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Merge Tree Geodesics and Barycenters with Path Mappings

Florian Wetzels , Mathieu Pont , Julien Tierny , and Christoph Garth

Wasserstein Geodesic Path Mapping Geodesic

Fig. 1: Two merge tree geodesics with their corresponding mappings. The top row shows the mappings of critical points (restricted to
maxima) embedded into the domain. In the bottom row the mapping between the two corresponding merge trees and their interpolated
geodesic is shown. The most persistent mapped features are highlighted and colored to show the correspondence between embedding
and planar layout. The Wasserstein geodesic can be seen on the left, the path mapping geodesic on the right. Clearly, the middle
tree on the right is a more meaningful interpolation of the two input trees than the middle tree on the left; and yields a more intuitive
correspondence between the nodes. Note that the used layout differs between the two figures. However, the two trees in front are
indeed identical in both figures, as are the trees in the back.

Abstract—Comparative visualization of scalar fields is often facilitated using similarity measures such as edit distances. In this paper,
we describe a novel approach for similarity analysis of scalar fields that combines two recently introduced techniques: Wasserstein
geodesics/barycenters as well as path mappings, a branch decomposition-independent edit distance. Effectively, we are able to
leverage the reduced susceptibility of path mappings to small perturbations in the data when compared with the original Wasserstein
distance. Our approach therefore exhibits superior performance and quality in typical tasks such as ensemble summarization, ensemble
clustering, and temporal reduction of time series, while retaining practically feasible runtimes. Beyond studying theoretical properties of
our approach and discussing implementation aspects, we describe a number of case studies that provide empirical insights into its
utility for comparative visualization, and demonstrate the advantages of our method in both synthetic and real-world scenarios. We
supply a C++ implementation that can be used to reproduce our results.

Index Terms—Topological data analysis, merge trees, scalar data, ensemble data

1 INTRODUCTION

The comparison of scalar fields through edit distances or related similar-
ity measures is an area of increasing interest in scientific visualization.
Specifically in the growing field of ensemble visualization, comparative
analysis techniques are of high interest, as the data becomes more and
more complex. Since the size of scalar fields acquired from real-world
experiments or simulation quickly makes direct comparison on the do-
mains infeasible, topological abstractions such as merge trees, contour
trees or persistence diagrams are used to derive efficient distance mea-
sures. This has lead to a rapid development in comparison techniques
on merge trees in recent years [4, 35, 43, 46, 50, 61, 62].
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Out of those, two prominent examples are Wasserstein barycenters
for merge trees and branch decomposition-independent edit distances.
The Wasserstein barycenter framework by Pont et al. [43] introduced
new analysis techniques based on barycenters and geodesics, in regards
to the Wasserstein distance for merge trees. Intuitively, barycenter
merge trees are an interpolated mean for a collection of merge trees,
based on a given metric, while a geodesic is a shortest continuous
path in this metric space of trees. The distance is an extension of the
well-known Wasserstein distance for persistence diagrams and is based
on the so-called degree-1 edit distance on branch decomposition trees
(BDT). Applications are, e.g., k-means [10, 17] clustering or temporal
reduction of time series. In contrast to that, the work of Wetzels et al.
introduced two novel comparison measures for merge trees: the branch
mapping distance [62] and the path mapping distance [61]. These are
edit distances tailored specifically to merge trees yielding better quality
comparison at the cost of increased complexity. The branch mapping
distance introduced the concept of branch decomposition-independent
edit distances, however, it does not fulfill the metric properties. The
path mapping distance is an improved variant which forms a metric and
represents an intuitive edit distance based on deformation retractions
on merge trees as continuous topological spaces.
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In this paper, we propose a combination of these techniques such
that the merge tree barycenter framework can take advantage of the
improved distance measures. More specifically, we implement barycen-
ters and geodesics based on the path mapping distance, since it is a
metric, making it better suited than the branch mapping distance. We
thereby increase the flexibility of the framework: depending on the type,
size and structure of the data, it is suited for high quality analysis using
the more precise but also more complex path mapping distance as well
as efficient and less precise analysis based on Wasserstein distances.
We then evaluate the new method in terms of quality and performance
on synthetic and real-world datasets. For the evaluation, we used three
visualizations and analysis tasks on which barycenters and geodesics
can be applied: ensemble summarization, ensemble clustering and tem-
poral reduction of time series. An example for significantly improved
interpolation on merge trees is illustrated in Fig. 1. We also briefly
compare path mapping barycenters to the only other method we know
of computing a merge tree representing a whole ensemble: the contour
tree alignment [30]. Here, we illustrate the fact the barycenter merge
trees are indeed valid merge trees, whereas (in general) the alignment
is not. In particular, our contributions are:

• We describe an algorithm to compute both path mapping
geodesics and path mapping barycenters.

• We provide an experimental evaluation for the utility of the new
method. Our experiments are – to our knowledge – the first that
show advantages of branch decomposition-independent compari-
son of real-world datasets, and advantages of path mappings over
branch mappings. Previously, the former had only been shown on
synthetic examples [61, 62]).

• We provide an open source implementation that is based on the
Topology ToolKit (TTK) [56], extending its barycenter framework.

We conclude this section with an overview over related work. In
Sec. 2, we give the formal background and recap path mappings and the
Wasserstein barycenter framework. Sec. 3 describes the new algorithm
for path mapping barycenters and geodesics. In Sec. 4, we present the
results of our experiments, before Sec. 5 concludes the paper.

Related Work
Topological abstraction or descriptors for scalar fields are a well-
established tool in scientific visualization with applications covering a
vast area of tasks such as assisting rendering and interaction [9, 41, 52],
comparing data [67] or deriving abstract visualizations [30, 59]. An
overview over these methods can be found in the survey by Heine
et al. [23]. We identified three areas specifically related to our work:
topology-based comparison of scalar fields, feature tracking (or more
general analysis of time series) and ensemble visualization.

Similarity Measures. Scalar field comparison through distances
on merge trees include several edit distances by Saikia et al. [46],
Sridharamurthy et al. [50, 51], Pont et al. [43] and Wetzels et al. [61,
62]. Examples for other merge tree-based distances are the works of
Beketayev et al. [4], Morozov et al. [37] or Bollen et al [5].

Apart from merge trees, scalar field comparison is often done via
distances on other topological descriptors such as contour trees [30,
54], persistence diagrams [11–14], reeb graphs [2, 3, 19] or extremum
graphs [38,55]. Some distances also combine geometric and topological
measures [21, 66, 68]. A survey on the methods can be found in [67].

Feature Tracking and Time Series. We classify topological meth-
ods for feature tracking into two major categories. One uses mappings
between topological descriptors to derive mappings between the fea-
tures of consecutive time steps. Examples based on merge trees are the
works of Lohfink et al. [29], Saikia et al. [46] or Pont et al. [43], while
other descriptors are used as well [15, 40]. The other class of methods
uses topological descriptors for feature identification and then applies
geometric techniques such as gradient or overlap mapping to find cor-
respondences. Examples are the works of Lukasczyk et al. [32–34],
Bremer et al. [6, 7, 64] or others [39, 47–49]. A method by Yan et
al. [66] combines geometric and topological measures. Furthermore,
topological methods can also be used for more advanced analysis of
time series such as temporal merge tree maps [26] or geodesics [43,57].

Ensemble and Uncertainty Visualization. Topological methods
for ensemble analysis include the above mentioned similarity measures
on topological descriptors. Apart from that, a typical approach is, given
an ensemble of topological descriptors, to compute a representative
summarizing the set of member descriptors. Examples are fuzzy con-
tour trees [30], merge tree 1-centers [68], the uncertain contour tree
layout [65], coherent contour trees [18], and Wasserstein barycenters of
merge trees [43] or persistence diagrams [58]. Based on the merge tree
barycenters, advanced statistical tools have also been proposed, such
as principal geodesic analysis for merge trees [44]. Other methods for
ensemble or uncertain data are found in [22, 27, 57, 65].

2 PRELIMINARIES

In this section, we quickly recap the concepts and definitions of merge
trees, the path mapping distance and the Wasserstein barycenters. In
most cases, we simply re-state the definitions from [43, 61, 62].

2.1 Merge Trees
Given a domain X with a continuous scalar function f : X→ R, the
merge trees of X, f represent the connectivity of sublevel or superlevel
sets. Depending on the direction, we call them join tree or split tree;
both form rooted trees. In this paper, we work on discrete representa-
tions of these rooted trees, called abstract merge trees and defined in the
following. The nodes of an abstract merge tree are critical points of the
domain X, f and the edges represent classes of connected components
of level sets. For simplicity and w.l.o.g. we restrict to abstract split
trees in the theoretic discussions (all arguments and definitions are easy
to adapt for join trees). A detailed introduction is given in [16, 36].

A rooted, unordered tree T is a connected, directed graph with
vertex set V (T ) and edge set E(T ), containing no undirected cycles
and a unique sink, which we call the root, denoted root(T ). For an edge
(c, p) ∈ E(T ), we call c the child of p and p the parent of c, i.e. we use
parent pointers in our directed representation.

As for general graphs, a path of length k in a rooted tree T is a
sequence of vertices p = v1 . . .vk ∈ V (T )k with (vi,vi−1) ∈ E(T ) for
all 2 ≤ i ≤ k and vi ̸= v j for all 1 ≤ i < j ≤ k. Note the strict root-to-leaf
direction of the vertex sequence: we only consider monotone paths.
For a path p = v1 . . .vk, we denote its first vertex by start(p) := v1, its
last vertex by end(p) := vk. We write v ∈ p if v = vi for some 1 ≤ i ≤ k
and e ∈ p if e = (vi,vi−1) for some 2 ≤ i ≤ k. We denote the set of
edges of p by edges(p) := {(vi,vi−1)}. We denote the set of all paths
of a tree T by P(T ).

Merge trees inherit the scalar function from their original domain
and thus are labeled trees. Usually, they are considered as node-labeled
trees, with the labels being defined through the scalar function on the
critical points. All merge trees have certain properties in common,
which we now use for the definition of an abstract merge tree.

Definition 1. An unordered, rooted tree T of (in general) arbitrary
degree (i.e. number of children) with node labels f : V (T )→R>0 is an
Abstract Merge Tree if the following properties hold:

• the root node has degree one, deg(root(T )) = 1,

• all inner nodes have a degree of at least two,
deg(v) ̸= 1 for all v ∈V (T ) with v ̸= root(T ),

• all nodes have a larger scalar value than their parent node,
f (c)> f (p) for all (c, p) ∈ E(T ).

For the path mapping distance and the corresponding geodesics, we
work on edge-labeled trees. Here, edge labels represent the length of the
scalar range of the edge. These two representations are interchangeable;
given a node label function f : V (T )→R>0, we define the correspond-
ing edge label function ℓ f : E(T )→R>0 by ℓ f ((u,v)) = | f (u)− f (v)|.
Given an edge label function, we can again define fℓ by placing the
root node at a fixed scalar value, e.g. 0.

We lift the edge label function ℓ of a merge tree T from edges to
paths in the following way: ℓ(v1 . . .vk) = ∑2≤i≤k ℓ((vi,vi−1)). For the
implicit edge labels ℓ f , we get ℓ f (v1 . . .vk) = | f (v1)− f (vk)|. To define
edit distances on merge trees, we also need to define a cost function
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to compare edges. Since we use R>0 as the label set for abstract
merge trees, we use 0 as the blank symbol, i.e. the label of an empty or
non-existing edge. Then, we define the cost function as the euclidean
distance on R≥0: c(l1, l2) = |l1 − l2| for all l1, l2 ∈ R≥0.

A branch of an abstract merge tree T is a path that ends in a leaf.
A branch b = b1...bk is a parent branch of another branch a = a1...aℓ
if a1 = bi for some 1 < i < k. We also say a is a child branch of
b. A set of branches B = {B1, ...,Bk} of a merge tree T is called a
Branch Decomposition of T if {edges(B1), ...,edges(Bk)} is a partition
of E(T ). We also call the length of a branch its persistence. The parent-
child relations of the branches in a branch decomposition B of T form
a tree structure by themselves. The tree built from the vertex set V = B
and edge set E, with (a,b) ∈ E if and only if b is a parent branch of a,
is called the Branch Decomposition Tree (BDT) of B. In practice, the
nodes of the BDT are labeled with the the birth and death values of its
branch (i.e. the scalar values of the first and last vertex [14]). Most of
the time, the branch decomposition derived by the elder rule (giving
longer/more persistent branches higher priority, see [14] for details) is
used. We denote it by B(X, f ) for a scalar field X, f . For simplicity,
we often write b ∈ B(X, f ) instead of b ∈V (B(X, f )).

2.2 Path Mapping Distance
We now recap the concepts of path mappings and the path mapping
distance between merge trees. Both were introduced in [61] to capture
a constrained variant of the deformation based edit distance defined in
the same paper. In contrast to classic edit mappings that map the nodes
of two trees onto each other, path mappings (as the name suggests)
map paths of one tree to paths of another tree. Similar to classic edit
mappings, they do so in a structure-preserving way. We now re-state the
definition of path mappings and the corresponding distance measure.

Definition 2. Given two abstract merge trees T1,T2, a path mapping
between T1 and T2 is a mapping M ⊆ P(T1)×P(T2) such that

1. (one-to-one) for all p1,q1 ∈ P(T1), p2,q2 ∈ P(T2) with
(p1, p2) ∈ M and (q1,q2) ∈ M, p1 = q1 if and only if p2 = q2,

2. (paths do not overlap) |p1 ∩ q1| ≤ 1 and |p2 ∩ q2| ≤ 1 for all
(p1, p2),(q1,q2) ∈ M,

3. (paths form a connected subtree) for all (p,q) ∈ M,

• (paths only meet at start/end) either there are paths
p′ ∈ P(T1) and q′ ∈ P(T2) such that (p′,q′) ∈ M and
start(p) = end(p′) and start(q) = end(q′),

• or start(p) = root(T1) and start(q) = root(T2).

For an edge e ∈ E(T1) (or a vertex v ∈V (T1)), we write e /∈ M (v /∈ M),
if there is no pair (p1, p2) ∈ M with e ∈ p1 (v ∈ p1). We use the same
notation for edges or vertices of T2.

For a path mapping M between two abstract merge trees T1, ℓ1 and
T2, ℓ2, we also define its corresponding edit operations edits(M). They
consist of the corresponding relabel, insert and delete operations:

rel(M) = {(ℓ1(p1), ℓ2(p2)) | (p1, p2) ∈ M},
ins(M) = {(0, ℓ2(e2)) | e2 ∈ E(T2), e2 /∈ M},
del(M) = {(ℓ1(e1),0) | e1 ∈ E(T1), e1 /∈ M}.

Then, we have edits(M) = rel(M)∪ ins(M)∪ del(M). Moreover, we
define the costs of a mapping via corresponding edit operations and
the path mapping distance as the costs of an optimal mapping:

c(M) = ∑
(l1,l2)∈edits(M)

c(l1, l2), δP(T1,T2) = min
M between T1,T2

{c(M)}. (1)

2.3 Wasserstein Distance and Barycenters
Next, we formalize the Wasserstein distance between merge trees as
well as Wasserstein barycenters and the algorithm computing them.
Pont et al. [43] introduced a metric between BDTs, formulated as a gen-
eralization of the celebrated Wasserstein distance between persistence
diagrams [14], which we briefly recap here. Let us first consider the

simple case where in both BDTs to compare (denoted B1 :=B(X1, f1)
and B2 := B(X2, f2)), all nodes are direct children of the root. This
situation corresponds to the classical formulation of the Wasserstein
distance between persistence diagrams. Each branch in B1 and B2 can
be represented as a 2D point by using its birth value as X coordinate
and its death value as Y coordinate. This yields, for each persistence
diagram, a 2D point cloud in the so-called birth/death plane. In this
representation, all the branches appear above the diagonal (since a
feature dies only after it was created).

To measure the distance between such BDTs B1 and B2, a first
pre-processing step consists in augmenting each BDT with projections
∆(b) for all off-diagonal points b in the other BDT:

B′
1 = B1 ∪{∆(b2) | b2 ∈ B2}, B′

2 = B2 ∪{∆(b1) | b1 ∈ B1},

where ∆(b) = ( x+y
2 , x+y

2 ) stands for the diagonal projection (i.e. the
closest point on the the diagonal) of the off-diagonal point b = (x,y).
Intuitively, this augmentation phase inserts dummy features in the
BDT (with zero persistence, along the diagonal), hence preserving
the topological information. This augmentation guarantees that the
two BDTs now have the same number of points (|B′

1|= |B′
2|), which

facilitates the evaluation of their distance, as described next.
Given two points b1 = (x1,y1) ∈ B′

1 and b2 = (x2,y2) ∈ B′
2, the

ground distance d2 in the 2D birth/death space is given by:

d2(b1,b2) = (|x2 − x1|2 + |y2 − y1|2)1/2 = ∥b1 −b2∥2.

By convention, d2(b1,b2) is set to zero between diagonal points (x1 =

y1 and x2 = y2). Then, the L2-Wasserstein distance WT
2 is:

WT
2 (B1,B2) = min

φ∈Φ

(
∑

b1∈B′
1

d2(b1,φ(b1))
2)1/2

, (2)

where Φ is the set of all possible assignments φ mapping a point
b1 ∈B′

1 to a point b2 ∈B′
2 (possibly its diagonal projection, indicating

the destruction of the corresponding feature).
To account for the general case where the BDTs have an arbitrary

structure, one simply needs to update the above formulation by con-
sidering a smaller search space of possible assignments, noted Φ′ ⊆ Φ,
constrained to describe (rooted) partial isomorphisms [43] between B1
and B2. Intuitively, WT

2 can be understood as a variant of the Wasser-
stein distance between persistence diagrams, which takes into account
the structures of the BDTs when evaluating candidate assignments in
the optimization of Eq. 2. In the remainder, we note B the metric space
induced by the Wasserstein metric between BDTs.

Once distances for BDTs are available, the notion of barycenter
can be introduced. Given a set SB = {B1, . . . ,BN}, let EF (B) =

∑N
i=1 WT

2 (B,Bi
)2 be the Fréchet energy of a candidate BDT B ∈ B.

Then a BDT B∗ ∈ B which minimizes EF is called a Wasserstein
barycenter of the set SB (or its Fréchet mean under the metric WT

2 ).
EF can be optimized with an iterative algorithm [43], alternating

assignment and update phases. The algorithm is reminiscent of Lloyd’s
relaxation algorithm [28]. Specifically, given a candidate barycenter
B, the assignment step consists in computing the optimal assignments
φi (w.r.t. Eq. 2) between B and each input BDT Bi. Next, the update
step aims at optimizing EF under the current set of assignments φi,
which is achieved by moving, in the birth/death plane, each branch
b of B to the arithmetic mean of its matched branches φi(b). This
assignment/update sequence is then iterated, decreasing the Fréchet
energy at each iteration. Note that this procedure is not guaranteed to
converge to a global minimum, i.e. the Fréchet energy is not necessarily
globally minimized. Iteration is stopped when the Fréchet energy
change is less than 1% between two steps. The initial candidate is
chosen as a random member of SB , see [43] for details. This choice
might influence which local minimum is found.

To ensure that the interpolated barycenter trees are indeed struc-
turally valid BDTs (i.e. invertible into a valid merge trees), Pont et al. in-
troduce a local normalization [43] in a pre-processing step. Specifically,
a branch b = (x,y) with parent branch b′ = (x′,y′) is valid/invertible if
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Fig. 2: Example of barycenter assignment and update for member trees
T1,T2,T3 and initial candidate T1. Optimal path mappings are illustrated
through the edge colors. Edge lengths can be read from the grid.

[x,y]⊆ [x′,y′]. Thus, the persistence of each branch bi ∈ Bi is normal-
ized with regard to that of its parent b′i ∈ Bi, displacing bi in the 2D
birth/death space such that its position is given relatively to the scalar
range of b′i. After this pre-normalization of the input trees, any interpo-
lated barycenter BDT is reverted into a valid merge tree by recursively
reverting the normalization, thereby guaranteeing the validity of the
interpolated BDT and merge tree.

3 DEFORMATION BASED GEODESICS AND BARYCENTERS

In this section, we describe the construction of geodesics and barycen-
ters based on the path mapping distance. We first give an intuition for
the barycenter construction before describing the algorithms in detail.
While the barycenter and geodesic construction is more technical than
for the Wasserstein barycenters, the intuition behind it is similar and
should be easy to grasp. Furthermore, our algorithm does not depend
on a prior normalization to obtain valid merge trees after interpolation.
Note that the geodesic is just a special case of the barycenter (as it is
in the Wasserstein barycenter framework). Thus, we first focus on the
more generic case: we give an intuitive and algorithmic description of
the barycenter construction. In Sec. A of the suppl. material, we then
formalize the interpolation which results for the case of two input trees
(i.e. the resulting path of merge trees) and show that it indeed forms a
geodesic in the metric space based on the path mapping distance.

Intuition. The core idea of our approach is identical to the Wasser-
stein barycenters: after initializing with a random member, we alternate
an assignment and update step and continue the iteration until a stable
barycenter is reached. Given a barycenter candidate and the ensemble
of merge trees, the assignment step computes the optimal path map-
ping between the candidate and each member tree. The update step
interpolates the lengths of mapped paths, where unmapped paths are
interpolated with imaginary edges of length 0. Thus, our approach is
an adaptation of the Wasserstein barycenter method where we replace
interpolation of mapped branches by interpolation of mapped paths.

An example can be seen in Fig. 2. We interpolate the paths A1B1
(length 5), A2B2 (length 5) and A3B3 (length 2) to AB (length 4). We
interpolate the paths B1D1 (length 5), B2D2 (length 6) and B3C3D3
(length 7) to BCD (length 6). The node C in the barycenter is kept in
the same relative position as C3 in T3. The intuition behind this, in
terms of the corresponding deformation, is that shortening B3C3D3 to
BCD can also be seen as uniformly shortening both B3C3 to BC and
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B1
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C1

D3

F3

T3

Fig. 3: Example of the barycenter update: Three merge trees T1, T2 and
T3 and two path mappings (dashed lines) are shown. T2 and T3 contain
an imaginary node, highlighted through the dotted strokes.

C3D3 to CD, which keeps the relative position constant. The path BF
is handled exactly as AB. As a last step, we shorten C3E3 to 1

3 of its
length, which intuitively means interpolating with two imaginary edges
of length 0 (as it does not appear in the other two trees).

However, this manner of interpolation is not necessarily well-defined
for all combinations of path mappings. The partition of the edges of
the barycenter candidate may vary between the different mappings,
which might make a meaningful interpolation impossible. An example
is shown in Fig. 3. Here, the setup is similar to Fig. 2. The mappings
(here illustrated through the induced vertex maps) between T1 and T2
(M2) and between T1 and T3 (M3) are considered. M2 contains the path
A1B1C1, while M3 only contains B1C1. Here, it is unclear which of the
paths A1B1 or B1C1 should be interpolated.

We fix this problem by splitting the mapped paths through insertion
of imaginary nodes into the member trees until a proper interpolation
is possible, i.e. until all mappings are pure edge mappings. These splits
can be designed such that the resulting fine-grained edge-mappings are
still structure-preserving and thus can be interpolated into a meaningful
merge tree. Fig. 3 shows these imaginary nodes in the example trees,
too. This yields the following adapted mappings: M2 now maps A1B1
to A2B1 and B1C1 to B1C2 instead of A1B1C1, while M2 now maps
B1C1 to B3C1 and C1D1 to C1D3 instead of B1C1D1.

Note that the example only considers the case where the two contra-
dicting paths follow the same “direction”. They could also branch away
from each other, e.g. one mapping could contain A1B1C1 whereas the
other could contain A1B1F1. Indeed, this case is also solved by splitting
the paths until a pure edge mapping is reached.

In the following, we describe the barycenter algorithm in detail. In
contrast to the Wasserstein barycenters, our algorithm does not neces-
sarily guarantee monotonic decrease of the Fréchet energy between its
iterations. However, in Sec. 4.7, we show empirical convergence to a
local energy minimum on example datasets.

Barycenters Construction. Given a barycenter candidate B and
path mappings Mi ⊆ P(B)×P(Ti) for each 1 ≤ i ≤ N, we build the
next candidate B∗ as follows. First, any nodes or edges in B not matched
in any Mi are removed. Next, we relabel the nodes in B. Lastly, we
insert all unmatched nodes and edges from the Mi with adapted scalar
values. We describe these three procedures in more detail in Alg. 1.

The subroutine RemoveUnmatched in Alg. 1 removes unmatched
nodes from the barycenter candidate in a straightforward manner by
iterating over all mappings to check which edges are part of mapped
paths and removing those that do not appear.

The subroutine RelabelBarycenter in Alg. 1 is more involved.
Recall that we want to split the mapped paths in the mappings through
imaginary nodes to obtain pure edge mappings. The algorithm does
this implicitly. It again iterates over all mappings and all pairs of paths
in these mappings. Let (p, p′) be such a pair where p is a path in
the barycenter candidate and p′ is a path in a member tree. For each
barycenter edge e in p, it computes the length of the corresponding
segment in p′, i.e. the same fraction of length. In particular, the segment
that corresponds to e in p′ has length ℓ(e)

ℓ(p) ℓ̇(p′). Then, the algorithm
computes the average of all these segments.

As a last step, subroutine AddUnmatched in Alg. 1 adds unmatched
subtrees of the member trees to the barycenter. Note that these subtrees
are always complete subtrees rooted in some edge, since the path
mapping distance only allows for insertions and deletions of leaf edges.
The algorithm also iterates over all path mapping and all pairs of paths
in them. For a mapped pair (p, p′), p being the path in the barycenter,
we add each node v ∈ p′ to p and define its scalar value such that its
relative position to start and end point is the same in p and p′. Each
child of v that is not on p′ is the root of a deleted subtree. Thus, we
insert these trees and define the length (in the barycenter) of each
inserted edge to be 1

k of its original length (in the member tree).
As for the Wasserstein barycenters in [43], the iteration resembles

Lloyd’s method and is a generalization of the geodesic. In contrast to
the iteration for Wasserstein barycenters, this update procedure does not
necessarily decrease the Fréchet energy under the metric δP (defined as
∑N

i=1 δP(B,Ti)) in each step. Thus, we opted to show the convergence
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Algorithm 1: Subroutines of the update phase

1 Function RemoveUnmatched (B,M1, . . . ,Mk,T1, . . . ,Tk):
2 B′ = B
3 Initialize EdgesMapped with 0 for each edge in E(B′)
4 foreach i = 1 . . .k do
5 foreach (p, p′) ∈ Mi do
6 foreach Edge e ∈ p do
7 EdgesMapped[e] = 1
8 foreach Edge e = (c, p) ∈ E(B′) in post-order do
9 if EdgesMapped[e] = 0 then

10 Remove e from E(B′) and c from V (B′)
11 foreach Node v ∈V (B′) do
12 if deg(v) = 1 then
13 Replace (c,v) ∈ E(B′) with (c, p) for p the parent of v
14 return B′

15 Function RelabelBarycenter (B,M1, . . . ,Mk,T1, . . . ,Tk):
16 B′ = B
17 Initialize EdgeLengths as 0 for each edge in E(B′)
18 foreach i = 1 . . .k do
19 foreach (p, p′) ∈ Mi do
20 foreach Edge e ∈ p do
21 EdgeLengths[e] += ℓ(e)

ℓ(p) · ℓ(p′)
22 foreach Edge e ∈ E(B′) do
23 Set ℓ(e) to EdgeLengths[e] · 1

k
24 return B′

25 Function AddUnmatched (B,M1, . . . ,Mk,T1, . . . ,Tk):
26 B′ = B
27 foreach i = 1 . . .k do
28 foreach (p, p′) ∈ Mi do
29 foreach Node v ∈ p′ do
30 Add v to p in B′ with fℓ(v) such that fℓ(v)

ℓ(p) =
fℓ(v)
ℓ(p′)

31 foreach e = (c,v) ∈ E(Ti) do
32 if c /∈ p then
33 Add the tree Te rooted in e to B′ with labels 1

k ℓ(e
′)

for each edge e′ ∈ E(Te)
34 return B′

(to a local energy minimum) experimentally, see Sec. 4.7.
To see why the update procedure does not necessarily decrease the

Fréchet energy, consider Eqs. 1 and 2. Note that to obtain the path
mapping distance, we simply take the sum of the single edit costs,
whereas for the Wasserstein distance they are first squared and then we
take the square root after summing up. Since the mean value minimizes
squared distances, not the sum of distances, the update procedure given
in Alg. 1 is locally (i.e., for a set of interpolated edges) not optimal.

The sum of distances is minimized by the median, not the mean.
Thus, we can take the median instead in RelabelBarycenter and
AddUnmatched to circumvent this problem. The resulting barycenter
is, however, of inferior quality than the one based on the mean. Using
the median implies skipping AddUnmatched completely (the median
will always be one of the k− 1 imaginary edges of length 0), which
means no edges are ever added to the barycenter. If the initial candidate
does not contain all features present in the ensemble, we get a poor
quality barycenter, which we showcase on an example in Sec. 4.6.

4 EXPERIMENTS

In this section, we study the utility of our methods on three visualization
and analysis tasks: ensemble summarization, ensemble clustering, and
time series temporal reduction. For each, we compare results obtained
using the path mapping distance to results achieved with the Wasserstein
distance. We briefly show the advantages of both barycenter methods
over contour tree alignments in the appendix.

We describe implementation and experiment setup for each task in
detail, and study five datasets as well as convergence and performance.

4.1 Implementation and Experiment Setup

Since the geodesic and barycenter constructions described in the pre-
vious section are just an adaptation of the Wasserstein geodesic and
barycenter algorithms, we integrated our implementation into the orig-
inal one in TTK [56]. In both cases, the barycenter computation is a
generalization of the geodesic computation. Thus, it suffices to adapt
the barycenter method. We extended the existing barycenter filter in
TTK by adding our algorithm as an alternative option.

This enables us to use them as a drop-in in more advanced methods
based on geodesics and barycenters as well. TTK contains filters to
compute a k-means [10, 17] clustering based on merge tree distances
and barycenters as well as filters for temporal reduction of merge
tree sequences and the corresponding reconstruction. Details on these
methods can be found in [43]. In all of them, it is now possible to
use the path mapping distance instead of the Wasserstein distance,
which enables users to reuse old workflows when applying the new
method. For our experiments, we used the TTK implementation and
ParaView [1] on the following tasks (executed on an Intel Core i7-7700
with 64GB of RAM).

Ensemble Summarization. Given an ensemble of k scalar fields
f1, f2, . . . , fk, we first compute the k merge trees T1, . . . ,Tk. Then, we
compute the barycenter merge tree B of T1, . . . ,Tk. This barycenter tree
should visually summarize the ensemble to give the user an overview of
the existing features and the overall topological structure of the scalar
fields in it. The barycenter tree should contain all important features of
the members and should not contain prominent structures that cannot
be mapped back to features in at least some of the members. We will
rate the results on a purely visual basis.

Ensemble Clustering. Using the iterative barycenter computation,
it is possible to apply existing clustering strategies such as the k-means
algorithm. We added our implementation of the path mapping distance
to the existing merge tree clustering framework in TTK [43].

Then, given an ensemble of k scalar fields f1, f2, . . . , fk, we first
compute the k merge trees T1, . . . ,Tk. Next, we apply the k-means
algorithm to T1, . . . ,Tk. We compare the resulting cluster assignment to
a previously known ground truth. We consider the result as correct, if no
two members assigned to the same cluster belong to different ground
truth clusters. An addition to counting the number of fully correct
results, we compute the adjusted rand index [25] (ARI). Since the k-
means implementation in TTK can utilize randomized initialization, we
did multiple runs of both the path mapping based and the Wasserstein
distance based clustering. We compare the percentage of correct runs
as well as the average ARI.

Temporal reduction. Given an ensemble of k scalar fields
f1, f2, . . . , fk, we first compute the k merge trees T1, . . . ,Tk. This time
series of merge trees is then reduced to k′ key frames. The target num-
ber k′ is given as an input by the user. We greedily remove merge trees
from the time series, until only k′ merge trees are left, as described
in [43]. To reconstruct the original time series, we compute geodesic
merge trees of the adjacent key frames.

To rate the quality of the reduction and reconstruction, we compute
the distance between the original merge trees and the corresponding
reconstructed ones. We compute the key frames and the reconstruction
with both the path mapping distance and the Wasserstein distance and
compare quality of the two reconstructions. The comparison can be
done visually (i.e. do the reconstructed merge trees look like good
interpolations) or based on the distance between the original and recon-
structed trees. The latter is done using both distance measures.

In the remainder of this section, we study the behavior of the path
mapping based approaches on these three tasks. We go through five dif-
ferent datasets and discuss the results in the corresponding subsection.
As a last step, we study convergence and running times in practice.

4.2 Analytical Example

The analytical example is an ensemble consisting of 20 members. Each
member is a 2-dimensional regular grid with a scalar function defined
on the vertices. It was first used in [62] to showcase the advantages
of branch decomposition-independent edit distances over those using
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Fig. 4: The six member split trees of the starting vortex ensemble with the two barycenters on the right. Branches of low persistence are uncolored
and drawn thinner. All member trees (a) and the path mapping barycenter (b) contain one edge of high persistence without a fork structure as well as
a fork structure of slightly lower persistence. The long edge also forms the main branch of the branch decomposition in all but one of the member
trees. In contrast to that, the Wasserstein barycenter (c) creates a fork structure within this main branch, thus having two high-persistence forks. The
reason is that the fork structure is the main branch in one member which leads to bad mappings.

fixed BDTs. It is a synthetic dataset designed specifically to provoke
instabilities for BDT-based methods, which we explain in the following.

Each member field consists of four main peaks, one of which has
five smaller peaks arising from it (see Fig. 5, together with the corre-
sponding merge trees). The positions of the maxima as well as their
heights are all chosen randomly within small ranges, leading to differ-
ences in the nesting of the persistence-based branch hierarchy. More
specifically, the order of the four main maxima is “shuffled” in the BDT.
In contrast, the five side maxima (although also slightly perturbated)
stay on the same hill. As a consequence, the corresponding noisy
sub-tree (located on the front-most hill in Fig. 5) travels in the BDTs,
depending on the maximum value reached by its main hill. Therefore,
structure-preserving mapping on BDTs can either map all four main
peaks correctly or the five side peaks, but not both.

In Fig. 5, we illustrate the difference in the BDTs through the po-
sition of the corresponding arcs in the planar layout. They are placed
according to the order in the branch decomposition from left to right. In
the remainder of this paper, we will refer to this behavior as a maximum
swap. Note that each of the 20 member trees is of the form of one of
the four merge trees in Fig. 5 and we omit to show them all.

We used this dataset for the summarization task, applying both the
path mapping and the Wasserstein distance. The resulting path mapping
barycenter strongly resembles the member trees: it has four main max-
ima and there is exactly one of them which has side branches leading
to smaller maxima. The barycenter based on the Wasserstein distance

(b)

(c)(a)

Fig. 5: Four member fields from the analytical example with their split
trees, shown in (a). On the right, the two barycenters are shown. The
barycenter in (b) was computed using the path mapping distance, the
one in (c) using the Wasserstein distance.

duplicates the side branches: each main maximum has attached some
side peaks. The reason is that the Wasserstein distance utilizes structure-
preserving mappings on BDTs, which fail as explained above. In con-
trast, the path mapping distance is branch decomposition-independent,
working purely on the merge trees (which are highly similar). Thus, the
Wasserstein barycenter is a less precise summarization of the orginal
member trees. Fig. 5 also shows the two barycenters.

4.3 Starting Vortex

The starting vortex dataset is an ensemble of 2D regular grids with a
scalar function on the vertices representing flow turbulence behind a
wing. It was generated using the Gerris flow solver [45] and has been
used in [20, 43, 58]. Each member represents a different inclination
angle of the wing. In [43] it was successfully used for the clustering
task, where the two clusters were defined by two different ranges of
angles, consisting of six consecutive integer values. Here, we use one
of these clusters and compute the barycenter split tree. We applied a
topological simplification with a threshold of 5% of the scalar range.
Fig. 4 shows the member trees and both the path mapping barycenter
and the Wasserstein barycenter. The path mapping barycenter is clearly
a better representative of the ensemble than the Wasserstein barycenter.
We should note that the behavior depends on the initial barycenter can-
didate. For the path mapping distance, all six resulting barycenters are
of good quality, whereas for the Wasserstein distance, five of six initial
candidates produce low-quality results, again due to a maximum swap
(cf. Fig. 4), as explained for the first dataset. We provide additional
renderings for all possible barycenter outcomes in Sec. B of the suppl.
material.

4.4 TOSCA Shape Matching Ensemble

The TOSCA non-rigid world dataset [8] is a shape matching ensemble
containing several shapes (different humans and animals) in various
poses. The meshes have an average geodesic distance field [24] at-
tached. We use the same preprocessed scalar fields as Sridharamurthy
et al. in [50] and applied topological simplification with a threshold of
2% of the scalar range in a pre-processing step. We picked the first five
poses for four different shapes (David, Michael, seahorse and centaur)
and defined the following clusters as ground truth: the two human
shapes David and Michael form one cluster, the seahorse another one,
as well as the centaur.

We applied the k-means clustering to this set of scalar fields and
compared the assigned clusters to the ground truth. We used a target
number of 3 clusters for the basic experiment and performed runs for
a target number of 4 as well. In the latter case, we counted runs with
split clusters as correct, but not if two clusters were mixed.

The path mapping distance clearly outperforms the Wasserstein dis-
tance. Fig. 6 shows two typical outputs in ParaView. Since k-means
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Fig. 6: Two screenshots of the clustering output for the TOSCA ensemble in ParaView. The meshes are colored by their shape name (note that the
human cluster consists of two different shapes) and arranged according to the assigned cluster. The screenshot in (b) shows a correct result, which
assigns all human shapes into one cluster, as well as all centaurs and all seahorses. It was computed using the path mapping barycenters. The
screenhot in (a) shows an incorrect clustering computed by the Wasserstein barycenters.

implementation is randomized, we performed 100 runs for each algo-
rithm and checked whether the assigned clusters are completely correct.
Here, the path mapping barycenters produced 57 correct clusterings
and an ARI of 0.75 when using a target number of 3, whereas the clus-
tering based Wasserstein barycenters was never correct and achieved an
ARI of 0.34. Interestingly, we get an even better accuracy (in terms of
completely correct runs) for a target number of 4. Here, the number of
correct runs for the path mapping distance was 78 and 1 for the Wasser-
stein distance. The ARIs were 0.7 and 0.43. Overall, we observed
accuracies of the path mapping barycenters to be significantly better in
comparison to the Wasserstein barycenters.

Furthermore, we took the ten human poses forming the largest cluster
and computed the barycenter tree as a representative. Surprisingly,
while path mappings show significantly better results for the clustering,
they fail to produce a good representative for the human cluster. Fig. 7
illustrates this behavior. The reason is that there are saddle swap
instabilities within the human shapes. While both distances are unable
to handle those in general (although for both we can preprocess the data
by merging close saddles), the Wasserstein distance is able to handle
some instabilities by working on unordered BDTs. It thereby allows
to match swapped saddles, as long as they are children of the same
parent branch. This is not possible for path mappings. In [62], this
was discussed in more detail for branch mappings (but the arguments
translate to path mappings as well). There, it says that the search spaces
of the branch mapping distance and Wasserstein distance are orthogonal
to each other. The subset of the TOSCA ensemble considered in this
section is a good example for exactly this orthogonality.

head

bad matchings

(a)

(b)

(c)

feet

hands

head

feet hands

Fig. 7: Dataset summarization on the TOSCA dataset: four example
members of the human cluster are shown in (a), the path mapping
barycenter of this cluster can be seen in (b), the Wasserstein barycenter
in (c). The Wasserstein barycenter is a good representative of the en-
semble with clearly identifiable head, hands and feet. The path mapping
fails to do so and contains branches that are hard to interpret, stemming
from poor quality mappings.

4.5 Ionization Front
The ionization front dataset [53] consists of 2D slices from a time
dependent scalar field representing ion concentration. The scalar fields
were preprocessed with a topological simplification using a threshold
of 5% of the scalar range. We used this dataset as a time series as well
as an ensemble for clustering by picking three clusters (different phases
of the simulation) of consecutive time points.

The examples presented here mainly focus around a specific main
maximum swap between the time steps 126 and 127. This main maxi-
mum swap is shown in Fig. 1. There, it is easy to see that the Wasser-
stein distance fails to produce a good mapping, which also leads to a
poor quality geodesic tree. While the layouts of the three trees on the
right are aligned to show the correct mapping, the layouts on the left
are based on the branch decomposition. The branch decomposition
based layout shows the main maximum swap (in the first tree, the short
fork is the most persistent branch feature, in the last one it is the long
fork), which is the reason for the bad mapping.

In the following, we use this observation to showcase the influence
on two applications. First, we show that the bad mapping leads to bad
clustering with the Wasserstein distance if the ground truth clusters
contain the main maximum swap. This is not the case for the path
mapping distance. Next, we show that the same holds for the temporal
reduction: using the Wasserstein distance, more time steps are needed to
get the same reconstruction quality as with the path mapping distance.

For the clustering, we picked three sets of four consecutive time
steps each. We then applied the k-means algorithm using both the
path mapping distance and the Wasserstein distance. Again, the path
mapping distance shows significantly better results. To better under-
stand the reason for this, we also plotted the distance matrices for the
two distances in Fig. 9. It is easy to see that the Wasserstein distance
splits two of the three ground truth clusters into two smaller clusters
each, leading to five clusters in total. This happens due to a maximum
swap within these clusters. We observed 87% of the runs with the path
mapping distance to be correct, and 0% with the Wasserstein distance.
The ARIs were 0.92 and 0.46.

For the temporal reduction task, Fig. 11 illustrates the results of
both methods on a subsequence around the described maximum swap.
The time series used here consists of 12 time steps around the above
explained saddle swap: 6 time steps before and after the swap, respec-
tively. We used 3 as the target number of key frames. As expected,
in the first half of the series (before the swap), both methods yield
very precise reconstructions, since in both cases the middle key frame
is chosen before the swap. In contrast, in the second half, only the
path mapping geodesic yields precise reconstructions, since the bad
mapping of the Wasserstein distance (as discussed above) between the
second and last keyframe also leads to bad interpolation. In fact, the
Wasserstein geodesic needs 4 key frames for a precise reconstruction
(the first time step, the last, one right before, and one right after the
swap), whereas the path mapping geodesic already gives good results
for only 2 key frames (see Sec. D of the suppl. material).

Apart from a visual or qualitative comparison, we also provide a
quantitative comparison, i.e. we compared the actual distances to the
original member trees. To avoid a bias through the used distances, we
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Fig. 8: Two clustering results for the ionization front ensemble. The result for the path mapping distance is shown on the right. The assigned clusters
correspond to the three ground truth phases of the simulation, which are visually clearly distinguishable. The earliest one is shown in the bottom
cluster, the middle one in the center cluster, the last one in the top clusters. On the left, the clustering result for the Wasserstein distance can be
seen. The mid phase is split up and mixed with the earliest phase (top). The last phase is identified correctly (center line).

provided both the path mapping and the Wasserstein distance for both
reconstructions each. Table 1 of Sec. D of the suppl. material shows the
results. In the first half of the series, the distances are generally small.
In the second half, the path mapping geodesics yield much smaller
distances, independent of the chosen distance measure. This intuitively
fits with the observations in Fig. 11.

4.6 Heated Cylinder
The heated cylinder ensemble consists of 23 time-dependent scalar
fields describing flow around a heated pole. Each member was created
using small-scale perturbations of the initial conditions. It was used
in [30] for the computation of fuzzy contour trees. We again apply

Fig. 9: The distance matrices on the clustering ensemble for the path
mapping distance (left) and the Wasserstein distance (right). The rows
and columns are ordered by time step. The path mapping distance
clearly shows the three ground truth clusters, whereas the Wasserstein
distance has five clusters in total. This leads to the poor results when
applying a k-means clustering.

late phase

early phase mid phase

(a)(b) (c)

Fig. 10: Six member trees from the heated cylinder ensemble (a) with
several barycenters. The six example members come from three different
phases of one single run. The barycenters on the right (c) were computed
on a consecutive subsequence of a single run, whereas the barycenters
on the left (b) were computed on one fixed time step from the late phase
for each run. The top row barycenters in (b) and (c) were computed using
the path mapping distance and the typical mean method. The center
row barycenters are based on the path mapping distance in the median
variant. The bottom row barycenters are the Wasserstein barycenters.

topological simplification (5% of the scalar range). We compute the
barycenter tree for both a fixed time point with varying runs (23 trees)
and a fixed run with varying time points (30 trees). The results are
shown in Fig. 10. The latter case shows that the median-based barycen-
ter fails if the initial candidate contains few features, since missing
features will never be added. In contrast to that, on a fixed time step,
all member trees are very similar and all three methods perform well.

We also compare the barycenter summarization of the ensemble to
the fuzzy contour tree [30] in Sec. C of the suppl. material. We used the
publicly available notebook [31] and the TTK implementation [30, 56]
of the contour tree alignment and fuzzy contour tree algorithms.

4.7 Convergence and Runtime Performance
We now study the convergence of the barycenter iteration experimen-
tally. We ran the barycenter algorithm for 100 iterations on four dif-
ferent datasets and on each dataset we used different initial candidates.
The plots can be found in Fig. 12. As can be seen, the Fréchet energy
converges in less than 10 iterations on all datasets. Although the first
iteration often increases the energy, it is overall significantly decreased.
However, for some initial candidates of the heated cylinder ensemble, it
converges at an energy higher than in the initial state. Furthermore, the
plots show that the convergence energy can differ within one dataset
depending on the initial candidate.

Next, we consider the runtime performance/complexity of the new
method. Branch decomposition-independent edit distances have an
asymptotic running time of O(n4) and need the same amount of mem-
ory, in contrast to O(n2) for classic tree edit distances. This limits
the practical application of these distances on very large merge trees
containing thousands of nodes. E.g. distance computation on the unsim-
plified asteroid dataset [42] requires in excess of 500GB of RAM and
should therefore be performed on advanced hardware. Running times
in the range of seconds for single distance computation are observed for
merge trees of up to a few hundred nodes (see [61, 62]). Since finding
the geodesic only requires the computation of a single path mapping,
this performance analysis can also be applied here.

For the barycenter computation, multiple path mappings have to
be computed in each iteration. The barycenter candidate (initially
a member tree) can get significantly larger than the member trees,
since it may contain many unmapped features. Thus, we now focus
on the runtime performance of the barycenter iteration, considering
the amount of ensemble members, the size of the barycenter and the
iteration number in addition to the size of the input trees.

In Table 1, running times for the barycenter computation is given
for multiple ensembles. Here, we used the datasets from above (with
different levels of simplification) as well as a jet flow simulation dataset
and the vortex street dataset from [50] (simulated by Weinkauf [60]
using the Gerris flow solver [45]). With the path mapping barycenters,
feasible running times in the range of seconds are reached on all datasets
with input trees of less than 100 nodes, even if the barycenter size gets
up to over 400 nodes. On the Jet dataset, with an average member
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Fig. 11: Two reconstructions (top and bottom line) of a time series of merge trees (center line) after temporal reduction. For both the Wasserstein
distance and the path mapping distance, we used three key frames in the encoding phase (highlighted through black frames). We then used path
mapping geodesics and Wasserstein geodesics to reconstruct the sequence. Visually good reconstructions are highlighted in green, bad ones in red.
A numerical comparison can be found in Table 1 of Sec. D of the suppl. material.

tree size of roughly 150 and barycenter sizes of up to 400 vertices, the
running times were still in the range of minutes. Regarding the effect of
the ensemble size, a super-linear increase in runtime can be observed.
This is probably due to the fact that the barycenter size scales with the
number of members: not only the number of distance computations
increases, but their complexity does, too. However, this happens for
both the Wasserstein and the path mapping distance.

The running times of the Wasserstein barycenter do not suffer from
such an increase, as expected. All running times are below 1s. The com-
parison on the analytical example suggests that, in case of decreased
barycenter sizes through the better mapping quality, the path mapping
distance can sometimes be quicker.

Overall, the numbers suggest that a topological simplification should
be applied prior to the path mapping barycenter computation. Since one
of the main purposes of the barycenter is a visual summarization, a few
hundred vertices seems to be a reasonable limitation, as merge trees
containing more nodes are hard to use as a visual summary anyway.

5 RESULTS

In this paper, we defined new notions of geodesics and barycenters of
merge trees based on the metric space defined by the path mapping
distance. We gave an algorithm heuristically computing barycenters as
well as accurate geodesics. We implemented the algorithm in TTK and
integrated it into the existing Wasserstein barycenter implementation,
yielding a unified framework. We then provided experimental evidence
for the improved quality of path mapping barycenters over Wasserstein
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Fig. 12: (Relative) Fréchet energy at each iteration of the barycenter algo-
rithm for two member series of the heated cylinder ensemble (blue/cyan),
the starting vortex ensemble (gray) and the human cluster of the TOSCA
ensemble (green). Since absolute value of the energy depends on the
given scalar function, we omit quantitative labels on the y-axis.

Table 1: Runtime performance of the path mapping and Wasserstein
barycenters for various datasets. |T | denotes the average size of the
member trees, k the amount of members. The columns labeled |B| show
the minimum and maximum barycenter size, averaged over the different
runs. The average number of iterations is denoted by n and average
runtime by t.

Dataset |T | k |BP| nP tP |BW | nW tW
Analytic Ex. 18 20 18-18 3 0.009s 70-150 3 0.02s
Starting Vortex 33 6 70-78 3.4 0.05s 90-100 4.4 0.01s
TOSCA 35 10 61-75 4.5 0.05s 92-118 3.6 0.017s
TOSCA 48 10 93-136 5 0.28s 156-185 5 0.04s
Ionization 47 12 105-196 6.3 0.77s 167-261 5 0.07s
Ionization 71 12 191-313 5.7 3.5s 330-456 5 0.165s
Ionization 89 12 257-406 4.8 14.5s 448-579 4.3 0.22s
Vortex Street 69 10 156-172 4.9 1.84s 168-174 4.6 0.04s
Jet 149 10 242-377 7 348s 257-411 5.6 0.29s
Heat. Cylinder 19 23 76-145 5 0.24s 129-174 3.8 0.03s
Heat. Cylinder 19 46 94-234 5.8 1.0s 175-297 5.1 0.12s
Heat. Cylinder 19 69 125-405 5.6 3.7s 304-477 3.8 0.24s

barycenters on five different datasets: the path mapping barycenters
are often better summarizations of ensembles, lead more frequently to
correct clustering results and can further reduce time series of merge
trees while retaining or even improving reconstruction quality. Further-
more, we highlighted limitations that are summarized in the following
paragraph. These should be considered in future work.

Limitations. Our method shows increased runtimes, both asymptoti-
cally (O(n4) vs O(n2)) and practically (single threaded times are in the
range of minutes on merge trees with 100-200 nodes) when compared
to the Wasserstein framework. There is also the possibility to reduce
result quality on datasets containing specific forms of saddle swaps.
Furthermore, it remains open whether our barycenter algorithm fulfills
some form of formal convergence property, or if this can be achieved
with adapted strategies. The influence of the random initialization
should also be studied in more detail.

Conclusion. Overall, we gave strong evidence that path mapping
barycenters (though having limitations) should be considered in practi-
cal applications and gave users the option to do so (e.g. choosing the
preferred method based on sizes of the input trees) in an established
framework.
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This manuscript is accompanied by supplementary material:

• The publicly available source code [63] is provided together with
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in Fig. 1. This implementation will be contributed as open source
to TTK in the future.

The companion ZIP file contains an archive of the repository.

• We provide a supplementary PDF that contains additional images
and a proof that the proposed interpolation yields a geodesic.
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Merge Tree Geodesics and Barycenters with Path Mappings
Supplementary Material

A GEODESIC PROOF

In this section, we provide a formal proof that for two input merge trees
the interpolation defined in Sec. 3 indeed forms a geodesic between
the input trees. We now give a formal description of the interpolated
geodesic trees to make formal arguments easier. Let (T0, f0), (T1, f1)
be two merge trees, M ⊆ P(T0) × P(T1) a path mapping between
T0 and T1 and let (Tα, fα)α∈(0,1) as follows. We write ℓ0, ℓ1, ℓα for
ℓf0 , ℓf1 , ℓfα .

Intuitively, for a given α, we interpolate the two trees with coeffi-
cients α and (1−α). We first interpolate all mapped paths and move the
nodes on these paths such that their relative position on the path remains
constant. Then, we interpolate the inserted/deleted edges from/to length
zero. Note that the problem of contradicting paths described before
does not arise here, as only one mapping is considered. Structurally,
the interpolated tree is the supertree induced by the path mapping. To
define scalars, we first interpolate the labels of the matched nodes, i.e.
the start and end vertices of the matched paths. Then, we move the
nodes on these paths such that their relative position stays the same.
Furthermore, we contract all deleted or inserted edges to 1− α or α of
their original lengths. An example is shown in Fig. 1.

For a formal definition, recall that we say a vertex v ∈ V (T0) is
present in M (and write v ∈ M ) if there is a pair of paths (p, p′) ∈ M
such that v is in p (and analogously for vertices of T1). Furthermore,
we assume that V (T0) and V (T1) are disjoint and denote the scalar
function on the union V (T0)∪̇V (T1) of nodes by f . Now we define
V (Tα) to be the set

{(v, v′), (u, u′) | (v, . . . , u, v′, . . . , u′) ∈ M}
∪{vi, uj | (v0, . . . , vk, u0, . . . , uk′) ∈ M, 1 ≤ i < k, 1 ≤ j < k′}

∪{v ∈ V (T0) | v /∈ M} ∪ {v ∈ V (T1) | v /∈ M}.

In the example in Fig. 1, the ellipse nodes form the first set, nodes
C0, C1, F0 form the second set and E0, E1, H0 form the last set.

Next, we define the edge set of Tα. For a pair of mapped paths
(v1 . . . vk, u1 . . . uk′) ∈ M (an example path is highlighted in Fig. 1),
let s1, s2, . . . , sk+k′−4 be the sorted union of the inner nodes of the
two paths, i.e. f(s1) ≤ f(s2) ≤ · · · ≤ f(sk+k′−4) (in the example,
this sequence is C0C1). For each such path in M , we then include
the edges ((v1, u1), s1), (sk+k′−4, (vk, uk′)) and (si, si+1) for each
1 ≤ i < k+k′−4. Furthermore, we include the edge (v, v′) ∈ E(T0)
if v /∈ M and the same way for edges of T1. In the case where
v′ is the start or end vertex of a mapped path, we have to replace it
by its corresponding node in V (Tα) (the resulting path in Tα is also
highlighted in the example).

As a last step, we need to define the scalar function on the new nodes.
For the matched nodes (v, v′) (i.e. v, v′ are the start or end nodes on two
mapped paths), we define fα((v, v′)) = (1−α)·f0(v)+α·f1(v′). For
easier notation, we also write fα(v) or fα(v′) instead of fα((v, v′)).
For a node pi on a path p1 . . . pk matched to p′1 . . . pk′ with 1 ̸= i ̸= k,
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Fig. 1: Merge trees T0 and T1 with barycenter T0.5. The optimal path
mapping between T0 and T1 is illustrated by the dotted lines. Two
mapped paths and interpolated path in the geodesic tree are highlighted
in cyan. Scalar values and edge lengths can be read from the grid.

we define fα(pi) = f0(pi)−f0(p1)
f0(pk)−f0(p1)

·(fα(pk)−fα(p1))+fα((p1, pk)).
For a deleted node v /∈ M with parent p, we define fα(v) = fα(p) +
(1− α) · (f0(v)− f0(p)). For an inserted node v /∈ M with parent p,
we define fα(v) = fα(p)+α · (f0(v)− f0(p)). Note that at least one
pair of paths containing the roots of both trees is in the optimal mapping
and thus the recursive definition above is well-defined. Furthermore,
the described tree is indeed the result of the first iteration barycenter
computation in Sec. 3 when the number of inputs is two.

Based on this definition, we can now show that the merge trees Tα

(0 ≤ α ≤ 1) define a geodesic between T0 and T1. Clearly, the tree
Tα can be created from T0, T1 in linear time.

Recall that, for a metric d, a continuous path P = (Tα)0≤α≤1

between two trees T0, T1 is a geodesic if its length

L(P ) = sup
n;0=t0≤t1≤...≤tn=1

n−1∑

k=0

d(Ttk , Ttk+1)

is exactly the distance d(T1, T2) between T1 and T2.
Now consider two time points s, t ∈ [0, 1]. With the above definition,

we can derive a path mapping Ms,t between Ts and Tt from M . We
have to make a case distinction on whether the one of the two time
points is 0 or 1.

For 0 < s ≤ t < 1, the two trees are structurally the same (only the
labels differ). We define Ms,t to be the identity mapping on the edges,
which is obviously a valid path mapping. Thus, δ(Ts, Tt) ≤ c(Ms,t).
Next, we determine the cost of Ms,t.

Let I and D be the inserted and deleted edges of M . We have
(e, e) ∈ Ms,t for each e ∈ I∪D. Each e ∈ I contributes c(0, ℓ1(e)) =
ℓ1(e) in c(M), whereas they contribute c(ℓs(e), ℓt(e)) in c(Ms,t). By
definition, ℓs(e) = s · ℓ1(e) and ℓt(e) = t · ℓ1(e) and therefore
c(ℓs(e), ℓt(e)) = (t−s) · ℓ1(e). Analogously, each e ∈ D contributes
c(ℓ0(e), 0) = ℓ0(e) in c(M), whereas they contribute c(ℓs(e), ℓt(e))
in c(Ms,t). By definition, ℓs(e) = (1 − s) · ℓ0(e) and ℓt(e) = (1 −
t) · ℓ0(e) and therefore c(ℓs(e), ℓt(e)) = (t− s) · ℓ0(e).

Now consider the rest of the edges in Ts and Tt. They are constructed
from a mapped path as described above. A pair of mapped paths (we
assume leaf-to-root direction in a split tree) (p1...pk, p′1...p′k′) ∈ M
contributes

||f0(p1)− f0(pk)| − |f1(p′1)− f1(p
′
k′)||

1
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Fig. 2: All possible barycenter results on the starting vortex ensemble. The top row shows the path mapping barycenters for each of the six initial
candidates. The bottom row shows the corresponding Wasserstein barycenters.

Path mapping distance TP0 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12
Wasserstein Geodesic 0.0 0.63 0.85 1.2 1.02 0.74 0.0 1.59 2.59 3.54 3.09 1.6 0.0
Path mapping Geodesic 0.0 0.52 0.62 0.86 0.78 0.0 0.68 0.96 0.98 1.04 0.75 0.53 0.0

Wasserstein distance TP0 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12
Wasserstein Geodesic 0.0 0.06 0.17 0.18 0.11 0.04 0.0 1.34 0.87 0.49 0.22 0.06 0.0
Path mapping Geodesic 0.0 0.26 0.37 0.09 0.06 0.0 0.01 0.03 0.04 0.05 0.03 0.02 0.0

Table 1: Comparison of the temporal reduction results based on path mapping geodesics and Wasserstein geodesics. The first table shows the
path mapping distance between the original and reconstructed merge trees for each time point and both methods. The second table depicts the
Wasserstein distances. Keyframes are again highlighted in bold.

Invalid edge

Fig. 3: Comparison of merge tree barycenters and contour tree align-
ments: The top left image shows the path mapping barycenter, the top
right image the Wasserstein barycenter. The bottom row shows the fuzzy
contour tree on the left and the ParaView rendering of the alignment tree
on the right. The latter illustrates the problem of the fuzzy contour tree
summarization: the ensemble representative is not a valid merge tree.

= f0(p1)− f0(pk)− (f1(p
′
1)− f1(p

′
k′))

to c(M). Instead of p1...pk and p′1...p
′
k′ in T0, T1, we have in Tα the

nodes

s0 := (p1, p
′
1), s1, s2, ..., sk+k′−4, sk+k′−3 := (pk, p

′
k′)

as well as the edges (si, si+1) for each 0 ≤ i ≤ k + k′ − 4.
Each mapped edge in Ms,t contributes

||fs(si)− fs(si+1)| − |ft(si)− ft(si+1)||

to c(Ms,t). Thus, the whole path contributes
∑

0≤i≤k+k′−4

||fs(si)− fs(si+1)| − |fs(si)− fs(si+1)||.

Note that the whole path and thus each single edge gets either shorter
or longer. So we either have:

• |fs(s0)−fs(sk+k′−3)| > |ft(s0)−ft(sk+k′−3)| and |fs(si)−
fs(si+1)| > |ft(si)− ft(si+1)| for each i or

• |fs(s0)−fs(sk+k′−3)| < |ft(s0)−ft(sk+k′−3)| and |fs(si)−
fs(si+1)| < |ft(si)− ft(si+1)| for each i.

W.l.o.g. we have |fs(si)− fs(si+1)| > |ft(si)− ft(si+1)| for each i.
In total, we get for the cost of mapping the whole path:

∑

0≤i≤k+k′−4

||fs(si)− fs(si+1)| − |fs(si)− fs(si+1)||

=
∑

0≤i≤k+k′−4

(fs(si)− fs(si+1))− (ft(si)− ft(si+1))

=
∑

0≤i≤k+k′−4

(fs(si)−fs(si+1))−
∑

0≤i≤k+k′−4

(ft(si)−ft(si+1))

= fs(s0)− fs(sk+k′−3)− (ft(s0)− ft(sk+k′−3))

= fs(p1)− fs(pk)− (ft(p
′
1)− ft(p

′
k′))

= (1− s)f0(p1) + sf1(p
′
1)− ((1− s)f0(pk) + sf1(p

′
k′))

−((1− t)f0(p1) + tf1(p
′
1)− ((1− t)f0(pk) + tf1(p

′
k′)))

= (1− s)(f0(p1)− f0(pk)) + s(f1(p
′
1)− f1(p

′
k′))

−((1− t)(f0(p1)− f0(pk)) + t(f1(p
′
1)− f1(p

′
k′)))

= (t− s)(f0(p1)− f0(pk)) + (s− t)(f1(p
′
1)− f1(p

′
k′))

= (t− s)(f0(p1)− f0(pk))− (t− s)(f1(p
′
1)− f1(p

′
k′)).

In total, we get that for each deleted or inserted edge as well as each
mapped path that contributes x to c(M) contributes (t−s)x to c(Ms,t).
Thus, c(Ms,t) = (t− s)c(M).

Now consider the case where 0 = s < t. Since Tt is structurally a
supertree of T0, we can define the mapping M0,t to be the embedding
from T0 in Tt. Consider some inserted (in M ) edge e ∈ I . Since e /∈
E(T0), it is also inserted in the embedding M0,t. Thus, it contributes
c(0, ℓt(e)) = t · ℓ1(e) = (t− s) · ℓ1(e) to M0,t, whereas it contributes
ℓ1(e) to M . A deleted (in M ) edge e ∈ D is mapped to itself in the
embedding M0,t. Thus, it contributes c(ℓ0(e), ℓt(e)) = ℓ0(e)− (1−
t) · ℓ0(e) = t · ℓ0(e) = (t− s) · ℓ0(e) to M0,t, whereas it contributes
ℓ0(e) to M .

For mapped paths, all arguments are analogous to the previous case.
Thus, in total we again have that for each deleted or inserted edge
as well as each mapped path that contributes x to c(M) contributes
(t− s)x to c(Ms,t), and therefore c(Ms,t) = (t− s)c(M). The same
holds for the case where s < t = 1 with analogous arguments.
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Fig. 4: Exemplary time steps of the temporal reduction and reconstruction. The original time series is shown in the middle row. The top row shows
the result of the path mapping geodesic, the bottom row of the Wasserstein geodesics. The path mapping reconstruction produces merge trees
with a diiferent branch decomposition (to the original series) in the time steps highlighted in yellowm, which is not the case for the Wasserstein
geodesics. In particular, the original trees and their Wasserstein reconstructions have the long fork structure as main branch, whereas the path
mapping reconstruction has a different one. However, this does not change the fact the path mapping reconstructions are very similar to the original
series (when ignoring the branch order).

So we have c(Ms,t) = (t−s)c(M) for any two time points 0 ≤ s <
t ≤ 1. From this, we can conclude that δ(Ts, Tt) ≤ (t− s)δ(T0, T1).
We can now show that for P = (Tα)α∈[0,1], it holds that L(P ) =
δ(T0, T1).

Using the metric property of δ, we know that for any 0 ≤ s < t ≤ 1:

δ(T0, T1) ≤ δ(T0, Ts) + δ(Ts, Tt) + δ(Tt, T1)

≤ ((s− 0) + (t− s) + (1− t))δ(T0, T1) = δ(T0, T1).

We can conclude that δ(Ts, Tt) = (t− s)δ(T0, T1) and for any subdi-
vision 0 = t0 < t1 < · · · < tn = 1 of P , we have:

n−1∑

k=0

δ(Ttk , Ttk+1) = δ(T0, T1).

Thus, for the length of P we get

L(P ) = sup
n,0=t0<t1<···<tn=1

n−1∑

k=0

δ(Ttk , Ttk+1) = δ(T0, T1).

B STARTING VORTEX BARYCENTERS

We now provide further screenshots of the barycenters computed on
the starting vortex ensemble. Fig. 2 shows the barycenter merge trees
for each possible initial candidate and both methods. For five out of
six initial candidates, the Wasserstein barycenter contains two fork
structures of high persistence, which is not the case in the member trees
(see Fig. 4), whereas only one contains a long, non-forking edge. In
contrast, all six path mapping barycenters are a good summary of the
ensemble.

C COMPARISON TO CONTOUR TREE ALIGNMENTS

Next, we quickly illustrate the advantages of path mapping and Wasser-
stein barycenters over contour tree alignments. We computed barycen-
ter merge trees, the contour tree alignment and the fuzzy contour tree
layout for an ensemble consisting of a fixed time steps (in the late phase
of the simulation, see Fig. 10) from different runs of the heated cylinder
dataset. We applied topological simplification with a threshold of 2%
of the scalar range. Fig. 3 shows both barycenters, the fuzzy contour
tree rendering (see [30] for details) as well as a ParaView rendering of

the alignment tree. While the branch decomposition layout of the fuzzy
contour tree summarizes the ensemble well, the ParaView rendering
reveals that the alignment tree is not a valid merge tree. This is due
to a different averaging technique based on the nodes instead of arcs,
branches or paths. It is therefore harder to use for further analysis tasks.

D TEMPORAL REDUCTION

In this section, we provide more detailed results for the temporal re-
duction on the ionization front time series. In Sec. 4, we compared the
reconstructed series of the path mapping geodesics and the Wasserstein
geodesics with three key frames for both methods. The quantitative
comparison in terms of actual distances between the original and recon-
structed trees are given in Table 1.

Furthermore, the path mapping geodesics yield good reconstructions
already for two key frames, since it can compute meaningful mappings
even between the first and last time step. The Wasserstein geodesics
need four key frames to produce a good reconstruction, since it can not
map the first tree to the last one in a meaningful manner. It therefore
needs the time step right before the maximum swap to correctly interpo-
late the first half of the series and the time step right after the maximum
swap to correctly interpolate the second half. We illustrate this behav-
ior on example time steps in Fig. 4. The path mapping reconstruction
with two key frames is of similar quality to the one with three key
frames (rated on a purely visual basis), whereas the Wasserstein recon-
struction is significantly improved with four keyframes (visually bad
interpolation as highlighted in red in in Fig. 11 do no longer happen).
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