction of

thunks relies on piggy banks in two distinct places and can associate an unbounded number of piggy
banks with a single thunk. In the third and last layer (§5), we equip thunks with a notion of height
that simplifies the way in which we rule out reentrancy while still allowing thunks to force thunks.

On top of thunks, we implement streams (§6). We establish a number of reasoning rules about

streams, including the debit forwarding rule Stream-Forward-Debit (Figure 13), which distributes

a debit over several thunks in a stream, by moving parts of this debit from the right toward the left,

that is, from thunks that are more distant in the future towards thunks that are closer in the future.

After presenting our proofs of three of Okasaki’s data structures (§7, §8), we review the related

work (§9) and conclude (§10). We believe that our work provides a nice example of the construction

of high-level abstractions on top of low-level logical concepts such as time credits, ghost state, and

invariants. All of our results are machine-checked; our proofs are available [Anonymous 2023].

For readability, in the paper, we present code in OCaml syntax. The code that we actually verify is

expressed in HeapLang, an untyped call-by-value 𝜆-calculus with dynamically allocated mutable

state, whose definition is bundled with Iris.

2 A REFRESHER ON IRIS AND IRIS$

Even a basic introduction to Iris [Jung et al. 2018] might occupy more space than is available in this

paper. In this section, we recall some of the key concepts, intuition, and notation of Iris, and we

hope that a reader who is not an expert in Iris can grasp the intuition behind the abstractions that

we build. As an example, we need a reader who looks at the reasoning rule Thunk-Pay (Figure 6)

to at least understand that it is a ghost update (⇛) that consumes 𝑘 time credits ($𝑘) and decreases

the debit of a thunk from 𝑛 down to 𝑛 − 𝑘 .

Assertions. Separation logic uses assertions to describe certain knowledge about the world and to

encode permissions to change the world in certain ways. By “the world”, we mean both the physical

state of the machine and the ghost state that has been allocated as part of the proof. Some assertions

are pure, that is, independent of the world. For example, the assertion ⌜𝑥 = 0⌝ asserts that the
equation 𝑥 = 0, which involves the mathematical variable 𝑥 , holds. Pure assertions are a special

case of persistent assertions. Although persistent assertions may depend on the world, once they

hold, they hold forever. For instance, the assertion Thunk 𝑝 F 𝑡 n 𝑅 𝜙 , which asserts (among other

things) that 𝑡 is the address of a valid thunk in memory, is persistent. This reflects the fact that a

thunk cannot be destroyed.
1
A persistent assertion is duplicable: if 𝑃 is persistent, then 𝑃 entails the

conjunction 𝑃 ∗ 𝑃 . The fact that Thunk is persistent reflects that it is safe to share a thunk. Finally,

an assertion that is neither pure nor persistent is affine. An affine assertion typically represents a

combination of knowledge and permission. For instance, the points-to assertion 𝑡 ↦→ 𝑣 represents

both the exclusive knowledge that the memory location 𝑡 currently contains the value 𝑣 and an

exclusive permission to write a new value at this location.

The natural notions of conjunction and implication are the separating conjunction ∗ and the

magic wand −∗. (The non-separating conjunction ∧ and implication ⇒ are not used in this paper.)

A magic wand 𝑃 −∗ 𝑄 can be read as an implication; however, one must keep in mind that (unless 𝑃

is persistent) applying this magic wand consumes 𝑃 . A magic wand itself is not persistent, so it can

be applied only once. It can be made persistent by using the persistence modality: □(𝑃 −∗ 𝑄) is a
magic wand that can be used as many times as one wishes.

Ghost state. Like physical state, ghost state is dynamically allocated. The law True ⇛ ∃𝛾 . 𝛾 ↦→𝑚

(provided by Iris) allocates a fresh ghost cell, at address 𝛾 , whose initial content is𝑚. We write

1
HeapLang does not have explicit memory deallocation. We assume that a garbage collector reclaims unreachable objects.
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6 F. Pottier, A. Guéneau, J.-H. Jourdan, and G. Mével

𝛾, 𝛿, 𝜑, 𝜋 for ghost addresses. A ghost update assertion 𝑃 ⇛ 𝑄 means that, by consuming 𝑃 and by

updating the ghost state, it is possible to reach a state where 𝑄 holds. A ghost update is applied

as part of a proof; such an application is not visible in the code. The content𝑚 of a ghost cell 𝛾

is an element of a camera 𝑀 that is implicitly associated with 𝛾 and that is chosen when this

ghost cell is allocated. For our purposes, a camera is a commutative monoid (𝑀, ·) equipped with

a notion of validity, such that valid (𝑚1 ·𝑚2) implies valid 𝑚1 ∧ valid 𝑚2. By design, the logic

guarantees that the content of a ghost cell is always a valid element. This is expressed by the law

𝛾 ↦→𝑚 ⊢ ⌜valid 𝑚⌝. The ghost points-to assertion 𝛾 ↦→𝑚 means that𝑚 is one fragment of the
content of the ghost cell 𝛾 , and represents the ownership of just this fragment. This is reflected

by the composition law 𝛾 ↦→𝑚1 ·𝑚2 ≡ 𝛾 ↦→𝑚1 ∗ 𝛾 ↦→𝑚2 , which allows ghost points-to

assertions to be split and joined, and by the frame-preserving update law, which is stated as follows:

if for every𝑚′ valid (𝑚1 ·𝑚′) implies valid (𝑚2 ·𝑚′) then 𝛾 ↦→𝑚1 ⇛ 𝛾 ↦→𝑚2 .

Ameta witness 𝑡 ⇝ 𝛾 , a persistent assertion, indicates that the ghost address𝛾 has been associated

with the physical memory location 𝑡 . The law 𝑡 ⇝ 𝛾1 ∗ 𝑡 ⇝ 𝛾2 ⊢ ⌜𝛾1 = 𝛾2⌝ (provided by Iris) states

that this association is unique: it forms a (partial) map of physical locations to ghost addresses.

Invariants. Roughly speaking, an invariant is an assertionwhich, by convention and from a certain

point on, must hold “at all times”. The assertion 𝐼 indicates that the assertion 𝐼 has been made an

invariant. The law 𝐼 ⇛ 𝐼 dynamically establishes a new invariant. Even if 𝐼 is not persistent, 𝐼

is persistent: the knowledge that an invariant exists can be shared. This knowledge allows accessing
the invariant, that is, opening and closing it. Opening an invariant produces the assertion 𝐼 , allowing

the user to exploit 𝐼 and possibly to destroy it, thereby temporarily violating the invariant. Closing

an invariant requires the user to provide 𝐼 and consumes it, thereby re-establishing the invariant.

Thus, the claim that an invariant holds “at all times” is a white lie. An invariant holds at all times

except while it is being accessed. Therefore, the logic must forbid reentrant access to an invariant,

that is, forbid opening an invariant that is already open. But how does one tell whether an invariant

is currently open or closed, and how long may an invariant remain open?

One can imagine more than one way of answering these questions. Indeed Iris offers two flavors

of invariants, which represent two incomparable points in the design space. An atomic invariant
can be violated only during an atomic instruction and must be immediately restored. This may

seem restrictive; on the upside, an atomic invariant can be accessed without presenting an affine

token. A non-atomic invariant can remain violated for an unbounded time. This may seem flexible;

on the downside, accessing a non-atomic invariant requires presenting an affine token.

An atomic invariant 𝐼 𝐴
is labeled with a namespace 𝐴. This annotation is used to forbid

reentrant access: two invariants can be simultaneously opened only if they are labeled with disjoint

namespaces.
2
Enforcing this policy requires keeping track, at all times, of which invariants can

currently be accessed. We omit the details, but note that the ghost update connective⇛E must be

indexed with a mask E. In short, 𝑃 ⇛E 𝑄 means that 𝑃 can be transformed into 𝑄 while accessing

only those invariants whose namespace 𝐴 is in the set E. One may omit this mask when it is ⊤.
A non-atomic invariant 𝐼 𝑁

𝑝 is labeled with a pool 𝑝 and a namespace 𝑁 . Opening such an

invariant consumes an affine token EF𝑝 , where ↑𝑁 ⊆ F must hold. Closing the invariant causes

this token to re-appear. Such a token can be split, thanks to the axiom EF1⊎F2𝑝 ≡ EF1𝑝 ∗ EF2𝑝 , so two

non-atomic invariants can be simultaneously opened if they are annotated with disjoint namespaces.

A fresh pool can be allocated at any time, together with a new token that governs it, thanks to the

law True ⇛ ∃𝑝. E⊤𝑝 .
2
A namespace 𝐴, 𝑁 is a string. A mask E, F is a set of such strings. If 𝑁 is a namespace, then its upward closure ↑𝑁 , a mask,

is the set of all strings that admit 𝑁 as a prefix. The full mask ⊤ is the set of all strings. We write E1 # E2 when the masks E1

and E2 are disjoint. We say that two namespaces 𝑁1 and 𝑁2 are disjoint when ↑𝑁1 # ↑𝑁2 holds.
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The later modality ⊲ weakens an assertion. Roughly, the assertion ⊲ 𝑃 means that the assertion 𝑃

will hold in the next time step, that is, after the next atomic instruction is executed. This modality

appears in the reasoning rules for invariants, where it serves to forbid certain logical paradoxes.

Our claim that opening an invariant produces 𝐼 and closing it consumes 𝐼 was another white lie:

these operations actually produce and consume ⊲ 𝐼 . This is visible in some of our reasoning rules,

such as PiggyBank-Break (Figure 2), but can otherwise be ignored.

Hoare triples. A specification traditionally takes the form {𝑃} 𝑒 {𝜙}, where the precondition 𝑃 is

an assertion about the initial state, the expression 𝑒 is the program fragment of interest, and the

postcondition 𝜙 describes the result value and the final state: if 𝑣 is the result value then 𝜙 𝑣 is an

assertion about the final state. We use the sugared form {𝑃} 𝑒 returns (∃®𝑥) 𝑣 {𝑄} as a short-hand
for {𝑃} 𝑒 {𝜆𝑣 ′ . ∃®𝑥 . ⌜𝑣 ′ = 𝑣⌝ ∗ 𝑄}. This can be read as follows: “provided the initial state satisfies 𝑃 ,

then 𝑒 does not crash, and if it terminates, then, for some ®𝑥 , it returns the value 𝑣 , and the final state
satisfies 𝑄”. A triple is persistent: it allows the expression 𝑒 to be executed as many times as one

wishes. We occasionally need a one-shot triple, written 1 {𝑃} 𝑒 returns (∃®𝑥) 𝑣 {𝑄}. Its meaning is

the same as that of a persistent triple, except that it allows 𝑒 to be executed at most once. It is an

affine assertion. An ordinary triple is a one-shot triple wrapped in a persistence modality □.

Time credits. Iris$ [Mével et al. 2019] extends Iris with time credits. The assertion $n represents

n time credits. It is affine: time credits can be discarded but not duplicated. The reasoning rules of

the logic ensure that every instruction consumes one time credit. As a result, if the triple {$𝑛} 𝑒 {𝜙}
holds, where 𝑒 is a closed expression (a complete program), then 𝑒 does not crash andmust terminate
in at most 𝑛 steps. In other words, the logic offers a worst-case time complexity guarantee.

In general, a specification provides a worst-case amortized time complexity guarantee. For

instance, Thunk-Force (Figure 6) does not guarantee that force 𝑡 runs in at most F steps. Although

only F time credits are ostensibly visible in the precondition, the assertion Thunk 𝑝 F 𝑡 0 𝑅 𝜙 ,

which is also part of the precondition, offers access to an invariant which possibly contains more

credits. Thus, this specification means that the amortized time complexity of force is F .
Abstract literal constants, such as N and F , hide concrete numeric constants. For instance, N ,

the cost of creating a new thunk, is 3, while F , the cost of forcing a thunk, is 11. In our Coq proofs,

these literal constants are defined at the top level and are made opaque as soon as possible. In the

paper, their definitions are omitted. Every literal constant is denoted by an underlined capital letter.

3 PIGGY BANKS
Once upon a time, in a faraway university, a class of students wanted to throw a big party. Alas,

food, drinks, disguises, and other equipment were then and there very expensive. So, the students’

first action was to install in the classrooms, in the students’ lounge, in the dormitories, and in

several other locations, a number of porcelain piggy banks. The students declared that everyone

could contribute whatever amount he or she desired, in whatever location and at whatever time he

or she desired. They agreed that, once the total accumulated amount reached a hundred sovereigns,

they would break all piggy banks and throw a big party.

Alas, because one could not see through a piggy bank, one could not tell how much money

was inside it. And because piggy banks were installed in many places, there was no coordination

between contributors. No student could be reliably informed of all contributions, and there was

no way of maintaining a registry of all contributions. Faced with these difficulties, the students

adopted a habit of telling each other how much money they thought remained to be collected. One

morning, in the students’ lounge, Charles was told by Brian, “97 to go”. There, Charles put one

sovereign into the piggy bank. As he exited the room, he ran into Sophie and Sara, whom he told,
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“96 to go”. Later on during that day, at different times and in different places, Sophie and Sara each

contributed one sovereign. In the evening, each of them independently told Brian, “95 to go”.

When the students finally determined that the piggy banks could safely be broken, they found

that they had accumulated much more than a hundred sovereigns. It was a big party.

This fable is intended to suggest that, independently of physical mechanisms such as a distributed

piggy bank in a university or a thunk in a computer’s memory, there is a sound and useful pattern

of logical reasoning about credit that is accumulated via uncoordinated payments. This pattern

involves the concepts of true debit, or “how much really is still missing”, apparent debit, or “how
much Sophie thinks is still missing”, and the property that an apparent debit is always an over-

approximation of the true debit.

It seems desirable to isolate this pattern and to establish its logical soundness independently of

any physical mechanism. To do so, inside Iris, we develop the piggy bank, a ghost data structure,
and we equip it with an API that supports the desired reasoning rules. There is no code: a piggy

bank is a purely logical concept. Our construction of thunks (§4.2.1, §4.2.2) uses piggy banks at two

distinct levels and can cause an unbounded number of piggy banks to be associated with a single

thunk. This suggests that it is worthwhile to make piggy banks a stand-alone abstraction.

3.1 Piggy Banks: Interface
A piggy bank can be abstractly described as a ghost data structure that is in one of two states (either

it is pending, or it is forced) and whose transition from the pending state to the forced state has a

certain cost (that is, the transition requires a certain number of time credits).

There is no need for concrete descriptions of the pending state and of the forced state. We assume

that these states are described by two parameters 𝑃 : N→ iProp and 𝑄 : iProp, where iProp is the
type of Iris assertions. The assertion 𝑃 nc means that the piggy bank is in the pending state and

that nc, standing for “necessary credits”, is the number of credits that we aim to accumulate before

transitioning to the forced state. The assertion 𝑄 means that the piggy bank is in the forced state.

We want a piggy bank to be shared between several participants, so it must be described by a

persistent predicate, PiggyBank. Participants must be allowed to pay, that is, to insert time credits

into the piggy bank. This is a ghost operation. Each participant must be able to pay independently,

without coordinating with other participants, so, as suggested by the fable, the PiggyBank assertion

must keep track of an apparent debit, that is, a nonnegative number of debits, n. Once a participant
sees an apparent debit of zero, we want this participant to be able to deduce that enough credit has

been accumulated to allow the transition to take place. We want this participant to be allowed to

break (or force) the bank and either perform the transition, or discover that the transition has been

performed already by another participant.

Although paying and breaking the bank are ghost operations, these two operations have rather

different characteristics. We wish to think of paying as an atomic update of the ghost state of the

piggy bank; and we would like paying to be permitted at all times. The act of breaking the bank, on

the other hand, cannot be regarded as atomic. A participant who breaks the bank and finds it in the

pending state is expected to perform a transition to the forced state, that is, to update the physical

state from 𝑃 nc to 𝑄 . This can require many steps of computation. For instance, forcing a thunk

requires calling a user-supplied function and updating the physical state of the thunk. While this

computation is ongoing, the piggy bank is not in a valid state: neither 𝑃 nc nor 𝑄 holds. So, while

the piggy bank is being forced, one must forbid any attempt to force it again. These considerations

suggest that breaking the bank must be viewed as a sequence of two ghost updates: an update

that causes a transition from the pending state to a transient state, and an update that causes a

transition from this transient state to the forced state.
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PiggyBank-Persist

persistent(PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 n)

PiggyBank-Increase-Debit

n1 ≤ n2

PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 n1 −∗
PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 n2

PiggyBank-Create

𝑃 n ⇛E PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 n

PiggyBank-Pay

↑𝐴 ⊆ E
PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 n ∗ $𝑘 ⇛E
PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 (n − 𝑘)

PiggyBank-Break

↑𝐴 ⊆ E ↑𝑁 ⊆ E ↑𝑁 ⊆ F
PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 0 ∗ EF𝑝 ⇛E

∃nc.
(
((⊲ 𝑃 nc ∗ $nc) ∨ ⊲𝑄) ∗
(⊲𝑄 ⇛E EF𝑝 )

)
PiggyBank-Peek

↑𝐴 ⊆ E ↑𝑁 ⊆ E ↑𝑁 ⊆ F
PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 n ∗ EF𝑝 −∗
(∀nc, ⊲ 𝑃 nc −∗ ⊲ False) −∗
(⊲𝑄 −∗ ⊲□𝑄 ′) ⇛E
PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 0 ∗ ⊲□𝑄 ′ ∗ EF𝑝

Fig. 2. Piggy Banks: Reasoning Rules

These considerations suggest that the implementation of the piggy bank should involve both

an atomic invariant and a non-atomic invariant (§2). This, in turn, suggests that the predicate

PiggyBank should be parameterized with a namespace 𝐴 (serving as an index for the atomic

invariant) and with a pool 𝑝 and a namespace 𝑁 (serving as indices for the non-atomic invariant).

Together, the parameters 𝐴, 𝑝, 𝑁 can be thought of as a “region” in which the piggy bank exists.

Our reasoning rules for piggy banks appear in Figure 2. The assertion PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 n
means that there exists a piggy bank whose pending and forced states are described by 𝑃 and 𝑄 ,

whose region is 𝐴, 𝑝, 𝑁 , and whose number of debits is n. The parameter n is the most interesting

one: in the rules of Figure 2, the five other parameters are fixed.

The rule PiggyBank-Persist states that a PiggyBank assertion is persistent. That is, a piggy bank

can be shared. PiggyBank-Increase-Debit states that PiggyBank is covariant in the parameter n.
In other words, it is safe to increase an apparent debit. This rule is intuitively sound because it

preserves the fact that an apparent debit is an over-approximation of the true debit. PiggyBank-

Create allocates a new piggy bank. It is a ghost update. The piggy bank must initially be in its

pending state: the user must establish the assertion 𝑃 nc, which is consumed. The user chooses nc,
the number of credits that must be accumulated before the piggy bank can be broken. Thus, nc
is the initial value of the true debit, and it is also the initial apparent debit. PiggyBank-Pay, also

a ghost update, allows contributing 𝑘 time credits to a piggy bank. The apparent debit decreases

from n to n − 𝑘 . (This is subtraction in the natural numbers, so n − 𝑘 ≥ 0 holds.)

We now come to the most complex rule, PiggyBank-Break. This rule allows the user to break a

piggy bank whose apparent debit is 0. This is intuitively permitted because, if the apparent debit

is 0, then the true debit must be 0 as well. As explained earlier, this rule is expressed via two nested

ghost updates. The outermost update initiates the process of breaking the bank. It consumes the

affine token EF𝑝 , where ↑𝑁 ⊆ F must hold: this forbids an attempt to break this piggy bank again

while it is already being broken. It produces the following situation: for some value of nc, both of

the following assertions hold:
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PiggyBank 𝑃 𝑄 𝐴 𝑝 𝑁 n ≜
∃𝜑, 𝜋, nc.

∃forced . 𝜑 ↦→ • forced ∗ if ¬forced then 𝑃 nc else𝑄 𝑁
𝑝 ∗

∃forced, ac. 𝜑 ↦→ ◦ forced ∗ 𝜋 ↦→ • ac ∗ if ¬forced then $ac else ⌜nc ≤ ac⌝ 𝐴 ∗
𝜋 ↦→ ◦ (nc − n)

Fig. 3. Piggy Banks: Internal Definition

(1) either the piggy bank is in its pending state 𝑃 nc, in which case nc time credits are available

(because the true debit is zero), or the piggy bank is already in its forced state 𝑄 ;

(2) whatever state the piggy bank is currently in, the user must bring it into the forced state 𝑄

so as to be able to apply the innermost ghost update, which ends the process of breaking the

bank and causes the affine token EF𝑝 to re-appear.

The variable nc is existentially quantified because the cost of moving from the pending state to

the forced state is unknown: it cannot be deduced from the PiggyBank assertion. The fact that this

variable is shared between the conjuncts 𝑃 nc and $nc guarantees that “enough” credit is available.
Whereas forcing requires an affine token (which disappears while forcing is in progress, and

re-appears when the process is complete), paying does not require a token. Therefore, while a bank

is being forced, forcing it again is disallowed, but paying remains permitted.

In the interest of space, we explain PiggyBank-Peek only briefly. This rule states that if the user

is somehow able to prove that this piggy bank cannot be in its pending state (that is, 𝑃 nc implies

false), then it must be in its forced state and the piggy bank’s apparent debit can be set to 0. This

rule is later exploited to establish the rule ThunkVal-Force.

3.2 Piggy Banks: Construction
The definition of the predicate PiggyBank appears in Figure 3. It may be of interest mainly to

readers who are familiar with Iris; other readers may wish to skip this part. Its most interesting

aspect is that it involves both an atomic invariant and a non-atomic invariant. This follows from

the fact that we want paying to be atomic, a single ghost update, whereas breaking the bank must

be non-atomic, a sequence of two ghost updates. The atomic invariant holds “always”: it can be

violated and must be restored during an atomic instruction. The non-atomic invariant holds “except

while the piggy bank is being broken”: thus, it can remain violated over a long period of time.

The two invariants are not independent of one another: they must agree on the question of

whether an attempt to break the piggy bank has begun already. We impose this agreement by

letting the two invariants share a ghost cell 𝜑 whose content, a Boolean value forced, reflects this
information. The invariants cannot directly share the variable forced: that would make forced itself

invariant. Instead, they share the address 𝜑 of a ghost cell whose content can change over time.

For this purpose, we use the excl_auth camera from the Iris library. This camera offers a way

of expressing the idea that a resource has exactly two owners, whose roles are symmetric. Thus,

two assertions control the ghost cell 𝜑 : the assertion 𝜑 ↦→ • forced
1
represents the view of one

owner; the assertion 𝜑 ↦→ ◦ forced
2
is the view of the other owner. These assertions satisfy the

agreement law 𝜑 ↦→ • forced
1

∗ 𝜑 ↦→ ◦ forced
2

⊢ ⌜forced
1
= forced

2
⌝, which states that when

the owners confront their views, they must find that they agree. They also satisfy the update law

𝜑 ↦→ • forced ∗ 𝜑 ↦→ ◦ forced ⇛ 𝜑 ↦→ • forced′ ∗ 𝜑 ↦→ ◦ forced′ , which states that when the

owners combine their powers, they are able to change the content of the ghost cell.

, Vol. 1, No. 1, Article . Publication date: October 2023.

https://plv.mpi-sws.org/coqdoc/iris/iris.algebra.lib.excl_auth.html


Thunks and Debits in Separation Logic with Time Credits 11

1 type 'a state = UNEVALUATED of (unit -> 'a) | EVALUATED of 'a

2 type 'a thunk = 'a state ref

3 let create f = ref (UNEVALUATED f)

4 let force t =

5 match !t with

6 | UNEVALUATED f -> let v = f() in t := EVALUATED v; v (* evaluate and memoize *)

7 | EVALUATED v -> v (* look up memoized value *)

Fig. 4. Thunks: OCaml Code

At this point, we can explain the first invariant in the definition of PiggyBank (Figure 3). It is

the non-atomic invariant. It states that if the piggy bank has never been broken then it must be in

the pending state 𝑃 nc, otherwise it must be in the forced state 𝑄 . While the piggy bank is being

broken, this invariant does not hold: the piggy bank is then in neither state.

Another ghost cell, 𝜋 , appears in the following two lines. This cell keeps track of the total amount

of the payments that the piggy bank has received. This amount grows in a monotonic manner: it can

never decrease. Two kinds of assertions control this cell. The affine assertion 𝜋 ↦→ • ac represents

the authority to read the cell and to increase its value. A persistent assertion 𝜋 ↦→ ◦𝑘 is a guarantee

that the value of the cell is at least 𝑘 . These assertions satisfy the agreement law 𝜋 ↦→ • ac ∗
𝜋 ↦→ ◦𝑘 ⊢ ⌜𝑘 ≤ ac⌝ and the update law 𝜋 ↦→ • ac ⇛ 𝜋 ↦→ • (ac + 𝑘) ∗ 𝜋 ↦→ ◦ (ac + 𝑘) .
We can now explain the second invariant in Figure 3. It is the atomic invariant. It holds the

authoritative view 𝜋 ↦→ • ac , which guarantees that ac (for “available credit”) is the total amount

of payment received so far. Furthermore, if the bank has never been broken yet, then this invariant

guarantees that ac time credits are available. Otherwise, no credit is available: then, the invariant

guarantees nc ≤ ac, which means that the available credit has exceeded the necessary credit.

On the last line of Figure 3, we find a persistent witness 𝜋 ↦→ ◦ (nc − n) . By opening the

atomic invariant and by exploiting the agreement law, this witness allows obtaining the inequality

nc − n ≤ ac. If the apparent debit n is zero, then one obtains nc ≤ ac: that is, there is enough
accumulated credit to cover the cost of the transition from the pending state to the forced state.

Theorem 3.1. The predicate PiggyBank satisfies the reasoning rules of Figure 2.

4 THUNKS
Our implementation of thunks appears in Figure 4. In the following, we first present the reasoning

rules that we wish to establish about thunks (§4.1). Then, we present the nontrivial construction

that lets us obtain these rules (§4.2).

4.1 Thunks: Interface
The predicate Thunk 𝑝 F 𝑡 n 𝑅 𝜙 describes a thunk at location 𝑡 in memory. The pool 𝑝 and

the mask F play the same role as in the previous section (§3): in short, they determine which

token EF𝑝 is required to force this thunk. The parameter n also plays the same role as in the previous

section: it is an apparent debit associated with this thunk. The parameter 𝑅 is a resource that is

required and preserved by the suspended computation. The presence of this parameter allows us to

describe thunks that have side effects and thunks whose execution requires a certain token. The

latter category includes thunks that force other thunks, something that is commonly needed. The
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Thunk-Create

↑𝑁 ⊆ F{
$N ∗ isAction 𝑓 n 𝑅 𝜙

}
create 𝑓

returns (∃𝑡) 𝑡 {Thunk 𝑝 F 𝑡 n 𝑅 𝜙}

Thunk-Conseqence

Thunk 𝑝 F 𝑡 n1 𝑅 𝜙 −∗
isUpdate n2 𝑅 𝜙 𝜓 ⇛E
Thunk 𝑝 F 𝑡 (n1 + n2) 𝑅 𝜓

Fig. 5. Thunks: Creation Rule and Consequence Rule

Thunk-Persist

persistent(Thunk 𝑝 F 𝑡 n 𝑅 𝜙)

Thunk-Increase-Debit

n1 ≤ n2

Thunk 𝑝 F 𝑡 n1 𝑅 𝜙 −∗
Thunk 𝑝 F 𝑡 n2 𝑅 𝜙

Thunk-Pay

↑ThunkPayment ⊆ E
Thunk 𝑝 F 𝑡 n 𝑅 𝜙 ∗ $𝑘 ⇛E
Thunk 𝑝 F 𝑡 (n − 𝑘) 𝑅 𝜙

Thunk-Force{
Thunk 𝑝 F 𝑡 0 𝑅 𝜙 ∗
$F ∗ EF𝑝 ∗ 𝑅

}
force 𝑡

returns (∃𝑣) 𝑣 {ThunkVal 𝑡 𝑣 ∗ □ 𝜙 𝑣 ∗ EF𝑝 ∗ 𝑅}

Fig. 6. Thunks: Common Reasoning Rules

ThunkVal-Persist

persistent(ThunkVal 𝑡 𝑣)
ThunkVal-Timeless

timeless(ThunkVal 𝑡 𝑣)

ThunkVal-Confront

ThunkVal 𝑡 𝑣1 ∗ ThunkVal 𝑡 𝑣2 ⊢ ⌜𝑣1 = 𝑣2⌝
ThunkVal-Force

{ThunkVal 𝑡 𝑣 ∗ $F} force 𝑡 returns 𝑣 {}

Fig. 7. Forced-Thunk Witnesses: Reasoning Rules

parameter 𝜙 : Val → iProp determines the postcondition of the thunk: it is □𝜙 . That is, once this
thunk is forced and produces a value 𝑣 , the assertion □ 𝜙 𝑣 can be expected to hold.

3

The full set of reasoning rules for thunks appears in Figures 5, 6, and 7. The rules are split in

three groups for reasons that will be apparent in the next subsection (§4.2).

Thunk-Create (Figure 5) describes the creation of a new thunk via the function call create 𝑓 .

The behavior of 𝑓 is specified by the premise isAction 𝑓 n 𝑅 𝜙 , which denotes the one-shot triple

1 {𝑅 ∗ $n} 𝑓 () returns (∃𝑣) 𝑣 {𝑅 ∗ □ 𝜙 𝑣}. This assertion is a permission to call 𝑓 () at most

once. It indicates that the call 𝑓 () consumes n time credits and must return a value 𝑣 such that

□ 𝜙 𝑣 holds. The resource 𝑅 is required, but not consumed, by this call. Under this hypothesis

on 𝑓 , Thunk-Create states that create 𝑓 costs a constant amount of credits $N and returns a

thunk whose apparent debit, resource requirement, and postcondition are described by n, 𝑅, 𝜙 . The
amount N is part of the thunks interface; its concrete value is irrelevant and is not exposed: from

the point of view of the client it simply represents an abstract integer. The pool 𝑝 and mask F are

3
Instead of requiring the postcondition to be in the syntactic form □𝜙 , we could equivalently allow an arbitrary persistent
postcondition. The postcondition of a thunk must be persistent because a thunk can be forced arbitrarily many times yet

always returns the same value.
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chosen by the user. These parameters determine which token EF𝑝 will be required when forcing

this thunk. A systematic way of instantiating these parameters is discussed in the next section (§5).

The rules Thunk-Persist, Thunk-Increase-Debit, and Thunk-Pay (Figure 6) are analogous to

PiggyBank-Persist, PiggyBank-Increase-Debit, and PiggyBank-Pay. They state that thunks

can be shared, that it is permitted to over-approximate an apparent debit, and that an apparent

debit can be reduced by paying. (In Thunk-Pay, one can see that the parameter 𝐴 of piggy banks

has been instantiated with a fixed namespace ThunkPayment.)
Thunk-Force allows forcing a thunk whose apparent debit is zero. This consumes $F , a constant

number of time credits. In other words, the amortized time complexity of this operation is 𝑂 (1),
because the cost of the suspended computation has been paid for in advance. The token EF𝑝 and the

resource 𝑅 are required and preserved. The token EF𝑝 is required to force the thunk itself, whereas

the token 𝑅 is required by the suspended computation. These two assertions are separately required:

that is, they cannot be the same token. Indeed, as will be evident in the next subsection (§4.2), the

process of breaking the thunk’s piggy bank begins (therefore, the token EF𝑝 disappears) before the

suspended computation is executed, and ends after the suspended computation terminates.

Forcing a thunk produces a value 𝑣 such that the persistent assertionsThunkVal 𝑡 𝑣 and □ 𝜙 𝑣

hold. The assertionThunkVal 𝑡 𝑣 is a witness that the value of the thunk 𝑡 has been forever decided

and that it is 𝑣 . The assertion □ 𝜙 𝑣 means that 𝜙 𝑣 holds now and forever and can be exploited as

many times as one wishes.

The predicateThunkVal satisfies the reasoning rules in Figure 7. The rule ThunkVal-Persist

reflects the fact that once the association between 𝑡 and 𝑣 has been decided, it remains fixed forever.

The rule ThunkVal-Timeless states that ⊲ThunkVal 𝑡 𝑣 is essentially the same as ThunkVal 𝑡 𝑣 ;
this is of technical interest only. The agreement law ThunkVal-Confront states that if a thunk

has been forced twice in the past then the same value must have been returned twice. Finally,

ThunkVal-Force allows forcing a thunk that has been forced already. This assumption is reflected

by the appearance of the assertion ThunkVal 𝑡 𝑣 in the precondition. There is no requirement that

the thunk’s apparent debit be zero. As in Thunk-Force, forcing consumes $F . The value that is
obtained by forcing this thunk must be 𝑣 , the value that was predicted by the witnessThunkVal 𝑡 𝑣 .
Unlike Thunk-Force, this rule requires neither the token EF𝑝 nor the resource 𝑅. They are not

necessary because no suspended computation is executed. Also unlike Thunk-Force, and perhaps

surprisingly, this rule does not guarantee □ 𝜙 𝑣 . In the presence of Thunk-Conseqence, this

cannot be guaranteed. In short, the assumptionThunkVal 𝑡 𝑣 guarantees that this physical thunk
has been forced already; but it could be wrapped in a number of (ghost) proxy thunks (§4.2.2) that

have not been forced yet.

The rule Thunk-Conseqence (Figure 5) allows changing the postcondition of a thunk from

□𝜙 to □𝜓 . In the special case where n2 is zero, this rule weakens the postcondition of a thunk,

which is why we name it the consequence rule. In the case where n2 is nonzero, this rule increases
the apparent debit of the thunk from n1 to n1 + n2. In return, the update

4
from □ 𝜙 𝑣 to □ 𝜓 𝑣 is

allowed to consume n2 time credits.

4.2 Thunks: Construction
It is not easy to define the predicates Thunk and ThunkVal in such a way that all of the rules of

Figures 5, 6, and 7 are satisfied. A key contribution of this paper is to propose a definition of

4
We write isUpdate n 𝑅 𝜙 𝜓 for the assertion ∀𝑣. (𝑅 ∗ $n ∗ □ 𝜙 𝑣) ⇛⊤ (𝑅 ∗ □ 𝜓 𝑣) . This update is affine; it can be used

only once. It consumes n time credits, requires □ 𝜙 𝑣, and establishes □ 𝜓 𝑣. The resource 𝑅 is required, but not consumed.

The full mask ⊤ allows this update to access all atomic invariants. In particular, Thunk-Pay can be exploited.
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BasicThunk 𝑝 F 𝑡 n 𝑅 𝜙 ≜

∃𝛿, 𝑁 . ⌜↑𝑁 ⊆ F ⌝ ∗ 𝑡 ⇝ 𝛿 ∗ PiggyBank
(𝜆nc. ∃𝑓 . 𝛿 ↦→ ? ∗ 𝑡 ↦→ UNEVALUATED 𝑓 ∗ isAction 𝑓 nc 𝑅 𝜙) — the pending state

(∃𝑣 . 𝛿 ↦→ 𝑣 ∗ 𝑡 ↦→ EVALUATED 𝑣 ∗ □ 𝜙 𝑣) — the forced state

ThunkPayment 𝑝 𝑁 n
ThunkVal 𝑡 𝑣 ≜

∃𝛿. 𝑡 ⇝ 𝛿 ∗ 𝛿 ↦→ 𝑣

Fig. 8. Basic Thunks and Forced-Thunk Witnesses: Definitions

Thunk that validates all of the desired rules. Although it is technically possible to give a monolithic

definition, we prefer to approach the problem in three stages, as follows.

(1) We define a predicate BasicThunk that satisfies all of the desired rules except the consequence

rule. It is analogous to Mével et al.’s isThunk, but instead of relying directly on a single

non-atomic invariant, it is built on top of our “piggy bank” abstraction, which combines an

atomic invariant and a non-atomic invariant. As a result, BasicThunk validates Thunk-Pay.

(2) We remark that applying the reasoning rule Thunk-Conseqence to an existing thunk 𝑡

seems closely related to constructing a new thunk 𝑡 ′ via the expression create (𝜆(). force 𝑡).
Although applying the consequence rule is a ghost operation and does not create a new

thunk at runtime, this analogy suggests that applying the consequence rule should allocate a
new piggy bank. Guided by this idea, we propose a construction that supports one application
of the consequence rule. Assuming that we have a predicate Thunk that satisfies the rules of

Figure 6, we construct a new predicate ProxyThunk, which also satisfies these rules, and we

establish a version of the consequence rule that expects a Thunk and produces a ProxyThunk.
(3) It is then a relatively simple exercise to prove that this construction can be iterated as many

times as desired. By building on top of BasicThunk and ProxyThunk, we are able to propose a

definition of Thunk that satisfies all of the desired rules, including Thunk-Conseqence.

This three-stage construction is presented in the next three subsections (§4.2.1, §4.2.2, §4.2.3). We

remark that the definition of the predicate ThunkVal is not problematic. We give a definition of

ThunkVal in the first stage (§4.2.1) and keep this definition in the following stages.

4.2.1 Basic Thunks. The definition of the predicate BasicThunk appears in Figure 8. Although this

definition may at first sight seem somewhat cryptic, it is actually fairly straightforward. It involves

two main ingredients: a ghost cell 𝛿 and a piggy bank.

The ghost cell 𝛿 records whether the value of this thunk is still undecided or decided. This

ghost cell inhabits the camera Ex(()) + Ag(Val), also known as the “one-shot” camera [Jung et al.

2018, §2.1]. This gives rise to the following assertions and laws. The assertion 𝛿 ↦→ ? means that

the value is not decided yet. This assertion is affine: it represents a unique permission to make

a decision. The assertion 𝛿 ↦→ 𝑣 means that the value has been decided and that this value is 𝑣 .

This assertion is persistent: once a value has been decided, this decision cannot be undone, so the

information that the value is 𝑣 remains valid forever and can be shared. These assertions satisfy

the decision law 𝛿 ↦→ ? ⇛ 𝛿 ↦→ 𝑣 , the agreement law 𝛿 ↦→ 𝑣1 ∗ 𝛿 ↦→ 𝑣2 ⊢ ⌜𝑣1 = 𝑣2⌝, and the

disagreement law 𝛿 ↦→ ? ∗ 𝛿 ↦→ 𝑣 ⊢ False. A meta witness 𝑡 ⇝ 𝛿 records that the ghost cell 𝛿 is

uniquely associated with the thunk 𝑡 . This ensures that all BasicThunk and ThunkVal assertions for
the thunk 𝑡 refer to the same ghost cell 𝛿 .
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ProxyThunk 𝑝 F 𝑡 n 𝑅 𝜓 ≜

∃n1, n2, 𝜙, F1, 𝑁 . ⌜F1 ⊎ ↑𝑁 ⊆ F ⌝ ∗
Thunk 𝑝 F1 𝑡 n1 𝑅 𝜙 ∗
PiggyBank

(𝜆nc. ⌜nc = n1 + n2⌝ ∗ isUpdate n2 𝑅 𝜙 𝜓 )
(∃𝑣 .ThunkVal 𝑡 𝑣 ∗ □ 𝜓 𝑣)
ThunkPayment 𝑝 𝑁 n

Proxy-Create

F1 ⊎ ↑𝑁 ⊆ F
Thunk 𝑝 F1 𝑡 n1 𝑅 𝜙 −∗
isUpdate n2 𝑅 𝜙 𝜓 ⇛E
ProxyThunk 𝑝 F 𝑡 (n1 + n2) 𝑅 𝜓

Fig. 9. Proxy Thunks: Definition and Creation Rule

The concept of a piggy bank has been presented already (§3). There remains to explain how

the parameters 𝑃 and 𝑄 , which represent the pending and forced states of the piggy bank, are

instantiated in Figure 8. In the pending state, the ghost cell 𝛿 is undecided; the physical cell 𝑡

contains the value UNEVALUATED 𝑓 ; and there exists a unique permission to invoke 𝑓 (). The cost
of this invocation, nc, is not known, but the piggy bank is set up so that this cost must be fully paid

for before the piggy bank can be forced. The apparent debit n of the piggy bank is also the apparent

debit of the thunk. In the forced state, the ghost cell 𝛿 has been set to 𝑣 , for some value 𝑣 ; the

physical memory cell 𝑡 contains the value EVALUATED 𝑣 ; and the postcondition □ 𝜙 𝑣 is satisfied.

Theorem 4.1. The predicate BasicThunk satisfies the rule Thunk-Create in Figure 5, where Thunk
is replaced with BasicThunk. Furthermore, it satisfies all of the rules in Figure 6, where the same
replacement is made. Finally, the predicate ThunkVal satisfies the rules in Figure 7.

4.2.2 Proxy Thunks. Alas, basic thunks do not satisfy the consequence rule. The problem can be

traced back to the piggy bank invariants, which fix the postcondition 𝜙 and the number of necessary

credits nc. This forbids installing a new postcondition and a new number of necessary credits.

Fortunately, there is a simple way of working around this problem. The idea is to allocate a new
piggy bank when the consequence rule is applied to an existing thunk 𝑡 . If the existing thunk has

an apparent debit of n1 and if the update from 𝜙 to 𝜓 has a cost of n2, then the number of time

credits that the new piggy bank aims to collect is set to n1 + n2. Thus, the apparent debit of the new
piggy bank is n1 + n2. Once the new piggy bank has reached its aim, breaking it produces n1 + n2
credits. Out of these, n1 credits are used to force the thunk, producing a value 𝑣 such that □ 𝜙 𝑣

holds. The remaining n2 credits are then used to execute the ghost update and obtain □ 𝜓 𝑣 .

In this subsection, for simplicity, we focus on one application of the consequence rule. We assume

that we have a predicateThunk that satisfies the rules of Figure 6. We refer to this set of rules as the

“common thunk API”. We construct a new predicate ProxyThunk, which also satisfies the common

thunk API. Its definition appears in Figure 9. The “creation rule” for proxy thunks, also shown in

Figure 9, is a consequence rule that expects a Thunk and produces a ProxyThunk. The term “proxy

thunk” is meant to suggest that a proxy thunk is a ghost wrapper around a pre-existing thunk.

The main components in the definition of proxy thunks are the underlying thunk, whose apparent

debit is n1, and the proxy thunk’s piggy bank. The apparent debit n of the piggy bank is the apparent
debit of the proxy thunk. The pending state of this piggy bank contains a one-shot ghost update

from 𝜙 to 𝜓 , whose cost is n2. The equation nc = n1 + n2 records the fact that this piggy bank

aims to collect enough credit to force the underlying thunk and apply this update. The forced state

contains just a forced-thunk witness ThunkVal 𝑡 𝑣 together with the postcondition □ 𝜓 𝑣 .
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RecThunk 0 𝑝 F 𝑡 n 𝑅 𝜙 ≜ BasicThunk 𝑝 F 𝑡 n 𝑅 𝜙

RecThunk (𝑑 + 1) 𝑝 F 𝑡 n 𝑅 𝜙 ≜ ProxyThunk [Thunk := RecThunk 𝑑] 𝑝 F 𝑡 n 𝑅 𝜙

Thunk 𝑝 F 𝑡 n 𝑅 𝜙 ≜ ∃𝑁, 𝑑, F ′ . ⌜∀𝑑 ′ . 𝑑 < 𝑑 ′ ⇒ F ′
# ↑(𝑁 .𝑑 ′)⌝ ∗

⌜F ′ ⊆ ↑𝑁 ⊆ F ⌝ ∗
RecThunk 𝑑 𝑝 F ′ 𝑡 n 𝑅 𝜙

Fig. 10. Thunks: Definition

The side condition F1 ⊎ ↑𝑁 ⊆ F guarantees that out of the token EF𝑝 , which the user supplies

when forcing the proxy thunk, we can extract the tokens EF1𝑝 ∗ E↑𝑁𝑝 , which are required in order to

simultaneously break the proxy’s piggy bank and force the underlying thunk.

Theorem 4.2. The predicate ProxyThunk satisfies the rule Proxy-Create in Figure 9. Furthermore,
it satisfies all of the rules in Figure 6, where Thunk is replaced with ProxyThunk.

4.2.3 Thunks. The construction of the previous subsection is heterogeneous and allows applying

the consequence rule once: when applied to a thunk, it produces a proxy thunk. Fortunately, this

construction is generic: it can be applied to an arbitrary predicate Thunk, provided this predicate is

persistent and satisfies the common thunk API in Figure 6. Both BasicThunk and ProxyThunk meet

these requirements. Thus, the construction can be iterated. We do so in Figure 10.

The definition is conceptually straightforward. First, we inductively define a predicate RecThunk 𝑑 ,
which layers 𝑑 proxy thunks on top of a base thunk. Then, we define the predicateThunk via an

existential quantification over 𝑑 : that is, we say that a “thunk” is a basic thunk wrapped in an

arbitrary number of proxy thunks. Two technical formulae involving masks record that (1) we have

an infinite family of pairwise disjoint masks, namely ↑(𝑁 .𝑑), where 𝑑 is an integer index; and (2)

after 𝑑 levels of proxy thunks have been stacked above a basic thunk, the masks up to level 𝑑 have

been used up, but the masks above level 𝑑 are still available for use.

Theorem 4.3. The predicate Thunk satisfies all of the rules in Figures 5 and 6.

A new piggy bank is created at two different times: when a thunk is first created, and when the

consequence rule is applied to an existing thunk. Thus, an arbitrary number of piggy banks can be

simultaneously associated with a single thunk, and can be simultaneously active. Fortunately, in

our proofs, this global view is never needed.

5 HEIGHT-INDEXED THUNKS
The predicate Thunk is quite general but can be a little difficult to use. When a thunk is forced, one

must separately supply the token EF𝑝 , which allows forcing the thunk itself, and the resource 𝑅,

which allows the suspended computation to have certain effects. When one wishes to construct a

thunk that forces one or more other thunks, the parameter 𝑅 must typically be instantiated with a

token of the form EF
′

𝑝 where F and F ′
are disjoint. In short, we have set up a token-based discipline

that forbids reentrant thunks. This is good, but this discipline can be heavy and confusing.

In order to address this difficulty once and for all and to save the end user some pain, we set up

a simple system based on natural integer heights ℎ. We define a new predicate HThunk 𝑝 ℎ 𝑡 n 𝜙

where the two parameters F and 𝑅 are replaced with a single parameter ℎ. Our intent is to allow

a thunk at height ℎ to force thunks at lower heights, that is, at heights less than ℎ. A thunk cannot

force a thunk that lies at the same height as itself or higher. A thunk at height ℎ can construct or
return a thunk at an arbitrary height: no constraint relates the parameters ℎ and 𝜙 .
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HThunk-Persist

persistent(HThunk 𝑝 ℎ 𝑡 n 𝜙)

HThunk-Create{
$N ∗ isAction 𝑓 n (Eℎ𝑝 ) 𝜙

}
create 𝑓

returns (∃𝑡) 𝑡 {HThunk 𝑝 ℎ 𝑡 n 𝜙}

HThunk-Inc-Height-Debit

ℎ1 ≤ ℎ2 n1 ≤ n2

HThunk 𝑝 ℎ1 𝑡 n1 𝜙 −∗
HThunk 𝑝 ℎ2 𝑡 n2 𝜙

HThunk-Pay

↑ThunkPayment ⊆ E
HThunk 𝑝 ℎ 𝑡 n 𝜙 ∗ $𝑘 ⇛E
HThunk 𝑝 ℎ 𝑡 (n − 𝑘) 𝜙

HThunk-Conseqence

HThunk 𝑝 ℎ 𝑡 n1 𝜙 −∗
(∀𝑣 . $n2 −∗ □ 𝜙 𝑣 ⇛⊤ □ 𝜓 𝑣) ⇛E
HThunk 𝑝 ℎ 𝑡 (n1 + n2) 𝜓

HThunk-Force{
HThunk 𝑝 ℎ 𝑡 0 𝜙 ∗
$F ∗ Eℎ

′
𝑝 ∗ ⌜ℎ < ℎ′⌝

}
force 𝑡

returns (∃𝑣) 𝑣 {□ 𝜙 𝑣 ∗ ThunkVal 𝑡 𝑣 ∗ Eℎ
′

𝑝 }

Fig. 11. Height-Indexed Thunks: Reasoning Rules

For simplicity, this API removes the ability for a suspended computation to have side effects

other than forcing thunks: that is, the parameter 𝑅 disappears. It could be preserved if desired.

For the sake of brevity, we omit the definition of the predicate HThunk. Its reasoning rules appear
in Figure 11. The affine token Eℎ𝑝 allows forcing thunks whose height is less than ℎ (HThunk-Force).

When a thunk is created at height ℎ, the token that is passed to the suspended computation is Eℎ𝑝
(HThunk-Create). Thus, the new thunk can force thunks at lower heights only. We remark that a

height is not a creation time. Indeed, a thunk at height 0 can be created after, and even created by, a

thunk at height 1. Instead, a height represents the length of a dependency chain: a thunk at height 2

is a thunk that can force a thunk that can force a thunk. Heights can be safely over-approximated:

this is stated by HThunk-Inc-Height-Debit. In a token, ℎ can be instantiated with ∞. The token

E∞𝑝 can force thunks of arbitrary height. It appears in the API of the banker’s queue (Figure 18).

6 STREAMS
A stream is a list whose elements are computed on demand and memoized. In lazy programming

languages, such as Haskell, this data structure is referred to simply as a “list”. In a strict programming

language, such as OCaml, lists and streams are distinct (albeit closely related) data structures. The

definition of streams as an algebraic data type appears in the first two lines of Figure 1. In short,

a stream 𝑠 is a thunk, which, once forced, produces a cell; and a cell is either the value Nil or a value
of the form Cons(x, 𝑠′), where x is an element and 𝑠′ is again a stream. A stream can be thought of

as a chain of thunks, where each thunk produces the next thunk in the chain.

In the following, we define a predicate Stream 𝑝 ℎ 𝑠 ds xs, which describes a stream (§6.1); we

establish several reasoning rules that this predicate satisfies (§6.2); and we establish specifications

for a few common operations on streams (§6.3). We do not verify a full-fledged stream library; we

verify only the operations needed by the banker’s queue, which are shown in Figure 1.

6.1 The predicate Stream
The parameters 𝑝 and ℎ of the predicate Stream play the same role as the parameters 𝑝 and ℎ of the

predicate HThunk. They are a non-atomic pool 𝑝 and an integer height ℎ, and they indicate that the
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Stream 𝑝 ℎ 𝑠 [] xs ≜ False
Stream 𝑝 ℎ 𝑠 (d :: ds) xs ≜ HThunk 𝑝 ℎ 𝑠 d (𝜆𝑐.StreamCell 𝑝 ℎ 𝑐 ds xs)
StreamCell 𝑝 ℎ 𝑐 ds [] ≜ ⌜𝑐 = Nil⌝ ∗ ⌜ds = []⌝

StreamCell 𝑝 ℎ 𝑐 ds (x :: xs) ≜ ∃𝑠 . ⌜𝑐 = Cons(x, 𝑠)⌝ ∗ Stream 𝑝 ℎ 𝑠 ds xs

Fig. 12. Streams: Definition

Stream-Persist

persistent(Stream 𝑝 ℎ 𝑠 ds xs)

Stream-Increase-Height

ℎ1 ≤ ℎ2

Stream 𝑝 ℎ1 𝑠 ds xs −∗
Stream 𝑝 ℎ2 𝑠 ds xs

Stream-Forward-Debit

↑ThunkPayment ⊆ E
(𝑚) ds1 ≤ ds2 (𝑛)

Stream 𝑝 ℎ 𝑠 ds1 xs ∗ $𝑚 ⇛E
Stream 𝑝 ℎ 𝑠 ds2 xs

Stream-Force{
Stream 𝑝 ℎ 𝑠 (0 :: ds) xs ∗
$F ′ ∗ Eℎ′

𝑝 ∗ ⌜ℎ < ℎ′⌝

}
force 𝑠

returns (∃𝑐) 𝑐
{

StreamCell 𝑝 ℎ 𝑐 ds xs ∗
ThunkVal 𝑠 𝑐 ∗ Eℎ′

𝑝

}
Stream-Create{

$N ′ ∗ isCellAction 𝑝 ℎ d 𝑒 ds xs
}

create (𝜆().𝑒)
returns (∃𝑠) 𝑠 {Stream 𝑝 ℎ 𝑠 (d :: ds) xs}

Fig. 13. Streams: Reasoning Rules

token Eℎ𝑝 is required in order to force every thunk in the stream. The parameter 𝑠 is the stream itself;

it is the location in memory of the thunk that represents the head of the stream. The parameter xs
is the sequence of the elements of the stream. It predicts the shape of the value produced by each

thunk in the stream, where a shape is either Nil or Cons(x, _). The parameter ds is the sequence
of debits associated with each thunk in the stream. It tells how much remains to be paid in order

to force each thunk. It is worth noting that xs and ds predict the value and apparent cost of each

thunk in the stream possibly before this thunk is even constructed in memory.

The definitions of the predicates Stream and StreamCell appear in Figure 12. They are mutually

inductive. They are straightforward, so we do not paraphrase them. Because a stream of 𝑛 elements

involves 𝑛 + 1 thunks, in an assertion Stream 𝑝 ℎ 𝑠 ds xs, one can informally
5
expect |ds | = |xs | + 1.

In StreamCell 𝑝 ℎ 𝑐 ds xs, one can informally expect |ds | = |xs |.

6.2 Reasoning Rules for Streams
Our reasoning rules for streams appear in Figure 13. Most of them are reformulations of the

corresponding rules for height-indexed thunks (Figure 11), so we do not explain them again.

5
Technically, Stream 𝑝 ℎ 𝑠 ds xs ⊢ |ds | = |xs | + 1 does not hold. A straightforward proof attempt fails, because the

postcondition of a thunk does not hold until this thunk has been forced. One could strengthen the definition of Stream so

that this entailment holds, but we have not felt the need to do so. The weaker entailment Stream 𝑝 ℎ 𝑠 ds xs ⊢ |ds | > 0 does

hold and has been sufficient for our purposes.
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Sub-Nil

𝑛 ≤ 𝑚

(𝑚) [] ≤ [] (𝑛)

Sub-Cons

d1 ≤ 𝑚 + d2 (𝑚 + d2 − d1) ds1 ≤ ds2 (𝑛)
(𝑚) d1 :: ds1 ≤ d2 :: ds2 (𝑛)

Fig. 14. Subsumption over Sequences of Debits: Definition

Sub-Variance

(𝑚) ds1 ≤ ds2 (𝑛)
𝑚 ≤ 𝑚′ 𝑛′ ≤ 𝑛

(𝑚′) ds1 ≤ ds2 (𝑛′)

Sub-Refl

(𝑚) ds ≤ ds (𝑚)

Sub-Trans

(𝑚1) ds1 ≤ ds2 (𝑛1)
(𝑚2) ds2 ≤ ds3 (𝑛2)

(𝑚1 +𝑚2) ds1 ≤ ds3 (𝑛1 + 𝑛2)

Sub-Append

(𝑚) ds1 ≤ ds2 (𝑛)
(𝑛) ds′

1
≤ ds′

2
(𝑘)

(𝑚) ds1 ++ ds′
1
≤ ds2 ++ ds′

2
(𝑘)

Sub-Add-Slack

(𝑚) ds1 ≤ ds2 (𝑛)
(𝑚 + 𝑘) ds1 ≤ ds2 (𝑛 + 𝑘)

Sub-Repeat

d1 ≤ d2
(0) d𝑛

1
≤ d𝑛

2
(𝑛 × (d2 − d1))

Fig. 15. Subsumption over Sequences of Debits: Properties

Stream-Force requires the head thunk to have zero debits. Stream-Create relies on the auxiliary

predicate isCellAction6 in the same way that Thunk-Create and HThunk-Create rely on isAction.
The most notable rule in Figure 13 is Stream-Forward-Debit. This rule allows managing a

stream’s debit in several ways. It allows paying (that is, consuming a number of time credits) so as

to decrease the cost of a thunk, which can be either the head thunk or a deeper thunk. Furthermore,

it allows moving debits from the right towards the left in the list ds. In other words, it allows

transferring some of the debit of a faraway thunk to a thunk that lies nearer in the future. This is

intuitively sound because this implies that one must pay earlier. Technically, the proof of soundness

of Stream-Forward-Debit relies on the consequence rule HThunk-Conseqence.

Stream-Forward-Debit involves the debit subsumption judgement (𝑚) ds1 ≤ ds2 (𝑛), whose
intuitive meaning is as follows: provided one pays𝑚 time credits now, it is safe to transform the

sequence ds1 into the sequence ds2, and this results in 𝑛 leftover time credits in the future, after the
thunks described by the lists ds1 and ds2 have been forced.

The presence of the parameter𝑛 in this judgement may seem surprising, especially since the𝑛 left-

over credits are unused (wasted) by Stream-Forward-Debit. Still, this parameter is useful because

it enables compositional proofs of subsumption; this is most visible in Sub-Append (Figure 15).

An inductive definition of the subsumption judgement appears in Figure 14. In Sub-Cons, it

may be the case that d1 is greater than d2. In this case, the premise d1 ≤ 𝑚 + d2 allows part of
the𝑚 time credits at hand to be spent on the first thunk, decreasing its apparent cost from d1 to d2.
It may also be the case that d1 is less than or equal to d2. In that case, the apparent cost of the

first thunk is increased, causing more than𝑚 time credits to become available for spending on the

thunks that follow. In either case, the number of credits that can be spent on the tail of the stream

is (𝑚 + d2) − d1, which is why this number appears in the second premise of Sub-Cons.

To a reader who has difficulty understanding this definition, we may propose an alternative

characterization of the subsumption judgement, which helps see why Stream-Forward-Debit

is sound. Intuitively, for this rule to be sound, it must be the case that, by applying this rule, one

6
We write isCellAction 𝑝 ℎ d 𝑒 ds xs for 1 {Eℎ𝑝 ∗ $d} 𝑒 returns (∃𝑐 ) 𝑐 {StreamCell 𝑝 ℎ 𝑐 ds xs ∗ Eℎ𝑝 }. This assertion is

a permission to execute the expression 𝑒 at most once. It indicates that 𝑒 may consume d time credits and must return

a stream cell 𝑐 such that StreamCell 𝑝 ℎ 𝑐 ds xs holds. The resource Eℎ𝑝 may be used and must be preserved.
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Stream-Revl{
List 𝑙 xs ∗
$R′ ∗ ⌜𝑛 = |xs |⌝

}
revl 𝑙

returns (∃𝑠) 𝑠
{

Stream 𝑝 ℎ 𝑠

(R𝑛 :: 0
𝑛) (rev xs)

}
Stream-Append{

Stream 𝑝 ℎ 𝑠1 ds1 xs1 ∗
Stream 𝑝 ℎ 𝑠2 ds2 xs2 ∗ $P

}
append 𝑠1 𝑠2

returns (∃𝑠) 𝑠
{

Stream 𝑝 (ℎ + 1) 𝑠
(ds1 ⊲⊳ ds2) (xs1 ++ xs2)

}
Fig. 16. Streams: Specifications of revl and append

promises to pay no less and to pay no later. Thus, for every index 𝑖 , it must be the case that forcing

the first 𝑖 thunks in the stream appears no less expensive after the rule is applied than it did before

the rule was applied. The subsumption judgement indeed satisfies a property of this kind: it is

expressed by the following lemma.

Lemma 6.1 (Subsumption of Seqences of Debits, expressed in terms of Partial Sums).

Suppose the lists ds1 and ds2 have the same length. Then the judgement ∃𝑛. (𝑚) ds1 ≤ ds2 (𝑛) is
equivalent to ∀𝑖 . ∑(take 𝑖 ds1) ≤ 𝑚 + ∑(take 𝑖 ds2).

The subsumption judgement enjoys a number of reasoning rules, which are presented in Figure 15.

The judgement (𝑚) ds1 ≤ ds2 (𝑛) is covariant in𝑚 and contravariant and 𝑛 (Sub-Variance). It is

reflexive (Sub-Refl), transitive (Sub-Trans), and compatible with list concatenation (Sub-Append).

Extra credit at the left end translates to extra credit at the right end (Sub-Add-Slack). Finally,

increasing the apparent cost of the first 𝑛 thunks from d1 to d2 results in 𝑛 × (d2 − d1) extra credit
at the right end (Sub-Repeat). As a more readable special case, an increase of 1 in the debit of the

first 𝑛 thunks justifies a decrease of 𝑛 in the debit of the thunk that follows. In other words, an

expensive thunk can be made to appear cheap provided it lies far enough away in the future. This

reasoning rule plays a key role in Okasaki’s amortized analysis of the banker’s queue (§7).

6.3 Operations on Streams
There remains to present the specifications of the operations on streams whose code appears in

Figure 1. For the sake of brevity, we omit the specifications of the tiny functions nil and uncons: they
are similar to Stream-Create and Stream-Force. We also omit the specification of revl_append.
We present the specifications of the last two functions, revl and append, in Figure 16.

Stream-Revl states that revl transforms an immutable list 𝑙 whose elements form the sequence xs
into a stream 𝑠 whose elements form the sequence rev xs. (The pure assertion List 𝑙 xs indicates
that the value 𝑙 is an immutable list whose elements form the sequence xs.) If the sequence xs
has length 𝑛, then this stream involves 𝑛 + 1 thunks. The postcondition in Stream-Revl indicates

that the first thunk is expensive, while the remaining 𝑛 thunks are cheap: the first thunk carries

debit R𝑛 (where R is a constant), while every other thunk carries debit zero. The first thunk is

expensive because, when it is forced, revl_append 𝑙 Nil is invoked (line 23 in Figure 1). This

function call requires linear time because it eagerly traverses the list 𝑙 and immediately constructs

the remaining 𝑛 thunks. These thunks are cheap because they immediately return a pre-existing

value. The function call revl 𝑙 itself has constant time complexity: Stream-Revl requires a constant

amount R′ of time credits.

Stream-Append states that append 𝑠1 𝑠2 has constant complexity: it consumes P time credits. If

the streams 𝑠1 and 𝑠2 represent the sequences of elements xs1 and xs2 then the stream returned by

append represents the sequence xs1 ++ xs2. More crucially, if the sequences of debits associated

with 𝑠1 and 𝑠2 are ds1 and ds2, then the sequence of debits associated with this stream is ds1 ⊲⊳ ds2.
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1 type 'a queue =

2 { lenf: int; f: 'a stream; lenr: int; r: 'a list }

3

4 let empty () =

5 { lenf = 0; f = nil(); lenr = 0; r = [] }

6

7 let check ({ lenf = lenf ; f = f; lenr = lenr; r = r } as q) =

8 if lenf >= lenr then q

9 else { lenf = lenf + lenr; f = append f (revl r); lenr = 0; r = [] }

10

11 let snoc q x =

12 check { q with lenr = q.lenr + 1; r = x :: q.r }

13

14 let extract q =

15 let x, f = uncons q.f in

16 x, check { q with f = f; lenf = q.lenf - 1 }

Fig. 17. The Banker’s Queue: OCaml Code

The debit join operation ⊲⊳ is defined as follows, where A and B are integer constants:

(ds1 ++ [d1]) ⊲⊳ (d2 :: ds2) ≜ map (A + _) ds1 ++ (A + d1 + B + d2) :: ds2

If ds1 has length 𝑛1+1 and ds2 has length 1+𝑛2 then ds1 ⊲⊳ds2 has length 𝑛1+1+𝑛2. The computation

of ds1 ⊲⊳ ds2 can be informally described as follows: first, add A to every element of ds1; then, meld

the two sequences, by fusing (adding) the last element of the first sequence with the first element

of the second sequence; finally, add B to this fused element. This specification reflects the fact that

(1) the overall cost of a stream concatenation operation is A(𝑛1 + 1) + B, where 𝑛1 is the number of

elements of the first stream; and (2) the cost of concatenation is distributed across the first 𝑛1 + 1

thunks of the result stream: each of the first 𝑛1 thunks bears a cost of A; the next thunk bears a

cost of A + B; and the remaining 𝑛2 thunks bear no cost.

Stream-Append states that if the streams 𝑠1 and 𝑠2 have height ℎ then the stream returned by

append has height ℎ + 1. This reflects the fact that a thunk in this new stream can depend on (force)

a thunk in the stream 𝑠1 or in the stream 𝑠2. Such precise height information is necessary during

the inductive proof of append, and can be necessary also in some usage scenarios of append. In the

banker’s queue (§7), it is not needed: there, we work with streams of unknown height.

7 THE BANKER’S QUEUE
The banker’s queue [Okasaki 1999, §6.3.2] is a persistent FIFO queue whose main operations, snoc
and extract, have constant amortized time complexity. In the following, we present a specification

for the banker’s queue, explain how the banker’s queue is implemented, and verify that the code

satisfies the specification. Because the implementation involves a stream, we rely on the streams

library presented in the previous section (§6).

It is worth pointing out that we do not simply replicate Okasaki’s analysis of the queue. Instead,

we propose a simpler analysis, which is made possible by the powerful reasoning rule Stream-

Forward-Debit. Instead of workingwith iterated sums of debits, as Okasaki does, we use a sequence

of elementary proof steps that rely on the properties of debit subsumption (Figures 14 and 15).
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Banker-Persistent

persistent(BQueue 𝑝 q xs)
Banker-Empty

{$E} empty () returns (∃q) q {BQueue 𝑝 q []}

Banker-Snoc{
$S ∗ BQueue 𝑝 q xs

}
snoc q x

returns (∃q′) q′ {BQueue 𝑝 q′ (xs ++[x])}

Banker-Extract{
$X ∗ BQueue 𝑝 q (x :: xs) ∗ E∞𝑝

}
extract q

returns (∃q′) (x, q′) {BQueue 𝑝 q′ xs ∗ E∞𝑝 }

Fig. 18. Banker’s Queue: Public Interface

Interface and specification of the banker’s queue. Three functions make up the main entry points

of the library: empty creates a new empty queue; snoc inserts an element at the rear end of a queue;

extract extracts an element at the front end of a queue.

Every operation has constant amortized time complexity. This implies that every sequence of

operations on queues has linear cost in the number of operations. This is true even if queues are

used in a non-linear manner, that is, even if operations are applied not only to the newest version

of a queue, but also to old versions.

Our formal specification of the banker’s queue appears in Figure 18. The assertion BQueue 𝑝 q xs
means that q is a queue, allocated in pool 𝑝 , whose elements form the sequence xs. This assertion is

persistent. This means that queues can be shared and that the queue operations are not destructive:

one may apply an operation to an old queue. The rules Banker-Empty, Banker-Snoc and Banker-

Extract provide specifications for empty, snoc, and extract. Each of them requires a constant

amount of time credits in its precondition (E, S and X respectively). The specification of extract
requires and preserves the token E∞𝑝 , which allows forcing thunks of arbitrary height (§5). As noted

earlier (§2), a fresh pool can be allocated at any time, together with a new token for it, thanks to

the law True ⇛ ∃𝑝. E∞𝑝 , which is also part of the public specification.

To a reader who wonders why BQueue must be parameterized with a pool 𝑝 , and why extract
must require a token, we point out that this is actually necessary. HeapLang has shared-memory

concurrency, and our implementation of thunks is (by design) not thread-safe. The token discipline

prevents two threads from racing on a thunk.

Implementation of the banker’s queue. The implementation appears in Figure 17. A queue is a

record of four fields: a “front” stream of elements f, a “rear” list of elements r, and their respective

lengths, lenf and lenr. Elements are inserted into the queue by prepending to the rear list, and are

extracted from the queue by extracting from the front stream. As a result, the elements of the rear

list are stored in logically reverse order: if the elements of the front stream form the sequence fs
and if the elements of the rear list form the sequence rs, then the sequence of elements contained

in the queue is fs ++ rev rs. The inequality |rs | ≤ |fs | is maintained: the rear list never contains

more elements than the front stream.

When the length of the rear list exceeds the length of the front stream, the queue must be

rebalanced. This is done by the auxiliary function check. Rebalancing involves reversing the rear
list, converting it into a stream, and appending this stream at the end of the front stream. The

reversal and conversion into a stream are performed by revl. According to Stream-Revl (Figure 16),
an invocation of revl has constant time complexity, but returns a stream whose first thunk has linear

cost. Thus, rebalancing itself is cheap, but constructs an expensive thunk, which (after rebalancing)

appears in the middle of the front stream. Okasaki’s insight is that the cost of this expensive thunk

can be distributed onto the linear number of thunks that appear in front of it. This translates to a

constant amount of extra debit per thunk, which is acceptable.
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bqueueDebits nf nr ≜ Knf −nr ++ 0
min(nf ,nr )+1

BQueueRaw 𝑝 q fs rs ≜ ∃𝑠, ℎ, 𝑙 .
{
⌜q = ( |fs |, 𝑠, |rs |, 𝑙)⌝ ∗
Stream 𝑝 ℎ 𝑠 (bqueueDebits |fs | |rs |) fs ∗ List 𝑙 rs

BQueue 𝑝 q xs ≜ ∃fs, rs. BQueueRaw 𝑝 q fs rs ∗ ⌜xs = fs ++ rev rs ∧ |rs | ≤ |fs |⌝

Fig. 19. Banker’s Queue: Definitions

rs

fs
K K· · · 0 0· · ·

Fig. 20. A balanced banker’s queue. The front
stream is annotated with debits. The arrow
indicates the logical order of elements.

Banker-Check{
$H ∗ BQueueRaw 𝑝 q fs rs ∗ ⌜ |rs | ≤ |fs | + 1⌝

}
check q

returns (∃q′) q′ {BQueue 𝑝 q′ (fs ++ rev rs)}

Fig. 21. Banker’s Queue: Specification of check

The predicate BQueue. Figure 19 presents the definition of BQueue 𝑝 q xs. It is constructed by

combining the assertions xs = fs ++ rev rs and |rs | ≤ |fs |, which we have explained already, with

a lower-level assertion, BQueueRaw 𝑝 q fs rs. This assertion states that q is a 4-tuple, requires the

two length fields to contain the integer values |fs | and |rs |, and uses the predicates Stream and List
to describe the front stream and rear list. The most noteworthy aspect is that the debit sequence

of the front stream is fully determined: it is bqueueDebits |fs | |rs |. The definition of bqueueDebits
states that the first nf − nr thunks in the front stream carry debit K , where K ≜ A + B + R, whereas
the remaining thunks carry debit zero. This is illustrated in Figure 20. In our illustrations (Figures 20,

22, and 23), the debit associated with the very last thunk of the front stream, which is always 0, is

never shown.

Specification of check. The specification of the function check, which rebalances a queue, appears

in Figure 21. It states that check accepts an imbalanced queue and returns a balanced queue. Because

check is called by every operation, check can expect that the length of the rear list exceeds the

length of the front stream by at most one.

Verifying snoc and extract. snoc causes the rear list to grow by one element. To preserve the

debit invariant (Figure 20), one must pay for the last thunk in the front stream whose debit is

nonzero. This is illustrated in Figure 22 (left). This is done by applying Stream-Forward-Debit.

This requires proving the subsumption judgement (K) K𝑛 ++ K :: 0
𝑚 ≤ K𝑛 ++ 0 :: 0

𝑚 (0), which
follows from Sub-Append, Sub-Cons, and Sub-Refl.

The function extract forces and discards the first thunk of the front stream, as pictured in Figure 22

(right). Thus, it is necessary to first pay for this thunk. This can be done by applying Stream-

Forward-Debit and proving the subsumption judgement (K) K :: K𝑛 ++ 0
𝑚 ≤ 0 :: K𝑛 ++ 0

𝑚 (0),
which follows from Sub-Cons and Sub-Refl. This is a trivial instance of Stream-Forward-Debit,

that is, an ordinary payment as opposed to a deep payment.

Verifying check. Because check empties the rear list, it is clear that it restores the invariant

|rs | ≤ |fs |. How check restores the debit invariant is more subtle. Let us consider an unbalanced

queue whose front and rear sequences of elements are fs and rs. Let us write 𝑛 for |fs |, so that we

have |rs | = 𝑛 + 1. According to the debit invariant, every thunk in the front stream has debit zero.

This situation is represented in step (A) of Figure 23. The proof proceeds as follows:
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rs
fs

K KK· · · 0 0· · ·

rs
fs

K K K· · · 0 0· · ·

Fig. 22. Left: after snoc has inserted an element in the rear list. Right: before extract removes an element of
the front stream. Highlighted in red: the thunk whose debit must be paid off.

fs
rs

0 0· · · (𝐴) The queue is unbalanced.

|fs | = 𝑛 ∧ |rs | = 𝑛 + 1

rs
fs

A A· · ·
K +
R𝑛 0 0· · · (𝐵) Reverse and append the rear list

to the front stream.

rs
fs

A +
R

A +
R· · · K

0 0· · · (𝐶) Redistribute debits by adding R
to the first 𝑛 debits.

Fig. 23. Rebalancing. In red: the costly thunk whose debit must be distributed among the front thunks.

(1) According to Stream-Revl and Stream-Append, reversing the rear list and appending the

result to the front stream produces a stream whose debits are 0
𝑛+1 ⊲⊳R(𝑛+1) :: 0𝑛+1. This debit

sequence has length 2𝑛+2: this is consistent with the fact that the new front stream has 2𝑛+1
elements. By definition of the debit join operator ⊲⊳, this is: A𝑛 ++ (A + B + R(𝑛 + 1)) :: 0𝑛+1.
Because K is A + B + R, this sequence of debits is also A𝑛 ++(K + R𝑛) :: 0𝑛+1. It is depicted in

step (B) of Figure 23.

(2) Then, the key step of the proof is to distribute the expensive debit K + R𝑛 onto earlier debits.

We increase each of the first 𝑛 debits by R, so as to be allowed to reduce the expensive debit

from K + R𝑛 down to K . The result is illustrated in step (C) of Figure 23. This redistribution

of debit is permitted by Stream-Forward-Debit provided we establish the subsumption

judgement (0) A𝑛 ++ (K + R𝑛) :: 0𝑛+1 ≤ (A + R)𝑛 ++ K :: 0
𝑛+1 (0). This judgement follows

from Sub-Append, Sub-Repeat, Sub-Cons, and Sub-Refl.

(3) Because A + R ≤ K holds, we can now over-approximate every debit by K , except for the
very last debit, which must remain zero. We exploit the subsumption judgement (0) (A +
R)𝑛 ++ K :: 0

𝑛+1 ≤ K2𝑛+1 ++ [0] (0). The debit sequenceK2𝑛+1 ++[0] is equal to bqueueDebits (2𝑛+
1) 0, which is the expected sequence of debits for a balanced queue whose front stream has

length 2𝑛 + 1 and whose rear list is empty.

8 THE PHYSICIST’S QUEUE; IMPLICIT QUEUES
We verify two additional persistent data structures found in Okasaki’s book. Both exploit thunks to

achieve amortized constant time complexity.

The physicist’s queue [Okasaki 1999, §6.4.2] is similar to the banker’s queue. It involves front

and rear lists of elements and rebalances them when necessary. Its analysis is somewhat more

elementary than the banker’s queue’s, because a physicist’s queue involves a single thunk instead

of a stream. The rule Thunk-Conseqence is not needed. The physicist’s queue does involve a

thunk that forces another thunk. Our height-indexed thunks (§5) allow this.
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Implicit queues [Okasaki 1999, §11.1] are a more complex data structure. Their implementation

relies on recursive slowdown: the queue is structured in layers, where each layer stores twice as

many elements as the previous layer. When one layer is at hand, accessing the next layer requires

forcing a thunk. Therefore, an implicit queue has the same general structure as a stream: it involves

a sequence of nested thunks. Our implementation and our debit invariant closely follow Okasaki’s.

They match Danielsson’s as well [Danielsson 2008, §8.1], although Danielsson chooses a slightly

different way of defining the data structure. To carry out the complexity analysis, we make full use

of the height-indexed thunk API (§5). Here, the use of Thunk-Conseqence is crucial.

9 RELATEDWORK
Okasaki [1999] invents the debit-based approach to the amortized time complexity analysis of lazy,

purely functional data structures. He describes this approach in a clear but informal way. Danielsson

[2008] uses Agda to define a formal complexity analysis, to prove its soundness, and to verify some

of Okasaki’s data structures, including the banker’s queue and implicit queues. Deep payment is

used in the verification of the banker’s queue, but is not supported in the proof of soundness of

the analysis. Like Okasaki’s informal discipline, Danielsson’s system is purely based on debits and

does not include a subsystem that aims to forbid reentrancy, such as our “height” discipline (§5). It

could be that he does not need such a subsystem because his type system guarantees termination.

However, in the presence of the fixed point combinator fix, it is not clear whether this is true.
Danielsson does not prove that every well-typed program terminates. He establishes a weak time

complexity guarantee: if a program has type 𝜏 and if this program reaches a weak head normal form in

𝑛 steps then 𝑛 ≤ time(𝜏) holds. Thus, the possibility that the program diverges remains open. Atkey

[2011] suggests extending separation logic with time credits and using it to carry out amortized

time complexity analyses. Pilkiewicz and Pottier [2011] independently introduce the concept of

time credit in an affine type system and suggest that time credits, in combination with monotonic

ghost state and a form of invariant, can be used to reconstruct Okasaki’s debit-based analysis of

thunks. Their work is however informal. Mével et al. [2019] carry out a similar programme in

the formal setting of Iris
$
, which they construct on top of Iris. Unfortunately, their work exhibits

several shortcomings. First, because they use a single token for all thunks in the world, they do not

support thunks that force thunks. Second, because they do not isolate the abstract concept of a

piggy bank and effectively hard-wire exactly one piggy bank per thunk, they cannot justify deep

payment. They do not verify any of Okasaki’s algorithms.

Inspired by Danielsson’s work, McCarthy et al. [2016] define in Coq a monad that keeps track of

costs. They place emphasis on obtaining clean OCaml code via Coq’s extraction facility. They use

the pure, call-by-value fragment of OCaml; no thunks are involved. Also inspired by Danielsson,

Handley et al. [2020] develop a semi-automated system, based on Liquid Haskell, to verify the

time complexity of Haskell programs. A pay combinator is supported; deep payment is not. The

soundness of the system is stated but not formally verified. Madhavan et al. [2017] present a system

that infers and verifies resource bounds for higher-order functional programs that involve thunks

or memoization tables. Nipkow and Brinkop [2019] verify the amortized complexity of several

functional data structures in Isabelle/HOL. These data structures do not involve thunks, and the

analysis is credit-based, not debit-based. Hackett and Hutton [2019] propose both an operational

semantics and a denotational cost semantics for lazy (call-by-need) programs, based on the idea of

clairvoyant evaluation, where the mutable state inherent in thunks is replaced with nondeterminism.

Inspired by this idea, Li et al. [2021] define the clairvoyance monad, a model of laziness that is

shallowly embedded inside Coq, and develop two program logics of over- and under-approximation

to reason about the cost of lazy programs. They do not reason in terms of debits.
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10 CONCLUSION
For the first time, we have fully reconstructed Okasaki’s debit-based reasoning rules, as well

as Okasaki’s analyses of the banker’s queue, the physicist’s queue, and implicit queues, in the

formal and foundational setting of separation logic with time credits. Our proofs are machine-

checked [Anonymous 2023]. We view this result as an enlightening and useful bridge between the

worlds of purely functional programming and imperative programming. From a technical point of

view, ghost piggy banks are an original concept and make unusual use of atomic and non-atomic

invariants in combination. Our modular construction of thunks on top of piggy banks, in several

steps, is original. We hope that the reader finds it elegant.

One area where engineering work is needed is in the quality of the implementation of Iris
$
[Mével

et al. 2019]. The fact that Iris
$
is implemented on top of Iris via a program transformation, the

tick translation, should be an implementation detail; yet it is currently apparent. We find that this

creates unnecessary difficulty for the end user.
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