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Spatio-temporal complexity of ecological dynamics has been a major focus of research for a few decades. Pattern formation, chaos, regime shifts and long transients are frequently observed in field data but specific factors and mechanisms responsible for the complex dynamics often remain obscure. An elementary building block of ecological population dynamics is a prey-predator system. In spite of its apparent simplicity, it has been demonstrated that a considerable part of ecological dynamical complexity may originate in this elementary system. A significant progress in understanding of the prey-predator system's potential complexity has been made over the last few years; however, there are yet many questions remaining. In this paper, we focus on the effect of intraspecific competition in the predator population; the prey-predator model accounting for such competition is known as Bazykin's model. We pay a particular attention to the case (often observed in real population communities) where the inherent prey and predator timescales are significantly different: the property known as a 'slowfast' dynamics. Using an array of analytical methods along with numerical simulations, we provide a detailed analysis for the existence of Turing bifurcation and corresponding Turing pattern. We show how the Turing domain and corresponding spatial pattern changes in the presence of different (slow-fast) timescales. In doing that, we apply a novel approach to quantify the system solution by calculating its norm in two different metrics such as C 0 and L 2 . We show that the slow-fast Bazykin's system exhibits a rich spatio-temporal dynamics, including a variety of long transient regimes that can last for hundreds and thousands of generations.

Introduction

Mathematical modeling of long food chain and food webs is quite complex due to the multiple interaction among trophic levels. In this regard, the resource-consumer model (or prey-predator models) have received significant attention over the last few decades as such models are building blocks of long food chain and food webs. For two species preypredator type interaction models, the predator population can be divided into two categories: specialist and generalist predator. Whenever the predator population has an alternative food source other than the local prey, then the predator is called generalist. Whereas, if the growth of the predator population depends solely on the prey abundance, then it is called specialist predator. Field studies [START_REF] Schoener | Field experiments on interspecific competition[END_REF][START_REF] Bourlot | Interference versus exploitative competition in the regulation of size-structured populations[END_REF] and laboratory experiments [START_REF] Klomp | Intraspecific competition and the regulation of insect numbers[END_REF] have suggested that, along with the preypredator interaction, it is also important to recognize the competition among the individuals of same species. This type of competition is termed as the intraspecific competition and it is known to be density dependent [START_REF] Schoener | Field experiments on interspecific competition[END_REF][START_REF] Murray | Mathematical biology II: Spatial models and biomedical applications[END_REF]. In particular, for a specialist predator, it reduces its growth rate in addition to the natural death rate. In 1974, Bazykin [START_REF] Bazykin | Nonlinear dynamics of interacting populations[END_REF] extended the classical Roseinzweig-MacArthur (RM) model by including intraspecific competition or self-limitation term in predator growth equation. Interestingly, the inclusion of this negative feedback term induces additional complexity in the dynamics of the model which can capture some realistic aspects. The global dynamics of the Bazykin model and the effect of the intraspecific competition among predators in spatial pattern formation was discussed in [START_REF] Mcgehee | Bifurcations and temporal and spatial patterns of a modified Lotka-Volterra model[END_REF]. In [START_REF] Peet | Complex dynamics in a three-level trophic system with intraspecies interaction[END_REF], the intraspecific competition is considered among predators as well as super-predators in a three trophic level food chain. They have shown with the help of numerical simulations that with varying strength of intraspecific competition the system evolves from chaotic to periodic oscillation and, thus, it has a stabilizing effect on the dynamics of the system.

The species belonging to different trophic level have different growth rate which can differ by few orders of magnitude. In particular, the time needed for growth of individuals mostly increases along the food chain from bottom to top [START_REF] Muratori | Remarks on competitive coexistence[END_REF]. For example, empirical evidences for the interaction between species such as hares and lynx [START_REF] Stenseth | Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx[END_REF], phytoplankton and zooplankton [START_REF] Scheffer | Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system[END_REF], insects and birds [START_REF] Ludwig | Qualitative analysis of insect outbreak systems: the spruce budworm and forest[END_REF], etc., indicates that the growth rate of the prey (resource) is often much faster than that of its predator (consumer). Based on this observation, researchers were trying to explore prey-predator models by explicitly considering the difference in timescale. This gives a new perspective of understanding the ecological interaction and long nearly-periodical population fluctuation observed in nature. The temporal variations in population densities of species was studied with the help of geometric singular perturbation theory proposed by Neil Fenichel in his seminal work [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF]. This theory has been used to study some prey-predator models with different timescales [START_REF] Muratori | Remarks on competitive coexistence[END_REF][START_REF] Wang | Canards heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized holling type IIIs[END_REF][START_REF] Rinaldi | Slow-fast limit cycles in predator-prey models[END_REF][START_REF] Poggiale | Analysis of a predator-prey model with specific timescales: a geometrical approach proving the occurrence of canard solutions[END_REF]. Rinaldi and Muratori [START_REF] Muratori | A separation condition for the existence of limit cycles in slow-fast systems[END_REF] developed a separation principle to understand the existence of slow-fast cycles and have analyzed the periodic bursting of high and low-frequency oscillations in interacting population models with two and three-trophic levels. In this work, we rescale the Bazykin model into singularly perturbed slow-fast system using a small dimensionless timescale parameter ε introduced in predator growth. Apart from the stable and unstable Hopf bifurcating limit cycle, we show that the slow-fast Bazykin model exhibits additional dynamical behavior. We further provide a temporal bifurcation structure to understand the bifurcation of different periodic orbits, in particular, canard cycles and relaxation oscillations [START_REF] Krupa | Relaxation oscillation and Canard explosion[END_REF].

Non-spatial models of interacting populations assume that all the individuals are distributed homogeneously over space, that is, within their habitat. But in reality, the individuals are usually distributed heterogeneously. Reactiondiffusion equations [START_REF] Cantrell | Spatial Ecology Via Reaction-Diffusion Equations[END_REF] provide an appropriate framework to study the effect of species heterogeneity in persistence or extinction of interacting species. It incorporates the population gradient of the species, the rate of dispersal and the interaction among other species in their natural habitat. One of the major phenomenon captured by reaction-diffusion models is pattern formation due to self-organization. The diffusion driven instability (often referred to as the Turing instability) is a homogeneity breaking mechanism which leads to the formation of various spatial patterns that are ubiquitous in nature [START_REF] Turing | The chemical basis of morphogenesis[END_REF]. It is well known from literature [START_REF] Mcgehee | Bifurcations and temporal and spatial patterns of a modified Lotka-Volterra model[END_REF][START_REF] Avila-Vales | Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross-diffusion and Beddington-Deangelis response[END_REF] that the Bazykin model allows for the formation of stationary pattern through Turing instability for suitable range of parameters. In the slow-fast context, the Bazykin type prey-predator model can be considered as a perturbed version of the Rosenzweig-MacArthur model. Hence, it preserves the same dynamic patterns for a reasonable range of parameters, especially beyond the Hopf-bifurcation threshold. Here we show that the slow-fast Bazykin model exhibits Turing pattern, and the Turing threshold along with the unstable eigenmode changes with varying ε. We provide a comparative study as to how the solution of the spatial and non-spatial system behaves in the presence or absence of slow-fast timescale. We also show that the spatial average of the solution of the corresponding spatial model also exhibits spiking behavior forming spatio-temporal canard cycles [START_REF] Avitabile | Spatiotemporal canards in neural field equations[END_REF].

Further, we discuss the different transient dynamics observed in the spatial model before reaching the final dynamics. Apart from the long-term behavior of the ecological models, the spatial model also shows intriguing transient dynamics. The 'final' asymptotic dynamics of the model might take a very long time, covering a hundred and thousands of generations of the species. Therefore, it is essential to focus on the different transient behavior of the model to study how the dynamics of the system change over long timescales [START_REF] Hastings | Transients: the key to long-term ecological understanding?[END_REF][START_REF] Hastings | Transient phenomena in ecology[END_REF][START_REF] Hastings | Persistence of transients in spatially structured ecological models[END_REF][START_REF] Morozov | Long transients in ecology: Theory and applications[END_REF][START_REF] Chowdhury | Effect of slow-fast time scale on transient dynamics in a realistic prey-predator system[END_REF].

The article is organized as follows. The non-spatial model is described with and without slow-fast timescale along with a bifurcation structure in Section 2. Here we also give schematic representation of how the bifurcation curves and the canard and relaxation oscillation curves divide the two-parametric diagram into domains. In Section 3 we provide an existence criteria and bounds for the corresponding spatial model. The steady state analysis of the system, Turing instability and the properties of the emerging Turing pattern are discussed as well. The nature of the transient and their duration are explored in Section 4. We finally give the conclusion of our work in Section 5.

Slow-fast temporal model

In this work, we consider a Bazykin type model, i.e. a prey-predator model based on the following assumptions. The prey growth follows the logistic growth function. The interaction among the prey and its predator is modeled using Holling type II functional response and the intraspecific competition in the predator population is taken into account by adding a quadratic term to the right-hand side of the corresponding equation. In appropriately chosen scaled variables, the model is given by the following system of equations:

du dt = νu ( 1 - u χ ) - βuv 1 + αu := f (u, v), dv dt = ε ( βuv 1 + αu -ηv -δv 2 ) := εg(u, v), (1) 
where ν is the intrinsic growth rate of the prey, χ is the prey carrying capacity, β represents the prey-predator interaction, α is the amount of prey by which the predation effect is maximum and η is the per capita death rate of predators. Parameter δ quantifies the predator death rate due to the intraspecific competition and ε is a small dimensionless parameter such that 0 < ε ≪ 1 and ε ≪ ν. This implies that the growth rate of prey population is significantly larger than that of the predator population, which account for the diversified timescales of the interacting species. The variables u and v denotes the prey and predator density at time t.

Depending on the parameter values, the model can admit at most five equilibrium points (cf. [START_REF] Mcgehee | Bifurcations and temporal and spatial patterns of a modified Lotka-Volterra model[END_REF] for details). Throughout our paper, we choose the parametric domain such that system (1) has unique equilibrium point in the first quadrant. The extinction and prey only equilibrium points of the system (1) are given by E 0 = (0, 0), and E χ = (χ , 0) respectively. The coexistence equilibrium points (u * , v * ) are such that u * is a feasible root of the cubic equation

α 2 δνu 3 * + δνα(2 -αχ)u 2 * + (β 2 χ -ηαβχ -2δνχ α + δν)u * -χ(δν + βη) = 0, (2) 
and

v * = 1 δ ( βu * 1 + αu * -η
) .

We set

A := δ 2 ν 2 α 2 (2 -αχ) 2 -3α 2 δν(β 2 χ -ηαβχ -2δνχ α + δν), B := 2δ 3 ν 3 α 3 (2 -αχ) 3 -9α 3 δ 2 ν 2 (2 -αχ)(β 2 χ -ηαβχ -2δνχ α + δν) + 27α 4 δ 2 ν 2 χ(δν + βη) and consider ∆ := B 2 -4A 3 .
From the analysis of the number of roots in a cubic equation [START_REF] Wang | Canards heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized holling type IIIs[END_REF], we obtain that if ∆ > 0 and βu * > η(1 + αu * ) then the system has a unique feasible coexistence equilibrium E * . Evaluating the Jacobian matrix at E 0 we infer that E 0 is a saddle and at E χ , the Jacobian matrix takes the form

J Eχ = ( -ν -βχ 1+αχ 0 ε ( βχ 1+αχ -η ) ) .
Thus, E χ is stable if βχ 1+αχ < η and saddle if βχ 1+αχ > η. The coexistence equilibrium point cannot be obtained explicitly, so we numerically study the stability of E * . We linearize the system around the equilibrium point E * (u * , v * ) and obtain the Jacobian matrix as follows ) .

J E * = ⎛ ⎝ ν ( 1 -2u * χ ) -βv * (1+αu * )
(

) 3 
It is well known in population ecology that an increase in the carrying capacity (χ ) can lead to a significant change in the system's dynamics, for instance to change the stability of the coexistence steady state resulting in the emergence of the limit cycle through the Hopf bifurcation [START_REF] Rosenzweig | Paradox of enrichment: destabilization of exploitation ecosystem in ecological time[END_REF][START_REF] Fussmann | Community response to enrichment is highly sensitive to model structure[END_REF]. Correspondingly, in order to capture the qualitatively change in the dynamics of the model (1) we choose χ as the bifurcation parameter. Then, at the Hopf threshold χ = χ H , Trace(J E * ) = 0 and Det(J E * ) > 0 are satisfied. The Hopf bifurcation curve is shown in Fig. 1 in δχ plane for ν = 10, α = 1, β = 2.85, η = 1, and ε = 1 fixed. Along this bifurcation curve, the system encounters a generalized Hopf bifurcation point (GH point) where the first Lyapunov number l 1 for Hopf bifurcation vanishes. The lower branch of the Hopf curve is super-critical where l 1 < 0 and the upper branch is sub-critical where l 1 > 0 and this transition takes place at GH point where l 1 = 0. Thus, for a fixed δ, as we move along the χ-axis we observe different dynamics of the system (1). For δ = 0.11 and χ = 3.5, the coexistence equilibrium point E * is globally stable, that is all the trajectories approach this point. E * loses its stability as χ crosses the lower branch of Hopf curve. Inside the parabolic region, E * is unstable. It is surrounded by a stable limit cycle, and with increasing value of χ the size of the stable limit cycle increases. This is shown for δ = 0.11 and χ = 4.5 in Fig. 1 (marked by blue dot). On crossing the upper branch of Hopf curve, E * becomes stable, surrounded by an unstable limit cycle which again is surrounded by a stable limit cycle. The unstable limit cycle acts as a separatrix between the basin of attraction of the interior stable equilibrium and the outermost stable limit cycle. In a very small parametric domain near the Hopf threshold, the size of the unstable limit cycle increases whereas the size of the stable limit cycle decreases. This is verified by taking δ = 0.11, and χ = 12.25 as shown in Fig. 1. These two cycles coalesce and disappear at the saddle-node bifurcation point of limit cycles, for χ SN = 12.2522993. The broken line in Fig. 1 represents the curve of saddle-node bifurcation of limit cycle in δχ plane. The non-trivial prey and predator nullcline are shown in the black solid curve and the black broken curve. The stable and unstable attractors are marked by green and red color. That is, the stable limit cycle (equilibrium) is represented by the green curve (dot), whereas the unstable limit cycle (equilibrium) is represented by the red curve (dot).

The aim of this paper is to further investigate how the system behaves for 0 < ε ≪ 1. To study the dynamics of the slow-fast system (1), for sufficiently small values of ε we re-write the system in terms of slow time τ as τ := εt, where 0 < ε ≪ 1 and t is the fast time

ε du dτ = νu ( 1 - u χ ) - βuv 1 + αu := f (u, v), dv dτ = ( βuv 1 + αu -ηv -δv 2 ) := g(u, v). (4) 
For ε → 0 in system (1) we obtain the corresponding fast subsystem (layer system) as follows

du dt = f (u, v) = νu ( 1 - u χ ) - βuv 1 + αu , dv dt = 0, (5) 
and taking ε → 0 in system (4) we obtain a differential-algebraic system of equations (or slow subsystem) as follows

0 = f (u, v) = νu ( 1 - u χ ) - βuv 1 + αu , dv dτ = g(u, v) = ( βuv 1 + αu -ηv -δv 2
) .

The solution of system ( 6) is constrained to the set {(u, v) ∈ R 2 + : f (u, v) = 0} known as critical manifold C 0 , which can be written as

C 0 = C 0 0 ∪ C 1 0 where C 0 0 = {(u, v) : u = 0, v ≥ 0}, C 1 0 = {(u, v) : v = ν β ( 1 -u χ ) (1 + αu) := F (u)}.
The fold point (u f , v f ) of the critical manifold C 1 0 satisfies the following conditions

F (u f ) = 0, F ′ (u f ) = 0, F ′′ (u f ) ̸ = 0.
Furthermore, we assume that g u (u, v) ̸ = 0, such that the nullcline g(u, v) transversally intersects the critical manifold C 1 0 .

From the above conditions the coordinates of the fold point can be obtained explicitly as u f = 1 2α (αχ -1), and v f = F (u f ).

This point divides the critical manifold C 1 0 into attracting sub-manifold

C 1,a 0 = {(u, v) : (u, v) ∈ C 1 0 , F ′ (u) < 0},
and repelling sub-manifold

C 1,r 0 = {(u, v) : (u, v) ∈ C 1 0 , F ′ (u) > 0}.
We are now interested to study the behavior of the trajectory of the system (1) or (4) in O(1) neighborhood of the critical manifold C 0 . The slow flow on either branch of the critical manifold C 1 0 is given by the differential-algebraic system [START_REF] Mcgehee | Bifurcations and temporal and spatial patterns of a modified Lotka-Volterra model[END_REF] where the time evolution of the trajectory along the sub-manifolds C

1,a 0 and C

1,r 0 is given by

du dτ = g(u, F (u)) F ′ (u) . (7) 
For ε > 0, the flow near the normally hyperbolic sub-manifolds C 1,a 0 and C 1,r 0 is asserted by Fenichel's theorem [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF]. It states that for ε sufficiently small, there exist sub-manifolds

C 1,a ε and C 1,r ε diffeomorphic to C 1,a 0
and C 1,r 0 and invariant under the flow of the system (1). The system, however, encounters a singularity whenever F ′ (u) = 0, that is, at the non-hyperbolic fold point. Thus, to obtain the global dynamics of the system (1) we need to determine the flow in the neighborhood of the fold point.

Preliminary results on slow-fast systems

In this subsection, we give main definition required for our mathematical analysis and recall some classical results [START_REF] Krupa | Relaxation oscillation and Canard explosion[END_REF][START_REF] Kuehn | Multiple time scale dynamics[END_REF][START_REF] Eckhaus | Relaxation oscillations including a standard chase on French ducks Asymptotic Analysis II[END_REF][START_REF] Zvonkin | Non-standard analysis and singular perturbations of ordinary differential equations[END_REF] that are used in our study.

Definition 2.1. The fold point (u f , v f ) ∈ C 1
0 is called a jump point if the slow flow given by ( 7) is singular, that is when

g(u f , F (u f )) ̸ = 0 [29].
At the jump point the slow and fast segments are concatenated. The solution of the system (1) reach the jump point in finite time along the attracting critical sub-manifold and follows the fast subsystem. The fast flow is then directed away from the critical manifold C 1 0 toward the vicinity of

C 0 0 . Definition 2.2. The fold point (u f , v f ) ∈ C 1 0 is called canard point if g(u f , F (u f )) = 0, g u (u f , F (u f )) ̸ = 0 and F ′′ (u f ) ̸ = 0 [29].
Thus, at the canard point the slow flow given by ( 7) is well-defined since

du dτ = g(u, F (u)) F ′ (u) = g(u f , F (u f )) + (u -u f )g u (u f , F (u f )) + O(u -u f ) 2 (u -u f )F ′′ (u) + O(u -u f ) 2 = g u (u f , F (u f )) + O(u -u f ) F ′′ (u) + O(u -u f ) .
Therefore, the slow-subsystem (6) has a solution passing through the fold point.

Definition 2.3.

A solution (u(t), v(t)) of the slow-fast system (1) is called a canard if for t ∈ (t 0 , t 1 ) the segment of the trajectory (u(t), v(t)) is infinitely close to attracting sub-manifold C 1,a 0 , and for t ∈ (t 1 , t 2 ) it is infinitely close to the repelling sub-manifold C 1,r 0 , where t 0 < t 1 < t 2 . The periodic solution of the slow-fast system (1) consisting of the canard is known as the canard cycle [START_REF] Kuehn | Multiple time scale dynamics[END_REF][START_REF] Zvonkin | Non-standard analysis and singular perturbations of ordinary differential equations[END_REF].

Two kinds of canard cycles are studied in literature [START_REF] Krupa | Relaxation oscillation and Canard explosion[END_REF][START_REF] Kuehn | Multiple time scale dynamics[END_REF][START_REF] Eckhaus | Relaxation oscillations including a standard chase on French ducks Asymptotic Analysis II[END_REF]. They are known as canard cycle without head and canard cycle with head. We recall some of the results from [START_REF] Wang | Canards heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized holling type IIIs[END_REF][START_REF] Kuehn | Multiple time scale dynamics[END_REF] to define different kinds of canard cycles and their stability. Let s * = v f -v ext , where v ext is the v-coordinate of the point of exit of the slow trajectory from the critical manifold C 0 0 and v f is the v-coordinate of the fold point. Using similar approach as discussed in [START_REF] Chowdhury | Oscillations and pattern formation in a slow-fast prey-predator system[END_REF] we can find v ext . We define the continuous family of singular slow-fast cycles

Γ (s) for s ∈ [0, s * ]. Let u l (s) < u r (s) are the two distinct roots of F (u) = v ext + s. We define u r such that F (u r ) = v ext and u l (0) = u l , then (i) the cycles Γ (s) = {(u, F (u)) : u ∈ [u l (s), u r (s)]} ∪ {(u, v ext + s) : u ∈ [u l (s), u r (s)]}, for s ∈ (0, s * ) corresponds to canard without head, (ii) the cycles Γ (s) = {(u, F (u)) : u ∈ [u l (s), u r ]} ∪ {(u, v ext + s) : u ∈ [u l , u l (s)]} ∪ {(u l , v) : v ∈ [v ext + s, v ext ]} ∪ {(u, v ext ) : u ∈ [u l , u r ]}, for s ∈ (0, s * ) corresponds to canard with head.
These cycles are illustrated schematically in Fig. 2. To explain the notion of stability of the canard cycles we follow [START_REF] Wang | Canards heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized holling type IIIs[END_REF][START_REF] Maesschalck | Planar Canards with transcritical intersections[END_REF] to define the slow divergence integral. The integrand is given by the divergence of the vector field along the critical (slow) manifold. For the cycles of type (i) we define the slow divergence integral as and for the cycles of type (ii) we set

I(s) = ∫ u l (s) ur (s) ∂f ∂u (u, F (u)) F ′ (u) g(u, F (u)) du
Ĩ(s) = ∫ u l (s) ur ∂f ∂u (u, F (u)) F ′ (u) g(u, F (u)) du + ∫ vext vext +s ∂f ∂u (0, v) g(0, v) dv.
In order to proceed further, we recall the following theorem: [START_REF] Wang | Canards heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized holling type IIIs[END_REF], De Maesschalck [START_REF] Maesschalck | Planar Canards with transcritical intersections[END_REF]). For sufficiently small ε > 0, the stability of the perturbed canard cycles depends on the sign of the slow divergence integral. If I(s) < 0 (or > 0), then the canard cycle without head is stable (or unstable) and if Ĩ(s) < 0 (or > 0), then the canard cycle with head is stable (or unstable).

Theorem 2.1 (Wang & Zhang
Another kind of periodic solution which was the focus of study in the context of slow-fast system is relaxation oscillation. Most of the studies in literature [START_REF] Krupa | Relaxation oscillation and Canard explosion[END_REF][START_REF] Kuehn | Multiple time scale dynamics[END_REF] deals with relaxation oscillation where the critical manifold is a Sshaped curve. However, in this manuscript we define the relaxation oscillation in line with the different canard cycles.

Definition 2.4. Let Γ 0 = {(u, F (u)) : u ∈ [u f , u r ]} ∪ {(u, v f ) : u ∈ [u l , u f ]} ∪ {(u l , v) : v ∈ [v ext , v f ]} ∪ {(u, v ext ) : u ∈ [u l , u r
]}, be the singular trajectory consisting of concatenated slow and fast flow. Let N 0 be a small tubular neighborhood of Γ 0 . A continuous family of periodic orbits Γ ε is a family of relaxation oscillators if Γ ε converges to Γ 0 in the Hausdorff distance as ε → 0 [START_REF] Krupa | Relaxation oscillation and Canard explosion[END_REF].

At the Hopf bifurcation threshold, small amplitude limit cycles are known as canard without head (cf. the blue curve in Fig. 2). With the variation of parameter there is a rapid growth in the amplitude of the canard cycle. For 0 < ε ≪ 1, the canard cycle without head changes to canard with head (see the green curve in Fig. 2) at a certain parameter value (a threshold) known as maximal canard value. Further variation in parameter leads to the emergence of relaxation oscillation. In our earlier work [START_REF] Chowdhury | Oscillations and pattern formation in a slow-fast prey-predator system[END_REF], we have analytically determined these thresholds using blow-up technique. For convenience of reading, we briefly recall the main result (having it re-written in the notations of this paper): a theorem addressing the transition from small amplitude canard cycles to relaxation oscillation in an exponentially small parameter interval. 

Theorem 2.2. Let the fold point

(u f , v f ) be a canard point, 0 < ε ≪ 1,
|δ(s, √ ε) -δ c ( √ ε)| = O(e -K /ε ), for some K > 0 as ε → 0.
For more details, the reader is advised to check [START_REF] Chowdhury | Oscillations and pattern formation in a slow-fast prey-predator system[END_REF]; see also [START_REF] Krupa | Relaxation oscillation and Canard explosion[END_REF][START_REF] Kuehn | Multiple time scale dynamics[END_REF].

Transition from canard cycle to relaxation oscillation

In this subsection, we apply the above mathematical technique along with numerical simulations to investigate the properties of the temporal slow-fast system.

The critical manifold C 0 and the fold point on C 0 is independent of the time scale parameter ε. The coexistence equilibrium point E * of the system (1) is independent of ε, but the stability of E * depends on ε. Since the explicit expression of the equilibrium point and the Hopf bifurcation threshold cannot be calculated analytically, we rely on numerical simulations. In the δχ parametric plane the Hopf curve lies at a O(ε) distance from the curve of canard point, which we call fold curve throughout this paper to avoid any ambiguity. Thus, for a fixed value of χ, δ H → δ f as ε → 0. This is represented in Fig. 3(a) where the Hopf curves for three values of ε are shown along with the fold curve.

The intriguing slow-fast dynamics of system (1) for ε ≪ 1 can be seen in extremely narrow parametric regimes. To demonstrate the dynamics, we fix ε = 0.01 and numerically obtain the maximal canard curve and the relaxation oscillation curve in δχ plane. These curves along with the fold curve and Hopf bifurcation curve divides the parametric plane into seven domains where different dynamics of the system are observed. To represent this, we provide a schematic diagram in Fig. 3(b). The fold curve is denoted by a solid line (black) and near to this is the Hopf bifurcation curve (broken magenta curve). The maximal canard curve shown (broken red line) transversely cuts the Hopf curve at the GH point (black dot) and passes closely to the fold curve for higher values of χ. Finally, the blue dotted line is the curve of relaxation oscillation cycle which lies entirely in the parabolic region.

The entire domain outside the parabolic fold curve is denoted by Domain 1, and the entire domain enclosed by the relaxation oscillation curve is denoted by Domain 5. In Domain 1, the system has unique coexistence equilibrium point E * (u * , v * ) where u * > u f . It lies on the normally hyperbolic attracting sub-manifold of the critical manifold C 1 0 . E * (u * , v * ) is not only locally asymptotically stable but also globally asymptotically stable. In Domain 2, we have u H ≈ u f . From the stability analysis we obtain that the eigenvalues are complex conjugate with negative real part of the order of 10 -4 .

Thus, the trajectory converges to the coexistence equilibrium point with significantly slow rate of convergence. Also, for ε sufficiently small the Hopf bifurcation curve coincides with the fold curve. Keeping all the parameters fixed as in Fig. 3(a), we take values from Domain 2 such that χ = 4.28, δ = 0.1347. Then u H = 1.637, u f = 1.64 and the eigenvalues evaluated at E * are -9.5 × 10 -5 ± 0.2i. Domain 3 is enclosed by the super-critical Hopf bifurcation curve, the maximal canard curve and the GH point, whereas, Domain 7 is enclosed by the sub-critical Hopf bifurcation branch, the maximal canard curve and the GH point. The distinctive difference between these two domains is the number of slow-fast cycles and the stability of these cycles. In Domain 3, the coexistence equilibrium point loses its stability via super-critical Hopf bifurcation, and the family of canard cycles without head Γ (s), as defined above, are attracting for ε ≪ 1. Starting from the Hopf bifurcation curve, small amplitude canard cycle develops into large amplitude canard cycle with head (in Domain 4) and further to relaxation oscillations (in Domain 5) in an exponentially narrow interval giving rise to canard explosion. In Fig. 4, the stable canard cycles without head (cyan) emerges for the parameter values taken from Domain 3 which changes to canard with head (green) as we move from Domain 3 to Domain 4 and further to relaxation oscillations as we shift to Domain 5 (red). Domain 4 is characterized by the stable canard cycles Γ (s) of type (ii), that is canard with head.

In Domain 7, the coexistence equilibrium point regains its stability and small unstable canard cycle without head bifurcates, which is surrounded by stable canard cycle with head. Theorem 8.4.3 of [START_REF] Kuehn | Multiple time scale dynamics[END_REF] states that whenever the Hopf bifurcation is sub-critical, there exists a unique parameter value where the family Γ (s) undergoes a saddle-node bifurcation of limit cycles. We validate this numerically by taking the parameter values from Domain 7. For ν = 10, χ = 13, α = 1, β = 2.85, η = 1, ε = 0.01, the sub-critical Hopf bifurcation threshold δ H = 0.109049, and the stable equilibrium point E * is surrounded by an unstable canard cycle without head which again is surrounded by a stable canard cycle with head (cf. Fig. 5). The cycles coalesce through saddle-node bifurcation of limit cycle at δ SNC = 0.01090658, after which in Domain 6 the system settles down to a globally stable coexistence equilibrium point.

The system (1) therefore exhibits two different scenarios of canard explosion. Firstly, when the small amplitude stable canard cycles grows to large amplitude stable relaxation oscillations in an extremely small range of δ (see Fig. 4). Second, when the fast transition occurs from small amplitude unstable canard cycle to large amplitude stable canard cycle and further to stable relaxation cycle (see Fig. 5). The cyan and the green curve overlaps and thus cannot be distinguished in the Figure. 

Spatio-temporal model with slow-fast dynamics

We now consider the corresponding spatio-temporal slow-fast model:

∂u ∂t = ∂ 2 u ∂x 2 + νu ( 1 - u χ ) - βuv 1 + αu , ∂v ∂t = d ∂ 2 v ∂x 2 + ε ( βuv 1 + αu -ηv -δv 2 ) , (8) 
(in dimensionless variables) over a bounded one dimensional spatial domain Ω = [0, L], and d is ratio of the diffusivity coefficients of predator to prey. The eqs. ( 8) are complemented with the initial conditions:

u(0, x) = u 0 (x) ≥ 0, v(0, x) = v 0 (x) ≥ 0, x ∈ Ω, (9) 
and zero-flux boundary condition,

u x (t, 0) = u x (t, L) = v x (t, 0) = v x (t, L) = 0, t > 0, (10) 
corresponding to a closed ecosystem. In the following theorem we prove the existence and uniqueness of global solution of the above system ( 8)- [START_REF] Scheffer | Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system[END_REF].

Theorem 3.1. Suppose that all the parameters involved in the reaction part are non-negative and d > 0. If u 0 (x) ≥ 0, v 0 (x) ≥ 0, then the reaction-diffusion system (8)-( 10) has a unique non-negative solution (u(x, t), v(x, t)) ∀t > 0 and x ∈ Ω.

Proof. We have already defined the nonlinear terms of (8) as f (u, v) and g(u, v). Both f and g are C 1 functions. Clearly, (0, 0) is a lower solution of the system from the definition in [START_REF] Pao | Nonlinear parabolic and elliptic equations[END_REF]. Let us find ( ū, v) such that f ( ū, v) < 0 and g( ū, v) < 0 (the inequality can be non-strict). We can choose ū = χ, and v a positive solution of the algebraic equation βχ v -η v -δ v2 = 0. Then, 2 , the initial and boundary conditions are satisfied and ( ū, v) is the upper solution of the system. Thus, Theorem 5.2 of [START_REF] Pao | Nonlinear parabolic and elliptic equations[END_REF] shows that there exists a unique positive solution (u(x, t), v(x, t)) of the system ( 8)- [START_REF] Scheffer | Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system[END_REF] such that the following estimate hold 0 < u(x, t) < ū, 0 < v(x, t) < v for t ≥ 0 and x ∈ Ω. □

f ( ū, v) ≤ 0 = ∂ ū ∂t - ∂ 2 ū ∂x 2 , and g( ū, v) ≤ 0 = ∂ v ∂t -d ∂ 2 v ∂x

Local stability of steady state solutions

A steady state (u(x), v(x)) of the system ( 8)-( 10) is the solution of the following system

∂ 2 u ∂x 2 + νu ( 1 - u χ ) - βuv 1 + αu = 0, d ∂ 2 v ∂x 2 + ε ( βuv 1 + αu -ηv -δv 2 ) = 0, u x (t, 0) = u x (t, L) = v x (t, 0) = v x (t, L) = 0, x ∈ Ω, t > 0. ( 11 
)
The feasible steady state solutions are Ē0 = (0, 0), Ēχ = (χ , 0) and Ē * = (u * , v * ) where (u * , v * ) is the unique positive solution of f (u * , v * ) = 0 and g(u * , v * ) = 0. We follow [START_REF] Camara | Waves analysis and spatiotemporal pattern formation of an ecosystem model[END_REF] to investigate the stability of the above mentioned steady state solutions. For that we linearize the system (8) around a steady state Ē and obtain the linearized system as follows ∂W ∂t

= D∆W + L( Ē)W, W = (w 1 , w 2 ) T , (12) 
where

D = ( 1 0 0 d ) and L(u, v) = ⎛ ⎝ ν ( 1 -2u χ ) -βv (1+αu) 2 -βu 1+αu εβv (1+αu) 2 ε ( βu 1+αu -η -2δv ) ⎞ ⎠ .
Theorem 3.2. Let Ē0 , Ēχ be the steady state solutions of system (11) and x ∈ Ω. Then (i) Ē0 is unstable for 0 < ε ≪ 1, η > 0, ν > 0, and (ii) Ēχ is unstable for χ(βα) ≥ η and 0 < ε ≪ 1. Otherwise Ēχ is stable.

Proof. (i) The linearized system around Ē0 is given by ∂w

1 ∂t = ∆w 1 + νw 1 , ∂w 2 ∂t = d∆w 2 -εηw 2 ,
with the above boundary condition. To show that Ē0 is unstable we need to prove that the largest eigenvalue of the following eigenvalue problem is positive

∆w 1 + νw 1 = σ w 1 , d∆w 2 -εηw 2 = σ w 2 , (13) 
with above zero-flux boundary condition. Let σ 1 be the largest eigenvalue of the above eigenvalue problem and λ p be the principle eigenvalue of the problem

∆w 1 + νw 1 = λw 1 , x ∈ Ω, ∂w 1 ∂x ⏐ ⏐ ⏐ x=0,L = 0.
Using the boundary condition we thus have λ p > 0 and the associated eigenfunction is w1 . Now, if we take w 2 ≡ 0, then ( w1 , 0) satisfies the system (13) with σ = λ p . Thus, we constructed an eigenvalue λ p of the original system [START_REF] Wang | Canards heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized holling type IIIs[END_REF]. Therefore we must have σ 1 ≥ λ p > 0. Hence, Ē0 is unstable.

(ii) The linearized system around Ēχ is given as follows

∂w 1 ∂t = ∆w 1 -νw 1 - βχ αχ + 1 w 2 , ∂w 2 ∂t = d∆w 2 + ε ( βχ αχ + 1 -η ) w 2 ,
with the above boundary condition. The corresponding eigenvalue problem is

∆w 1 -νw 1 - βχ αχ + 1 w 2 = σ w 1 , d∆w 2 + ε ( βχ αχ + 1 -η ) w 2 = σ w 2 , (14) 
where x ∈ Ω and satisfying zero-flux boundary condition. Let σ 1 be the largest eigenvalue of the above eigenvalue problem. Let χ(βα) > 1 and λ p be the principle eigenvalue of the problem

d∆w 2 + ε ( βχ αχ + 1 -η ) w 2 = σ w 2 , x ∈ Ω, ∂w 2 ∂x ⏐ ⏐ ⏐ x=0,L = 0. ( 15 
)
Then by the previous argument λ p > 0 and the corresponding eigenfunction is w2 . Also, w1 is the solution of the problem

∆w 1 -(ν + σ )w 1 = βχ αχ + 1 w2 , x ∈ Ω, ∂w 1 ∂x ⏐ ⏐ ⏐ x=0,L = 0.
Then ( w1 , w2 ) is the solution of eigenvalue problem (14) with σ = λ p . Thus, the largest eigenvalue is positive and Ēχ is unstable.

Next, let χ(βα) < η and ( w1 , w2 ) be the principle eigenfunction of the problem ( 14) corresponding to the largest eigenvalue λ p . If w2 ̸ ≡ 0, then λ p is also the eigenvalue of [START_REF] Poggiale | Analysis of a predator-prey model with specific timescales: a geometrical approach proving the occurrence of canard solutions[END_REF]. Since χ(βα) < η we have λ p = βχ αχ +1 -η < 0. If w2 ≡ 0, then w1 ̸ ≡ 0 and the largest eigenvalue of the problem

∆w 1 -νw 1 = σ w 1 , x ∈ Ω, ∂w 1 ∂x ⏐ ⏐ ⏐ x=0,L = 0, is -σ < 0. Hence Ēχ is stable. □

Turing instability

Let Ē * = (u * , v * ) denote the homogeneous steady-state of the system (11). Linearizing the system in the vicinity of Ē * , we obtain the following system of linear PDEs. It describes the dynamics of initially small heterogeneous perturbations of u and v from their respective steady-states, in terms of the perturbation variables w 1 (t, x), w 2 (t, x):

∂w 1 ∂t = ∂ 2 w 1 ∂x 2 + a 11 w 1 + a 12 w 2 , ∂w 2 ∂t = d ∂ 2 w 2 ∂x 2 + a 21 w 1 + a 22 w 2 . ( 16 
)
We search the solution of ( 16) in the following form, w 1 (t, x) = µ 1 e λt cos(kx), w 2 (t, x) = µ 2 e λt cos(kx), [START_REF] Krupa | Relaxation oscillation and Canard explosion[END_REF] satisfying the boundary condition ( 9) where µ 1 , µ 2 ≪ 1 are two arbitrary constants, and k is the wavenumber.

Substituting (17) into the system (8) we obtain the characteristic equation

|M -λI 2 | = 0, (18) 
where

M k = ( a 11 -k 2 a 12 a 21 a 22 -k 2 d ) , (19) 
and a ij are the same as in [START_REF] Klomp | Intraspecific competition and the regulation of insect numbers[END_REF]. The characteristic Eq. ( 18) can be written explicitly as follows

λ 2 -((1 + d)k 2 -(a 11 + a 22 ))λ + h(k 2 ) = 0, ( 20 
)
where tr

(M k ) = (1 + d)k 2 -(a 11 + a 22 ), det(M k ) = h(k 2 ) and, h(k 2 ) = k 4 d -(a 11 d + a 22 )k 2 + a 11 a 22 -a 12 a 21 . (21) 
The homogeneous steady-state is stable under small heterogeneous perturbations if both roots of the characteristic Eq. ( 20) have negative real parts. Turing instability sets in if one root of the characteristic equation is zero at some critical wavenumber. The critical wavenumber k c is obtained by solving

dh(k 2 )
d(k 2 ) = 0 for k 2 , which is given by

k 2 c = 1 2d
(da 11 + a 22 ). ( 22) The Turing instability condition holds if h(k 2 ) < 0 for certain feasible k 2 in the range of (r 

The Turing bifurcation occurs if a ij satisfy the conditions a 11 a 22 < 0 and a 11 a 22 > a 12 a 21 . These two conditions can be written in compact form as follows Tr(M 0 ) < 0, Det(M 0 ) > 0.

(

) 24 
The wavenumber is given by k = nπ L , where L is the length of the domain [0, L], n is a natural number. The expression for k is guided by the no-flux boundary condition. Denote ω = π L , substituting k = n ω in the equation h(k 2 ) = 0 and solving for d, we find the explicit expression for Turing bifurcation boundary corresponding to nth mode,

d T (n) = n 2 ω2 a 22 -a 11 a 22 + a 12 a 21 n 2 ω2 (n 2 ω2 -a 11 ) . ( 25 
)
The Turing bifurcation curve Γ is given by the union of the boundaries of the curves d T (n) for all n ≥ 1 [START_REF] Mimura | Spatial segregation in competitive interactlon-diffusion equations[END_REF]. Homogeneous steady-state E * is stable below the Turing curve Γ and is unstable above it. Depending on the values of n, ω, and a ij , the value of d T (n) can either be positive or negative. We however, consider only the positive values of d T (n), which indicates the existence of multiple stationary heterogeneous solution for different values of n (≥ 1). The pattern which we obtain through numerical simulation is determined by the possible values of d T (n) and the maximum value of real part λ(k)

which we explain in details in the coming subsection.

Turing patterns

Here we discuss the patterns obtained due to the Turing instability and their bifurcation through numerical examples.

First we fix ν = 10, α = 1, β = 2.85, ε = 1, and δ, d are considered as the bifurcation parameters. We exploit the temporal dynamics of the model and consider two cases when system undergoes (a) super-critical Hopf bifurcation and (b) sub-critical Hopf bifurcation. In both the cases we choose the parameter values such that the system has a unique coexistence state. The Turing bifurcation curve (black) along with the unstable eigenmodes are presented in Fig. 6(a). We obtain infinitely many Turing bifurcation curves corresponding to the unstable eigenmodes in the pure Turing domain.

But the question we want to address here is, among all the unstable modes which n-th mode is most unstable that leads to pattern formation.

We choose the parameter values δ = 0.132 and d = 25. From the dispersion relation we obtain that the largest real part of the eigenvalues λ k is positive for k 2 1 = 0.2015 < k 2 < 0.6432 = k 2 2 and for L = 100 we find the feasible values of n within the range 14 < n < 25. The chosen parameter set lies in the pure Turing domain below d T ( 14) but above the Therefore, the number of peaks in the specified domain is 100 11.23 ≈ 8.9. We find the stationary pattern with nine peaks shown in Fig. 6(c).

To understand the change of patterns due to the variation of parameter values and the involved bifurcations, we choose three different values of χ keeping δ = 0.11 fixed. The parameter value χ = 3.8 is inside the Turing instability domain but less than the supercritical Hopf-bifurcation threshold χ H 1 = 3.966. For this choice of χ we find stationary Turing pattern. Next we choose χ = 4.5 which belongs to Turing-Hopf domain and the resulting pattern for d = 20 is homogeneous in space and oscillatory in time. Finally, we choose χ = 12.25 in the Turing instability domain, such that χ H 2 (= 12.1) < χ < χ SNL (= 12.2522993). In this case we find stationary Turing pattern for d > d cr (= 6.56) considering the initial condition as a small perturbation to the homogeneous steady state. However, for a large homogeneous perturbation around the steady state we find homogeneous in space and oscillatory in time solution. The bi-stable dynamics of the temporal model is responsible for the existence of two different spatio-temporal solution corresponding to different initial conditions.

For ε ≪ 1, the solution of the spatio-temporal model closely resembles with the temporal solution. For instance, keeping d = 10 and ε = 0.01 fixed, the homogeneous in space and oscillatory in time solution of the spatio-temporal model bifurcates from the stationary steady state at δ = 0.14444. The small amplitude periodic solution exists nearly up to δ = 0.14442. Further decreasing δ, we observe a sharp rise in the spatial average density of the prey species in an extremely narrow interval of δ exhibiting spatio-temporal canard explosion [START_REF] Avitabile | Spatiotemporal canards in neural field equations[END_REF]. We represent this phenomenon through a bifurcation diagram in Fig. 7. The phase-space trajectory of the spatial average of the prey and predator density closely coincides with the phase-space trajectory of the non-spatial case. Further, for ε → 0, the solution of the spatially extended system resembles like relaxation oscillation.

In presence of slow-fast timescale, the temporal Hopf-bifurcation threshold (δ H ) increases and the pure Turing domain shifts upwards in the δd parameter space as shown in Fig. 8(a). We fix the parameter values as in Fig. 6 except ε.

By decreasing ε, the stability region for homogeneous steady-state in the parametric space decreases and we obtain a narrow Turing domain even for large value of d. The Hopf-bifurcation curve and Turing bifurcation curves with different eigenmodes are shown in Fig. 8(b) for ε = 0.1. The instability curves for the unstable eigenmodes n = 6, 7, 8, 9 are presented which are close to the Turing bifurcation curve. We can verify analytically as before, that for δ = 0.1432, d = 140, (marked with magenta dot in 8(b)) the rapidly growing eigenmode is 7, whereas for δ = 0.1437, d = 340, (blue dot in 8(b)) eigenmode 6 is the most unstable and we find stationary Turing pattern.

Transient spatio-temporal dynamics

We begin with several formal definitions, in particular to define the ω-limit set, the relaxation time and the long transient. The properties of spatio-temporal system are much more complicated than those of the corresponding temporal (non-spatial) one and an analytical investigation of transient spatio-temporal dynamics is extremely challenging. Hence, most of the results in this section are obtained using numerical simulations. The formal definitions provide a rigorous mathematical framework that is used to understand the model's properties, especially the properties of long transient dynamics. For the convenience of the readers we re-write these definitions (with the notations of this paper) based on the descriptions and results mentioned in [START_REF] Gorban | Singularities of transition processes in dynamical systems: qualitative theory of critical delays[END_REF] and [START_REF] Gorban | Singularities of transient processes in dynamics and beyond, comment on long transients in ecology: Theory and applications by andrew morozov, others[END_REF]. Definition 4.1. Let the phase space X and the parameter space K are compact metric spaces. Let the flow be given by the function f of three arguments, ξ ∈ X (of initial condition), k ∈ K (the parameter value) and t ≥ 0, with values in X : f (t, ξ , k) ∈ X . The ω-limit set ω(ξ , k) is the set of all limit points of f (t, ξ , k) as t → ∞ [START_REF] Gorban | Singularities of transition processes in dynamical systems: qualitative theory of critical delays[END_REF].

For instance, if a motion goes to an equilibrium then ω(ξ , k) consists of this equilibrium. If it goes to a periodic orbit then the ω(ξ , k) consists of the points of this orbit. We next define the relaxation time, that is, the time of the motion to ω(ξ , k) for a particular initial condition and parameter value. Definition 4.2. Let ϵ > 0, then for a fixed ξ ∈ X and k ∈ K , we define the relaxation time as either of the following:

• the time (τ 1 ), during which the system moves from the initial state ξ into the ϵ-neighborhood of ω(ξ , k), given as

τ 1 (ξ , k, ϵ) = inf{t > 0 : ρ * (f (t, ξ , k), ω(ξ , k)) < ϵ}, • the time (τ 2 ), outside the ϵ-neighborhood of ω(ξ , k), τ 2 (ξ , k, ϵ) = meas{t > 0 : ρ * (f (t, ξ , k), ω(ξ , k)) ≥ ϵ},
• the time (τ 3 ) of final entry into it τ 3 (ξ , k, ϵ) = inf{t > 0 : ρ * (f (t ′ , ξ , k), ω(ξ , k)) < ϵ, t ′ > t}, where meas is the Lebesgue measure and ρ * is the distance between the two sets in a given metric [START_REF] Gorban | Singularities of transition processes in dynamical systems: qualitative theory of critical delays[END_REF].

There is therefore more than one way to define the relaxation time, as in any particular dynamical system, generally speaking, τ 1 , τ 2 and τ 3 can differ significantly. Definition 4.3. Transient is the process of relaxation from the initial state to the (small) ϵ-vicinity of ω(ξ , k). Long transients arises when either (or all) of the relaxation times is (are) much longer than expected [START_REF] Gorban | Singularities of transition processes in dynamical systems: qualitative theory of critical delays[END_REF][START_REF] Gorban | Singularities of transient processes in dynamics and beyond, comment on long transients in ecology: Theory and applications by andrew morozov, others[END_REF]: by varying the parameter, its duration can be made infinitely long [START_REF] Morozov | Long transients in ecology: Theory and applications[END_REF].

The duration of transients is especially long near the bifurcations of the ω-limit sets. For the detailed mathematical theory behind the existence of long transient, we refer the readers to [START_REF] Gorban | Singularities of transition processes in dynamical systems: qualitative theory of critical delays[END_REF][START_REF] Gorban | Singularities of transient processes in dynamics and beyond, comment on long transients in ecology: Theory and applications by andrew morozov, others[END_REF] and the references therein.

In a spatially extended system, we expect to see much more complex dynamics than in the temporal counterpart. In this section, we explore new kinds of transients in the spatial system when the parameter values are taken very close to or far away from the bifurcation thresholds. Our choice of the parameters is such that the corresponding non-spatial system falls into one of the following options: (a) The coexistence steady state E * is the only attractor of the temporal model ( 1); (b) The temporal model exhibits bistability, that is, E * is stable and coexists with a stable limit cycle. Their basin of attraction is separated by a separatrix which is an unstable limit cycle.; (c) The coexistence steady stable is unstable and the stable limit cycle surrounding E * is the only attractor of the temporal system [START_REF] Schoener | Field experiments on interspecific competition[END_REF].

We simulate our model choosing different parameter values corresponding to the cases mentioned above with spatial domain L = 200 with suitable choices of ∆t and ∆x. We consider the following initial condition to identify different transient behavior in the above mentioned cases

u(x, 0) = { u * + 0.02, |x -100| < 2 u * , |x -100| ≥ 2 , v(x, 0) = { v * + 0.01, |x -100| < 2 v * , |x -100| ≥ 2 , (26) 
For a better understanding of the behavior of the trajectories we introduce two auxiliary measures to quantify the degree of the spatial heterogeneity related to the population distribution. Namely, we consider such that these two variables give the norm of the variable u(x, t) in functional spaces C 0 and L 2 respectively. Similarly, we define these norms for the function v(x, t). The spatial average of u is denoted as ⟨u⟩ and is defined by ⟨u⟩ = 1 L ∫ L 0 u(y, t)dy, with a similar definition for ⟨v⟩.

u ampl (t) = ⏐ ⏐ u max (t) -u min (t) ⏐ ⏐
We first study the case for ε = 1, and then further we show how the transient dynamics changes with decreasing ε. We fix δ = 0.11. Then for χ = 3.8, the system has a unique stable steady state and the critical value of diffusion for Turing instability is d cr = 94.26. Thus, for d = 100 (d > d cr ), the parameter value lies in the pure Turing domain and the transient obtained is presented in Fig. 9. Fig. 9(a) shows the plot of (⟨u⟩, ⟨v⟩, u grad ), Fig. 9(b) shows the trajectory of (⟨u⟩, u ampl , u grad ), Fig. 9(c) shows the variation of the spatial average of prey density with respect to time and Fig. 9(d) shows the corresponding transient pattern. From the time series plot, we see that after some initial oscillations, the system stays near the steady state for a considerable time before settling to a different stationary state with higher norm value. For the temporal model, at χ = 12.25 we observe bi-stability, that is, a stable limit cycle and a stable steady state coexists.

For the spatio-temporal model, depending on the value of d and the initial state of the system, the trajectory either converges to a stationary steady state after some initial oscillatory transient or to homogeneous in space and periodic in time solution. Because of the presence of an unstable limit cycle in the temporal model, the transient dynamics is chaotic. This is presented in Fig. 10. Note that, depending on the magnitude of parameter d, the nature of the oscillation remains the same (chaotic) but the duration of the transient increases to infinity when d → d cr (≈ 6.56). Therefore, whenever the background parameters of the system is close to the bifurcation threshold, it exhibits long chaotic transient. This is illustrated in Fig. 11 for different values of d ranging from d = 6.6 to d = 15. The rate of increase of the duration of the transient chaotic regime when d approaches d cr is well described by a power law (which transforms into a straight line in the log-log scale), as is readily seen from the graph shown in Fig. 11c.

For χ = 4 and d = 50, the steady state is unstable and the spatio-temporal limit cycle almost coincides with the temporal limit cycle. However, using the same initial condition, for d = 55, the system dynamics converges to a stationary state; see Fig. 12. Therefore, changing the value of d but keeping other parameters fixed, either a stationary solution or periodic regime occurs. For χ = 11.9, the coexistence equilibrium is unstable surrounded by a stable limit cycle but very near to subcritical Hopf threshold. Here the system approaches a periodic orbit after spending a significant amount of time enclosing a surface in the three dimensional space, as if there exists an attractor of the system, hence forming a Now, while decreasing ε, the global attractor of the system changes from stable stationary state to periodic depending on the other temporal parameters. Though the initial transient time decreases considerably when limit cycle is the attractor of the system, but there exists long period of stasis and rapid oscillations. For instance, in Fig. 14(a) the transient time and the irregular periodic oscillations increases with decreasing ε, whereas in Fig. 14(b) the initial transient decreases giving rise to large amplitude spatio-temporal canard like solution which is homogeneous in space and oscillatory in time, see Fig. 14(c). We validate this by tracking the variables u and v at a particular space point. From the time series analysis in Fig. 14(c) we observe that the slow variable u takes much longer time in the transition from high density to low, which is along the critical manifold C 1 0 . After some initial transients the slow flow of the trajectory along the critical manifold makes a fast jump from the vicinity of the fold point. We therefore conclude the following points:

• If a stable equilibrium point is the only attractor of the temporal model, then with decreasing ε the transient increases in the corresponding spatio-temporal model and it takes longer time to settle down to a stationary heterogeneous state (cf. Fig. 14(a)).

• When the system is bistable, and specifically for parameter values very near to the saddle-node bifurcation threshold of limit cycles (δ = 0. • If a stable limit cycle, surrounding an unstable coexistence steady-state, is the only attractor of the temporal system, then with decreasing ε the transient decreases. The number of oscillations in t ∈ [0, 400] decreases with ε ≪ 1. However, the time taken for one complete cycle increases with decreasing ε. (cf. Fig. 14(c)).

Conclusion

The classical Rosenzweig-MacArthur (RM) model shows two types of coexistence scenarios, a steady-state attractor and oscillatory coexistence [START_REF] Mukherjee | Cross-diffusion induced Turing and non-Turing patterns in Rosenzweig-MacArthur model[END_REF]. The RM model with the inclusion of intraspecific competition among the predators is known as Bazykin model [START_REF] Bazykin | Nonlinear dynamics of interacting populations[END_REF]. The introduction of intraspecific competition induces complex dynamical features exhibited by the system, which range from bi-stability to extinction through BT-bifurcation [START_REF] Lu | Global analysis in Bazykin's model with Holling II functional response and predator competition[END_REF]. It significantly alters the basin of attraction of coexistence steady state, and depending on the initial population densities, the stable coexistence state or the oscillatory coexistence is observed. The coexistence of two stable attractors is separated by the unstable limit cycle generated through a global bifurcation called saddle-node bifurcation of limit cycles. Unlike the RM model with a slow-fast timescale, the onset of oscillatory dynamics for the Bazykin model depends explicitly on ε. This dependence is shown on the δχ parametric domain for different value of ε in Fig. 3(a). One of the objectives of this work is to reveal the critical relation between the key model parameters responsible for a change in the system dynamics, namely, dimensionless carrying capacity of prey population (χ ), predator death rate due to intraspecific competition (δ) and the timescale parameter (ε).

Most of the analysis already done in this direction is based on the problem which possesses/admits a single stable limit cycle. Hence, the onset of large amplitude oscillation due to canard explosion and the existence of relaxation oscillation has received considerable attention over the last few years. However, the effect of the slow-fast timescale for the systems which exhibit bi-stability remains poorly explored. Here we have studied the temporal dynamics of the slow-fast Bazykin's model in a two-parametric plane. We divided the δχ plane into seven domains, and the system's dynamics in each domain were discussed. The Hopf bifurcation curve, curve of canard point, maximal canard curve, and relaxation oscillation curve are obtained numerically in the two-parametric bifurcation diagram (cf. Fig. 3(a,b)). We choose the carrying capacity of the prey (resources) as the bifurcation parameter to observe the drastic change in the system's dynamics. The Hopf curve in the δχ plane have a parabolic shape (see Fig. 3(a)). Thus, for a fixed δ, as we increase χ, we encounter two Hopf bifurcation thresholds, where one is super-critical, and the other one is sub-critical. In Domain 3, at the super-critical Hopf threshold δ H = 0.144436, the stable canard cycle without head at δ = 0.14443 changes to stable canard with head at δ = 0.14442 and further to relaxation oscillation at δ = 0.1444. This drastic change in the amplitude of the limit cycles through stable canard cycles occurs in an exponentially small parameter interval, that is, for δ ∈ (0.1444, 0.144436) (cf. Theorem 2.2 and Fig. 4). Whereas, in Domain 7, the coexistence steady state gains stability through sub-critical Hopf
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 1 Fig. 1. Two-parametric bifurcation diagram of system (1) for ν = 10, α = 1, β = 2.85, η = 1 and ε = 1. The solid magenta curve represents the Hopf curve, GH (black dot) is the generalized Hopf bifurcation point on the Hopf curve. The broken line represents the saddle-node bifurcation curve of limit cycles. The local dynamics of the system is shown in the inset for two different points in δχ parameter plane as mentioned in the text. The non-trivial prey and predator nullcline are shown in the black solid curve and the black broken curve.The stable and unstable attractors are marked by green and red color. That is, the stable limit cycle (equilibrium) is represented by the green curve (dot), whereas the unstable limit cycle (equilibrium) is represented by the red curve (dot).
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 2 Fig. 2. Schematic representation of the singular slow-fast cycles in the system where Type (i) cycle is marked with blue, and Type (ii) cycle is marked with green. The canard cycle (with and without head) obtained for the system (1) are perturbation of the singular cycles. Note that the two cycles lie very close to each other at the top (parabolic-shaped) part of the curve.
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 3 Fig. 3. (a) The Hopf bifurcation curves for ν = 10, α = 1, β = 2.85, η = 1 and ε = 1 (black), ε = 0.5 (blue), ε = 0.01 (magenta) and the curve of canard point in δχ plane; (b) The schematic bifurcation diagram for ε = 0.01 and keeping all the parameters fixed as in (a) where Hopf bifurcation curve (magenta), curve of canard point (black), the maximal canard curve (red) and the relaxation oscillation curve (blue) is shown. The curves divide the parameter plane into seven domains with different properties, see details in the text.

Fig. 4 .

 4 Fig. 4. Family of canard cycles for ν = 10, χ = 6, α = 1, β = 2.85, η = 1, ε = 0.01 for three different values of δ. Canard cycle without head for δ = 0.14443 (cyan), canard cycle with head for δ = 0.14442 (green), and relaxation oscillation cycle for δ = 0.1444 (red). The black solid curve represents the prey nullcline. The predator nullclines are shown by dashed curve for δ = 0.14443 (cyan), δ = 0.14442 (green), and δ = 0.1444 (red).

Fig. 5 .

 5 Fig. 5. (a) Unstable canard cycle without head (red) and stable canard cycle with head (green) at δ = 0.1090657, inset showing zoomed figure near the equilibrium, (b) Stable canard cycle with head before relaxation oscillation (green) at δ = 0.10904, other parameters are fixed at ν = 10, χ = 13, α = 1, β = 2.85, η = 1, and ε = 0.01. Green and red dots correspond to stable and unstable equilibrium point, respectively.

Fig. 6 .

 6 Fig. 6. (a) The Turing instability curves for the unstable spatial modes are shown where the unstable spatial modes are marked in the legend and the dashed vertical Hopf line represents the Hopf curve. (b) The stationary Turing pattern showing approximately 9.5 peaks for parameter value in Turing domain (δ, d) = (0.132, 25), (c) stationary Turing pattern showing approximately 9 peaks for parameter value in Turing domain (δ, d) = (0.135, 33). Other parameter values are ν = 10, χ = 6, α = 1, β = 2.85, η = 1, ε = 1.

Fig. 7 .

 7 Fig. 7. The plot of the spatial average of the prey density against parameter δ, exhibiting spatio-temporal canard explosion in a narrow interval for ε = 0.01. Other parameter values are fixed at ν = 10, χ = 6, α = 1, β = 2.85, η = 1, d = 10.

Fig. 8 .

 8 Fig. 8. (a) The Turing (black, green, magenta) and Hopf curves (blue, orange, red) for ε = 0.1, ε = 0.05, and ε = 0.01, (b) The Turing curve (black) for ε = 0.1 along with few unstable modes are shown. Other parameter values are ν = 10, χ = 6, α = 1, β = 2.85, η = 1.

Fig. 9 .

 9 Fig. 9. Spatio-temporal dynamics of system (8) quantified in different ways: (a) the plot of (⟨u⟩, ⟨v⟩, u grad ), (b) the trajectory of (⟨u⟩, u ampl , u grad ), (c) the initial transient dynamics, i.e plot of (⟨u⟩, t) and (d) the transient patterns. (a, b, c, d) for χ = 3.8, d = 100. Other parameters are ν = 10, α = 1, β = 2.85, η = 1, ε = 1 and δ = 0.11. Green and red square mark the initial and end points respectively.

  ghost attractor. This gives rise to long transient. Two different types of transient dynamics obtained for d = 5, and d = 25 are shown in Fig. 13.

Fig. 10 .

 10 Fig. 10. Spatio-temporal dynamics of system (8) quantified in different ways: (a) the plot of (⟨u⟩, ⟨v⟩, u grad ), (b) the trajectory of (⟨u⟩, u ampl , u grad ), (c) the initial transient dynamics, i.e plot of (⟨u⟩, t), and (d) the transient patterns for χ = 12.25, d = 10. Other parameters are ν = 10, α = 1, β = 2.85, η = 1, ε = 1 and δ = 0.11. Green and red square mark the initial and end points respectively.

Fig. 11 .

 11 Fig. 11. (a) The duration of the transient is plotted against the value of d ∈ [6.7, 15]. (b) Zoomed figure of (a) for d ∈ [6.7, 7.4]. (c) The same as in (b) but shown in log-log scale (logarithmic for both axes). The plot is very close to a straight line, which indicates that the transient duration depends on |d -d cr | as a power law.

  11, χ SNL = 12.2523), we initially observed long chaotic transient. But for ε < 1 the transient time and the irregularity of the transient decreases. But there exists alternate period of stasis and sudden jumps (cf. Fig. 14(b)).

Fig. 12 .

 12 Fig. 12. Spatio-temporal dynamics of system (8) quantified in different ways for χ = 4, δ = 0.11, and d = 50 (first and second panels), d = 55 (third and fourth panels): (a) the plot of (⟨u⟩, ⟨v⟩, u grad ), (b) the trajectory of (⟨u⟩, u ampl , u grad ), (c) the initial transient dynamics, i.e plot of (⟨u⟩, t), and (d) the transient patterns. Green and red square mark the starting and ending points respectively. Other parameter values are ν = 10, α = 1, β = 2.85, η = 1, ε = 1.

Fig. 13 .

 13 Fig. 13. Spatio-temporal dynamics of system (8) quantified in different ways for χ = 11.9, δ = 0.11, and d = 5 (first and second panels), d = 25 (third and fourth panels): (a) the plot of (⟨u⟩, ⟨v⟩, u grad ), (b) the trajectory of (⟨u⟩, u ampl , u grad ), (c) the initial transient dynamics, i.e plot of (⟨u⟩, t), and (d) the transient patterns. Green and red square mark the starting and ending points respectively. Other parameter values are ν = 10, α = 1, β = 2.85, η = 1, ε = 1.

Fig. 14 .

 14 Fig. 14. Comparative study of transients for varying values of ε. First column of each sub-figure shows the time series plot of spatial average prey density and the second column shows the corresponding spatial distribution of prey density for: (a) χ = 3.8, δ = 0.11, d = 100, (b) χ = 12.25, δ = 0.11, d = 10, (c) χ = 11.9, δ = 0.11, d = 1.8. Other parameter values are fixed as given in text.

  11 d + a 22 + √ (a 11 d + a 22 ) 2 -4d(a 11 a 22 -a 21 a 12 )

-, r + ) where r -(d) = a 11 d + a 22 -√ (a 11 d + a 22 ) 2 -4d(a 11 a 22 -a 21 a 12 ) 2d , r + (d) = a 2d . The critical wavenumber k c is a real number, d > 0, feasible existence of k c demands the satisfaction of the implicit parametric restriction da 11 + a 22 > 0, and a 11 + a 22 < 0. These two condition can be simultaneously satisfied if a 11 and a 22 are of opposite sign. Equation of the Turing bifurcation curve can be obtained by substituting k 2 c in h(k 2 ) = 0 as follows da 11 + a 22 = 2 √ d √ a 11 a 22 -a 12 a 21 .
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bifurcation (δ H = 0.109049), and an unstable canard cycle without head emerges surrounded by a stable canard cycle. The coexisting canard cycles at δ = 0.1090657 coalesce through saddle-node bifurcation of limit cycle at δ = 0.01090658, and finally we obtain the stable relaxation oscillation at δ = 0.10904 (cf. Theorem 8.4.3 of [START_REF] Kuehn | Multiple time scale dynamics[END_REF] and Fig. 5). Therefore, in this work, we captured two kinds of transition, small amplitude stable or unstable canard cycle without head changes to stable canard cycle with head and relaxation oscillation in narrow parametric domains. These kinds of transitions are known as canard explosions in the literature of slow-fast systems [START_REF] Krupa | Relaxation oscillation and Canard explosion[END_REF][START_REF] Kuehn | Multiple time scale dynamics[END_REF].

A spatially explicit system inherits the main properties of the corresponding non-spatial system but can also exhibit additional dynamical behaviors that substantially increase the overall system's dynamical complexity. In particular, the spatial Bazykin's model can produce self-organized spatial and spatio-temporal patterns. Along with the Hopf, the Turing threshold also depends on ε. Thus, the co-dimension 2 Turing-Hopf bifurcation point also shifts with the variation of ε. The size of the Turing domain for a fixed range of parameter values shrinks in size (cf. Fig. 8), and the stationary Turing solution loses its stability forming homogeneous in space and oscillatory in time solution. Whenever the temporal model exhibits bi-stability, the existence of the stationary Turing solution depends on the choice of the initial conditions. Since the spatio-temporal model is infinite-dimensional, it is impossible to determine the basin of attraction of the stable homogeneous steady states, stationary Turing patterns, and oscillatory in-time solutions. Therefore we take the help of extensive numerical simulations to study stationary as well as dynamic solutions. For sufficiently smaller values of ε > 0, the solution of the spatio-temporal closely resembles that of the temporal model. The stationary steady state bifurcates to small-amplitude periodic solution and then to large amplitude periodic solution in the interval δ ∈ [0.14440, 0.14444] (cf. Fig. 7). The drastic change in the amplitude of the periodic in time solution results in spatio-temporal canard explosion. As far as our knowledge goes, the mathematical theory behind the spatio-temporal canard explosion is very rare in literature [START_REF] Avitabile | Spatiotemporal canards in neural field equations[END_REF]. However, we can intuitively relate this to the explosion of the ω-limit set [START_REF] Gorban | Singularities of transition processes in dynamical systems: qualitative theory of critical delays[END_REF] to justify our observation.

For the parameter values close to the temporal (Hopf) and spatial (Turing) instability, we observe long transients before the solution settles down to any self-organizing pattern. The numerical detection of the Turing pattern thus becomes even more challenging for parameter values close to the Turing-Hopf threshold. The system may also settle down to a stationary pattern after a long transient if the parameter values are chosen from the Turing-Hopf domain and close to the Turing-Hopf threshold.

While the Hopf and Turing bifurcations shape the large-time (asymptotical) system properties, the final pattern (or, more generally, the final dynamical regime) does not appear until after the initial transients die out. Remarkably, the duration of the initial transients can be very long, in fact infinitely long, when d approaches its bifurcation value (cf. Fig. 11). It is this property of the initial transients to become, under certain conditions, very long that makes them particularly relevant to the real-world ecological dynamics [START_REF] Hastings | Transients: the key to long-term ecological understanding?[END_REF][START_REF] Hastings | Transient phenomena in ecology[END_REF][START_REF] Morozov | Long transients in ecology: Theory and applications[END_REF]. In this paper, we have shown that the interaction between the predator intraspecific competition and multiple timescales produces a wide variety of long transients. In ecology, these transients can last for dozens or even hundreds of generations before the asymptotical pattern takes over; see Figs. 9-14. 
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