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Abstract: This article investigate a nonlocal reaction-diffusion system of equations modeling
virus distribution with respect to their genotypes in the interaction with the immune response.
This study demonstrates the existence of pulse solutions corresponding to virus quasi-species. The
proof is based on the Leray-Schauder method, which relies on the topological degree for elliptic
operators in unbounded domains and a priori estimates of solutions. Furthermore, linear stability
analysis of a spatially homogeneous stationary solution identifies the critical conditions for the
emergence of spatial and spatiotemporal structures. Finally, numerical simulations are used to
illustrate nonlinear dynamics and pattern formation in the nonlocal model.
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1. Introduction

Progression of viral infections, both at the individual and population levels, can be influenced
by virus mutations and genetic evolution [1–7]. However, predicting virus evolution is a difficult
task due to the complex interaction between viral infection and the host organism [8–11]. Virus
evolution can be described in terms of fitness and its relationship with genotypes and selection of
advantageous mutations [12]. However, quantitative description of fitness landscapes involves
multiple factors that are difficult to quantify [13]. To address this issue, mathematical modeling
and experimental investigation are used to specify fitness landscapes [13–15]. This approach
considers various factors, such as the binding affinity of viral antigens to T cells [9], antibody
binding affinity, RNA virus capsid folding stability [13], among others. Corresponding
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mathematical models include deterministic and stochastic ODEs, systems of integro-difference
equations, algebraic equations.

The concept of quasi-species represents an appropriate framework to describe virus
evolution [16, 17]. Several models were developed to describe the evolution of a discrete set of
virus variants in terms of systems of differential equations [18]. Virus evolution in a continuous
genotype space was studied in [7, 19–21]. This work continues the investigation of virus density
evolution in the space of genotypes in its interaction with the immune response. This approach
allows the analysis of key factors affecting viral infection dynamics, such as the presence of wild
type virus versus mutants, genotype branching, mutant extinction, and the mechanisms used by
viruses to evade the immune system.

We consider the virus density distribution U(x, t) in the space of genotypes x and the
concentration of immune cells C(x, t) described by the equations

∂U
∂t
= D1

∂2U
∂x2 + aU(1 − k1H(U)) − kCU − σ(x)U, (1.1)

∂C
∂t
= D2

∂2C
∂x2 + p(U)

C
1 + bC

− q(U)C. (1.2)

For mathematical convenience, the genotype variable x is considered on the whole axis. The
diffusion terms in both equations characterize small random mutations of viruses and cells. The
second term in Eq (1.1) describes virus replication in host cells. It is proportional to the virus
density U and to the dimensionless quantity of uninfected cells (K − k1H(U)). Here, K = 1
corresponds to the dimensionless total number of cells, and the quantity of infected cells is
proportional to the total quantity of virus H(U) competing for host cells. This assumption is
justified if we assume that host cells do not die being infected. We will consider two different
cases. In the first case, virus compete for the host cells independently of its genotype (global
competition), H(U) =

∫ ∞
−∞

U(x, t)dx(= I(U)); in the second case, this competition depends on the
distance between the genotypes H(U) =

∫ ∞
−∞
ϕ(x − y)U(x, t)dx(= J(U)), where the kernel ϕ(x − y)

characterizes the efficiency of this competition. It will be convenient in what follows to use
different notation for these integrals. The last two terms in this equation describe virus
elimination by the immune cells and the virus mortality rate independent of the immune response,
which can be dependent on the virus genotype, with the rate σ(x).

The second term in the right-hand side of Eq (1.2) describes clonal expansion of immune cells
due to the presence of antigen (virus). The function p(U) is positive for U > 0. It can be linear,
growing with saturation, or growing for small U and decaying for large U. Mortality rate q(U)
of immune cells can depend on the virus density or be independent of it (positive constant). We
assume that p(0) < q(0). This condition means that in the absence of viral load, the cell birth rate
is less than its mortality rate and, therefore, the cell concentration decays. We do not consider here
memory cells which remain in the organism after infection elimination. If the viral load U is large
enough, then p(U) becomes larger than q(U) providing the initiation of the immune response by the
pathogenes. Otherwise, the concentration of immune cells vanishes, and the immune response does
not influence infection progression in the organism. Let us also note that large virus concentration
can down-regulate the proliferation rate of immune cells but we do not consider this effect here
(see [22, 23]).
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We will study the existence of positive stationary solutions of system (1.1) and (1.2) decaying
at infinity (Section 2). Such solutions correspond to virus quasi-species. Existence of such
solutions is determined by the viability intervals in the space of genotypes where their birth rate
exceeds the death rate. Previously, it was studied for a single equation obtained as approximation
of system (1.1) and (1.2) [7, 21]. Another mechanism of the emergence of virus quasi-species is
related to their competition and to bifurcation of spatial structures from the homogeneous in space
solution. It will be considered in Sections 3 and 4.

2. Existence of positive stationary solution

In this section, we focus on the investigation of positive stationary solutions of system (1.1)
and (1.2) under the condition that the virus mortality rate σ(x) is lower than the virus replication
rate within a specific range of genotypes. Our analysis shows that this genotype-dependent virus
mortality rate can lead to the persistence of virus quasi-species.

2.1. Global competition

The system of equations satisfied by the stationary solutions of system (1.1) and (1.2) on the
whole axis is as follows:

U′′ + U(1 − I(U)) −CU − σ(x)U = 0, (2.1)

C′′ + p(U)
C

1 +C
− q(U)C = 0, (2.2)

where we assume that D1 = D2 = k1 = k = a = b = 1, for simplicity of notation. We consider
here the case of global competition of virus for host cells, that is, H(U) = I(U). Our objective is to
find positive solutions of this system of equations that approach zero as x→ ±∞. The existence of
these solutions depends on the function σ(x), which determines virus mortality. A typical example
is given by the function σ(x) = 0 for |x| ≤ x0 and σ(x) = σ0 > 1 for |x| ≥ x1 with some x0 and
x1 > x0. Functions σ(x), p(U) and q(U) are supposed to be non-negative and sufficiently smooth.
Some additional conditions will be formulated below. We will prove the existence of a solution
using the topological degree method. To start, we will establish some preliminary estimates of
solutions of this problem.

Lemma 1. Let (U(x),C(x)) be a positive solution of (2.1) and (2.2), U(±∞) = 0,C(±∞) = 0.
Then I(U) < 1.

Proof. Suppose that the statement of the lemma does not hold, and I(U) ≥ 1. As a consequence,
U(x) is a solution of the equation U′′ + q(x)U = 0, where q(x) = (1 − I(U)) − C(x) − σ(x). Since
q(x) ≤ 0 and q(x) . 0, the maximum principle implies that U(x) cannot attain a positive maximum
or a negative minimum. Therefore, U(x) ≡ 0, which contradicts the hypothesis U(x) > 0.

□

Let (U(x),C(x)) be a positive solution of (2.1) and (2.2). The lemma below summarizes some
properties of this solution.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15936–15956.
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Lemma 2. 1) There is a positive constant K such that 0 < U(x) < K for all x ∈ R.
2) If p(U)

q(U) is bounded for all U ≥ 0, then there exists a constant M > 0 such that 0 < C(x) < M
for all x ∈ R.

Proof. Assume that there exists a point x0 such that U(x0) is the global maximum of U(x) over the
entire domain. One can infer from Eq (2.1) that

U′′(x) > −U(x) ≥ −U(x0). (2.3)

By utilizing Taylor’s expansion around x0, we can derive the subsequent lower bound for U(x):

U(x) = U(x0) + U′(x0)(x − x0) +
U′′(χ)

2
(x − x0)2 ≥ U(x0) −

U(x0)
2

(x − x0)2 = U(x0)g(x) (2.4)

with some χ between x and x0 and where g(x) = 1 − 1
2 (x − x0)2. Let Ω denote the interval where

this function is positive. Thus, we have
∫
Ω

g(x)dx ≥ κ > 0. It follows from Lemma 1 that 1 >
I(U) > κU(x0). Therefore, the first part of the lemma can be concluded.

We proceed to the second part of the lemma. If C is a solution of (2.2) that attains a positive
maximum at some point y0, then C′′(y0) < 0. This implies that

p(U(y0))
1

1 +C(y0)
− q(U(y0)) > 0.

and, thus,

1 +C(y0) <
p(U)
q(U)

,

which proves the lemma.
□

To prove the existence of solutions, we will employ the topological degree theory, as described
in [24, 25]. Lemma 2 presented above provides preliminary estimates of solutions. Denote v :=
(U,C) and consider the operator

Aτ(v) =

U′′ + U(1 − I(U)) −CU − στ(x)U,
C′′ + p(U) C

1+C − q(U)C.
(2.5)

The operator Aτ(v) acts from the weighted Holder space (C2+α
µ (R))2 into the space (Cαµ (R))2, where

0 < α < 1 and τ ∈ [0, 1] is a parameter. The space Cαµ (R) is defined as the set of functions
u(x) such that u(x)µ(x) ∈ C2+α

µ (R), with µ(x) = 1 + x2. This weight function increases at infinity
with a polynomial rate. The introduction of weighted spaces allows the definition of topological
degree for elliptic operators in unbounded domains (see [24, 25]). Besides, the integral I(U) is
well-defined due to the weighted space, and it does not impact the essential spectrum.

We will suppose for simplicity that στ(x) is an infinitely differentiable function with respect
to x and τ. Other conditions will be specified later. Denote by Lτ the operator obtained by the
linearization of the operator Aτ about v = 0:

Lτ(z1, z2) =

z′′1 + z1 − στ(x)z1,

z′′2 + p(0)z2 − q(0)z2.
(2.6)

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15936–15956.
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Let us recall the assumption
p(0) < q(0). (2.7)

Lemma 3. If the principal eigenvalue of the operator

G(z) := z′′ + z − στ(x)z,

is positive for τ0 ≤ τ ≤ τ1 for some fixed τ0, τ1, then there exists a positive constant ϵ such that for
any positive solution of the equation Aτ(v) = 0 with τ0 ≤ τ ≤ τ1, we have

um = supxU ≥ ϵ , cm = supxC ≥ ϵ.

Proof. It can be deduced from condition (2.7) that the unique solution of the equation

z′′2 + p(0)z2 − q(0)z2 = 0

is zero. Suppose that the statement of the lemma does not hold. This implies the existence of a
sequence of solutions vk(x) for τ = τk such that vmk → 0. Without loss of generality, we can assume
that τk → τ∗ for some τ∗ ∈ [τ0, τ1]. Then, we have:

0 = Aτk(vk) = Aτk(0) + Lτkvk + o(∥vk∥).

Set wk = vk/∥vk∥. Then Lτkwk = o(1).
Using the fact that operators Lτk are proper with respect to w and τ (see [24]), we can conclude

that the sequence wk is compact. Therefore, there exists a subsequence, which we also denote as
wk, that converges to some function w0. Hence, Lτ∗w0 = 0. Since the functions wk(x) are positive,
the limit function w0(x) is also non-negative. Therefore, w0(x) ≥ 0 for all x. This implies that
Lτ∗ has a zero eigenvalue with a positive eigenfunction. However, the only positive eigenfunction
of Lτ∗ corresponds to the principal eigenvalue [26]. This leads to a contradiction. Therefore, the
assertion of the lemma holds. □

The following theorem presents the main result of this section.

Theorem 1. Suppose that p(U), q(U), σ(x) are non-negative infinitely differentiable functions,
p(U)/q(U) is bounded for U ≥ 0, σ(x) = σ > 1 for |x| ≥ x1 with some positives σ, x1,
Condition (2.7) is satisfied and the principal eigenvalue of the problemz′′1 + z1 − στ(x)z1 = λz1,

z′′2 + p(0)z2 − q(0)z2 = λz2
(2.8)

is positive. Then the system (2.1) and (2.2) has a positive solution converging to 0 at infinity.

Proof. To prove the theorem, we start by defining στ(x) = (1 − τ)σ(x) + τσ, and let v = (U,C)
be the solution of problem (2.1) and (2.2). Since σ > 1, the spectrum of the operator L1 is located
in the left half-plane. It is worth mentioning that the essential spectrum S e(Lτ) of the operator Lτ
remains unchanged for all values of τ, Re (Lτ) ≤ −δ < 0 for some positive δ. Let λ0(τ) denote
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the principal eigenvalue of Lτ. By the assumption of the lemma, we have λ0(0) > 0. The principal
eigenvalue λ0(τ) is a decreasing function with respect to τ ∈ [0, 1]. There exists a value τ0 ∈ [0, 1]
such that λ0(τ0) = 0, λ0(τ) > 0 for 0 < τ < τ0, and λ0(τ) < 0 for τ0 < τ < τ1, where τ1 is a value in
the interval (τ0, 1]. It is not possible to guarantee the existence of the eigenvalue for all values of τ
in the interval [0, 1] due to the possibility of it approaching the essential spectrum. Let us consider
the equation Aτ(v) = 0 in a small neighborhood of the bifurcation point τ = τ0. As the parameter
approaches this value, the trivial solution v = 0 loses its stability, resulting in the appearance of
another solution vτ(x). This new solution is positive since the principal eigenfunction w0(x) is
positive, as stated in Lemma 3. Moreover, the degree of this solution with respect to a small ball
containing it is equal to 1. This can be seen from the homotopy invariance of the degree. Indeed,
from the homotopy invariance of the degree, it follows that

ind(0) + ind(vτ) + ind(ṽτ) = 1

for all τ > τ0 and sufficiently close to τ0. Here ṽτ is a negative solution emerges from the trivial
solution and converges to −v0(x). As ind(0) = −1, which is equal to (−1)ν, where ν = 1 represents
the number of positive eigenvalues of the linearized operator, we can conclude that ind(uτ) =
ind(ũτ) = 1.

Lemma 2 implies that there exists a positive constant M0 such that |u|E1 < M0 for any positive
solution u of the equation Aτ(u) = 0. Furthermore, applying Lemma 3, we can deduce that there
exists a positive value δ(τ) such that |u|E1 > δ(τ) for τ < τ0.

Let us consider the domain

Ω = {v ∈ C2+α(R)| v(x) > 0, x ∈ R, δ0 < ∥v∥(C2+α(R))2 < M0}

for some δ0 > 0 sufficiently small. Choose τ2 < τ0 such that δ(τ) > δ0 for 0 ≤ τ ≤ τ2..
Since Aτ(v) , 0 for v ∈ ∂Ω, it follows that the degree γ(Aτ,Ω) does not depend on τ ∈ [0, τ2].

Therefore, we can conclude that γ(A0,Ω) = γ(Aτ2 ,Ω) = ind(vτ2) = 1. This means that the equation
A0(v) = 0 has a solution in Ω. This conclusion proves the theorem.

□

2.2. Nonlocal competition

In the case of nonlocal competition, we consider the integral J(U) instead of I(U):

U′′ + aU(1 − J(U)) − kCU − σ(x)U = 0, (2.9)

C
′′

+ p(U)
C

1 +C
− q(U)C = 0. (2.10)

We assume that the kernel ϕ(x) is a bounded and integrable function. Some specific examples will
be considered below. The proof of the existence of solutions is similar to the previous case. Some
difference is related to a priori estimates of solutions given in the following lemma.

Lemma 4. Let (U(x),C(x)) be a positive solution of (2.9) and (2.10), then:
1] There is a positive constant K1 such that 0 < U(x) < K1.
2] If p(U)

q(U) is bounded for all U ≥ 0, then there exists a constant M1 such that 0 < C(x) < M1.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15936–15956.
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Proof. We will split the proof of the lemma into two cases: J(U) < 1 and J(U) ≥ 1. In
the first case, we can infer that U′′(x) ≥ −aU(x) for all x ∈ R. In the second case, we have
U′′(x) > 0 > −aU(x) for all x ∈ R, since U(x) ≥ 0. Let x0 denote the global maximum of U(x),
which is guaranteed to exist as the function is positive and decays at infinity. We aim to prove that
J(U(x0)) < 1. Suppose otherwise, namely that J(U(x0)) ≥ 1. This would lead to a contradiction in
signs in (2.9) at x = x0.

The following lower bound for U(x) can be deduced by expanding U(x) in Taylor series about
x0:

U(x) = U(x0) + U′(x0)(x − x0) + a2(x − x0)2 ≥ U(x0) −
aU(x0)

2
(x − x0)2 = U(x0)g(x),

where a2 = U′′(χ)/2 and g(x) = 1 − a(x − x0)2/2. Note that the function g(x) is positive in the

interval x0 −

√
2
a < x < x0 +

√
2
a and equals zero at its boundary. Then we can find x1 in this

interval such that g(x) ≥ k > 0 and ϕ(x) > 1/2 for all x ∈ [x0, x1]. Hence

1 ≥ J(U(x0)) =
∫ ∞

−∞

ϕ(x0 − y)U(y)dy > U(x0)
∫ x1

x0

ϕ(x0 − y)g(y)dy >
k
2

(x1 − x0)U(x0).

This estimate proves the first part of the lemma. The proof of the second part follows a similar
approach to that of Lemma 4.

□
The remaining part of the proof of the existence of solution is similar to the proof in the case of

global competition.

3. Instability of homogeneous in space stationary solutions

3.1. ODE model

We begin stability analysis with the corresponding ODE model without spatial variable:

dU
dt
= aU(1 − U) − kUC − σ1U, (3.1)

dC
dt
= p

UC
1 +C

− qUC − σ2C, (3.2)

where we set p(U) = pU and q(U) = qU + σ2, assuming that a > σ1, p > q. This model
possesses three stationary solutions, E0(0, 0), E1(1 − σ1

a , 0), and the coexistence (positive)
equilibrium E∗(U∗,C∗), where

C∗ =
pU∗

qU∗ + σ2
− 1, (3.3)

and U∗ is a positive root of the following quadratic equation:

F(u) = aqu2 +
(
k(p − q) + q(σ1 − a) + aσ2

)
u − σ2(a − σ1 + k) = 0. (3.4)

Let us note that C∗ is positive if the following inequality holds:
σ2

p − q
< U∗ < 1. (3.5)

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15936–15956.
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To determine the number of equilibrium points of system (3.1) and (3.2), one needs to count the
number of positive real roots of Eq (3.4) that lie in the interval (0, 1)

Since F(0) = −σ2(a − σ1 + k) < 0, and

F(1) = k(p − q) + qσ1 + σ2(σ1 − k) > kσ2 + qσ1 + σ2(σ1 − k) = σ1(σ2 + q) > 0,

then there exists a unique U∗ in (0, 1) solution of Eq (3.4). Taking into account (3.5), the nontrivial
equilibrium exists if

σ2 < (p − q)
(
1 −
σ1

a

)
. (3.6)

The trivial equilibrium point E0 is a saddle point regardless of the parameter values. On the other
hand, the virus-only equilibrium E1 is stable if σ2 > (p − q)(1 − σ1

a ), and unstable otherwise.
Linearizing system (3.1) and (3.2) around E∗, we obtain the associated characteristic equation.

λ2 + Aλ + B = 0, (3.7)

where

A = −
(
aU∗ +

C∗(qU∗ + σ2)
1 +C∗

)
< 0, B =

aU∗C∗(qU∗ + σ2)
1 +C∗

+ kσ2C∗ > 0.

Hence, E∗ is locally asymptotically stable whenever it exists.

3.2. Spatial perturbations for the local model

Replacing the function ϕ(z) with a Dirac delta-function in the system (1.1) and (1.2) where
H(U) = J(U), we obtain a reduced reaction-diffusion system:

∂U
∂t
= d1
∂2U
∂x2 + aU(1 − U) − kCU − σ1U, (3.8)

∂C
∂t
= d2
∂2C
∂x2 + pU

C
1 +C

− qUC − σ2C. (3.9)

The following inequalities define the conditions of the Turing instability [27]:

a11 + a22 < 0, (3.10)
a11a22 − a12a21 > 0, (3.11)

d2a11 + d1a22 > 2
√

d1d2
√

a11a22 − a12a21, (3.12)

where

a11 = −aU∗ < 0, a22 = −
C∗(qU∗ + σ2)

1 +C∗
< 0, a12 = −kU∗ < 0 and a21 =

σ2C∗

U∗
> 0.

Two conditions (3.10) and (3.12) can not be satisfied simultaneously since a11 < 0 and a22 < 0.
Therefore, the local spatiotemporal model does not meet the conditions of the Turing instability.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15936–15956.
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3.3. Nonlocal model

Next, we will derive the instability conditions for the positive homogeneous steady-state (U,C)
of system (1.1) and (1.2), where H(U) = J(U). The corresponding eigenvalue problem has the
form:

λz = −b1w − aU∗
∫ +∞

−∞

ϕ(x − y)z(y)dy + d1z′′, (3.13)

λw = b2z − b3w + d2w′′, (3.14)

where z(x), and w(x) are spatial perturbations and

b1 = kU∗ > 0, b2 =
σ2C∗

U∗
> 0, b3 =

C∗(qU∗ + σ2)
1 +C∗

> 0.

Applying the Fourier transform to Eqs (3.13) and (3.14), we get

λz̄ = −b1w̄ − aU∗ϕ̄z̄ − d1ξ
2z̄, (3.15)

λw̄ = b2z̄ − b3w̄ − d2ξ
2w̄. (3.16)

Here, z̄, w̄, and ϕ̄ denote the Fourier transforms of the functions z(x), w(x) and ϕ(z), respectively.
The characteristic equation associated for the system (3.15) and (3.16) can be expressed as follows:

λ2 +
(
aU∗ϕ̄ + b3 + (d1 + d2)ξ2)λ + d1d2ξ

4 + (aU∗ϕ̄d2 + b3d1)ξ2 + b3aU∗ϕ̄ + b1b2 = 0. (3.17)

The conditions for the stability of the homogeneous steady-state (U,C) under spatial perturbations
are given by the inequalities:

Γ(ξ,M) ≡ −
(
aU∗ϕ̄ + b3 + (d1 + d2)ξ2) < 0, (3.18)

∆(ξ,M) ≡ d1d2ξ
4 + (aU∗ϕ̄d2 + b3d1)ξ2 + b3aU∗ϕ̄ + b1b2 > 0. (3.19)

The characteristic equation of the local reaction-diffusion system (3.8) and (3.9) can be derived
from (3.17) by setting ϕ̄ = 1. As previously mentioned, if ϕ̄ = 1, then it is not feasible to violate
the inequalities stated in (3.18) and (3.19). In numerical simulations below we will consider the
kernel function

ϕ(x) =

 1
2M pour |x| ≤ M,

0 pour |x| > M.
(3.20)

In this case,

ϕ̄(ξ) =
sin(ξM)
ξM

.

The instability may occur due to the variable sign of this function. As the bifurcation of spatial
stationary structures occurs, a single real eigenvalue passes through the origin, while a pair of
complex conjugate eigenvalues cross the imaginary axis at the Hopf bifurcation threshold. We
consider these two cases below.
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3.3.1. Stationary patterns

To obtain the condition of spatial instability, we begin by solving the system of equations:

∆(ξ,M) = 0,
∂∆

∂M
= 0,

∂∆

∂ξ
= 0. (3.21)

Differentiating ∆(ξ,M) with respect to M, we get:

cos(ξM)
M

−
sin(ξM)
ξM2 = 0. (3.22)

Substituting ξM = z into the previous equation, we obtain:

tanz = z. (3.23)

Solving this equation yields a countable number of positive roots, 0 < z1 < z2 < z3 < . . . . Set
µi = sin z j/z j, j = 1, 2, 3, . . . . The equation ∆(ξ,M) = 0 yields:

(ξ±j )2 =
−(b3d1 + aU∗µ jd2) ±

√
(b3d1 − aU∗µ jd2)2 − 4d1d2b1b2

2d1d2
. (3.24)

The corresponding values of M j can be obtained from the equation:

M j =
z j

ξ j
, j = 1, 2, 3, . . . , (3.25)

where z j are the positive roots of ∆(ξ,M) = 0. Calculating the threshold values of ξ j and M j for
different parameter values, we can determine the conditions under which spatial instability occurs.

3.3.2. Time oscillations

To obtain the spatial Hopf bifurcation threshold, we find positive values of ξ and M that satisfy
the condition Γ(ξ,M) = 0. To do so, we differentiate Γ(ξ,M) = 0 with respect to M, which yields

aU∗
(cos(ξM)

M
−

sin(ξM)
ξM2

)
= 0,

and, accordingly, we can define µ j, j = 1, 2, 3, . . . , as above. Hence ξ j and M j are defined by the
equalities:

ξ2
j = −

b3 + aU∗µi

d1 + d2
, M j =

z j
√

d1 + d2√
−(b3 + aU∗µi)

, j = 1, 2, 3, . . . (3.26)

4. Instability and pattern formation

We will analyze in this section the instability conditions presented above and will determine the
parameter regions with stable and unstable solutions. We will illustrate the emerging patterns with
direct numerical simulations.
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4.1. Spatial patterns for the nonlocal model

We begin with the bifurcation of spatial structures and assume that limM→0+ Γ(ξ,M) < 0 and
limM→0+ ∆(ξ,M) > 0. These conditions ensure stability of the homogeneous steady-state under
space-independent perturbations. To determine the critical wavenumber and corresponding
bifurcation threshold in terms of d2, we need to solve the following two equations:

∆(ξ,M) = 0,
∂

∂ξ
∆(ξ,M) = 0. (4.1)

From ∆(k,M) = 0, we get

d2(ξ) = −
1
ξ2

(
b3 +

b1b2

d1ξ2 + aU∗ sin ξM
ξM

)
. (4.2)

When we substitute this expression into the second equation in (4.1), we get:

2b3

(
d1ξ

2 + aU∗
sin ξM
ξM

)2
+ b1b2

(
4d1ξ

2 + aU∗
(
cos ξM +

sin ξM
ξM

))
= 0. (4.3)

ξ

Figure 1. Left: the graph of the function in (4.3) for M = 22.2 (blue curve). The red color
is used to indicate the root that corresponds to the instability. The function d2(ξ) is shown
by the green curve. The given parameter values are as follows: a = 8.1, k = 1.8, p =
5, q = 1.7, σ1 = 0.7, σ2 = 0.6, d1 = 2.77. Right: plot of ∆(ξ,M) for three values of M
against ξ for a = 4.9, k = 1.2, σ1 = 0.5, σ2 = 0.2, p = 1.5, q = 0.8, d1 = 1.73, d2 = 0.06.

We assume that all parameter values are fixed except for M and d2, and note that this equation
can have multiple positive roots. If a chosen value of M results in a finite number of positive
roots, denoted as ξ1, ξ2, · · · , ξm in (4.3), the corresponding values of d2 (ξi) in (4.2) may not all be
positive. To determine the bifurcation threshold d2T and the corresponding value of ξT , we take
the minimum positive value of d2 (ξi) and the corresponding value of ξi for which the minimum is
achieved.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15936–15956.



15947

Consider, as example, the following values of parameters:

a = 8.1, k = 1.8, p = 5, q = 1.7, σ1 = 0.7, σ2 = 0.6, d1 = 2.77.

Then U∗ = 0.7,C∗ = 0.95. For M = 22.2, Remark that d2 is an increasing function of ξ in [0,∞[.
We find ξT = 0.2 and the bifurcation threshold d2T = 1.16 (Figure 1, left).

After that, we calculate the critical value of M that corresponds to the instability boundary,
using a specific value for d2. We set a = 4.9, k = 1.2, σ1 = 0.5, σ2 = 0.2, p = 1.5, q = 0.8, d1 =

1.73, d2 = 0.06. Given these parameters, the spatio-temporal model represented by Eqs (3.8)
and (3.9) and with only local interactions (M = 0) does not generate any spatial patterns. It is
worth noting that the values U = 0.79 and C = 0.42 correspond to the homogeneous steady-state
of the model defined by Eqs (3.8) and (3.9) with the specified parameters. We find

Γ(ξ, 0) = −
(
aU∗ + b3 + (d1 + d2)ξ2) = −(4.12 + 1.06ξ2) < 0

and

∆(ξ, 0) = d1d2ξ
4 + (aU∗d2 + b3d1)ξ2 + b3aU∗ + b1b2 = 0.06ξ4 + 0.66ξ2 + 1.07 > 0.

Note that here we have employed the value ϕ̄ = 1 to evaluate Γ(ξ, 0) and ∆(ξ, 0). Hence both roots
of the associated characteristic equation, i.e., Eq (3.17) with ϕ̄ = 1 have negative real parts. This
leads to both roots of the associated characteristic equation, i.e., Eq (3.17) with ϕ̄ = 1, having
negative real parts. As a result, for system (3.8) and (3.9) with local interaction, the homogeneous
steady-state (0.79, 0.42) is stable under small heterogeneous perturbations.

To reach a bifurcation point in the models (3.1) and (3.2), the condition (3.19) must be violated,
and the bifurcation occurs if the function ∆(ξ,M), given by

∆(ξ,M) = 0.06ξ4 + (0.23ϕ̄ + 0.43)ξ2 + 0.97ϕ̄ + 0.095 (4.4)

intersects the ξ-axis. For the given parameter set, the value of the bifurcation threshold is MT = 6.5.
Clearly, ∆(ξ,M) > 0 for all values of ξ if M < MT , while ∆(ξ,MT ) = 0 only at ξ = 0.62.
Furthermore, if M > MT , there exists a range of values of ξ for which ∆(ξ,M) < 0. The plot of
∆(ξ,M) versus ξ for various values of M is shown in Figure 1 (right), which clearly illustrates the
change in sign of the function ∆(ξ,M) with respect to M.

4.2. Spatial Hopf bifurcation

To obtain the critical wavenumber for the spatial Hopf bifurcation, we begin with the
expression for the bifurcation threshold in terms of the parameter d2. Assuming that (U,C) is
locally asymptotically stable for the temporal model (3.1) and (3.2), we note that Γ(ξ,M) < 0 and
∆(ξ,M) > 0 as M → 0+. Furthermore, we have limM→0+ Γ(ξ,M) = a11 and
limM→0+ ∆(ξ,M) = −a12a21.

If we find a unique value ξ ≡ ξH such that Γ(ξ,M) = 0 for some suitable M, then ξH is the
critical wavenumber for the spatial Hopf bifurcation. This critical wavenumber can be obtained by
solving the following two equations simultaneously:

Γ(ξ,M) = 0,
∂

∂ξ
Γ(ξ,M) = 0. (4.5)
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The equation Γ(ξ,M) = 0 allows us to determine the value of d2 as follows:

d2(ξ) = −
1
ξ2

(
aU∗

sin ξM
ξM

+ b3 + d1ξ
2
)
. (4.6)

Substituting the expression for d2(ξ) from Eq (4.6) into the second equation in (4.5), we obtain:

aU∗ cos ξM − 3aU∗
sin ξM
ξM

− 2b3 = 0. (4.7)

Figure 2 demonstrates that Eq (4.7) can have multiple positive real roots depending on the
parameter values. We need to verify that the corresponding values of d2(ξ) are positive. Among
all the positive real roots, we choose ξH to be the one for which d2(ξH) is the smallest positive
value and ∆(ξH,M) > 0.

For the purpose of illustration, let us take the following set of parameter values: a = 2.3, k =
3.3, σ1 = 0.5, σ2 = 0.2, p = 1.6, q = 0.6, d1 = 0.83. Then, U∗ = 0.32,C∗ = 0.31, and Eq (4.7)
possesses only one positive root ξ = 0.19 for M = 23. From (4.6), we find d2 = 1. Since
Γ(0.19, 21.5) = 0.19 > 0, these values of ξ and d2 correspond to the desired spatial Hopf bifurcation
thresholds, ξH = 0.19, d2H = 1. The change of sign of the function Γ(ξ,M) depending on M is
illustrated in Figure 2 (right).

Figure 2. Left: solutions of the equation (4.7) with respect to ξ (blue line), and d2 as
a function of ξ (red line) for the parameter values: a = 2.3, k = 3.3, σ1 = 0.5, σ2 =

0.2, p = 1.6, q = 0.6, d1 = 0.83 and M = 21.5. Right: plot of Γ(ξ,M) for three values of
M against ξ for a = 2.3, k = 3.3, σ1 = 0.5, σ2 = 0.2, p = 1.6, q = 0.6, d1 = 0.83, d2 = 1.

Furthermore, for d2 < d2H, we have Γ(ξ, 21.5) > 0. Therefore, the spatial Hopf bifurcation
occurs as d2H crosses the critical threshold d2H from higher to lower values, i.e., for d2 > d2H.

To determine the critical value of M for Hopf bifurcation with a specific choice of d2, we first
show that the spatiotemporal model (3.8) and (3.9) with the local interaction (M = 0) does not have
a Hopf instability for the above set of parameter values and d2 = 1. We note that U∗ = 0.32 and
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C∗ = 0.31 is the homogeneous steady state for (3.8) and (3.9) with the chosen parameter values.
By substituting M = 0 into (4.5), we find

Γ(ξ, 0) = −
(
aU∗ + b3 + (d1 + d2)ξ2) = −0.83 − 1.83ξ2 < 0

and

∆(ξ, 0) = d1d2ξ
4 + (aU∗d2 + b3d1)ξ2 + b3aU∗ + b1b2 = 0.83ξ4 + 0.83ξ2 + 0.28 > 0

for all values of ξ. It should be noted that in this case, we use the value ϕ̄ = 1 to compute Γ(ξ, 0) and
∆(ξ, 0). As a result, both roots of the corresponding characteristic equation, i.e., Eq (3.17) with ϕ̄ =
1, possess negative real parts. This implies that the homogeneous steady-state (U,C) = (0.4, 0.8)
is stable under small heterogeneous perturbations in the case of model (3.8) and (3.9) with local
interaction. The onset of Hopf bifurcation in model (3.1) and (3.2) necessitates the violation of the
inequality (3.18), and the Hopf bifurcation threshold is obtained by determining the value of M for
which the function

Γ(ξ,M) = −
(
aU∗ϕ̄ + b3 + (d1 + d2)ξ2) (4.8)

intersects with the ξ-axis. For the selected parameter set, the Hopf bifurcation threshold is MT =

23. It is evident that if M > MT , Γ(ξ,M) > 0 for all ξ, if M < MT , Γ(ξ,M) < 0 for a range of ξ
values, and if M = MT , Γ(ξ,MT ) = 0 only at ξ = 0.19.

Stable
homogeneous steady-state

Spatial
Hopf domain

H
op

fd
om

ai
n

Spatial patterns

d2

M

Figure 3. Stability boundaries in the (d2,M)-parameter plane. Parameters values: a =
7,K = 3.1, p = 1.4, q = 0.8, σ1 = 1, σ2 = 0.1, d1 = 1.

The results of the linear stability analysis are shown in Figure 3. There exists a region in
the parameter plane where stationary solutions that are homogeneous in space are stable. These
solutions can lose their stability via two primary mechanisms. In the first case, a real eigenvalue
passes through the origin, resulting in the appearance of stable stationary solutions that are periodic
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in space (as illustrated in Figure 4). In the second case, a pair of complex conjugate eigenvalues
intersects with the imaginary axis, leading to time-periodic oscillations of a solution that is constant
in space (not shown).

Further in the instability region, both instabilities can occur simultaneously resulting in
complex spatiotemporal dynamics. As such, Figure 5 depicts periodic time oscillations of the
spatial structure, wherein amplitude waves propagate from the center of the interval towards its
boundaries. Meanwhile, Figure 6 displays another type of amplitude waves.
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2

U C

Figure 4. Spatiotemporal patterns in numerical simulations of the nonlocal model (1.1)
and (1.2). a) Solution profile for t = 500. b) Behavior of U with respect to time and
space variables. c) Behavior of C with respect to time and space variables. Parameter
values are: a = 7, k = 3.1, σ1 = 1, σ2 = 0.1, p = 1.4, q = 0.8, d1 = 1, d2 = 1.5,M = 6.5.
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Figure 5. Spatiotemporal pattern in numerical simulations of the nonlocal model (1.1)
and (1.2). a) Solution profile for t = 500. b) The dynamics of U with respect to both
spatial and temporal variables. c) The dynamics of C with respect to both spatial and
temporal variables. Parameter values are: a = 7, k = 3.1, σ1 = 1, σ2 = 0.1, p = 1.4, q =
0.8, d1 = 1, d2 = 0.1,M = 6.5.
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Figure 6. The spatio-temporal patterns generated by the nonlocal model (1.1)-(1.2). a)
Solution profile for t = 500. b) The dynamics of U with respect to both spatial and
temporal variables. c) The dynamics of C with respect to both spatial and temporal
variables. Parameter values are: a = 7, k = 3.1, σ1 = 1, σ2 = 0.1, p = 1.4, q = 0.8, d1 =

1, d2 = 0.8,M = 50.

5. Discussion

Virus in the host organism undergoes frequent mutations leading to the emergence of new
variants competing with each other, persisting or disappearing during this competition. This virus
population with close genotypes is considered as virus quasi-species. From modelling point of
view, they can be interpreted as a virus density distribution in the genotype space localized around
some average genotype. Existence of such solutions is determined by the interaction of virus
replication in the host cells with the immune response and its natural (independent of the immune
response) genotype-dependent death.

The interval of genotypes for which virus replication rate exceeds its death rate (viability
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interval) determines the emergence of virus quasi-species. A simplified model describing the
existence of virus quasi-species without explicit introduction of the immune cells was introduced
in [7, 21]. In this work, we analyze the influence of immune cells on the existence of
quasi-species. The conditions of the existence of solutions is formulated in terms of the
eigenvalues of the corresponding operator. Let us note that quasi-species can exist in both cases,
for nonlocal or global virus competition for the host cells.

The evolution of virus quasi-species is determined by the fitness landscape which depends on
the infection interaction with the immune response. As such, genotype-dependent immune
response leads to the evolutionary drift of virus quasi-species in the genotype space [28]. In the
case of competition of two strains, their dynamics depends not only on the fitness landscape but
also on their initial distribution. If one of the strains fills initially the whole “ecological niche”,
the second one cannot appear even if it would have evolutionary advantage otherwise. In the case
of antiviral treatment eliminating the first strain, the second one can emerge [28]. This is the
mechanism of the emergence of resistant strains due to treatment.

Another mechanism of the emergence of virus quasi-species can be realized without the
assumption of fitness advantage for some of them. From modelling point of view, it is to some
extent similar to the emergence of biological species due to intra-specific competition and natural
selection (sympatric speciation) [29, 30].

Nonlocal competition for the host cells and the interaction with the immune response leads
to the emergence of genotype-dependent virus distribution without a priori advantage of some
genotypes. The results of numerical simulations presented above show that such distributions can
be stationary or time-dependent with the variation of the sizes of virus sub-populations and the
emergence of new ones. Contrary to the previous case, the emergence of virus quasi-species can
occur only in the case of nonlocal competition, but not in the case of global competition or the case
without competition where H(u) = u. Let us also note that small virus mutation rate (diffusion
coefficient) stimulates the emergence of virus quasi-species, while large mutation rate can lead to
their disappearance. It is also interesting to remark that only stationary patterns were found in the
previous work [31], while here we we observe also temporal dynamics (for a different model).

Thus, we have studied two mechanisms of the emergence of virus quasi-species with simplified
but biologically realistic models of virus replication and immune response. More detailed models
of the immune response can elucidate the influence of its two main components, the innate and
adaptive immune responses, and of other factors involved in viral infections.

It is worth noting that in this study, specific reasonable parameter values are used to verify
our analytical results. However, to effectively apply these findings to real-world data, obtaining
currently unknown realistic parameter values is of utmost importance. Prioritizing the resolution
of this limitation in future research efforts is essential to enhance the overall understanding and
practical applicability of the study’s outcomes.
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