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Abstract—Multi-energy networks are becoming a lead-
ing research subject in the last years, particularly, with the
accelerating emergence of renewable resources into the en-
ergetic system. Decoupling this problem into several single-
vector networks results in a sub-optimal solution. However,
this approach comes up against a great technological
complexity, from the design of each of the components
necessary for such a hybrid network to their modeling
and the global management of the whole. In this work, we
propose coupled electrical and thermal networks, with an
energy hub integrating electrochemical and thermal stor-
age systems, and conversion systems: Heat To Power and
Power To Heat. To achieve this, a modeling of the different
physical subsystems and a management of the whole system
using Model Predictive Control (MPC) are investigated.
Finally, a comparison of the two configurations without
and with coupling is conducted to evaluate the impact of
such a multi-energy network.

Keywords—Multi-Energy networks, Power storage, Ther-
mal storage, Heat To Power, Power To Heat, Model Predictive
Control, Optimization, Energy systems modeling.

NOMENCLATURE

α Weight of Deviation Cost
β Weight of Losses Cost
∆t Time Step
δ Weight of Aging Cost
η Efficiency
γ Weight of Shedding Cost
P rated Maximum Charging Power
PH2P H2P Nominal Power
PP2H P2H Nominal Power
P rated Maximum Discharging Power
elec Electrical Parameters
heat Heat Parameters
residual−heat Heat Output from ORC System
Caging Materials Aging Cost
Cdel Power Shedding Cost
Cdev Deviation Cost
Closses Cost of Energy Losses

Ctot Total Operating Cost
Erated Storage Installed Capacity
Eelec Power Storage Energy Level
Esto Storage State of Energy
Eth Thermal Storage Energy Level
nw Sliding Window Size
Pdel Shedding Power
Pdev Deviated Power
Ploss Loss Power
Psto Storage Power Command
ADMM Alternating Direction Method of Multipliers
CHP Combined Heat and Power plants
H2P Heat To Power System (ORC)
MPC Model Predictive Control
ORC Organic Rankine Cycle
P2H Power To Heat System (Electrical Resistance)
SLSQP Sequential Least Squares Programming

I. INTRODUCTION

The energy needs of both private and industrial con-
sumers are fundamentally multimodal. Several forms of
energy are required depending on the use: domestic
heating, mobility, electrical appliances, industrial pro-
cesses. . . Moreover, conversion devices, in production
and in consumption, allow transitions from one form
to another. Achieving the best energy supply system
therefore requires considering the problem in a multi-
modal approach. To accomplish such multi-energy net-
work, concept design, modeling and management of each
component need to be considered [1].

In heat networks, the use of variable heat resources
requires specific components in order to gain in flexibil-
ity, such as in concentrated solar power plants [2]. Thus,
it is not necessary to convert heat into electricity instanta-
neously. Indeed, a decoupling between the capture of the
primary energy source and the power production can be
achieved via a thermal storage [3]. Today several thermal
storage types exist, including thermocline storage system



Fig. 1. First industrial scale EcoStock® of 4MWhth at 600 °C
developed by ETC.

which can be of a great value (figure 1). In addition,
the use of heat sources also requires converters capable
of transforming thermal energy into electricity - and
vice versa. Solutions such as Organic Ranking Cycles
(ORC), gas turbines or Stirling engines are widely used
in industry today for this purpose.

Symmetrically, electrical networks have the same
need for flexibility in order to satisfy consumption
and guarantee the permanent balance of the grid. In
particular, variable renewable energy sources such as
photovoltaic or wind power have the complexity of being
intermittent, hardly controllable and predictable. One
way to reduce the impact of these limitations is to have
sufficient degrees of flexibility such as electrochemical
storage or production clipping and consumption shaving.
These degrees of freedom combined with an optimal and
predictive management of power flows allow better sizing
of generation and storage capacities [4].

The objective of this study is to compare and evaluate
the management performance of coupled and uncoupled
networks. To do this, a case study of multi-energy
network, coupling heat and electricity sources and loads,
will be used (figure 2). Following sections will discuss
physical components models, mathematical formulation
of the problem and the resolution method for an optimal
management. In addition, an optimal management of
multi-energy network will be analyzed. Finally, the com-
parison between coupled and uncoupled networks will be
evaluated on the basis of the total management cost for
various thermal and power storage installed capacities.

II. STATE OF THE ART

Models of thermal and electrical storage are numerous
in the literature. [5] and [6] have proposed different
levels of modeling for the dynamics and aging of electric
battery. The paper [7] discusses four models of increasing
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Fig. 2. Multi-energy network concept coupling heat and electricity
with storage and conversion systems

level of accuracy to represent the dynamics of thermal
storage. Conclusions show that simple models for storage
optimization is capable of reaching suitable management
strategy on system scale.

Several research works deal with the coupling of heat
and electrical networks using Combined Heat and Power
units (CHP) [8]. Generally, distribution and conversion
systems modeling is simplified in order to solve a global
optimization problem with reasonable calculation time
and with linear approachs. [9] suggests that district
heating network losses should be taken into account
when designing decentralized energy supply technologies
at small district level. In this case, authors assume 15%
of losses for small heating networks. However, for large
heating networks and other technologies such as power
grids, losses are neglected.

[10] and [11] propose Alternating Direction Method
of Multipliers (ADMM) to deal with an energy hub
management scheduling. Multiple scenarios are studied
with and without storage systems, however design of bat-



teries is always fixed. [12] solves a multi-period planning
problem for multi-energy microgirds under uncertainties,
to do so, a MILP formulation is used. In addition, other
optimization approaches such robust optimization can be
applied on energy hub management problems [13].

Few works in literature deal with the design of
storage systems in coupled heat and electrical networks
[14]. [15] and [16] suggest new energy hub design to
store electricity massively. Authors use combined steam,
Organic Rankine Cycles and gas turbines to convert
previously stored energy into electricity during demand
peak periods. Several high temperature thermal storage
designs are used to store windfarm produced electricity.
Here, particle swarm optimization approach is used to
deliver optimal management strategy. Results show high
electrical and heat delivery efficiency of such design
where profitable business cases are accessible.

This review of state of the art shows that simple
models are, in most cases, used to optimize physical
components management. Most of found studies explore
energy hubs with focus on electrical network and CHP
plants. Furthermore, articles mainly study energy hub as
either a planning or design problem without focusing on
the interaction between design and management. It is
then necessary to study the impact of storage and con-
version systems designs on the management performance
of heat and electrical networks. Therefore, the purpose
of this contribution is to evaluate such interaction to get
closer to co-optimized multi-energy networks.

III. MODELING OF STORAGE AND CONVERSION

SYSTEMS

A. Storage systems

In this work, both storage systems are supposed
perfect storage without loss. For the thermal storage,
model supposes perfect battery with loss Ploss−TES

when battery is overloaded [7]. The dynamics of the
system according to this model is expressed as follows :

Esto(t+ ∆t) = Esto(t) + Psto(t) ·∆t (1)

Esto is the storage state of energy, Psto is the storage
command (charge for positive values and discharge for
the negative ones). ∆t is the time step of the investigated
problem.

Batteries aging is simply modeled as the sum of the
exchanged energies over studied period:

Cstorage
aging (t) = |Psto(t)| (2)

B. Conversion systems

As explained in section I, the Power To Heat system
is composed of electric resistances that heat air to high
temperature (600 °C). Modeling this system and it’s ag-
ing can be quite simple and can be expressed as follows:

P heat
P2H = P elec

P2H · ηP2H

Ploss−P2H = P elec
P2H × (1− ηP2H)

CP2H
aging(t) = P elec

P2H(t)

(3)

ηP2H is a constant efficiency that takes into account
the heat loss when converting electricity into heat by
joule effect (here ηP2H = 0.95).

For the Heat To Power part, an ORC system is
selected and modeled based on real data from a French
ORC technology manufacturer. Power and residual heat
output from such a system depends on the thermal power
input as shown below :

P elec
H2P = P heat

H2P · ηelecH2P (P heat
H2P )

P residuel−heat
H2P = P heat

H2P · ηheatH2P (P heat
H2P )

Ploss−H2P = P heat
H2P × (1− ηelecH2P − ηheatH2P )

CH2P
aging(t) = P heat

H2P (t)

(4)

Where P heat
H2P is the thermal input of ORC, P elec

H2P is
the electrical output and P residual−heat

H2P is the heat resid-
ual output from the system that can still be exploited for
heating. In this paper, ηelecH2P varies between 0 and 0.20,
for 0 and the nominal power input of the ORC system
respectively. Throughout this work the temperature of
the heat network is supposed to be constant and at high
temperature. To simplify, the networks are assumed to be
perfect and lossless in this work, as their modeling can
be very sophisticated.

IV. DESCRIPTION OF CASE STUDY AND OPTIMAL

MANAGEMENT

The case study used for optimization and simulation
work is presented in figure 2. Both electrical and thermal
sources and loads are time-varying. The control to be
optimized is the command of electrical Psto−elec and
thermal storage Psto−th as well as conversion (PP2H

and PH2P for P2H electrical and H2P thermal inputs
respectively) and two shedding systems Pdel. The main
objective here is to minimize the deviation on electric
Pdev−elec and heat networks Pdev−th. In other words,
the call on the auxiliary boiler and the main grid in case
of overconsumption, and the loss of profit in case of
overproduction Cdev is to be avoided. Moreover, losses
related to storage and conversion systems Closses should



be minimized along with power shedding Cdel and phys-
ical components aging Caging as described below :

min

nw∑
t=0

α× Cdev(t) + β × Closses(t) + γ × Cdel(t)

+ δ × Caging(t)

s.t.

P rated
th ≤ Psto−th(t) ≤ P rated

th

P rated
elec ≤ Psto−elec(t) ≤ P rated

elec

0 ≤ Eth(t) ≤ ∞, 0 ≤ Eelec(t) ≤ Erated
elec

0 ≤ P elec
P2H(t) ≤ PP2H , 0 ≤ P heat

H2P (t) ≤ PH2P

0 ≤ P elec
del (t) ≤ P elec

del , 0 ≤ P heat
del (t) ≤ P heat

del

with

Cdev = P 2
dev−elec + P 2

dev−th

Closses = P 2
loss−EES + P 2

loss−TES + P 2
loss−P2H

+ P 2
loss−H2P

Cdel = P 2
del−elec + P 2

del−th

Caging = |Psto−elec|+ |Psto−th|+ P elec
P2H + P heat

H2P

(5)

Electrical network energy balance
Pmis−elec = Pprod−elec − Pload−elec

Pdev−elec = Pmis−elec − Psto−elec − P elec
P2H

+ P heat
H2P × ηelecH2P − Pdel−elec

Heat network energy balance
Pmis−th = Pprod−th − Pload−th

Pdev−th = Pmis−th − Psto−th − P heat
H2P

+ P heat
H2P × ηheatH2P + P elec

P2H × ηP2H − Pdel−th

Pmis−th and Pmis−elec represent the initial deviation
on both thermal and electrical network. Pdev−th and
Pdev−elec are the resulted deviation after adding physical
components such as storage, conversion and shedding
systems. Here Eth and Eelec stand for thermal and power
storage states of Energy, and Erated

elec for Electrical battery
capacity. PP2H and PH2P are the nominal power of P2H
and H2P systems. P elec

del and P heat
del are the maximum

power of electrical and thermal shedding systems. P rated
th ,

P rated
th , P rated

elec and P rated
elec are thermal and electrical

maximum charging and discharging inputs.

Here α, β, γ, δ represents the weighting of different
terms of the cost function to be minimized. The heat and
electrical networks are supposed to be perfect without
losses. All long the heat carrier, air flow is supposed to
be on high temperature (600 °C).

In this case study, the thermal and electrical load are
based on time-series found in [17] and [18], representing
hourly load profiles measures and models. The electrical
production profile is based on wind farm real measure-
ments of 10 mins time step [19]. The waste heat time-
series is real measurements from french ceramics factory.
This series measures the heat output from a gas industrial
furnace used for cooking of materials.

As shown in figure 3, all datasets are being nor-
malized and manipulated to construct the case study
composed of a residential area consuming 20 GWh/year
(50 % of the whole consumption are for space heating
and domestic hot water needs [20]). This residential area
is connected to a wind farm of 5 wind turbines of 2 MW,
producing a total of 15 GWh/year. Finally, an industrial
rejecting 15 GWh/year of waste heat is supposed to be
nearby and connected to the district heating network.

The problem is solved numerically using MPC [21]
and SLSQP optimization method from SciPy Python-
based library. The time horizon N of the resolution is
8760 h. At each time step (here 1 h), the formulated
optimization problem (eq. 5) is solved on a sliding
window of size nw. Only the first sample of the output
sequence is implemented for simulation, subsequently
the sliding window is shifted of 1 h. At the next time step,
the new state of the system is estimated by the selected
model simulation, and a new optimization problem is
solved using this new information. All along this work,
the studied problem is assumed to be deterministic.

Examples of obtained management for uncoupled and
coupled networks, with 9 MWh of thermal storage and
3 MWh of electrical storage, are illustrated in figure 4
and 5. It represents hourly energy fluxes evolution over
a sample of 10 days with a P2H and H2P of 5 MW.

Deviations before and after adding investigated com-
ponents are massively decreased, due to the flexibility
from installed storage capacities and over production
shedding. Moreover, the impact of coupling thermal and
electrical networks is noticed on the deviation of figure 5.
Additionally, storage systems operating rate is increased
by coupling both networks. In fact, conversion systems
allow to put both storage systems at the service of a
network at the time of consumption or production peaks.
In coupled networks, lower operating rate of shedding
systems is being noticed.

V. DESIGN RESULTS AND ANALYSIS

The goal of this section is to determine suitable
sliding window size for the optimization process. Fur-
thermore, results for four physical configurations, using
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the case study datasets, will be presented : without load
shedding and conversion systems, with load shedding
and without conversion system, and finally with load
shedding and conversion systems of 5 and 15 MW of
installed nominal power. Whole configurations will be
using different thermal and electrical storage capacities.
The initial case for comparison excludes storage, con-
version and load shedding systems. Thereafter, electrical
and thermal batteries capacities are being varied between
0 and 21 MWh with 3 MWh step. P2H and H2P systems
are of 0, 5 and 15 MW of nominal power. Along this
work, shedding systems are of 10 MW of maximum
power for each network. In addition, cost function evo-
lution as function of the four configurations and storage
capacities will be visualized and commented. Finally a
summary table will be presented to compare the various
designs.

A. Identification of sliding window size

For this part, MPC problem is solved on 720 h with
increasing sliding window size, and for each storage
system capacity. For each design, total operating cost de-
crease with increasing sliding window size until reaching
an asymptote as illustrated in figure 6. Convergence con-
dition is then applied on the total cost to determine the
smallest window size that satisfies the chosen condition.
Figure 7 shows sliding window size for each design with
a variation on the total cost Ctot < 2 %.

Regarding investigated storage capacities, sliding
window size converges rapidly for small storage designs.
On the other hand, for large storage capacities, the win-
dow size needs to be increased to anticipate more future
events. Based on showed results, sliding window size will
be set at 24 h for the rest of this study. Irregularities in
figure 7 are caused by the weak number of tested sliding
window sizes to avoid long calculation time.
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B. Optimization results and analysis

Figure 8 describes the evolution of the total oper-
ating cost normalized by the initial configuration cost
(uncoupled network excluding storage and shedding sys-
tems). Four subplots are drawn for uncoupled networks
without and with shedding systems, and two coupled
networks with different conversion systems designs in-
cluding shedding systems. Axes x and y represent the
installed capacity of electrical and thermal batteries re-
spectively.

Total cost for uncoupled networks decrease slowly
with increasing power storage capacity and faster with
increasing thermal storage capacity. This is explained by
more important peaks of waste heat release compared
to windfarm production peaks in the studied datasets.
Moreover, the thermal storage operates in an open phys-
ical loop, and so that it is able to evacuate overproduction
during charging phase. In this case, storage along with
shedding systems allows to reduce the total cost by 70 %
for the largest investigated capacities (here 21 MWh per
storage system). It is to be noticed that decrease in
cost function seems to reach a limit for large storage
capacities, therefore it is of interest to couple networks.

The impact of coupling heat and electrical networks is
this case study is demonstrated on the two lower plots of
figure 8. For largest batteries and with 5 MW of P2H and
H2P systems, cost function is reduced by 84 %. In case
of batteries absence, coupling along shedding systems
decrease the operating cost by 70 %, which is of same
order as large capacity batteries impact. In fact, for a total
normalized cost of 30 %, this is reachable by 21 MWh



of thermal and 21 MWh of power storage in case of
uncoupled networks. On the other hand, the same cost
can be achieved with P2H and H2P of 5 MW installed
power and small storage systems. In this situation the
needed storage capacity is almost divided by a factor of
10. Finally, in this study case and for coupled networks,
both batteries seem to have similar impact on the total
cost function. This suggests that part of electric batteries
can be substituted by thermal storage in case of coupling.

Table I summarizes normalized total cost, normalized
total deviation and self-consumption for eight relevant
designs. Up to 76 % of total consumption can be satisfied,
using local resources, with 21 MWh of each thermal and
power storage and 5 MW of P2H and H2P nominal power
facility. According to results, increasing the conversion
systems nominal power do not always results in higher
self-sufficiency.

VI. CONCLUSIONS AND PERSPECTIVES

Multi-energy networks are becoming a leading re-
search subject in the last years, particularly, with the
accelerating emergence of renewable resources into the
energetic system. Many works have been conducted and
showed the benefits of coupling energy carriers but
more investigations on concept, modeling, design and
management are to be conducted.

In this work, we proposed a concept of power and
heat networks coupling. Simple models are being imple-
mented for simulation and optimization of such concept
with MPC algorithm. Real datasets have been used to
conduct a realistic case study including a residential area,
a windfarm and an industry releasing waste heat and
connected to a district heating network.

Investigation on the optimal sliding window size for
the optimization process has determined it to be of a day.
Optimal management results for uncoupled and coupled
networks with various thermal and power storage designs
have been analyzed. Results show a complimentarity
between both carriers and higher flexibility due to shared
storage facilities when coupled. Moreover, it is suggested
that part of electrical batteries is possibly substituted by
thermal storage in case of coupled networks. Finally,
conversion systems of appropriate size can decrease
massively the needed storage capacity.

Nevertheless, this work has several limitations such
as the assumption of perfect networks, the homogeneous
temperature along the heat network and the simplified
models used for simulation and optimization of storage
and conversion systems. More studies need to be con-
ducted on the impact of the system modeling, particularly

for the H2P system and the heat network.

In addition, this work needs to be conducted on
different datasets corresponding to different profiles of
thermal and power production inputs. Conclusions can
be sensitive to the nature of locally available resources.
It is to be mentioned that the studied cost function terms
are weighted using α, β, γ, δ which took fixed values
along this study. It is therefore essential to conduct a
sensibility study on impact of those parameters on the
global management performance.
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Fig. 8. Evolution of total normalized operating cost over a year according to various physical configurations and storage designs

TABLE I. SUMMARY TABLE RESUMING NORMALIZED COST, DEVIATION AND SELF-CONSUMPTION FOR MAIN INVESTIGATED
CONFIGURATIONS (FOR α = 1.0, β = 1.0, γ = 1.0, δ = 0.1)

Case n° Shedding Storage capacities
[MWh]

P2H & H2P nominal
power [MW ]

Normalized total
cost [%]

Normalized total
deviation [%]

Self-consumption
[%]

1 no 0 0 100 100 40
2 no 21 0 47 63 62
3 yes 0 0 56 67 40
4 yes 21 0 30 45 62
5 yes 0 5 33 47 56
6 yes 21 5 16 28 76
7 yes 0 15 30 45 56
8 yes 21 15 15 29 76
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