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Abstract
Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse
gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines
provide the best practices to help EI compilers across different countries and regions make
comparable, national emission estimates regardless of differences in data availability. Howev-
er, there are a variety of sources of error and uncertainty that originate beyond what the
inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric
modeling applications, are often developed for research purposes and there are no specific
guidelines to achieve spatial emission estimates. The errors and uncertainties associated with
the spatial estimates are unique to the approaches employed and are often difficult to assess.
This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO2),
gridded EI Open-source Data Inventory for Anthropogenic CO2 (ODIAC) with the multi-
resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal ap-
proaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU)
over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI
offers, this study characterized the potential biases in spatial disaggregation by emission sector
(point and non-point emissions) across different scales (national, subnational/regional, and
urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in
total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns
showed large differences (10~100% relative differences at 1 km) especially at the urban-
rural transitioning areas (90–100%). We however found that the agreement of emissions over
urban areas is surprisingly good compared with the estimates previously reported for US cities.
This paper also discusses the use of spatially explicit EIs for climate mitigation applications
beyond the common use in atmospheric modeling. We conclude with a discussion of current
and future challenges of EIs in support of successful implementation of GHG emission
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monitoring and mitigation activity under the Paris Climate Agreement from the United Nations
Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties
(COP21). We highlight the importance of capacity building for EI development and coordi-
nated research efforts of EI, atmospheric observations, and modeling to overcome the
challenges.

Keywords Greenhouse gas emission . Emission inventory . Carbon dioxide . Carbon cycle .

Uncertainty analysis . Climate mitigation . Remote sensing .Monitoring . Reporting and
verification . Paris Agreement

1 Introduction

Emission inventories (EIs) are the fundamental tool to quantify the amount of man-made
emissions, such as those of greenhouse gases (GHGs) and other air pollutants, and to keep
track of their changes over time. For GHGs, nationally reported EIs are generally compiled
following the guidelines prepared by the Intergovernmental Panel on Climate Change (IPCC)
(e.g., IPCC 2006). Emissions are reported by countries in order to monitor international
compliance of GHG reductions (e.g., under the Kyoto Protocol or Paris Agreement). National
EIs are primarily based on statistical data (e.g., on fuel production, consumption, and trade
data), and emission estimates are often made at the national scale by economic sector or by fuel
type. The IPCC Guidelines provide “best practice” to compile EIs in a consistent manner,
regardless of the data availability in different countries. The uncertainties associated with
national estimates for fossil fuel carbon dioxide (CO2) emissions (FFCO2) are often relatively
small, especially for developed countries (e.g., ± 4% for the USA). However, the uncertainty
reported with EIs often serves as an indicator for the level of confidence, rather than for the
accuracy (Jonas et al. 2010). As previously discussed in Liberman et al. (2007), White et al.
(2011), and Ometto et al. (2015), studying the variety of sources of errors and uncertainties is
crucial in order to make EIs more robust and accurate for providing science-based guidance to
global climate mitigation.

Adding an atmospheric, observational (top-down) constraint on statistically based emission
estimates (bottom-up) should help improve the accuracy of emission estimates and provide a
verification support to the current global GHG monitoring framework (e.g., Nisbet and Weiss
2010; Pacala et al. 2010; Ciais et al. 2015; Pinty et al. 2017). Because the effective spatial and
temporal resolution of emissions estimates depends highly on the availability of observational
data and the model reproducibility, how top-down approaches can play a role in the bottom-up vs.
top-down exercise cannot be easily generalized (see Ciais et al. 2010). However, the increased
volume of recent atmospheric CO2 data collected from intensive urban observation networks (e.g.,
Lauvaux et al. 2016 for Indianapolis; Staufer et al. 2016 for Paris; Verhulst et al. 2017 for Los
Angeles; Martin et al. 2018 for Baltimore-Washington area) and the recently available carbon
observing satellites, such as the Japanese Greenhouse gases Observing SATellite (GOSAT,
Yokota et al. 2009) and NASA’s Orbiting Carbon Observatory-2 (OCO-2, Crisp et al. 2017),
have placed us in a better position to implement bottom-up vs. top-down analyses at policy-
relevant scales. For example, Lauvaux et al. (2016) developed a state-of-the-art, high-resolution
atmospheric inversion system that demonstrated the feasibility of a top-down approach at a city
scale, and confirmed the bottom-up emission estimates. Vogel et al. (2013) also demonstrated the
use of radiocarbon measurements to detect potential biases in a bottom-up EI.
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In such bottom-up vs. top-down exercises, bottom-up emission estimates generally need to
be given in a spatially explicit form (e.g., gridded EIs). In fact, both Lauvaux et al. (2016) and
Vogel et al. (2013) employed locally constructed, fine-grained, spatially explicit EIs for their
atmospheric CO2 model simulations (1.3-km resolution for Lauvaux et al. (2016) and 5-km for
Vogel et al. (2013)). The Hestia inventory, which was used by Lauvaux et al. (2016), is based
on a multi-resolution emission modeling approach and emission estimates are achieved at the
resolution of emission sources of interest (e.g., point, line, and area sources). The multi-
resolution, bottom-up approach makes Hestia unique compared with spatially explicit EIs that
are based on spatial disaggregation of national or regional emission estimates (e.g., Andres
et al. 1996; Janssens-Maenhout et al. 2012, 2017, Rayner et al. 2010; Oda and Maksyutov
2011). While the multi-resolution modeling approach is considered to be the best approach to
achieve emission estimates at policy-relevant scales, their development is extremely labor-
intensive and such EIs are only available for limited places and times. A few other spatially
explicit EIs that employ a multi-resolution modeling approach (e.g., Gurney et al. 2012; Bun
et al. 2018; Mori et al. 2015) also share these difficulties, and none of them cover the full globe
to support global climate mitigation. It is important to note that large-scale, top-down GHG
emission verification support systems, such as the one proposed by Pinty et al. (2017), assume
the use of a disaggregation-based EI such as the Emission Database for Global Atmospheric
Research (EDGAR, Janssens-Maenhout et al. 2012, 2017), not of the detailed bottom-up
estimates based on multi-resolution modeling.

A challenge for top-down monitoring systems is to achieve accurate, disaggregated,
subnational emission estimates from national-level emission estimates. The spatial disaggre-
gation is often an independent process from the regular, bottom-up, national EI compilation
defined by the IPCC (2006). However, the uncertainty evaluation of spatially disaggregated
emission estimates, especially for diffused (area) emission fields obtained with proxy ap-
proaches, is challenging, primarily due to the lack of physical measurements (e.g., Andres
et al. 2016; Oda et al. 2018). To achieve accurate estimates, errors and uncertainties due to the
emission disaggregation process need to be quantified and the error/uncertainty characteriza-
tion needs to be incorporated into the top-down estimation (e.g., Rayner et al. 2010; Lauvaux
et al. 2016; Oda et al. 2017). In principle, spatial patterns in disaggregated emission estimates,
and their changes in time, are driven by changes in the total emissions and in the spatial
patterns in proxy data. Thus, the changes in disaggregated emission estimates might not be
accurately reflecting actual changes in emission. Given the requirements for useful emission
estimates suggested by Ciais et al. (2015) (e.g., 1-km spatial resolution and hourly temporal
resolution) and the labor expected for these detailed bottom-up EIs, the use of disaggregation-
based EIs for climate mitigation analyses still remains valid. To successfully use disaggregated
emissions to monitor emissions changes at subnational levels in a verification support system,
we need to characterize the biases in disaggregated emission fields at different spatial levels of
disaggregation, such as countries, provinces/states, and cities.

The Open-source Data Inventory for Anthropogenic CO2 (ODIAC, Oda and
Maksyutov 2011; Oda et al. 2018) is so far the only global, spatially explicit EI data
product that meets the requirements of Ciais et al. (2015). ODIAC is based on disaggre-
gation of national FFCO2 estimates made by the Carbon Dioxide Information Analysis
Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) and projections (Oda
et al. 2018). Since its establishment in 2009, ODIAC has been intensively used for global
and regional atmospheric inversions (e.g., Takagi et al. 2011; Maksyutov et al. 2013;
Saeki et al. 2013; Thompson et al. 2016; Feng et al. 2016a; Shirai et al. 2017). ODIAC
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has been also used for regional- to urban-scale studies because of the high-spatial
resolution (e.g., Ganshin et al. 2012; Oda et al. 2013; Brioude et al. 2013; Wong et al.
2016; Lauvaux et al. 2016; Oda et al. 2017; Ye et al. 2017; Wu et al. 2018; Martin et al.
2018; Hedelius et al. 2018). The fair agreement with local estimates and atmospheric
CO2 model reproducibility support the utility of ODIAC subnational emissions at
regional to urban scales; however, it is yet unclear how well ODIAC subnational
emissions are reflecting the true emission dynamics at policy-relevant spatial scales.

This study evaluates the ODIAC high-resolution emission fields by comparing them
with a locally developed, fine-grained EI, the geoinformation technologies, spatio-
temporal approaches, and full carbon account for improving the accuracy of GHG
inventories (GESAPU, Bun et al. 2018; Charkovska et al. 2019). GESAPU is based on
a multi-resolution approach and the domain of Poland. By taking full advantage of
GESAPU emission fields, we characterize the biases and uncertainties in ODIAC over
the course of spatial resolution from the national level (zero disaggregation), subnational,
and city to the native 1-km grid scale of ODIAC. Following the “Data and methods”
section, we compare ODIAC with GESAPU by emission sectors (point and non-point
sources of emissions as defined in ODIAC) at different levels of disaggregation (nation-
al, province, city, and native 1-km grid) (“Results” section). In the “Discussions” section,
we discuss the current limitations, and challenges in emission data studies (e.g., devel-
opment and evaluation) and how we could potentially overcome them. We also respond
to general questions about the merger of bottom-up and top-down approaches. We
conclude this paper with some recommendations to establish a good, meaningful EI-
based framework for international agreements on emissions limits.

2 Data and methods

2.1 Emissions data

This subsection describes the two spatially explicit CO2 emission data used in this study: (1)
the Open-source Data Inventory for Anthropogenic CO2 (ODIAC, Oda et al. 2010, 2018; Oda
and Maksyutov 2011, 2015) and (2) the geoinformation technologies, spatio-temporal ap-
proaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU,
Bun et al. 2018; Charkovska et al. 2018, 2019; Danylo et al. 2019). Table 1 compares the
specifications of ODIAC and GESAPU. Figure 1 shows the two estimates of CO2 emissions
from fossil fuel use in Poland during 2010, presented at a common 1-km domain.

2.1.1 ODIAC global 1-km emission data product

ODIAC is a global, high-resolution (1 × 1 km) monthly, a gridded emission data product
that is based on the spatial disaggregation of country total emissions estimates (e.g., Oda
and Maksyutov 2011; Oda et al. 2018). The ODIAC first introduced the combined use of
point source information for large point sources and satellite-observed nightlight data for
global emission spatial disaggregation in order to achieve emission spatial distributions.
The current ODIAC data product is based on country-level emission estimates made by
CDIAC/ORNL, which consists of CO2 emission estimates from fuel use (coal, oil, and
gas), cement production, and gas flaring (e.g., Marland and Rotty 1984). CO2 emissions
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from cement production and gas flaring are not due to fossil fuel use; however, those
emissions are often included as a part of FFCO2 by definition (e.g., Andres et al. 2012).
The emissions are distributed differently depending on the type of emissions (e.g., point
source and non-point source). ODIAC employs the global power plant database CARMA
(CARbon Monitoring and Action, www.carma.org; Wheeler and Ummel 2008; Ummel
2012) to estimate the power plant portion of a country’s total emissions and maps its
emissions as point sources. The rest of the emissions (total emissions minus point source
emissions) are distributed as an aggregated area source sector using the Defense
Meteorological Satellite Program (DMSP) calibrated radiance nightlight product
(Ziskin et al. 2010). This study used the version 2016 of the ODIAC data
(ODIAC2016, 2000–2015). Oda et al. (2018) describe the details of ODIAC2016
(available from http://db.cger.nies.go.jp/dataset/ODIAC/).

2.1.2 GESAPU high-definition, bottom-up emission inventory

GESAPU is a fine-grained, spatially explicit bottom-up GHG EI product that covers the
domains of Poland and Ukraine, which was developed under the European Union’s 7th
Framework Programme (FP7) Marie Curie Actions International Research Staff Ex-
change Scheme (IRSES) project (No. 247645) (Bun et al. 2018; Charkovska et al.
2018, 2019; Danylo et al. 2019, Kinakh et al. 2018) and is based on earlier studies
(Bun et al. 2007, 2010; Boychuk and Bun 2014). We here define GESAPU as a bottom-
up EI solely for convenience, also by the EI calculation approach. However, we also
distinguish GESAPU from other existing spatially explicit EIs, such as EDGAR
(Janssens-Maenhout et al. 2012, 2017), which are also often classified as bottom-up
EIs in comparison with top-down atmospheric inversion studies. Many gridded EIs,
including ODIAC as mentioned earlier, are based on emission spatial aggregation (e.g.,
Andres et al. 1996, 2011, 2014, 2016; Kurokawa et al. 2013; Asefi-Najafabady et al.
2014; Janssens-Maenhout et al. 2012, 2017); however, GESAPU employed a multi-
resolution, high-definition (HD) emission modeling approach and the emissions are, in

Fig. 1 ODIAC (left) and GESAPU (right) emissions estimates over the domain of Poland. Emission fields are for
the year 2010 and are presented on a common 1 × 1 km domain. Some of GESAPU sectoral emissions that are
not indicated by ODIAC are all excluded (see the “Emissions dataset comparison” section). The values are given
in the unit of ton carbon per year (tC/year).
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principle, calculated at the individual source level. GESAPU’s HD approach is similar to
the approach done for US cities by Gurney et al. (2012) and allows us to achieve detailed
emission accounting and emission modeling simultaneously at a policy-relevant scale.
Where information disaggregation is needed (e.g., diffused sources such as settlements
and line sources such as road segments), GESAPU employs high granularity data at the
municipality or district level, rather than country-level data. The GESAPU approach,
which is an HD approach extended to a country, should help provide constraints on
subnational emissions information and reduce potential biases due to the use of large-
scale data (e.g., national data) for emission disaggregation. Given the GESAPU emission
modeling approach, the authors believe GESAPU is on the complete another side of the
spectrum of spatially explicit EI from ODIAC. Thus, the authors expect GESAPU should
allow us to thoroughly evaluate a disaggregation-based EI like ODIAC.

GESAPU is based on the best available official statistical data and geospatial infor-
mation data, which are collected at the best (smallest) possible administrative levels,
such as municipalities and districts (Bun et al. 2018). Emission calculations are done
according to the IPCC methodology for CO2, CH4, and N2O. Unlike ODIAC that holds
its own modified, fuel-based emission categories, emission estimates are obtained for the
IPCC-defined sectors and categories. Since GESAPU employs a multi-resolution model-
ing approach, the resulting emission estimates are accompanied by point locations, lines,
and/or the polygon spatial information, rather than a grid point coordinate. GESAPU
then is able to seamlessly prepare emission fields at a spatial resolution of interest (up to
100-m resolution) via emission spatial aggregation. The vector emission source maps for
all human activity–induced emissions categories covered by the IPCC guidelines were
developed, utilizing official company disclosure information available, the administrative
boundary maps, the Corine Land Cover map, and other available data. GESAPU also
employs the region-specific parameters (e.g., the differentiated characteristics of the
fossil fuel used in the energy sector, the climatic conditions and the energy sources
available in the residential sector, the species and age composition of forests, and many
others) for the emission calculation. Thus, the total GESAPU emissions at aggregated
levels, such as province and national levels, should be achieved more precisely than
other estimates that are often calculated using national-specific parameters. Other than
GHG, GESAPU also indicates non-methane volatile organic compounds (NMVOCs) and
air pollutants such as SO2. GESAPU data have been provided as a part of Bun et al.
(2018) (see Supplementary Material in Bun et al. 2018).

2.2 Emissions dataset comparison

2.2.1 Emission comparison principles in this study

Comparing gridded EIs has become a common evaluation approach, as seen in previous
studies (e.g., Oda et al. 2015; Hutchins et al. 2016; Hogue et al. 2016; Gately and Hutyra 2017;
Oda et al. 2018), with an increasing interest in gridded EI uncertainties. Due to technical
difficulties, which will be discussed later in this manuscript, comparisons of gridded EIs often
only provide a limited opportunity to partially evaluate the uncertainty of interest and do not
offer an objective measure for their accuracy (e.g., Oda et al. 2018). This is a fundamental
limitation due to the fact that (1) gridded EIs are often achieved via two independent processes
(i.e., emission calculations and emission spatial disaggregation and/or mapping) and (2)
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emission estimates at grid level are often not evaluated objectively due to the lack of physical
measurements (e.g., Andres et al. 2016, Oda et al. 2015, 2018). Thus, it is very important to
clearly define the objective and implementation of the emission comparison and describe
limitations.

This study attempts to evaluate the ODIAC global 1 × 1 km gridded emissions over the
domain of Poland by comparing it with the GESAPU emissions aggregated to the same 1-km
resolution domain. As done in previous studies, such as Hutchins et al. (2016) and Gately and
Hutyra (2017), we use a bottom-up EI, which is GESAPU in this study, as a truth. It is
primarily because of the fact that GESAPU, as described in the previous section and elsewhere
(e.g., Bun et al. 2018; Charkovska et al. 2019), is a detailed spatially explicit EI that is locally
developed using the best available data, while ODIAC is a global disaggregation EI. But the
true significance of this comparison is from the fact that GESAPU’s HD emission fields are
achieved by its multi-resolution approach in which the little use is made of emission disag-
gregation. This type of comparison could be potentially achieved for a few US cities using
Gurney et al. (2012). But GESAPU provides a unique opportunity to evaluate ODIAC
emissions at a high resolution across the entire country.

The authors acknowledge that there are potential emission modeling errors and uncer-
tainties associated with GESAPU. From the bottom-up vs. top-down perspective discussed by
Jonas et al. (2011), the emissions estimates are not constrained by atmospheric observations.
This study assumes that those errors and uncertainties are minor when compared with the
ODIAC-GESAPU differences, defined as ODIAC minus GESAPU, and that the differences
can be attributed to ODIAC. This is because the ODIAC-GESAPU difference is expected to be
largely driven by the emission representation errors in ODIAC due to the use of global power
plant data and nightlight data for emission disaggregation, especially at a high-spatial resolu-
tion where large-scale downscaling approaches often fail (e.g., Gately and Hutyra 2017). This
could be also supported by a comparison of 1-km resolution emission fields presented in Fig.
1. While major spatial patterns of emitting areas (mainly major cities and their suburb areas)
are shared by two emission fields, GESAPU offers more spatial details in the emissions field
due to the data granularity. This study thus uses ODIAC-GESAPU differences as a proxy
measure for errors and uncertainties associated with ODIAC emissions.

2.2.2 Emission comparison setup

Another common limitation we often face in emission comparison is the differences in
emission calculations such as calculation methods and emission definition. Ideally, the differ-
ences in gridded EIs should be explained by individual components of emission calculation
(e.g., emission calculation and emission disaggregation), but it is often not done so (Oda et al.
2015). For example, Oda et al. (2015) attempted to mitigate this issue by scaling the gridded
emissions to the same total and combined them with the global emission uncertainty. In fact,
the use of GESAPU makes this even harder as its spatially explicit emissions are not based on
emission disaggregation. Thus, we do not separate two error sources as also done in previous
studies (e.g., Hutchins et al. 2016; Gately and Hutyra 2017).

We here focus to do the best effort to mitigate the differences due to different emission
sectors covered in ODIAC and GESAPU. As described earlier, GESAPU indicates emissions
by the IPCC sector (calculated at source level), while ODIAC has its own unique emission
categorization (point source and non-point source over land) built upon the CDIAC fuel-based
emissions categories. Depending on the comparisons we implement in this study, we do the
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best effort to mitigate the emission definition differences in order to implement the emission
comparisons in a meaningful way. For example, emissions from refineries and cokes are
indicated as point source emissions in GESAPU, but those are not explicitly indicated in
ODIAC and are assumed to be a part of the non-point source emissions. We thus do an ad hoc
adjustment for each emission comparison to best support the results.

Table 2 summarizes the domain-wide emission totals from the two EIs and their break-
down, when emissions are compared as they are. We see this as a comparison at zero
disaggregation level. We found that the domain-wide totals from ODIAC and GESAPU are
fairly close (87,502 ktC/year for ODIAC and 85,612 ktC/year for GESAPU). The difference
between the two totals was only 2.2%, which is well within the 2 sigma uncertainty range of
the typical country-level emissions for developed countries (e.g., 5% as estimated by Andres
et al., 2012). When compared with the original CDIAC estimate for Poland (86,246 ktC/year
as estimated by Boden et al. (2016)), note that CDIAC national emissions are scaled in the
ODIAC emission data development, in order to account for the difference between the global
total emission and the sum of national total emissions mainly due to the inconsistency in the
import/export portion of the statistical data (see more in Oda et al. 2018). When solely
compared emission estimates taken from CDIAC and GESAPU, the difference is only 0.7%
(CDIAC= 84,130 ktC/year). When the cement and gas flare emissions (2.5% of the total) are
subtracted from ODIAC (85,355 ktC/year), the difference is even smaller (− 0.3%). Andres
et al. (2012) showed that the agreements among different national-level estimates are often
reasonable and this initial comparison is consistent with the study. The differences in point
source and non-point source emissions categories are also small (− 0.1% for point source
emissions and 4.5% non-point source emissions) (the definition of point and non-point
emissions in this study will be discussed in detail later). The small differences support that
the differences between two emission spatial fields are largely explained by the differences in
emission modeling (thus, errors and uncertainties in ODIAC most likely). The results from this
comparison can be combined with the national total uncertainty (CDIAC total uncertainty by
Andres et al. (2012) in the case of ODIAC) to get the total uncertainty, in the method proposed
Oda et al. (2015).

3 Results

In this section, we compare ODIAC with GESAPU by emission types (point and non-point
emissions in the “Point source emissions comparison” and “Non-point source comparison”
section), from the national scale to a policy-relevant city scale (“City-level comparison”
section). It is challenging to put all of the evaluations done in this study together and come
up with a single, universal evaluation metric. We thus attempted to summarize our results by

Table 2 A summary of total, point, and non-point emissions for the year 2010. GESAPU sectoral emissions are
aggregated to point and non-point emissions following the emission category defined in ODIAC (see the “Point
source emissions comparison” section). The values are given in the unit of kiloton carbon per year (ktC/year)

ODIAC GESAPU ODIAC minus GESAPU

Total 87,502 units 85,612 units 1890 (2.2%)
Point 42,687 (48.8%) 42,721 (49.9%) − 34 (− 0.1%)
Non-point 44,815 (51.2%) 42,891 (50.1%) 1924 (4.5%)
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focusing on the levels of the overall errors and uncertainties in ODIAC as a function of spatial
resolution. We compared the emissions spatial patterns from the two EIs at different spatial
resolution from the native 1-km resolution to aggregated spatial scales that are roughly
consistent with the spatial resolutions commonly used in transport model studies (“The
disaggregation errors across different spatial resolutions—putting all together” section).

3.1 Point source emissions comparison

3.1.1 Background, issues, and focus in this comparison

The combined use of the point source information and nightlight data was a key the global
high-resolution emission field in ODIAC (see Rayner et al. 2010; Oda and Maksyutov 2011).
A major known issue has been the inaccuracies in facility-level emission estimates and
geolocations in the power plant database, which are directly aliasing to the resulting emission
field. The errors, especially the geolocation errors, could be mitigated by spatially aggregating
the emission field. However, a high-spatial resolution EI, such as ODIAC, requires a very high
accuracy in the geolocation. The power plant information for the USA is often considered to be
one of the best, but Woodard et al. (2014) showed a mean 0.84-km geolocation error from
randomly selected 500 plants and thus demonstrated that geolocation error in power plant
databases is an issue even for the USA. Such geolocation errors can be significantly reduced
by a simple data review, but such reviews would be labor-intensive. For example, Oda and
Maksyutov (2011) reviewed data on approximately 400 power plants, but it was just a little
more than 2% of the 17,000 CARMA plants. More fundamentally, the information in power
plant databases available are often incomplete (missing power plants), sparse in time (limited
base year), and often outdated. We here evaluate the point source part of ODIAC emissions by
taking advantage of the facility-level power plant emission estimates with verified
geolocations that GESAPU offers.

3.1.2 Point source definition differences

First, we review the definitions of the two-point source data sources (CARMA/ODIAC and
GESAPU). The point source definition in ODIAC was inherited from CARMA (i.e., electric
power plants, as defined in Wheeler and Ummel (2008) and Ummel (2012)). CARMA was
originally developed as a monitoring tool for GHG emissions from power plants (Wheeler and
Ummel 2008). CARMA is primarily based on the individual plant information from the World
Electric Power Plants (WEPP) database (https://www.platts.com/products/world-electric-
power-plants-database now at https://www.spglobal.com/platts/en/products-services/electric-
power/world-electric-power-plants-database), which is a commercial subscription global
database provided by the company S&P Global Platts (https://www.platts.com/). According
to the website, “It (WEPP) contains design data for plants of all sizes and technologies
operated by regulated utilities, private power companies, and industrial autoproducers” and a
product description (https://www.platts.com/im.platts.content/downloads/udi/wepp/descmeth.
pdf); WEPP covers a wide variety of electricity generators worldwide (> 1 kW), not limited to
major electric power plants regulated by the authorities. WEPP includes facility-level infor-
mation and the geographical locations, but not CO2 emission estimates. CO2 emission
estimates in CARMA were obtained in two ways: (1) taken from publicly available national
power plant data if a facility entry can be matched up and (2) estimated using their own
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emission estimation scheme defined by Wheeler and Ummel (2008). Wheeler and Ummel
(2008) reported that 2922 entries in an earlier version of CARMA (which has been used for the
ODIAC emission data development) were matched up with publicly available CO2 emissions
data globally and 260 for Europe with the European Pollutant Emissions Register (EPER)
database. In the newer version of CARMA (CARMA v3.0), 6200 entries were matched up
with the publicly available data globally and 63% of the total emissions in Europe were
covered (Ummel 2012). However, the match up is extremely labor-intensive and Wheeler and
Ummel (2008) acknowledged that the data match up was incomplete and might be inaccurate.
Geographical coordinates (latitude and longitude) were derived from the postal address
indicated in the WEPP using a fuzzy string matching approach (e.g., Wheeler and Ummel
2008; Ummel 2012). In CARMA v3.0, the geographical coordinates are also taken from the
matched up publicly available data.

Oda and Maksyutov (2011) used the CARMA power plant entries with CO2 emission
estimates, assuming them as fossil fuel–fired power plants. In ODIAC, we loosely estimate the
point source portion of national emissions using 2007 CARMA emissions. For other years,
Oda and Maksyutov (2011) scaled the total point source emissions using national total
emissions. The point source emissions thus might not be identical to ones originally indicated
in CARMA. The potential errors of the power plant modeling approach have been evaluated in
Oda and Maksyutov (2011). Emissions from cement production plants and gas flares should
also be defined as point sources, but currently, emissions from cement production are
distributed as a part of non-point source emissions and gas flare emissions are distributed
using the spatial distribution of a gas flare nightlight product (see Oda et al. 2018).

In contrast, point source emissions in GESAPU are calculated at the facility-level and their
geolocations are reviewed and verified (Bun et al. 2018). The GESAPU point source category
includes non-power plant point sources such as facilities for petroleum refining and
manufacturing solid fuels (coke plants) (in fact, these emissions are mapped using industrial
area polygons, see Charkovska et al. 2019). Because of the emission estimation method,
emissions from refineries and coke plants are not explicitly represented in CDIAC (hence in
ODIAC). Thus, we considered the corresponding emissions in ODIAC are distributed as a part
of the non-point source emissions and in the GESAPU emissions (six refineries, and solid fuels
production by eight coke plants) are excluded from the GESAPU point sources and added to
the non-point source emissions. In GESAPU, power plants with a capacity less than 20 MW
are not included in the point source sector (specifically, electricity and heat generation), but are
included in the sector “Manufacturing Industry and Construction” as a part of non-point source
emissions (see Charkovska et al. 2019). This classification in GESAPU was originated from
the power plant categories defined in the Polish data collection framework (big as a rule;
separate statistical reporting) and industrial (small as a rule; electricity generation by industrial
plants for their needs; statistical reporting within industrial plants reporting).

Table 3 summarized the differences in CARMA/ODIAC and GESAPU point source
information after the adjustments mentioned earlier. Figure 2 shows the spatial distribu-
tions and intensities of the point source emissions from the two datasets. Regardless of the
adjustments to mitigate the point source definitions differences, the differences between
the two data sources are still significantly large and seem to be difficult to characterize the
difference in a meaningful way. Although the totals from the two data sources are very
close (0.1% difference), the numbers of point sources are significantly different. Looking
at the spatial distributions, some of the major power plants seem to be well co-located
(e.g., ones in Lublin (LU) and Mazovian (MZ) provinces; a list of two-letter codes is
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shown in Appendix Table 6). However, many small CARMA plants seems to be distrib-
uted without being co-located with GESAPU plants and do not show any clear systematic
patterns. This is more clearly shown in the enlarged view of the southern part of the
Silesian province (SL in Fig. 2). The geolocation errors seem to be significantly larger than
the estimates by Woodard et al. (2014) for the USA (0.8 km).

Our original intention in this comparison was to estimate an average geolocation error, like
done by Woodard et al. (2014), but it turned out it is not straightforward and it is questionable
if we could derive a meaningful conclusion given the significantly large difference between
two data sources. One could theoretically do is to review point sources information, match
them up and do a geolocation error assessment like done by Woodard et al. (2014), although it
will be extremely labor-intensive. Before doing so, we decided to focus on a subset of point
sources with a hope of getting a general sense of what the difference looks like. We will try to
answer the geolocation question in a different way in the “The disaggregation errors across
different spatial resolutions—putting all together” section.

Table 3 A summary of point emissions for the year 2010 from CARMA (hence ODIAC) and GESAPU

CARMA/ODIAC GESAPU ODIAC minus GESAPU

Total emissions 42,687 ktC/year
(48.8% of the total)

42,721 ktC/year
(49.9% of the total)

− 34 ktC/year (− 0.1%)

No. of plants 248a (186 points) 77 (72 points) + 171 (+ 237.5%)
Definition > 1 kWb > 20 MW –
Data source WEPPc Bun et al. (2018) –

a Plants used in ODIAC only. The original CARMA has 491 plants for Poland
b https://www.platts.com/im.platts.content/downloads/udi/wepp/descmeth.pdf
c https://www.spglobal.com/platts/en/products-services/electric-power/world-electric-power-plants-database

Fig. 2 Point source distributions over the entire Poland domain (left) and the south part of Silesian Voivodeship
(province) (right). Blue dots indicate the ODIAC point source emissions and red dots indicate the GESAPU point
emissions. The size of the dots represents the emission intensities. The diameter of the dots in the figure is
proportional to a log of power emissions. Note that point source definitions in ODIAC and GESAPU are not
exactly the same (see the “Point source emissions comparison” section). Also, the numbers of point sources are
quite different (186 for ODIAC and 77 for GESAPU) largely due to the differences in the point source
definitions. See Table 6 in Appendix A for a list of two-letter Polish voivodeship (province) codes and full names
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3.1.3 Point sources in Lesser Poland Voivodeship as an example

Figure 3 shows the locations of five GESAPU plants in Lesser Poland Voivodeship (MA,
indicated by blue pins) and CARMA plants located in their vicinity (pink pins). The emissions
intensity of GESAPU plants ranges from 11 to 502 ktC/year (1699 ktC/year in total, 4.0% of
the national total of point source emissions). In comparison, we found eight CARMA plants in
the vicinity of GESAPU plants that have the similar range of emission intensities (11 to
548 ktC/year), but with a smaller total (927 ktC/year, 2.1% of the national total point source
emissions). Among five GESAPU plants, we are able to find three perfectly paired plants:
Dwory (CARMA_ID 11572; 356 ktC/year for GESAPU and 209 ktC/year for CARMA,
indicated by pins with circle), Andoropol (CARMA_ID 1522; 12 ktC/year for GESAPU and
14 ktC/year for GESAPU, indicated by pins with diamond), and Skawina (CARMA_ID
41886; 502 ktC/year for GESAPU and 548 ktC/year for CARMA, indicated by pins with
square). The three plants (870 ktC/year in total) account for 51% of the GESAPUMA regional
total point source emissions. The three CARMA plants (771 ktC/year, 78% of the CARMA
regional total) underestimated GESAPU by 99 ktC (11.3%). Those three paired plants are
closely located (approximately, 1.3–3.2 km); however, the geolocation error exceeds the size
of the single ODIAC grid cell (1 km) and thus those emissions are located a few grid cells
away from the correct grid cell location.

Fig. 3 A Google Earth image of the locations of GESAPU electric power plants in the Lesser Poland
Voivodeship and CARMA/ODIAC power plant emissions nearby. Blue pins indicate GESAPU electric power
plants and pink pins indicate CARMA/ODIAC point sources nearby. Paired plants are indicated by the mark
(circle, diamond, square, and star) on the pins. The distances between paired plants are roughly measured on
Google Earth application
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Some other CARMA plants are closely located with GESAPU plants, but those are not
indicating electric power plants in GESAPU. For example, the CARMA plants in the
middle of Kraków (indicated as Sendzimir/Braysz) looks like representing the power plant
near the city center the Krakow Leg, which is the largest GESAPU plant in MA. But in
fact, the Sendzimir/Barycz (CARMA_ID 40540/3454; total 108 ktC/year) is a combina-
tion of multiple sources such as a steel plant and a landfill which are both located
somewhere else. The steel plant is just located a few kilometers east of the city center.
We think that the reason might be that the central office of all these plants is located in the
central part of Kraków and its postal address was used for setting geographical coordinates
of these plants. This is obviously an error from the point source information point of view.
Placing emissions to city centers however might have mitigated errors in the atmospheric
CO2 simulations to some degree by not creating an imaginary point-wise emission
gradient, rather than assigning an intense point source emission to a completely non-
emitting region. In fact, we found that Krakow Leg in CARMA (CARMA_ID 23019;
464 ktC/year for GESAPU and 765 ktC/year for CARMA, was placed to a village named
Kraków located in the administrative gmina (municipality) Warta, Łódź Voivodeship
(LD), in central Poland, which is approximately 215 km away from the city of Kraków
in MA. This seems to be explained by an error in the fuzzy string match done by Wheeler
and Ummel (2008), probably due to the accurately (or inaccurately) including Slavic
characters. While Krakow Leg in CARMA has provided an error in LD, the Sendzimir/
Barycz have helped a bit to make up the missing large emissions, although only by a
quarter of it. Another large power plant Siersza (CARMA_ID 41552; 365 ktC/year for
GESAPU and 1009 ktC/year for in CARMA) was not found in the ODIAC emissions,
although indicated in the original CARMA. This was because its geographical coordinates
were not available and the emission was distributed as a part of non-point source
emissions. Even with a correct geolocation, ODIAC would have overestimated the Siersza
emission by more than 200%. The electricity utility company nearby Trzebinia
(CARMA_ID 46415; 11 ktC/year) might have helped to reduce the emission representa-
tion error, but only by 3% of the true emission. For the rest of the CARMA plants, we
confirmed Alwernia (CARMA_ID 1249; 13 ktC/year) represents a chemical plant,
Wieliczka (CARMA_ID 49640; 13 ktC/year) is a salt mine place for tourists, based on
the information on the web. Klucze (CARMA_ID 22496; 11 ktC/year) is most likely to
indicate a hygiene manufacture company, but the location indicated in CARMA did not
match with the company’s actual facility location.

3.2 Non-point source comparison

3.2.1 Background, issues, and focus in this comparison

The data on nightlights observed from satellites have been identified as an excellent indicator
of the intensity of human activities (e.g., Elvidge et al. 1999). The use of nightlight data allows
us to incorporate the dynamic changes in satellite-observed human emissions in a timely and
globally coherent way (e.g., Oda and Maksyutov 2011; Oda et al. 2018). Separating point
source emissions (which are not always co-located with human settlements) from total
emissions further improved the performance of the nightlight data as an emission proxy, even
at a higher spatial resolution (Rayner et al. 2010; Oda and Maksyutov 2011). The performance
of the nightlight data as a proxy for CO2 emissions however has not been fully evaluated,
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especially at a subnational level. This is because of the difficulties in evaluating disaggregated
emissions as discussed earlier (see the “Emissions dataset comparison” section) and elsewhere
(Andres et al. 2016; Oda et al. 2018). ODIAC emission distributions are compared with other
disaggregated or semi-disaggregated emissions (e.g., Hutchins et al. 2016; Hogue et al. 2016;
Gately and Hutyra 2017), but those evaluations do not allow us to evaluate the performance of
nightlight data as the comparisons did not take the differences in the disaggregation ap-
proaches into account.

In this comparison, we evaluate the performance of the satellite-observed nightlights as a
proxy for diffuse source emissions with a special focus on characterizing the biases in the
resulting emission field. The non-point emissions defined here are the residual of the total
minus point source emissions. As already, the non-point total was close enough (only 4.5%
difference, see Table 2) that we did not subtract the emissions from cement production and gas
flaring from the ODIAC field. The subnational differences in non-point source emissions
between ODIAC and GESAPU are expected to be larger than the difference in the total of non-
point emissions. Non-point source emissions spatial distributions in ODIAC are purely
estimated from the nightlight data. Thus, this comparison reveals how well nightlight data
can explain the emission spatial distributions over the domain of Poland. Our special interest is
to see the performance of the nightlight data along with the urban-rural transition, as it is only
possible to do the detailed distribution of emissions with a multi-resolution EI such as
GESAPU that covers not only cities but the entire country domain.

3.2.2 The province-level accuracy of ODIAC disaggregation

In principle, the proxy-based disaggregation approach should work reasonably well at a large
scale. Andres et al. (1996), for example, disaggregated national emissions using population
distribution to a 1 × 1 degree resolution global domain (i.e., CDIAC gridded EI). The gridded
EI has been used for forward and inverse model calculations of CO2 at large scales (e.g.,
Gurney et al. 2002). The population is a good estimator of the intensity and spatial extent of
human activities (hence, CO2 emissions) at an aggregated large spatial scale (e.g., state/
province levels). The correlation between population and CO2 emissions however is expected
to become weak at a higher spatial scale where spatial and temporal patterns of individual
emissions sources (e.g., power plants and traffic) are more apparent (e.g., Oda et al. 2018).
This should remain true, regardless of the choice of proxy data such as a nightlight, gross
domestic production (GDP), and any other spatially distributed variables that have a fair
correlation with human activities. As the name suggests, those variables are used as a proxy
and could poorly represent regional differences in the degree of correlations with human
activities, which could be a source of disaggregation bias. In fact, as shown by Raupach et al.
(2007), regional emission drivers are very different over different parts of the world and this is
expected to be applicable to subnational emissions. For example, nightlight data show different
levels of correlation with population over different countries with different economic devel-
opment status (e.g., Raupach et al. 2010; Oda et al. 2010). Those are the sources of uncertainty
we have not been able to study in detail and thus the focus in this comparison.

Here we compared the non-point emissions totals of ODIAC and GESAPU calculated at
province (called voivodeship in Poland) level. This is an important check to confirm if
nightlight data are a fair proxy and/or estimator of province-level CO2 emissions, before
disaggregating emissions to much higher spatial scales (where disaggregation error can be
significant). Total emissions at provincial levels are available for some other parts of the world
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(e.g., USA, Japan, and China). Thus, a comparison of provincial-level emission estimates
could be an option to further evaluate the performance of the proxy approach used. A fair
performance of the proxy (nightlight data) at the provincial level should support that subna-
tional emissions changes driven by provincial-level mitigation activities could be detected with
the proxy-based disaggregated emissions.

Figure 4 compares the percentage provincial share of the Polish national emissions
(hence nightlight data shown in blue in Fig. 4) with the comparable values from GESAPU.
All of the values calculated are shown in Table S3. We also plotted the population (shown
in red in Fig. 4) as a reference to characterize the performance of the nightlight data over
different provinces. What Fig. 4 essentially shows is the accuracy of the proxy-based
provincial emission estimates. Figure 4 shows the fair performance of nightlights to
estimate province emissions (R2 = 0.86). However, the percentage differences at the
province level (estimation errors) are ranging from − 33 to 58.4%. The estimation errors
of provinces with a large emission share such as Masovian province (MZ, 18.3% in
GESAPU) and Silesian province (SL, 14.0% in GESAPU), which are the top two
provinces with the highest per capita non-point emissions (see Table S3), are relatively
larger in absolute value than for others with smaller emission share. ODIAC
underestimated the MZ emission by 15% (1196 ktC, 2.8% of the total GESAPU) and
the SL emission by 32% (1995 ktC, − 4.7% of the total GESAPU). Also, the percentage
differences for provinces such as Podlaskie (PD, 58%) and Holy Cross (SK, 53%) are
more prominent, although their emission shares are small (2.4% and 2.9%, respectively)
(hence, small estimation errors in absolute value). Those differences are minor given the
4.4% total difference (1901 ktC), especially in large-scale transport modeling applications.
The good spatial subnational emission partitioning (supported with the excellent correla-
tion with GESAPU subnational emissions) (at approximately 139-km resolution based on
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the average area size of provinces) and relatively low emission errors compared with the
total emissions (− 4.7–2.5%, in the presence of the 4.4% total difference) support the good
quality of the disaggregated emissions at this disaggregation level. However, an improve-
ment will be needed in the use of the estimated subnational emissions to keep track of
subnational emissions changes, as the estimation errors at the province level are almost the
same magnitude as the emission reduction proposed in local climate actions or larger.

We also found that population data outperformed nightlight data in estimating provincial
emissions (R2 = 0.95). Although we acknowledge that this comparison is only done for a single
year (year 2010) and a single country, thus, the conclusions here might not remain the same for
other years and other countries, the correlation might imply that demographic data such as
population data might be able to provide regional constraint on subnational emissions for
Poland and potentially improve the accuracy of nightlight-based emission disaggregation. One
thing we can do is to calibrate the provincial nightlight to population (if an EI like GESAPU is
not available). In fact, provincial-level information has been proven to be useful to improve the
subnational disaggregated emissions. Nassar et al. (2013) applied a per capita correction to
ODIAC and CDIAC population-based gridded emissions over Canada. The study found the
correction to ODIAC was smaller than that to CDIAC gridded emissions.

The estimation error (estimation accuracy) of the two proxies seems to be comparable. The
size of the corrections we could make by using population data in addition to nightlight data
might be subtle, but reducing the emission estimation errors and improving the ability to
accurately partitioning provincial emissions should help making a robust logical link between
subnational emissions and total emissions. Provincial-level demographic data and/or statistical
data could potentially provide a measure for the emission accuracy in disaggregated emissions
and/or provide a constraint on emission disaggregation.

3.2.3 ODIAC-GESAPU subnational differences at a grid-scale level

Although population showed better performance in estimating province emissions, the advan-
tages of nightlight data overpopulation data remain valid. The high-resolution images of
nightlights, which are collected far more frequently than demographic data in a globally
coherent manner, allow us to disaggregate emissions to a 1-km resolution. Here we compared
ODIAC and GESAPU emissions on a common 1-km grid and evaluated the high-resolution
emission disaggregation. Figure 5 shows the absolute and relative differences between ODIAC
and GESAPU. The actual non-point maps are only presented in Appendix A (see Fig. 9) as the
differences from the total maps (Fig. 1 in the main text) are not obvious in the same color scale.
To mitigate the differences due to pre-disaggregation emission estimates and focus on the
emissions spatial patterns differences, although the difference is only 4.5%, we scaled the
ODIAC total emissions to GESAPU. The differences seen in the plots are thus largely
explained by the differences in disaggregation approaches, mainly the lack of the underlying
data granularity in ODIAC.

The comparison reveals several interesting spatial features in ODIAC-GESAPU differ-
ences. In general, ODIAC underestimates the emissions at the urban centers (see urban cores in
blue in the absolute difference plot) and overestimates emissions outside of them. The
underestimations at cities are outstanding in the absolute difference plot, but those are often
of an order of 10–30% in relative difference. This is very good in agreement, especially
compared with the recent study in the northeastern USA area (Gately and Huryra (2017) that
was showing 50–250% relative differences over urban areas). The underestimations in the
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suburban areas, especially immediately outside of the cities, are relatively larger (90–100% in
relative difference). The relative differences are decreasing as we go to remote areas (~ 10%
relative difference). This general difference feature (underestimation in cities and overestima-
tion outside of them) could be explained by the lack of a traffic sector in ODIAC as
transportation is often a major sector in urban areas. The lack of a transportation sector thus
incorrectly shifts those emissions to suburban areas (Oda et al. 2017, 2018). The insolation of
transportation emissions will be the next key to addressing the urban-rural emission biases.
The underestimation over remote areas is largely explained by ODIAC having zero emission
areas due to the nightlight data proxy. From the spatial patterns of the underestimated
emissions over the remote areas, we speculate that the underestimation is mostly related to
transport sector (roads), centralized heat production (cities), and manufacturing industry
(industrial zones in/near cities). Approximately 25,000 pixels (4.2% of the total pixels) indicate
the 100% relative difference (dark brown) and 66% of them in GESAPU indicate 2~10 tC/
year. emissions with ODIAC indicating zero emissions (hence, 100% relative difference).

3.2.4 Nightlight proxy bias at urban-rural transition areas

While we take a closer look at the difference plot, we become curious about the large relative
differences (overestimations in ODIAC) over the urban-suburban transitioning areas. To our
eyes, the high relative difference seems to be located in the west-north of cities (see Fig. 11).
Here we hypothesized that the large difference might be due to the error in the geolocation of
the nightlight data. We roughly estimated that we could significantly mitigate the difference by
shifting the nightlight data by approximately 1.6 km to the south-east direction with 27.3
degrees (see Appendix B). This slightly less than 2-km geolocation error, which is larger than
the ODIAC native grid (30 arcsec~1 km), could be a non-negligible source of errors especially
when ODIAC emissions are used for urban studies. We further speculate some light aureole
around cities strengthened by the vegetation in the areas might force ODIAC to incorrectly
distribute emissions.

Figure 6 shows the relative emission difference around the city of Białystok (300,000
habitats). We superposed several data layers, such as the city administrative boundaries
(black), forest maps (green), and agricultural land maps (red, from Corine land cover map),

Fig. 5 ODIAC-GESAPU absolute (left) and relative (right) differences. The differences are defined as ODIAC
minus GESAPU
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onto the relative difference map. The forest and agricultural maps only indicate major patches
in order not to make the plot busy. The city lights give a certain halo at a short distance from
the urbanized area. The DMSP sensor (or retrieval algorithm) incorrectly identified them as
electrical lights although those are from forested or agricultural areas. With the weak non-
electrical lights, ODIAC thus allocates weak emissions over the areas (order of 100 tC/year),
while GESAPU indicates zero emissions (hence, yielding 90–100% relative differences). As
goes far from the urban area, this bias becomes weaker as the sky reflection gets weaker and
eventually lower than the instrument detection limit. This could be confirmed or rejected by a
further investigation with new nightlight data collected from the Visible Infrared Imaging
Radiometer Suites (VIIRS) on board Suomi National Polar-orbiting Partnership (Suomi-NPP)
(e.g., Román and Stokes 2015; Román et al. 2018). The Suomi-NPP/VIIRS has an improved
light sensitivity over previous nightlight instrument (e.g., Elvidge et al. 2013) and has been
collecting improved nightlight images since 2012 (e.g., Román et al. 2018).

3.3 City-level comparison

3.3.1 Disaggregating national emissions to the city level

With the recent growing research interest in GHG emissions from cities, ODIAC emissions
have been used for urban simulation studies where highly spatially resolved urban emis-
sions are required (e.g., Oda et al. 2013 for Tokyo; Lauvaux et al. 2016 for Indianapolis; Ye
et al. 2017 for Riyadh, Cairo and the Perl River Delta (PRD); Martin et al. 2018 for the DC-
Baltimore area; Hedelius et al. 2018 for LA). As mentioned earlier, ODIAC was originally
designed for atmospheric CO2 inverse flux calculations to reduce the potential model

Fig. 6 The relative difference around the city of Białystok. Several layers such as the boundaries of cities (black),
the boundaries of forests (green), and the boundaries of agricultural lands (red, from Corine land cover map) are
superposed. The forest and agricultural maps only indicate major ones just not to make the plot too busy
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biases due to coarse resolution gridded EIs. Given the simple nightlight-based downscaling
in ODIAC, also as shown earlier in this section, urban emissions derived from ODIAC are
subject to errors associated with the emission disaggregation. However, a few US domain-
based studies have shown the utility of ODIAC downscaled urban emissions (e.g., Brioude
et al. 2013; Lauvaux et al. 2016; Hedelius et al. 2018). Those studies have partially
supported that ODIAC downscaled urban emissions are reasonably allocating emissions
to urban areas. For example, Lauvaux et al. (2016) reported that the difference from locally
developed GIS-based emissions by Gurney et al. (2012) was just 20% regardless of the
significant differences in emission modeling approaches. The recent study by Gurney et al.
(2019) further compared ODIAC and Hestia products for four US cities (Los Angeles, Salt
Lake City, Indianapolis, and Baltimore) and found that the city-wide emission differences
range from − 1.5 (Los Angeles) to 20.8% (Salt Lake City). Gately and Hutyra (2017) also
found that ODIAC, among several downscaled emissions such as EDGAR and FFDAS,
showed the best agreement with their 1-km ACES bottom-up emission data product. An
encouraging message from this study is that the urban relative differences (shown in the
previous subsection) are much smaller than the previous study such as Gately and Hutyra
(2017). This might imply that the nightlight regional dependency is working reasonably
well for urban areas in Poland. With the lack of highly detailed EI such as GESAPU and
Hestia, getting reasonably accurate urban emissions via global disaggregation has a
significance for global GHG emissions monitoring.

To make such downscaled emissions more useful for urban studies, we need to assure the
accuracy of the spatially distributed emission estimates for urban high-resolution transport
modeling. Previous studies have shown fair model reproducibility using ODIAC emissions.
The ability of evaluating ODIAC emissions might be limited by the model ability (Martin et al.,
2018). Due to the issues with the nightlight data (e.g., blooming effect), it is challenging to
accurately map electrical light patterns without biases (hence, errors in resulting emission
fields). Such errors might be too subtle to detect. Also, for policy applications, showing
reasonable emission distributions is not good enough. We need to assure the emissions changes
in the field are reflecting changes in the local emission driver (emission reduction), which might
be difficult to achieve by current national emission downscaling. However, it might be possible
with EI collected by local climate actions, such as the C40 cities climate leadership group
(https://www.c40.org/) and the global covenant of mayors for climate and energy (https://www.
globalcovenantofmayors.org/). A regular EI reporting is often a requirement under these
climate mitigation activities. For example, the global covenant of mayors has four processes
such as commitment, inventory, target, and plan. EI reporting is the first process after cities
declare their commitment. The covenant of mayors defined at least scope 1 emission following
an inventory guide defined by the Global Protocol for Community-Scale Greenhouse Gas
Emission Inventories (https://ghgprotocol.org/greenhouse-gas-protocol-accounting-reporting-
standard-cities). In the use of locally compiled city EIs, creating reasonably well spatial
distribution has more significance (e.g., Oda et al. 2017).

3.3.2 Disaggregated urban emissions for Warsaw

Here we took a look at the emission fields over the city of Warsaw, the capital city of Poland
(population 1.7M in the year 2010). Warsaw is one of the world megacities that have been
active in global climate mitigation activities, such as the C40 cities climate leadership group
(since 2005, as one of the founding member cities) and the global covenant of mayors (since
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2009-Present), and the district energy in cities initiative (http://www.iclei.
org/activities/agendas/low-carbon-city/districtenergy.html). Warsaw has been moving
towards low-carbon (https://www.c40.org/case_studies/c40-good-practice-guides-warsaw-
sustainable-energy-action-plan-for-warsaw-in-the-perspective-of-2020) and air quality
(https://www.c40.org/case_studies/cities100-warsaw-district-heating-upgrades-cut-air-
pollution). As a part of the climate action activities, Warsaw completed the first phase of the
requirement (inventory development) (https://www.globalcovenantofmayors.
org/cities/warsaw/). Including those locally compiled emission inventories should reduce the
disaggregation bias significantly, compared with the current national emission disaggregation,
although the uncertainty assessment of the city-level emission estimates will be another major
challenge.

Figure 7 compares three Warsaw emission fields from ODIAC (1 km) and GESAPU in two
different aggregated spatial resolutions (1 km and 100 m), and a 15-arcsec (approximately
500 m) nightlight image collected from the VIIRS on the Suomi-NPP spacecraft, developed by
the National Oceanic and Atmospheric Administration (NOAA)’s National Center for Envi-
ronmental Information. As we expect, also shown in the results earlier (Fig. 6), urban emission
spatial distributions are poorly represented in ODIAC. The 2010 total emissions within the city
boundary (this should roughly correspond to the scope 1 territorial emissions) are 3638 ktC in
GESAPU and 2554 ktC in ODIAC (30% difference). The authors conclude the difference is
reasonably small compared with the cases in the US cities, such as Lauvaux et al. (2016) and
Gurney et al. (2019). The agreement could be better if we take a slightly bigger domain for the
emission calculation to mitigate the poor nightlight-driven city patterns. Here we also see the
ODIAC urban emission core is shifted roughly towards west, compared with the city boundary
as well as the VIIRS nightlight data. Comparing the ODIAC and the VIIRS nightlight data, our
hypothesis for the high relative difference value around cities could be plausible (ODIAC
distribute emissions over non-electrical light areas in the VIIRS nightlight data. Note the two
nightlights are not taken in the same year although), is not only one example plausible (see
Fig. 10 for absolute and relative difference plots for Warsaw). Also, it is very clear that the
inclusion of traffic emissions would benefit to achieve a better emission estimate as this scale,
with the underestimation in ODIAC emissions outside the city, as also discussed by Oda et al.
(2017) and Gurney et al. (2019). Also shown in the previous subsection, the relative differ-
ences within the city boundary range from 0 to 60% and are relatively smaller than the case of
Gately and Hutyra (2017) in the northeastern part of the USA.

Comparing the Warsaw city boundary to the VIIRS nightlight spatial pattern, the use of the
VIIRS nightlight data for emission downscaling would significantly improve the spatial
representation of urban emissions that has been proven to be useful for urban inversion
(Oda et al. 2017). With the improved light sensitivity over previous nightlight instrument
(e.g., Elvidge et al. 2013) as well as an improved nightlight data retrieval (Román et al. 2018),
disaggregation errors due to the current emission representation errors can be greatly reduced.
However, it is very clear that nightlight patterns within Warsaw do not always represent
sectoral CO2 emissions reasonably well, and better within-city emission modeling is required
for achieving improved emission gradient within the city. Oda et al. (2017) have shown the
validity of the combined use of satellite and geospatial modeling for better approximation of
emission spatial patterns in urban inversion applications. This approach should improve the
urban-remote area emission allocation we have looked earlier this section. Or instead of
starting from the national estimate, we could start with city-level emission estimates available
from activities by local climate actions.
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3.4 The disaggregation errors across different spatial resolutions—putting all
together

This study is unique compared with previous EI evaluation studies, in the way how we evaluated
ODIAC emissions by components (point and non-point), over different spatial scales (national,
province, city, and in between). The series of emission comparisons in this study not just estimated

Fig. 7 A comparison of different city emission spatial representations for Warsaw, Poland. ODIAC (top left),
GESAPU at 1-km resolution (top right), GESAPU at 100-m resolution (bottom left), and VIIRS nightlight at
500-m resolution (bottom right). The 15-arcsec (approximately 500 m) nightlight image collected from the
Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-
NPP) spacecraft, is available from https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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the disaggregation errors but also identified the possible causes of the biases and provided
implications to reduce the disaggregation errors in ODIAC and possibly other nightlight-based
disaggregation frameworks. The final challenge at the end of the series of the emission compar-
isons is to combine all the knowledge about the disaggregation errors we obtained from different
comparison shown earlier, and come upwith one singlemetric that guides the users of the ODIAC
emission data product. The authors believe that such a metric would be a benefit for the data users
who prescribe atmospheric transport models with ODIAC emissions and the potential users who
wish to use ODIAC beyond the original intended use.

The errors in disaggregated emissions are expected to change as a function of the spatial
scales (e.g., Hogue et al. 2017). In atmospheric modeling, the error is also a function of the
sensitivity of the observation to the error. In most of global atmospheric CO2 flux inversions
(e.g., Bousquet et al. 1999; Gurney et al. 2002; Baker et al. 2006; Feng et al. 2009; Chevallier
et al. 2010; Peylin et al. 2013; Houweling et al. 2015; Feng et al. 2016a), for example, FFCO2

is given as a known quantity and never be optimized. Gurney et al. (2005) have pointed out
that FFCO2 needs to be accurately given in the inversions in order to obtain robust estimates of
natural uptakes; otherwise, the errors in FFCO2 are aliasing to the final flux inverse estimates.
Historically, most of the atmospheric CO2 data have been collected at remote background sites
in order to infer at natural carbon uptakes (hence, FFCO2 atmospheric signals are minor) (e.g.,
Tans et al. 1990: Ballantyne et al. 2012). Also, the spatial resolutions of working atmospheric
transport models have been often coarser than 1 degree (e.g., Gurney et al. 2002), with few
exceptions. The use of perfect FFCO2 thus has been a fair assumption in the conventional
atmospheric inversions and the accuracy of the emissions disaggregation has not been a major
concern. However, atmospheric CO2 data from dense city–focused observation networks (e.g.,
Lauvaux et al. 2016; Martin et al. 2018) and satellites (e.g., Kort et al. 2012; Janardanan et al.
2016; Schwandner et al. 2017; Hakkarainen et al. 2016; Nassar et al. 2017) are recording local
emissions signatures from human activities up to few kilometer spatial scales and models are
capable of replicating those concentration (e.g., Oda et al. 2012; Feng et al. 2016b; Lauvaux
et al. 2016; Oda et al. 2017; Ye et al. 2017; Martin et al. 2018; Wu et al. 2018; Hedelius et al.
2018). As the spatial resolution of transport modeling increases to fully utilize those observa-
tions, the system should be more sensitive to the errors in FFCO2 (e.g., Oda and Maksyutov
2011; Oda et al. 2015). However, many global and regional inversion studies do not even
incorporate any kind of uncertainty information regarding FFCO2 imposed. This is partly
because the error characterization is challenging and the uncertainty estimates from the multi-
inventory comparison might not be fair to work with inversions. At the urban scale, it is often
challenging to define errors due to the lack of EIs (e.g., Lauvaux et al. 2016; Oda et al. 2017).
This study also shares difficulties in evaluating uncertainties in spatially explicit EIs. The
difficulties do not fully allow us to assess the accuracy of the disaggregation, but this study
attempts to demonstrate the change in disaggregation errors as a function of spatial scales in
order to demonstrate what extent the spatial aggregation would help reducing the errors in the
downscaled emissions, as a case study.

Figure 8 shows the levels of ODIAC-GESAPU differences in the emission magnitude and the
agreement in the spatial patterns (spatial correlation), as a function of the spatial resolution (1, 5, 10,
25, 50, 100, 200, and 400 km). Some of the spatial resolutions roughly match with some popular
spatial resolutions in transport model simulations (e.g., 1 km, urban simulations; 10 km, regional
simulations; and 200 km, global inversions; see Table 4). The differences are defined as the sum of
the absolute differences, which we think conservative as a measure. The initial difference (at 1-km
resolution) is approximately 155% (200% for point and 112% for non-point). To highlight the level
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of mitigation by going from the native 1-km resolution to lower spatial resolutions, we normalized
the difference by the initial difference. Thus, the difference begins with 100%.

As we expect, the emission differences are reduced as aggregated at coarser spatial resolutions.
The difference in total emission was significantly mitigated during the first 100 km (close to 1
degree) of aggregation, by slightly more than 70%. The decrease in the difference (mitigation)
after passing 100 km was subtle, compared with what we see in the first 100 km of aggregation,
but showed a monotonous decrease. At 400-km resolution (slightly less than 4 degrees), the
difference was mitigated by approximately 85%. Point and non-point emissions differences
showed similar changes as a function of spatial resolution, with the point source difference being
a few percent higher (proceeded by non-point emission difference). For example, non-point
source emissions achieved 80% difference reduction at 200 km, while point source emissions
achieved it at 350-km resolution and coarser. Also, it is important to note that the total emissions
differences are largely driven by point source differences, rather than non-point emission differ-
ence. The overall behavior of the correlation over the spatial scales is similar, but some features are
worth describing. The three correlation curves achieved 0.9 at different spatial scales (100 km for
total emission, 200 km for point source emissions, and a little after 50 km for non-point
emissions), with the point source curve proceeding to the non-point source emission before
25 km. Currently, ODIAC emission data products are provided in two spatial resolutions (1 km
and 1 degree). Based on this analysis, the disaggregation error seems to be well mitigated (76.8%
at 100 km). If we move from the 1 degree to a 0.1 degree, which is a typical global gridded EI
resolution (e.g., EDGAR), we need to accept a more disaggregation error (50.3% at 10 km).

Figure 8 b shows the change of difference and correlation at less than 25 km. We found that
approximately 50% of the difference was mitigated during the first 10 km (approximately 0.1
degree). Also, it is now clearly seen that the correlation improvement was driven by point source
aggregation than non-point emissions, which suggests the total agreement is dominated by point
emissions. This implies that mitigating the errors in point source emissions should effectively
improve the overall accuracy of the emission field of ODIAC especially at high-spatial resolu-
tions. As shown in the previous section, the current ODIAC point source emissions have
significant errors due to the use of CARMA. Point source emissions holding more disaggregation
mitigation potential than non-point source emissions is a promising message for ODIAC, as the
improvement of point sources are very labor-intensive, but achievable, and this study has
identified the sources of errors and provided implications of how to improve them.
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Fig. 8 ODIAC-GESAPU difference (or agreement) as a function of the spatial resolution
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While we found that the differences can be significantly mitigated by spatial aggregation
(coarsen the spatial resolution), this analysis also shows that the absolute difference does not
go down lower than 12% of the initial errors (18% without normalization). This is not
surprising as we think the error corresponds to the biases due to the use of nightlight data as
an emission proxy (see the “Non-point source comparison” section). The absolute error at the
provincial level is about 21.6% (note only non-point emissions), while the average provincial
area is approximately 140 × 140 km2. From this analysis, the error at 140 km is slightly less
than 30% (without normalization). It is natural to think this comparison would yield higher
errors as the provincial-level comparison is less sensitive to the subnational emission spatial
distribution errors. This is another form of the emissions representation error of nightlight
proxy, in addition to the emission representation errors at higher spatial scales. Oda et al.
(2015) defined the gridded emission errors as:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eestð Þ2 þ Edisagg
� �2

q

;

where Eest is the errors associated with emission calculation and Edisagg is the error associated
with disaggregation. The focus of Oda et al. (2015) was to quantify the uncertainty in global
inversions due to the fossil fuel assumption. But when the formula is applied to a single
downscaled gridded emission, the evaluation of the second term will be challenging. Oda et al.
(2015) assumed that Edisagg equals zero at the global level (zero disaggregation), which is
essentially what is assumed in the global inversions. But in reality, it is not zero as shown in the
analysis. But this disaggregation errors should be relatively easy to fix, compared with the
emission representation errors at native 1-km resolution. For example, we should be able to
significantly mitigate the second emission representation errors (which we see in this subsec-
tion) by improving the subnational distribution using population.

4 Discussion

The analyses reported here have explored errors and uncertainties in the CO2 emissions
estimates of the ODIAC model. The use of the error and uncertainty estimates derived in this
study is thus limited, but the estimates have practical implications to EI developers and to those
who use the emissions data in atmospheric transport models. The authors believe that results
could be generalized to some extent as we could use ODIAC to typify spatially explicit
estimates of emissions created by taking national emissions estimates and distributing those
emissions across a country using some proxy (such as satellite-observed nightlights and
population) that plausibly correlates with CO2 emissions.

In this section, we discuss the importance and challenges of EIs in future GHG monitoring
and management, the prospects of improving emission GHG estimates using atmospheric data,
the utility of the spatially explicit EIs (for both scientific and political purposes), and the future
of EIs and their scientific and political applications. There were five key topics addressed in the
3 previous workshops in this series on uncertainty in emissions inventories (see Liberman et al.
2007; White et al. 2011; Ometto et al. 2015):

1. Achieving reliable GHG inventories at national and sector scales and reporting uncer-
tainties reliably at these and finer scales,
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2. Bottom-up versus top-down GHG emission analysis,
3. Reconciling short-term emissions commitments and long-term atmospheric concentration

targets, detecting and analyzing GHG emission changes vis-à-vis uncertainty, and ad-
dressing issues of compliance with commitments,

4. Issues of the scale of GHG inventories, and
5. Trading emissions and emission offsets.

In this discussion, we touch on topics 2, 3, and 4 with special focus on topic 2. In the
“Perspectives towards the utility and the future of robust, spatially explicit EIs” section, we
focus on the utility of spatially explicit inventories and the new challenges in the era of the
Paris Agreement. In the “Recommendations for the future global emissions-inventory frame-
work” section, we discuss how to proceed to achieve more robust, more accurate, spatially
explicit EIs that can act as a part of a future GHG monitoring framework under the Paris
Agreement and beyond.

4.1 Perspectives towards the utility and the future of robust, spatially explicit EIs

4.1.1 New challenges for EI in the Paris era

As seen in studies, such as those of Guan et al. (2012) and Liu et al. (2015), following
common, established guidelines, such as the IPCC guidelines, does not assure the accuracy of
national emissions estimates. Guan et al. (2012) demonstrated a significant difference between
two Chinese estimates of total-country emissions based on (1) national-level fuel statistics,
which is an analogue of what is reported by the country, and (2) a collection of province-level
statistics. Liu et al. (2015) found that the emission factor for coal recommended by the IPCC
guidelines is larger than what they measured locally, and they suggested a downward
correction to the country total emissions estimate for China. Charkovska et al. (2018) also
found a similar systematic bias in the case of Poland. These are examples of biases that might
not be always detected in the verification process defined in current inventory frameworks.
Such biases, however, do not necessarily prevent us from keeping track of emission changes
under frameworks such as the Kyoto Protocol. The emission reductions are measured as a
relative change from the base year (typically, 1990). If we could reasonably assume that the
errors in the EIs remain at the same level (or biased in the same way) every year, the relative
change from the base year and the interannual changes (i.e., estimates of emission reduction
effort) should be somewhat robust.

The authors argue, however, that the situation will change under the Paris Agreement and
the two Chinese emission studies provide a good example of biases future monitoring systems
need to detect. A future monitoring system will not be good enough if it just keeps track of
percentage changes in emissions from a single-signatory country using reported EIs, but it
needs to provide accurate estimates of how much GHG each country has emitted to the
atmosphere. Accurate emission estimates are needed to clearly define each country’s respon-
sibility under a global framework. Under the Paris Agreement, commitments for emission
reductions should be made by each country in order to meet the 2 °C global target—or even
below. Thus, the sum of country emission estimates needs to be consistent with the actual
increase or decrease of GHG in the atmosphere and allow us to accurately project future
climate. EIs will be used not only for a short-term commitment but also for long-term
commitments (Jonas et al. 2014). Atmospheric inversions, for which ODIAC was originally
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conceived, also need accurate FFCO2 estimates in order to obtain robust estimates of past and
current natural sinks and to evaluate the future sink capacity in response to changes in
environmental conditions.

Under the Paris Agreement, EI reporting is mandatory for all signatory countries, including
for developing countries that were exempt under the Kyoto Protocol. Many developing
countries are still in need of economic development and thus are projected as major GHG
emitters in the future. With data collection being a big part in EI compilation, EIs from
developing countries with weak infrastructure for data collection and processing are more
likely to contribute to uncertainties in global total estimates of FFCO2. Thus, one of the keys for
the successful implementation of the global EI framework under the Paris Agreement is to help
these countries with less experience to develop robust EIs. Estimating GHG emissions is, in
fact, a challenge not only for developing countries but also for developed countries, when it
comes to emission estimates at subnational levels. Emission reduction efforts at subnational
levels, such as cities and states, and in the private sector (particularly at large point sources), are
not accurately quantified by EIs compiled at the national level. EI compilation at the subnational
level introduces a new challenge in data collection to accurately quantify emissions, for
example in cities, where the boundaries in data collection are less clear. Studying the sources
of uncertainty will become more important over time.

4.1.2 Towards the use of atmospheric measurements

The challenges discussed in the previous subsection suggest the use of atmospheric measurements
for examining EIs (for example a bottom-up vs. top-down comparison). In theory, surface
emissions will lead to enhanced concentrations in the atmosphere, and these emissions can be
coupled to an atmospheric model and then the calculated concentrations compared with atmo-
spheric measurements of concentration. Biases in EIs should appear as a deviation of calculated
concentrations from the atmospheric measurements. Such a top-down approach for emissions
verification has been performed for some non-CO2 GHGs, i.e., nitrous oxide (N2O) and methane
(CH4) (Leip et al. 2018). But, FFCO2 is a more challenging target for a top-down approach
because of the smaller uncertainty associated with them in relation to other gases, such as N2O and
CH4 (White et al. 2011), and because of the presence of natural sinks and sources of CO2 with
large uncertainty. The use of atmospheric measurements from different platforms, such as ground-
based stations, aircraft, and satellites, has been considered (see Pacala et al. 2010; Ciais et al. 2015;
Pinty et al. 2017), and several studies have demonstrated the feasibility (e.g., Vogel et al. 2013;
Lauvaux et al. 2016) of useful atmospheric measurements. Table 5 summarizes the current
technological status of bottom-up vs. top-down analyses in general and some of their challenges
and difficulties. Each type of observation has strengths and weaknesses and these change
depending on the spatial and temporal scales of monitoring (e.g., national inventory vs. large
emitters, fossil fuel emissions vs. biomass emissions). Feng et al. (2016b), for example, employed
a high-resolution meteorological simulation with a detailed spatially explicit EI to evaluate the
ability of the GHG observation network for Los Angeles to monitor the city’s emissions. Globally
coordinated carbon observations have been discussed by groups of international space mission
partners, such as the Group of Earth Observations (GEO), in support of policy-making through
global atmospheric GHG monitoring (e.g., Ciais et al. 2010). With future technological develop-
ments/improvements, such extensive observation capabilities should place us in a better position
to successfully implement a system for providing a verification support for the implementation of
global emissions monitoring (e.g., Ciais et al. 2015).
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Among technological development/improvements towards the establishment of an atmo-
spheric measurements–based emission monitoring system is the continued effort of improving
spatially explicit EIs. If one wants to incorporate the reported total emissions from a country
into an atmospheric model in order to calculate regional and/or local concentration enhance-
ments in the atmosphere and to compare these enhancements to observations, subnational,
spatial emissions distributions need to be available; and the estimation errors associated with
these subnational emissions estimates need to be reasonably small. Emissions from large-point
sources (LPS), such as power plants (which need to be accurately located), and from cities
should be a good target for improving the bottom-up vs. top-down analyses. Emissions from
LPS are large enough to be detected even from current satellites (e.g., Pacala et al. 2010;
Bovensmann et al. 2010; Nassar et al. 2017) and the detection can be enhanced with the aid of
auxiliary data and/or observations (such as 14C, NO2, and CO) for separating fossil fuel and
biogenic sources. Recently, Nassar et al. (2017) demonstrated the possibility of detecting
emission signals from a space-based instrument such as the OCO-2 satellite. Exploring such an
approach is currently limited largely by the availability of data collected in suitable meteoro-
logical and geophysical conditions (e.g., Ye et al. 2017). More spatial and temporal data over
cities and large point sources would be helpful.

A multi-scale emission modeling approach such as GESAPU will probably be the ideal
candidate to serve as a part of the monitoring system for accurately introducing emission
information to the global system. Challenges are the workload required to create an EI like
GESAPU and that EIs reported to the United Nations Framework Convention on Climate
Change (UNFCCC) do not cover the globe, which will be required to prescribe global
simulations (e.g., Denier van der Gon et al. 2017). The emissions dataset EDGAR is currently
closest to what will be required. EDGAR follows the IPCC guideline to calculate national
emissions and it does emission spatial disaggregation in a systematic way. Although the errors
and biases in the downscaled spatial emissions in EDGAR have been pointed out (e.g., Gately
and Hutyra, 2017), the global systematic disaggregation has considerable value as it allows us
to make the spatial emissions traceable. We need to build a framework to support the
systematic development of spatially explicit EIs around the current EI framework.

4.1.3 New challenges in the global EI framework

Regardless of what a future EI framework will be, we need to expand our capability of
collecting data to improve the accuracy of subnational emissions estimates. As demonstrated in
this study, extensive data collection (e.g., GESAPU) will allow us to characterize the biases in
downscaled EIs, identify the root causes of biases, and plan a remedy for them. Reducing the
uncertainties associated with the terms, such as emission factors and activity data, is important
and is directly connected to the current EI system. There is a need to expand the collection of
more regionally and/or sectorally varying emission factors.

But, how far do we need to expand the data collection? For example, Ciais et al. (2015)
suggested a need for global emissions estimates at 1 km2 and hourly scales—an extremely
challenging goal. Given the finite amount of financial and time resources, we need to come up
with a reasonable plan to make the EI system as accurate as possible and help global
monitoring. This study has been greatly benefited from the data granularity that GESAPU
offers and highlights an ideal form of spatially explicit EIs. The multi-resolution EI of Gurney
et al. (2012) is thought to be the best effort for quantifying emissions from US cities. But such
detailed EIs are extremely labor-intensive and make it difficult to cover a large area or to
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conduct replicate inventories over time. More input data is required and more data means more
labor for quality assurance (QA) and quality checks (QC). Establishing a data collection
system or guideline that allow us to make a systematic collection for EI development would
greatly reduce the labor, possibly deliver EIs quicker, and reduce the level of uncertainty
associated with the emission estimates. Note that Gurney et al. (2012) and Gately and
Hutyra (2017) have extended their emissions over time by scaling the base year or
assuming the same total emissions (see https://daac.ornl.gov/CMS/guides/CMS_Carbon_
Emissions_NE_US.html).

In this situation, there is a significant benefit in the use of downscaled, disaggregated
emissions estimates. Although this study revealed large room for improvement in disaggre-
gated emissions estimates, it is conceptually possible to both improve disaggregation and to
move towards emissions estimates that are at 1 km2 and hourly scale using the ODIAC
framework. As demonstrated in this study, if data are available, it is possible to downscale
emissions estimates and to calibrate the ODIAC model to a regional model. The use of satellite
data, such as nightlight data, has an advantage in its global and timely systematic data
collection (observation) and coherence. With a wider variety of useful satellite data (e.g.,
nightlight, land cover, imperviousness, etc.) and geospatial statistical data (e.g., road networks,
gridded demographic data, etc.), we should be able to achieve emission fields that meet the
requirements of a future global system. EIs like GESAPU and disaggregation emissions
estimates are complementary: in the future system and we need to come up with a comple-
mentary combination of them. GESAPU has a unique, strong significance of resolving local
human activities while being a large-scale model (country level). However, GESAPU is only
available for Poland and Ukraine and we have to stitch together small models and large models
to achieve national and then global coverage.

We propose further that emission calculations at an intermediate administrative level such as
state or province have a chance in achieving useful emission estimates from the viewpoint of data
availability. At this spatial scale, the errors from emission disaggregation should be less severe.
Provincial emissions estimates could be used as a regional constraint to reduce disaggregation
errors due to the lack of regional differences in carbon emission drivers. This would also provide
an additional verification that could be implemented in the current EI framework. As seen in the
provincial-level comparison (shown in Fig. 4), the difference between GESAPU and ODIAC
were only 4%, regardless of the differences in the calculation methods.

4.2 Recommendations for the future global emissions-inventory framework

Based on the outcome of this study, we offer three recommendations to those who build and
those who use inventories of greenhouse gas emissions. These are aimed at using emission
inventories for monitoring of emissions agreements and for seeking aggregate global goals for
limiting global climate change.

4.2.1 A capacity building for extended data collection for EI development

Due to the nature of EIs, they are strongly dependent on the quantity and quality of the data
collected. One of the biggest sources of difficulties is that EIs are largely based on repurposed
data, data that were collected for some other purposes with attendant criteria and manners. A
coordinated data collection system to support more robust EI compilation is recommended.
Information on large point sources is particularly important for disaggregation purposes and
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for bottom-up vs. top-down exercises. Existing efforts collecting point source emissions, such
as US EPA’s Emissions and Generation Resource Integrated Database (eGRID, https://www.
epa.gov/energy/emissions-generation-resource-integrated-database-egrid), the Global Energy
Observatory (http://globalenergyobservatory.org/), and the Global Power Plant Database
recently published by the World Research Institute (http://www.wri.org/publication/global-
power-plant-database), are close to what we would suggest, but they have missing key
variables (e.g., reported emissions, timely updates, accurate geolocations). Some of these
efforts are attempting to achieve global coverage, but this is not quite achieved yet. Since
emissions from the power sector often account for a significant portion of national emissions,
this focus on large point sources will contribute to reducing the errors associated with the
national and sectoral totals. At the same time, this should help the emissions spatial
disaggregation. The inventory calculation for CO2 needs to be extremely accurate to claim
an independent, objective monitoring capability (see Quick, 2014). Also, it means we need to
expand the parameters collected for power plants such as plant-specific values and operation
status. These should place a satellite application to a better position (e.g., Nassar et al. 2017).

4.2.2 A consistency check at the provincial-state intermediate aggregation level

Our study demonstrated the utility of emission estimates at an intermediate level such as
province or state. In some countries, just population data at this level might be useful for
consistency checks. The international data collection system should support this effort. State-
level data can provide an additional check on EI calculations, potentially add regional
constraints, and reduce the uncertainties associated with spatially explicit EIs.

Also, state-level data should help connecting the small models and large models (or
subsystem and full system). Although the disaggregation models are often unable to maintain
the linkage of emission estimates and spatial extent, we can use the multi-resolution local
models, such as Hestia and GESAPU, and global disaggregated models to achieve a global
emission field to be used in a future monitoring system. By doing this, the separation of the
emission calculation and disaggregation is mitigated. It is important for emission models to
help support local climate actions as emission models can reveal emission changes from the
local climate actions as a part of the global monitoring framework.

4.2.3 Coordinated research efforts towards future emission monitoring system

With more data and more technological developments, we expect to obtain more robust
estimates of emissions from top-down and bottom-up exercises at different scales. To examine
the optimal use of future observations, simulation experiments (Observing System Simulation
Experiments, OSSEs) have been conducted (e.g., Feng et al. 2016b). OSSEs provide a useful
tool to design an optimal top-down vs. bottom-up exercise setup, taking observations, emis-
sions estimates, and other environmental conditions into account (e.g., Feng et al. 2016b). To
make OSSEs more effective, a key is to feed realistic statistics based on actual experiments to
the simulation experiment. For example, OSSEs for cities might have to rely on only several
city cases. Thus, it is important to have a coordinated effort of emission inventories, observa-
tions, and modeling. Several successful projects such as Jet Propulsion Laboratory’s Mega-
cities Carbon Project (Duren and Miller 2012, https://megacities.jpl.nasa.gov/portal/, see
Lauvaux et al. 2016) and the Indianapolis Flux Experiment (INFLUX, http://sites.psu.
edu/influx/) are good examples. For Poland, a coordinated effort with existing observation
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projects such as Zimnoch et al. (2018) (radiocarbon measurements at Krakow) and
Messerschmidt et al. (2012) (upward looking FTIR at Białystok) provide a starting point to
approach emission uncertainty using a top-down vs. bottom-up approach. Such efforts need to
be supported for a long term for monitoring purpose.

Recommendations
1. Capacity building to support an extended, systematic data collection for EI development
2. An EI consistency check at the provincial or state intermediate level for robust EI and for
connecting EIs at different spatial levels

3. Coordinated research efforts of EIs, atmospheric observations, and modeling towards a
future emissions monitoring framework

5 Conclusions

In this study, we evaluated the global high-resolution, gridded EI ODIAC using the multi-
resolution EI GESAPU over the domain of Poland. We focused on the errors associated with
the emissions disaggregation from national total to 1-km grid spaces in ODIAC by accepting
GESAPU as a truth. The differences between the two data sets were thus taken as a proxy for
the disaggregation error (or uncertainty). The emissions data granularity that GESAPU offers
should justify us largely attributing the differences as the errors in ODIAC. The total emissions
of the two EIs for Poland are very close. This study evaluated the ODIAC emission field by
emission types (point and non-point) across different scales (national, provincial, and cities)
and identified the root causes of the errors.

With the verified point source information from GESAPU, we took a close look at point source
emissions inODIAC and investigated the root causes of the disagreement withGESAPU emissions.
The agreement between ODIAC and GESAPU in total, point source, and non-point source
emissions was fairly good. However, we found the good agreement was partially dependent on
consistency between emissions categories and power plant information. Errors in CARMA, a global
data set on power plants, turned out to be a significant source of error in ODIAC. CARMA
information seems to be reasonable for large emitting facilities, but the inclusion of small facilities
brought in difficulty to the ODIACmodeling. The errors included both plant characteristics and the
exact geographic locations. Comparisons with the detailed studies in GESAPU provided implica-
tions of how we should model power plant emissions in ODIAC.

As previously known, disaggregating non-point sources of emissions, here using nightlight
data, to higher spatial resolution also leads to errors. This study showed the degree of goodness
of disaggregated emissions estimates at the provincial level and confirmed the excellent
performance of the nightlight to be a proxy for subnational, non-point emissions at this scale.
We also found that population density is a slightly better predictor at this aggregated level and
could potentially serve as an emission constraint for ODIAC.

We also evaluated disaggregation errors at the city level. Although we do not often expect
the disaggregated emissions at the city level to be robust, the emission error level for Warsaw
was 30%. This is a surprisingly good agreement given what is reported for US cities. The error
seems to be dominated by the emission proxy representation errors and future improvements in
nightlight data should reduce the errors.
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There is a general interest in the uncertainty of emissions estimates as a function of spatial
resolution. As expected, in general, the emissions uncertainty can be mitigated by aggregating
emissions over space. The error level at the native spatial resolution of 1 km can be mitigated by
80% at 100 km. At 10 km, the error can be mitigated to 50%. The biggest numerical errors are
attributed to the uncertainty at large point sources. Also, as suggested by the provincial-level
emission comparison, even at the 400-km resolution, the errors in non-point source emissions do
not converge to zero.

From the outcome of this study, the authors believe that spatially explicit emissions
inventories can be improved with 3 major initiatives. These will allow emissions inventories
to contribute to a future global emission monitoring framework:

1. Capacity building to support extended, systematic data collection for EI development
2. An emission EI consistency check at the provincial or state intermediate level for robust EI

and connecting EIs at different spatial levels
3. Coordinated research efforts of EI, atmospheric observations, and modeling towards

future emission monitoring framework

This study was solely about FFCO2 but the implications from the study should apply for other
compounds and monitoring frameworks that are based on spatially explicit EIs.
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Table 6 A list of Polish voivodeship (province) codes and full names. Population counts are based on the year
2011version of Polish official demographic statistics (Demographic Yearbook of Poland 2011/Rocznik
Demograficzny 2011) published by Polish Central Statistical Office (available from https://stat.gov.
pl/en/topics/statistical-yearbooks/statistical-yearbooks/, access date: 25 May 2018). Note the per capita carbon
(C) was calculated using non-point total provincial emissions, rather than the total provincial emissions

Code Name In Polish Population
(% of total)

Area in km2

(% of the total)
Per capita
C (tC)

DS Lower Silesian Dolnośląskie 2,877,840 (7.5%) 19,947 (6.4%) 1.07
KP Kuyavian-Pomeranian Kujawsko-pomorskie 2,069,543 (5.4%) 17,972 (5.7%) 1.09
LU Lublin Lubelskie 2,151,895 (5.6%) 25,122 (8.0%) 1.03
LB Lubusz Lubuskie 1,011,024 (2.6%) 13,988 (4.5%) 0.88
LD Łódź Łódzkie 2,534,357 (6.6%) 18,219 (5.8%) 1.05
MA Lesser Poland Małopolskie 3,310,094 (8.7%) 15,183 (4.9%) 1.02
MZ Masovian Mazowieckie 5,242,911 (13.7%) 35,558 (11.4%) 1.50
OP Opole Opolskie 1,028,585 (2.7%) 9412 (3.0%) 1.18
PK Subcarpathian Podkarpackie 2,103,505 (5.5%) 17,846 (5.7%) 0.92
PD Podlaskie Podlaskie 1,188,329 (3.1%) 20,187 (6.5%) 0.88
PM Pomeranian Pomorskie 2,240,319 (5.9%) 18,310 (5.9%) 1.14
SL Silesian Śląskie 4,635,882 (12.1%) 12,333 (3.9%) 1.30
SK Holy Cross Świętokrzyskie 1,266,014 (3.3%) 11,711 (3.7%) 0.98
WN Warmian-Masurian Warmińsko-mazurskie 1,427,241 (3.7%) 24,173 (7.7%) 0.88
WP Greater Poland Wielkopolskie 3,419,426 (9.0%) 29,826 (9.5%) 1.04
ZP West Pomeranian Zachodniopomorskie 1,693,072 (4.4%) 22,892 (7.3%) 1.00

Total 38,200,037 312,679 1.12*

*National average
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Table 7 CARMA-GESAPU power plant comparison. Values are taken from CARMA, not from ODIAC. Given
in the unit ktC/year

GESAPU Original CARMA
(Wheeler and Ummel, 2012)

CARMA v3.0
(Ummel, 2012)

Scaling factor

CARMA Name (ID) Y2010 Y2000 Y2007 Mean Y2004 Y2009 Y2004/
Mean

Y2009/
GESAPU

ANDROPOL (1522) 11.6 9.2 9.5 9.3 2.3 1.8 0.24 0.16
KRAKOW LEG (23019) 463.7 722.7 747.3 735.0 0 507.2 0.00 1.09
DWORY (11572) 356.0 206.0 212.8 209.4 150.4 93.0 0.72 0.26
SIERSZA (41552) 365.4 759.2 1258.9 1009.0 1105.8 886.7 1.10 2.43
SKAWINA (41886) 502.2 517.8 535.1 526.5 631.2 360.0 1.20 0.72

Table 8 ODIAC and GESAPU provincial non-point source emissions comparison (see Fig. 2 for the provincial
locations). The values are given in the unit ktC/year. The provincial totals do not sum to the non-point totals
presented in Table 2. The differences are defined as ODIAC minus GESAPU. Note the differences in total
numbers indicated in Table 2 (44,815 ktC/year vs. 44,773 ktC/year for ODIAC and 42,891 ktC/year vs.
42,872 ktC/year for GESAPU, approximately 0.1% differences) can be largely explained by the differences in
the sampling methods. In this comparison, we sampled emission grid cells using provincial boundaries. For
emission grid cells that belong to more than one province, emissions were distributed to provinces based on the
fractional area

Voivodeship (province)
name (code)

ODIAC (% of the
total)

GESAPU (% of the
total)

ODIAC-
GESAP

Difference
in %

Lower Silesian (DS) 3281 7.3% 3086 7.2% 196 6.3%
Kuyavian-Pomeranian (KP) 2446 5.5% 2254 5.3% 192 8.5%
Lublin (LU) 3288 7.3% 2220 5.2% 1068 48.1%
Lubusz (LB) 1218 2.7% 887 2.1% 331 37.4%
Łódź (LD) 3345 7.5% 2661 6.2% 684 25.7%
Lesser Poland (MA) 2898 6.5% 3380 7.9% −482 −14.3%
Masovian (MZ) 6659 14.9% 7854 18.3% −1196 −15.2%
Opole (OP) 1214 2.7% 1209 2.8% 5 0.4%
Subcarpathian (PK) 2462 5.5% 1945 4.5% 517 26.6%
Podlaskie (PD) 1647 3.7% 1040 2.4% 607 58.4%
Pomeranian (PM) 2592 5.8% 2560 6.0% 32 1.2%
Silesian (SL) 4021 9.0% 6016 14.0% −1995 −33.2%
Holy Cross (SK) 1909 4.3% 1246 2.9% 663 53.2%
Warmian-Masurian (WN) 1653 3.7% 1251 2.9% 402 32.1%
Greater Poland (WP) 4387 9.8% 3566 8.3% 821 23.0%
West Pomeranian (ZP) 1754 3.9% 1698 4.0% 56 3.3%
Total 44,773 100% 42,872 100% 1901 4.4%
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Fig. 10 ODIAC-GESAPU absolute (left) and relative (right) differences over the Warsaw area. The differences
are defined as ODIAC minus GESAPU

Fig. 9 Non-point emissions from ODIAC (left) and GESAPU (right) over the domain of Poland. Emission fields
are for the year 2010. The values are given in the unit tC/year

1042 Mitigation and Adaptation Strategies for Global Change (2019) 24:1007–1050



Estimating the geolocation in the nightlight data

We loosely estimated the magnitude of the shirt (geolocation error) we found in the nightlight
spatial distribution, in which shift would appear as a spatial error (biases) in the resulting
disaggregated emission fields. Here we estimate a nationwide average geolocation error,
simply assuming the estimate can be obtained when the total emissions within the city
boundaries (black polygons shown in Fig. 11) are maximized. We iteratively calculated the
total emissions by changing (a) distance and (b) angle. The iterative optimization calculation
yielded the maximum total emissions when distance = 1.6 km and angle = 27.3 degrees. Thus,
the correction needs to be made by shifting the nightlight distribution by 1.6 km towards a
south-east direction (with 27.3 degrees).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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