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A fundamental challenge in wireless heterogeneous networks (HetNets) is to effectively utilize the limited transmission and storage resources in the presence of increasing deployment density and backhaul capacity constraints. To alleviate bottlenecks and reduce resource consumption, we design optimal caching and power control algorithms for multi-hop wireless HetNets. We formulate a joint optimization framework to minimize the average transmission delay as a function of the caching variables and the signal-to-interference-plus-noise ratios (SINR) which are determined by the transmission powers, while explicitly accounting for backhaul connection costs and the power constraints. Using convex relaxation and rounding, we obtain a reduced-complexity formulation (RCF) of the joint optimization problem, which can provide a constant factor approximation to the globally optimal solution. We then solve RCF in two ways: 1) alternating optimization of the power and caching variables by leveraging biconvexity, and 2) joint optimization of power control and caching. We characterize the necessary (KKT) conditions for an optimal solution to RCF, and use quasi-convexity to show that the KKT points are Pareto optimal for RCF. We then devise a subgradient projection algorithm to jointly update the caching and power variables under general SINR conditions. Finally, our analytical findings are supported by results from extensive numerical experiments.

I. INTRODUCTION

T HE energy and cost efficiencies of wireless heterogeneous networks (HetNets) incorporating macro cells (MCs) and small cells (SCs) are critical for meeting the performance requirements of 5G wireless networks [START_REF] Andrews | What will 5G be?[END_REF]. Design of these HetNets entails the fundamental challenge of optimally utilizing both the bandwidth and storage resources of the network to reduce the download or transmission delay and the energy costs. With the increasing deployment density in wireless networks, the backhaul capacity becomes the bottleneck. It is well Derya Malak is with the Communication Systems Department, Ecole d'Ingénieur et Centre de Recherche en Sciences du Numérique (EURECOM), Biot, 06904 Sophia Antipolis, France (e-mail: derya.malak@eurecom.fr).
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known that caching can alleviate this bottleneck by replacing the backhaul capacity with storage capacity at SCs [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF], i.e., moving content closer to the wireless edge. Caching reduces transmission delay by bringing the popular data items in SCs that are faster or computationally cheaper to access than MCs. To optimize resource usage in wireless HetNets, designing caching and power control policies and the interplay between caching and transmission decisions remains an open challenge. Enabling this will help control the interference and minimize the transmission delay costs in wireless HetNet topologies.

A. Current State of the Art and Motivation

Research to date on cost optimization in the context of caching has focused on different perspectives. There have been attempts to devise replacement algorithms that aim to optimize the caching gain, which is the reduction in the expected total file downloading delay achieved by caching at intermediate nodes. Simple, elegant, adaptive, and distributed approaches determining how to populate caches in a variety of networking applications abound. These include Che's analytical approximation to compute the probability of an item being in a Least Recently Used (LRU) cache [START_REF] Che | Hierarchical web caching systems: Modeling, design and experimental results[END_REF], in the context of web caches [START_REF] Breslau | Web caching and Zipf-like distributions: Evidence and implications[END_REF], and extension of Che's decoupling approach to provide a unified analysis of caching for different replacement policies in [START_REF] Garetto | A unified approach to the performance analysis of caching systems[END_REF]. A simple and ubiquitous algorithm for populating caches in peer-to-peer networking is path replication, i.e., once a request for an item reaches a cache, every downstream node receiving the response caches the item [START_REF] Cohen | Replication strategies in unstructured peer-topeer networks[END_REF]. Various cache eviction policies devised for a single cache primarily concern the optimization of the cache hit rate that describes the frequency of finding the searched item in the cache, or the latency that describes how long it takes for the cache to return a desired item [START_REF] Che | Hierarchical web caching systems: Modeling, design and experimental results[END_REF], [START_REF] Garetto | A unified approach to the performance analysis of caching systems[END_REF], [START_REF] Dan | An approximate analysis of the LRU and FIFO buffer replacement schemes[END_REF].

For networks of caches, time-to-live (TTL) caching is a better alternative [START_REF] Garetto | A unified approach to the performance analysis of caching systems[END_REF], [START_REF] Berger | Exact analysis of TTL cache networks[END_REF], where items stay in a cache for predetermined times and are evicted when the timers expire. An age-based-threshold policy where cache stores all contents requested more times than a threshold [START_REF] Leconte | Placing dynamic content in caches with small population[END_REF] captures temporal popularity changes via the Poisson shot noise model (SNM), and maximizes the hit ratio [START_REF] Traverso | Temporal locality in today's content caching: Why it matters and how to model it[END_REF]. Hence, SNM is compatible with the TTL caching [START_REF] Leonardi | Least recently used caches under the shot noise model[END_REF]. Traditional cache eviction policies [START_REF] Che | Hierarchical web caching systems: Modeling, design and experimental results[END_REF], [START_REF] Garetto | A unified approach to the performance analysis of caching systems[END_REF], [START_REF] Fricker | A versatile and accurate approximation for LRU cache performance[END_REF], e.g., LRU, Least Frequently Used (LFU), First-In-First-Out (FIFO), and Random Replacement (RR), provide gain by making content available locally and compromise between hit rate and latency, and can be arbitrarily suboptimal in terms of the expected caching gain [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF]. However, as devised in the landmark paper [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF], novel coded caching approaches can provide a global gain that derives from jointly optimizing placement and delivery. Furthermore, geographic caching approaches that capture the spatial diversity of content, as in [START_REF] Blaszczyszyn | Optimal geographic caching in cellular networks[END_REF], [START_REF] Golrezaei | Basestation assisted device-to-device communications for high-throughput wireless video networks[END_REF], [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF], and [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF], help optimize the placement.

There is an extensive literature on physical layer aspects of caching in wireless networks design. For example, the gain offered by local caching and broadcasting is characterized in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF]. Works also include the analysis of the scaling of the peruser throughput and collaboration distance [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF], the wireless caching capacity region which is the closure of the set of all achievable caching traffic [START_REF] Niesen | Caching in wireless networks[END_REF], as well as single-hop and device-to-device [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF], [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF], [START_REF] Ji | The throughput-outage tradeoff of wireless one-hop caching networks[END_REF], [START_REF] Zhang | Efficient scheduling and power allocation for D2D-assisted wireless caching networks[END_REF], [START_REF] Malak | Optimizing content caching to maximize the density of successful receptions in device-to-device networking[END_REF], and multi-hop caching networks [START_REF] Jeon | Caching in wireless multihop device-to-device networks[END_REF], [START_REF] Ioannidis | Jointly optimal routing and caching for arbitrary network topologies[END_REF].

Recently, information centric networking (ICN) architectures have put emphasis on the traffic engineering and caching problems [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF], [START_REF] Dehghan | A utility optimization approach to network cache design[END_REF] to effectively use both bandwidth and storage for efficient content distribution [START_REF] Yeh | VIP: A framework for joint dynamic forwarding and caching in named data networks[END_REF], and optimize the network performance [START_REF] Mahdian | MinDelay: Low-latency joint caching and forwarding for multi-hop networks[END_REF]. Alternatively, there have been works focusing on jointly optimizing the caching gain and resource usage, e.g., a decentralized SC caching optimization, i.e., femtocaching, to minimize the download delay [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF], distributed optimization of caching gain given routing [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF], minimizing the total cost incurred in storing and accessing objects by building the Steiner trees [START_REF] Baev | Approximation algorithms for data placement problems[END_REF], jointly optimizing caching and routing to provide latency guarantees [START_REF] Li | DR-cache: Distributed resilient caching with latency guarantees[END_REF], and minimizing delay by taking into account congestion [START_REF] Dehghan | On the complexity of optimal routing and content caching in heterogeneous networks[END_REF], and elastic and inelastic traffic [START_REF] Abedini | Content caching and scheduling in wireless networks with elastic and inelastic traffic[END_REF]. Existing strategies have also focused on separately optimizing the caching gain or the throughput [START_REF] Chen | Probabilistic caching in wireless D2D networks: Cache hit optimal versus throughput optimal[END_REF], or spatial throughput via scheduling [START_REF] Blaszczyszyn | Optimizing spatial throughput in device-to-device networks[END_REF]. From a resource management perspective, it is not sufficient to exclusively optimize caching or throughput, or delay.

There exist several pertinent power control algorithms to optimize the resource usage in wireless networks [START_REF] Xiao | A utility-based powercontrol scheme in wireless cellular systems[END_REF], [START_REF] Gupta | Optimization and learning algorithms for stochastic and adversarial power control[END_REF], [START_REF] Hanly | An algorithm for combined cell-site selection and power control to maximize cellular spread spectrum capacity[END_REF], [START_REF] Hanly | Power control and capacity of spread spectrum wireless networks[END_REF], [START_REF] Hanly | Capacity and power control in spread spectrum macrodiversity radio networks[END_REF], or maximize throughput under latency considerations [START_REF] Liaskos | Backpressure on the backbone: A lightweight, non-intrusive traffic engineering approach[END_REF]. However, delay optimization in wireless links is challenging because of interference and congestion. There exist power-aware routing algorithms for packet forwarding to balance the traffic between high-quality links and less reliable links, such as [START_REF] Dvir | Power-aware recovery for geographic routing[END_REF] and [START_REF] Chang | Energy conserving routing in wireless adhoc networks[END_REF], joint optimization of power control, routing, and congestion [START_REF] Xi | Node-based optimal power control, routing, and congestion control in wireless networks[END_REF], and joint optimization of radio and computational resources under latency and power constraints [START_REF] Chipara | Real-time power-aware routing in sensor networks[END_REF], [START_REF] Barbarossa | Joint allocation of computation and communication resources in multiuser mobile cloud computing[END_REF], [START_REF] Sardellitti | Joint optimization of radio and computational resources for multicell mobile-edge computing[END_REF], as well as delay-optimal computation task scheduling at the mobile edge [START_REF] Liu | Delay-optimal computation task scheduling for mobile-edge computing systems[END_REF], and the minimum delay routing algorithm [START_REF] Gallager | A minimum delay routing algorithm using distributed computation[END_REF]. In addition, fog optimization-based resource allocation schemes for wireless networks have been devised in [START_REF] Oueis | The fog balancing: Load distribution for small cell cloud computing[END_REF] to achieve high power efficiency while keeping a very high Quality of Experience under latency constraints, and in [START_REF] Yemini | Fog' optimization via virtual cells in cellular network resource allocation[END_REF] to maximize the sum rate of cellular networks. However, none of these or research on ICN architectures has jointly designed traffic engineering and cache placement strategies to optimize network performance in view of traffic demands.

Several papers have studied complexity and optimization issues of cost minimization as an offline, centralized caching problem under restricted topologies [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF], [START_REF] Cohen | Replication strategies in unstructured peer-topeer networks[END_REF], [START_REF] Baev | Approximation algorithms for data placement problems[END_REF], [START_REF] Dehghan | On the complexity of optimal routing and content caching in heterogeneous networks[END_REF], [START_REF] Borst | Distributed caching algorithms for content distribution networks[END_REF], [START_REF] Fleischer | Tight approximation algorithms for maximum general assignment problems[END_REF]. Despite the advent of different caching solutions, to the best of our knowledge, none of the above protocols focuses on the joint optimization of caching and power allocation or provides algorithmic performance guarantees in terms of the achievable costs via caching. Although most of these strategies suggest that intermediate caching can alleviate the average download delays, it is hard to quantify how this delay is affected by the resource allocation strategy in a HetNet setting. In this paper, we focus on jointly optimizing the network level performance in terms of transmission delay and caching, which can be increasingly skewed away from a strategy that places the items without accounting for the transmission delay. 1

B. Methodology and Contributions

In this paper, we study jointly optimal caching and power control for arbitrary multi-hop wireless HetNet topologies with nodes that have caching capabilities. Note that as the networks are becoming increasingly heterogeneous, MCs and SCs can co-exist in 5G, and all networks beyond it [START_REF] Andrews | What will 5G be?[END_REF]. Dense SC deployment is the key for 5G networks to enhance the capacity, rendering a cost-efficient backhaul solution a key challenge.

For a given caching HetNet topology with multi-hop transmissions,2 a set of finite cache storage capacities, a demand distribution on the content items known a priori, and a subset of nodes designated to store specific items, we devise algorithms for jointly optimal caching and power control to minimize the average transmission delay cost, i.e., the average download delay, per request. While end-to-end delay in systems is due to several key sources, including transmission delay, propagation delay, processing delay and queuing delay, we are primarily interested in a lightly loaded regime for which congestion-dependent latency costs can be neglected, and in which the link lengths are much smaller than the propagation speed of the signal, and each node can sustain a high service rate relative to the average rate at which items are arriving to be serviced. Hence the transmission delay is the major delay component. To accurately determine the transmission delay, we explicitly account for the transmission power, backhaul costs, and wireless interference.

Finding the optimum placement of files is proven to be NP-complete [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF]. Hence, jointly optimal power control and caching to minimize the transmission delay is also NPcomplete. We emphasize that our joint optimization framework is significantly different from the traditional approach which maximizes the caching gain only. This approach has been widely studied in the literature, such as in [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF], [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF], [START_REF] Ioannidis | Jointly optimal routing and caching for arbitrary network topologies[END_REF], and [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF] and their follow-up works, where the link costs are fixed. This assumption is only true when the links are granted orthogonal frequencies and do not interfere, and the transmission powers are fixed, which is not the case in Het-Nets. Furthermore, when link costs are deterministic, caching gain always improves with increasing link costs. This requires high transmission powers and violates the purpose of cost minimization. In other words, savings via intermediate caching do not inform us about the actual achievable delay-cost via caching. This justifies our proposed framework in Sect. III, where we consider the minimum achievable cost via caching by taking into account the joint behavior of link costs under resource constraints.

Our main technical contributions include the following:

• A reduced-complexity formulation (RCF) to the joint optimization problem. We provide a constant factor approximation to the minimum average transmission delay-cost D o (X, S) of serving a request via jointly optimizing binary caching variables X and real valued transmission powers S. Using convex relaxation techniques, we obtain an RCF of the joint optimization problem, with cost function D(Y, S) which is not jointly convex, where Y denote the relaxed caching variables.

We then round Y to obtain an integral solution within a constant factor from the optimal solution to D o (X, S). • Sufficient conditions for biconvexity of D(Y, S). We provide a sufficient condition for the convexity of RCF in the logarithm of powers which yields a biconvex RCF objective. This condition pertains to the high SINR regime and does not hold for general SINR values. We jointly optimize RCF under the biconvexity condition to provide an alternating optimization solution to minimizing D(Y, S). • Joint optimization framework. We jointly optimize RCF under the general setting which is not jointly convex. We obtain the following results: Our prior work [START_REF] Malak | Transmission delay minimization via joint power control and caching in wireless HetNets[END_REF] contains a subset of the results of this manuscript, including (i) a RCF D(Y, S) to the joint power-caching optimization problem, (ii) sufficient conditions for the biconvexity of D(Y, S), (iii) a joint optimization framework, where we show a) quasi-convexity of D(Y, S), b) generalized necessary conditions for optimality of D(Y, S) assuming strict convexity of D S , and c) Pareto optimality of the solution to D(Y, S), and (iv) a subgradient projection algorithm. However, [START_REF] Malak | Transmission delay minimization via joint power control and caching in wireless HetNets[END_REF] does not contain the results pertaining to the alternating optimization. It does not include the proofs of the main results (theorems, or propositions), which have been detailed in the current manuscript. This draft contains in addition to a)-c) under the joint optimization framework, necessary conditions for the optimality of D(Y, S) (Theorem 2). The simulation results in the current manuscript are also more comprehensive and applicable to larger scale models.

Organization of the rest of the paper is follows. In Sect. II we detail the wireless HetNet topology where each node has caching capability and adjustable transmission powers. We establish a transmission delay model of serving a request using multiple hops where the transmission delay is a nonlinear function of the signal-to-interference-plus-noise ratios (SINR). In Sect. III we detail the joint optimization of delay in power and caching variables. This section contains the main technical contributions which are the necessary and sufficient conditions for joint optimality, and algorithms to solve for points with provable theoretical guarantees. In Sect. IV, we numerically verify our analytical findings. In Sect. V, we conclude the paper by pointing out the use cases including mobile edge and fog computing.

II. WIRELESS CACHING MODEL

We consider a multi-hop wireless HetNet topology consisting of different types of nodes, e.g., small cells (SCs), macro cells (MCs), and users. The network serves content requests routed over different paths. To alleviate the impact of limited backhaul capacity, availability, and long-distance reach it is desired that the network serves the requests via the SCs and multi-hop transmissions. While each MC or SC might have a fiber connection to the backhaul network in 5G, multi-hop relaying 3 is essential due to radio range limitations. However, for a given end-to-end distance, increasing the number of hops arbitrarily may lead to additional energy consumption incurred by relays. As a result, long-hop routing, sending over a smaller number of longer hops versus over many short hops, is a competitive strategy for many networks [START_REF] Haenggi | Routing in ad hoc networks: A case for long hops[END_REF]. Furthermore, from a cost-effective perspective, each MC should allocate its resources to a smaller number of users, which balances the traffic between SCs and MCs [START_REF] Andrews | What will 5G be?[END_REF]. We represent the network as a directed graph G(V, E) where V is the collection of nodes such that a node v ∈ V is either an MC, an SC or a user. All nodes V transmit on the same frequency, 4 i.e., all transmissions interfere with each other. In G, E is the set of edges, where given v, u ∈ V , the edge (v, u) ∈ E denotes the transmission link from v to u. In Fig. 1, we illustrate the proposed wireless caching network model and possible multi-hop paths where the users request different items. We provide the notation in Table I.

The caching model is as follows. The entire set of content items, i.e., the catalog, is denoted by C. Each item in C is of equal size. Readers can refer to [START_REF] Liu | Fair caching networks[END_REF]Section 6] for an extension to contents with unequal sizes where the authors partitioned contents into equal-sized chunks and defined the caching gain/cost per chunk, where chunks can be treated as distinct items [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF]. Each node is associated with a cache that can store a finite number of content items. The cache capacity at node v ∈ V is c v . The variables x vi ∈ {0, 1} indicate whether v ∈ V stores item i ∈ C. Due to this finite capacity constraint, i∈C x vi ≤ c v , ∀v ∈ V . Each item i ∈ C is associated with a fixed set of designated sources S i ⊆ V , i.e., nodes that always store i: x vi = 1, ∀v ∈ S i . While the backhaul is always considered to be a designated source for all items, user nodes, SCs, or MCs can also be designated Fig. 1. A caching network scenario with possible connections between the users, SCs or MCs, and to the backhaul, where the backhaul cost D SC of SC is typically higher than the backhaul cost D M C of MC connections [START_REF] Liaskos | Backpressure on the backbone: A lightweight, non-intrusive traffic engineering approach[END_REF]. A path p = {p 1 , p 2 , p 3 } for request (i, p) is indicated where p 1 is a user where the request (i, p) is originated, p 2 is an SC, and p 3 is the MC. sources. Items that are not available in the wireless network need to be retrieved from the backhaul via the SCs or MCs.

Users issue requests for content items. The set of all requests is denoted by R. A request r ∈ R is a pair (i, p) that is jointly determined by the item i ∈ C being requested, and the fixed path p traversed (request is forwarded from the user toward a designated source over a fixed path) to serve this request. The routing strategy of a user with respect to request (i, p) ∈ R is predetermined, e.g., the shortest path in terms of the number of hops to the nearest designated source. We assume that (i) the collection of requests for the same content item i, i.e., {p : (i, p) ∈ R}, are served separately instead of being aggregated, (ii) the response to a request (i, p) travels the same path p, in the reverse direction, which follows from the symmetric routing assumption in ICN, 5 (iii) different frequency bands are used for the uplink and downlink, (iv) transmission delays are solely due to response messages carrying desired items assuming that request forwarding and cache downloads are instantaneous. This is due to the assumption that sizes of requests are much smaller than that of responses, and we ignore the processing time at the nodes.

Request rates are known a priori, where choices of requested items are independent. The arrivals of requests are Poisson where the arrival rate of r

= (i, p) is λ (i,p) . A path p on G of length |p| = K is a sequence {p 1 , p 2 , . . . , p K } of nodes p k ∈ V such that edge (p k , p k+1 ) ∈ E, for k ∈ {1, . . . , |p| -1}. Let k p (v) = {k ∈ {1, . . . , |p|} : p k = v} denote the position of v in p.
For each request (i, p), p 1 is the requesting user and p |p| is the designated source of item i, and we assume that p is a simple path, i.e., p contains no loops.

End-to-end delay includes several key components, such as transmission delay, propagation delay, processing delay, and queueing delay. In this paper, we focus on lightly loaded systems, where the transmission delay is dominant and the other delay components are negligible. We assume there is one queue for each link (u, v) ∈ E that serves in a FIFO manner all requests traversing (u, v).

To determine the transmission delay of link (v, u) ∈ E corresponding to request (i, p), we first derive the signal-to-interference-plus-noise ratio (SINR) on link (v, u), which we denote by SINR vu (S), where S = [s vu ] ∈ R |E| represents the set of transmission powers at all links (v, u) ∈ E. To decode the requests (i, p) traversing link (u, v), we calculate the SINR on link (v, u), where we treat all other transmissions from nodes j ∈ V \v, as well as the transmissions from v to w ̸ = u as noise. Hence, the SINR on link (v, u) is given as

SINR vu (S) = G vu s vu N u + j∈V \v G ju w s jw + G vu w̸ =u s vw , (1) 
where N u is the receiver noise power at node u, and s vu is the transmit power from v ∈ V to u. The total transmit power of node v is u:(v,u)∈E s vu . The parameter G vu is the channel power gain that includes only path loss, where we use the standard power loss propagation model, i.e., G vu = r -n vu given distance r vu between v and u, and the path loss exponent n > 2 [START_REF] Rappaport | Wireless Communications: Principles and Practice[END_REF]. The signal for request (i, p) over link (v, u) is decoded regarding all other signals as noise, for all (i, p) ∈ R and (v, u) ∈ E. Thus, in our model the transmission delays are coupled, in contrast to [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF] and [START_REF] Ioannidis | Jointly optimal routing and caching for arbitrary network topologies[END_REF], because the decoding model captures the interference due to simultaneous wireless transmissions. Because the SINR analysis in ( 1) is for a single frequency band, the set of active nodes with nonzero transmission powers causes interference to the unintended receiver node. Employing OFDMA-based schemes allows frequency multiplexing by moving the interfering nodes to orthogonal resources and eliminates the out-of-band interference, and improves the SINR quality. 6 However, we leave this extension to future work.

To model the wireless transmission delay on link (v, u) ∈ E, we use the following composite relation 7 :

f (SINR vu (S)) = 1 log 2 (1 + SINR vu (S)) , (2) 
which is the delay in number of channel uses per bit corresponding to the data rate of link (v, u). This model captures interference, and thus provides a more sophisticated way of modeling delay in a lightly loaded network than simple hop count. When the SINR is high, (2) yields a low transmission delay and vice versa. From ( 1)-( 2), it is clear that f (SINR vu (S)) is convex and decreasing in SINR vu (S) but non-convex in S.

If the last node of a path p, i.e., p |p| , is not a designated user node, SC, or MC, then the final hop from p |p|-1 to p |p| is a wired connection from an MC or an SC to the backhaul. For given (i, p) ∈ R, the transmission delay incurred by the edge (p |p|-1 , p |p| ) ∈ p where p |p| is the backhaul is given as

f (SINR p |p| p |p|-1 (S)) = D M C , if p |p|-1 is MC, D SC , if p |p|-1 is SC, (3) 
6 In 5G and 6G applications, the performance can be improved using interference cancellation techniques with NOMA-based non-orthogonal resource allocation. However, our transmission delay ( 2) is related to the inverse of transmission rate. This paper focus on the delay tradeoffs due to the joint optimization of power and caching variables. A similar tradeoff for NOMA-based frameworks will be investigated in our future work. 7 Practical adaptive modulation and coding schemes operate at lower SINR values [60, Ch. 4.2, Ch. 9.3]. For example, for MQAM the gap from the Shannon SNR as function of the symbol error probability Pe is Γ =

1 3 (Q -1 (Pe)) 2 .
where the wired backhaul transmission delays D M C and D SC are fixed and known a priori, which we assume to be the same for all SCs and MCs based on [START_REF] Mahloo | Cost modeling of backhaul for mobile networks[END_REF]. In contradistinction to this, the transmission delays are coupled in the wireless part of the network due to the dependency of SINR vu (S), (v, u) ̸ = (p |p| , p |p|-1 ) in (1) on the power allocation S.

Our goal is to jointly optimize the transmission power allocations along with the caching decisions to minimize the average transmission delay of requested items over the multihop network. We next formulate this problem.

III. JOINT POWER CONTROL AND CACHING OPTIMIZATION FOR TRANSMISSION DELAY MINIMIZATION

In this section, we formulate the delay minimization problem that jointly considers power control and caching allocations. Due to its NP-hard nature, in Sect. III-A we first develop a RCF based on convex relaxation and its optimal solution, which yields an integral solution (via rounding) whose cost is within a constant factor from that of the optimal solution to the original problem. Next in Sect. III-B we provide a sufficient condition for the convexity of RCF in the logarithm of powers which yields a biconvex objective. This sufficient condition corresponds to the high SINR regime. Later in Sect. III-C we jointly optimize RCF, first under the assumption of biconvexity so as to provide an alternating optimization formulation, and second under the general setting which is not jointly convex, we provide various results on the RCF objective. We 

A. Caching Optimization for RCF

A goal in caching systems is to minimize the expected total file downloading delay, i.e., the expected delivery time of content items averaged over the demands and the cache placement. Since end-to-end delay in our setup is mainly due to the transmission delay, by letting matrix X = [x vi ] ∈ {0, 1} |V |×|C| denote the global caching strategy, we can express the cost function for serving a request (i, p) in terms of the transmission delay as

D o (i,p) (X, S) = |p|-1 k=1 f (SINR p k+1 p k (S)) k l=1 (1 -x p l i ) (4)
where x vi = 1 if node v ∈ V stores item i ∈ C, and x vi = 0 otherwise, and D o (i,p) (X, S) includes the transmission delay of an edge (p k+1 , p k ) in the path p = {p 1 , . . . p k } if none of the nodes p 1 , . . . p k caches i. If the request is well-routed, no edge (or cache) appears twice in [START_REF] Breslau | Web caching and Zipf-like distributions: Evidence and implications[END_REF]. The last node of p is the designated source, hence a request is always served. Let D o be the aggregate expected cost in terms of the average number of channel uses per bit, which equals

D o (X, S) = (i,p)∈R λ (i,p) D o (i,p) (X, S). ( 5 
)
The gain of intermediate caching is equivalent to the achievable reduction in the overall transmission delay. An upper bound on the expected cost is obtained when all requests are served by the designated sources at the end of each path, i.e.,

D ub (S) = (i,p)∈R λ (i,p) |p|-1 k=1 f (SINR p k+1 p k (S)). (6)
Our primary objective is to solve the problem min{D o (X, S) : X ∈ D X , S ∈ D S }, (7) where D X is the feasible set of X ∈ R |V |×|C| satisfying the capacity, integrality, and source constraints:

D X = i∈C x vi ≤ c v , ∀v ∈ V, x vi ∈ {0, 1}, v ∈ V, i ∈ C; x vi = 1, ∀i ∈ C, v ∈ S i . ( 8 
)
The set of constraints D S is for the power or resource budget. The feasible set of S is specified by the individual power budget for each node, namely

D S is the feasible set of all S = [s vu ] v∈V,u∈V \v ∈ R |V |×(|V |-1) satisfying D S = u∈Ov s vu ≤ ŝv , s vu ≥ 0, ∀v ∈ V , (9) 
where O v = {u ∈ V : (v, u) ∈ E}, and ŝv denotes the total transmit power of node v ∈ V . Minimization of D o (X, S) subject to the set of integer constraints X ∈ D X is NP-hard since it is a reduction from the 2-disjoint set cover problem [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF]. Therefore, we aim to devise a centralized algorithm that produces an allocation within a constant approximation of the optimal, without prior knowledge of the network topology, edge weights, or the demand distribution. We next formulate a convex relaxation.

1) Convex Relaxation: To approximate the non-convex function D o (X, S), we construct a convex relaxation, following the approach of [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF] and [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF]. Suppose that x vi , v ∈ V , i ∈ C, are independent Bernoulli random variables. Let ν be the corresponding joint probability distribution defined over matrices in {0, 1} |V |×|C| , and denote by P ν [•] and E ν [•] the probability and expectation with respect to ν, respectively.

Relaxing the integrality constraints of X in (8), let marginal probabilities

y vi = P ν [x vi = 1] = E ν [x vi ] ∈ [0, 1], v ∈ V, i ∈ C. (10) Denote the feasible set of Y = [y vi ] v∈V,i∈C ∈ R |V |×|C| by D Y = i∈C y vi ≤c v , v ∈ V, y vi ∈ [0, 1], v ∈ V, i ∈ C; y vi = 1, v ∈ S i , i ∈ C , (11) 
representing the collection of (marginal) probabilities that v ∈ V stores i ∈ C and satisfying the capacity and source constraints for the caching variables. Using the definition of Y in [START_REF] Traverso | Temporal locality in today's content caching: Why it matters and how to model it[END_REF], and from the fact that x vi 's are independent and path p is simple (no loop), we now observe that

D o (Y, S) = E ν [D o (X, S)]. (12) 
The extension of D o to the domain [0, 1] |V |×|C| is known as the multi-linear relaxation of the optimization problem [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF], where [START_REF] Dan | An approximate analysis of the LRU and FIFO buffer replacement schemes[END_REF] Let X * and Y * be the optimal solutions to ( 7) and ( 13), respectively. Then, because the integrality constraints are relaxed in [START_REF] Traverso | Temporal locality in today's content caching: Why it matters and how to model it[END_REF], the cost with relaxed variables Y * satisfies for any S ∈ D S : 12) is non-convex. Therefore, we next approximate it by another cost function D defined as follows:

is relaxed to min{D o (Y, S) : Y ∈ D Y , S ∈ D S }. (13) 
D o (Y * , S) ≤ D o (X * , S). ( 14 
) Note that the multi-linear relaxation D o (Y, S) in (
D(Y, S) = (i,p)∈R λ (i,p) D (i,p) (Y, S), (15) 
where the relaxed delay-cost for request (i, p) ∈ R is

D (i,p) (Y, S) = |p|-1 k=1 f (SINR p k+1 p k (S))g p k i (Y ), (16) 
where f is given in (2) and g p k i is given by

g p k i (Y ) = 1 -min 1, k l=1 y p l i , ∀ y p l i ∈ [0, 1]. ( 17 
)
The Goemans-Williamson inequality [START_REF] Goemans | New 3/4-approximation algorithms for the maximum satisfiability problem[END_REF] states that,

1 - k l=1 (1 -y p l i ) ≥ min{1, k l=1 y p l i } y p l i ∈ [0, 1].
Combining [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF] with the above, it holds that

g p k i (Y ) ≥ k l=1 (1 -E ν [x p l i ]).
Therefore, the relaxed objective [START_REF] Blaszczyszyn | Optimal geographic caching in cellular networks[END_REF] gives an upper bound on [START_REF] Fricker | A versatile and accurate approximation for LRU cache performance[END_REF]. Due to the concavity of the min operator, i.e., 

E ν [g p k i (Y )] ≥ g p k i (E ν [Y ]), the function g p k i (Y ) is quasi- convex (see Prop. 2) in Y . In (17), g p k i (Y )
Y ∈ D Y , S ∈ D S } (18) 
where the objective function in [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF] captures the backhaul connection between the core network and the MCs or the SCs at the edge of the network. This is enabled by incorporating the backhaul delay model in (3) which affects the delay-cost function D(Y, S) given in [START_REF] Blaszczyszyn | Optimal geographic caching in cellular networks[END_REF]. The optimal value of D(Y, S) in [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF], is guaranteed to be within a constant factor from the optimal values of D o (Y, S) in ( 13), and of D o (X, S) in [START_REF] Dan | An approximate analysis of the LRU and FIFO buffer replacement schemes[END_REF]. In particular, we have the following theorem.

Theorem 1: Constant factor approximation for fixed S [2], [START_REF] Ageev | Pipage rounding: A new method of constructing algorithms with proven performance guarantee[END_REF]. For given S, let Y * and Y * * be the optimal solutions that minimize D o (Y, S) and D(Y, S) in ( 13) and [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF], respectively. Then,

D o (Y * , S) ≤ D o (Y * * , S) ≤ D ub (S) e + 1 - 1 e D o (Y * , S). ( 19 
) Proof: See Appendix A.
□ 2) Rounding: To produce an integral solution to [START_REF] Dan | An approximate analysis of the LRU and FIFO buffer replacement schemes[END_REF], we round the solution Y * * of [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF]. For any given S ∈ D S and given a fractional solution Y ∈ D Y , there is always a way to convert it to a Y ′ ∈ D Y with at least one fewer fractional entry than Y , for which D o (Y ′ , S) ≤ D o (Y, S) [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF], [START_REF] Blaszczyszyn | Optimal geographic caching in cellular networks[END_REF].

Each rounding step reduces the number of fractional variables by at least 1. Thus, the above algorithm concludes in at most |V | × |C| steps (assuming fixed power allocations), producing an integral solution X ′ ∈ D X such that D o (X ′ , S) ≤ D o (Y * * , S) because each rounding step can only decrease D o . Hence, from Theorem 1 and ( 14) we have the following corollary.

Corollary 1: Rounding of caching for fixed S. The integral solution X ′ ∈ D X as a result of rounding satisfies for any S ∈ D S :

D o (X * , S) ≤ D o (X ′ , S) ≤ D ub (S) e + 1 - 1 e D o (X * , S).
Note that the rounding step produces a 1-1 e -approximate solution, along with an offset of D ub (S) e to RCF. The offset in Cor. 1 is eliminated if instead of RCF in [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF] we use a maximum caching gain formulation which concerns the ultimate gain that can be obtained via caching at intermediate nodes, such as in [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF] and [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF]. In maximizing the caching gain, the objective function is given by the differ-ence D ub (S) -D(Y, S), where D ub (S) is given by [START_REF] Cohen | Replication strategies in unstructured peer-topeer networks[END_REF]. In this case, the relationship

D o (X * , S) ≤ D o (Y * * , S) ≤ D ub (S) e + 1 -1 e D o (X * , S) is equivalent to D ub (S) - D o (X * , S) ≥ D ub (S) -D o (Y * * , S) ≥ D ub (S) -D ub (S) e - 1-1 e D o (X * , S) = 1-1 e (D ub (S)-D o (X * , S)), giving a 1 -1
e -approximate solution for the maximum caching gain formulation without an offset. However, in this formulation the gap D ub (S) -D(Y, S) that models the caching gain increases in S, requiring high powers. Hence, despite its offset, RCF in ( 18) is preferable as it can jointly optimize power.

3) D o and D are Not Jointly Convex in Y and S: The transmission delays are coupled due to the interference from simultaneous transmissions. From (2), f is not convex in S. Furthermore, [START_REF] Fricker | A versatile and accurate approximation for LRU cache performance[END_REF] is not convex in Y for given S and not convex in S for given Y , hence not jointly convex in (Y, S). Note that D(Y, S) is jointly convex at low interference or low power because the logarithm function in (2) changes linearly (and its reciprocal is convex) in power when SINR is low in all paths, which is true in the power-limited regime.

The joint convexity of D requires the Hessian matrix H of D(Y, S) with respect to (Y, S) to be positive semidefinite (PSD). Since [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF] is not differentiable, the Hessian matrix for D(Y, S) with respect to Y , i.e., ∇ 2 Y D, is not defined. However, from [67, Theorem 2.1], the second order derivatives for maximum functions are defined in each interval and the subhessians of ( 15) or ( 17) with respect to Y , i.e., {d 2 Y D}, exist and we can define a subhessian matrix d 2 Y D. However, since ( 17) is piecewise linear, d 2 Y D is a zero matrix. Combining this with the Schur's complement condition for H to be PSD in [START_REF] Boyd | Convex Optimization[END_REF], D(Y, S) is jointly convex only if the off-diagonals of H are singular. However, in our setting, the partial derivatives ∇ S D with respect to S are nonzero, and the subhessian matrix formed by their subgradients with respect to Y is non-singular. Therefore, D(Y, S) is not jointly convex.

Note however that if we define D in the logarithms of the power variables, the function can be biconvex under a certain condition we provide next, in Sect. III-B in Prop. 1.

B. Power Optimization for RCF

We next provide a sufficient condition for f (SINR p k+1 p k ) to be convex in log power variables P ≜ (log(s vu )) (v,u)∈E in which P vu = log(s vu ) denotes power measured on link (v, u) corresponding to request (i, p) in dB.

Proposition 1: Convexity in log power variables. A sufficient condition for the composite function f (SINR p k+1 p k ) to be convex in P ≜ (log(s vu )) (v,u)∈E is given as follows.

2f ′ (x) 2 f (x) • x -f ′ (x) ≤ f ′′ (x) • x, ∀x ≥ 0. ( 20 
)
Proof: The result follows from extending the approach in [START_REF] Huang | Distributed interference compensation for wireless networks[END_REF]. For details, see Appendix B.

□ The sufficient condition [START_REF] Ji | The throughput-outage tradeoff of wireless one-hop caching networks[END_REF] of Prop. 1 holds in the high SINR regime where log(1 + SINR) ≈ log(SINR), i.e., where SINR ≫ 1. Given the sufficient condition in [START_REF] Ji | The throughput-outage tradeoff of wireless one-hop caching networks[END_REF], it is clear that the program ( 18) is convex in terms of power measured in dB. Hence, we define the log-power variables P , belonging to the feasible set

D P = {P vu ∈ R : u∈Ov e Pvu ≤ ŝv , ∀v ∈ V, ∀(u, v) ∈ E}, where O v = {u ∈ V : (v, u) ∈ E}.
The condition of Prop. 1 ensures that D(Y, P ) is biconvex, i.e., D(Y, P ) is convex in Y for given P and convex in P for given Y [START_REF] Floudas | Deterministic Global Optimization: Theory, Methods and Applications[END_REF]. This paves the way for employing methods to solve RCF in [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF]. We outline one such method.

C. Joint Optimization of RCF

In this section, we present two techniques to optimize RCF: 1) Alternating Optimization: From [71, Theorem 4.2], since D is a differentiable and biconvex function of (Y, S), each stationary point of D is a partial optimum. Furthermore, from [71, Corollary 4.3], (Y, S) is stationary if and only if it is a partial optimum. However, a partial optimum neither has to be a global nor a local optimum to the given biconvex optimization problem even if (Y, S) is stationary, as stationary points can be saddle points of D [START_REF] Gorski | Biconvex sets and optimization with biconvex functions: A survey and extensions[END_REF]. From ( 21) and ( 22) the partial derivatives of D (i,p) does not change sign. However, since the partial derivative of D is a linear combination of D (i,p) as given in [START_REF] Blaszczyszyn | Optimal geographic caching in cellular networks[END_REF], it is possible that the stationary point may be a local optimum.

We next present a biconvex optimization technique for RCF. To that end, we exploit alternating optimization methods. There exist techniques to find the local optimum of biconvex minimization problems, such as block-relaxation methods [START_REF] Gorski | Biconvex sets and optimization with biconvex functions: A survey and extensions[END_REF]. Furthermore, the global optimum of biconvex problems can be determined for certain classes of constraints [START_REF] Floudas | A global optimization algorithm (GOP) for certain classes of nonconvex NLPs-I. Theory[END_REF].

Provided that the convexity condition in Prop. 1 holds, D(Y, S) is biconvex and hence we can focus on the alternating optimization of RCF. This corresponds to alternatively updating the power variables S given the caching variables Y , and then updating Y given S. This iterative optimization approach can find a local optimum to the average delay minimization problem. To obtain an integral solution, the algorithm needs a rounding step before it terminates. This technique for RCF is summarized in Algorithm 1. An algorithm called Global OPtimization (GOP) algorithm was developed in [START_REF] Floudas | A global optimization algorithm (GOP) for certain classes of nonconvex NLPs-I. Theory[END_REF] to exploit the convex substructure of constrained biconvex minimization problems by a primal-relaxed dual approach. The objective function and the constraints in RCF satisfy the necessary convexity conditions [70, Ch. Let t = t + 1; 7: while D(Y t , S t ) -D(Y t-1 , S t-1 ) > ϵ 8: Let (Y * * , S * * ) = (Y t , S t ); 9: Implement b) Rounding.

We note that the proposed alternating approach requires the condition in Prop. 1, while no optimality guarantee is established. However, this condition does not ensure the biconvexity of D(Y, S) because it is nonconvex in S when interference is non-negligible, i.e., at low SINR. Deriving the necessary conditions for optimality will reveal the true potential of the algorithm and elucidate the effect of network's operating regime, e.g., in the high or low SINR.

2) General Joint Optimization: We next extend the approach of [START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF] to develop centralized algorithms for the joint power-caching optimization of RCF which is not biconvex, i.e., the sufficient condition in log powers imposed by Prop. Proof: See Appendix C. □ Note that the partial derivatives of the relaxed delay-cost function D (i,p) (Y, S), (i, p) ∈ R : (u, v) ∈ p with respect to s vu and the subgradients of it with respect to y vi satisfy

∂D (i,p) ∂s ju (a) ≥ 0, ∂ 2 D (i,p) ∂s 2 ju (a) ≤ 0, j ∈ V \v, (21) 
∂D (i,p) ∂s vu (b) ≤ 0, ∂ 2 D (i,p) ∂s 2 vu (b) ≥ 0, d ymi D (i,p) (c) ≤ 0, d 2 ymi D (i,p) (d) ≥ 0, m ∈ p, (22) 
where (a) follows from that f (SINR vu (S)) is decreasing in SINR vu (S) which is decreasing in s ju for j ∈ V \v, and similarly (b) from that SINR vu (S) is linearly proportional to s vu and f (SINR vu (S)) is inversely proportional to log(1 + SINR vu (S)) and convex in SINR vu (S). Note that (c) follows from [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF], and (d) from the convexity of D(Y, S) in Y . b) Necessary conditions for optimality of D(Y, S): We investigate the necessary, i.e., the Karush-Kuhn-Tucker (KKT), conditions for a solution of D(Y, S) to be optimal. Assume that D(Y, S) and the constraints are continuously differentiable at (Y * * , S * * ). If (Y * * , S * * ) gives a local optimum and the optimization problem satisfies some regularity conditions [START_REF] Bertsekas | Nonlinear Programming[END_REF], then there exist constants

[µ v,i ] v∈V,i∈C , [ν v,i ] v∈V,i∈C , [η v ] v∈V , [β v ] v∈V , [γ e,
r ] e=(u,v)∈E,r=(i,p)∈R called KKT multipliers, such that the following hold.

Theorem 2: Necessary conditions for optimality of D(Y, S). For a feasible set of power and cache allocations [s vu ] (u,v)∈E , and [y vi ] v∈V,i∈C to be the solution of RCF in [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF], the following conditions are necessary.

The subgradients for the caching variables satisfy

d yvi D = α vi , if y vi ∈ (0, 1), d yvi D ≥ α vi , if y vi = 0, d yvi D < α vi , if y vi = 1, (23) 
where α vi , v ∈ V , i ∈ C is some constant. The gradients for the power variables should satisfy 

∂D ∂s vu ≥ -β v + γ e,
for nonnegative constants β v , v ∈ V , γ e,r , e = (u, v), r ∈ R.

Proof: See Appendix D. □ Note that when D (i,p) (Y, S) in ( 16) is jointly convex in (Y, S) (which is not true in general and requires a more restrictive condition than Prop. 1 on the power control variables), the conditions in Theorem 2 are also sufficient for optimality of D(Y, S) [42, Theorem 1].

The following characterizes the optimality conditions for the relaxed delay-cost function D(Y, S) with a general convex power allocation region D S which is true from linearity of (9), and a general convex cache allocation region D Y . c) Generalized KKT conditions that requires strictly convex D S for unique optimal solution: Proposition 3: Assume that the cost functions D (i,p) (Y, S) satisfy ( 21) and [START_REF] Malak | Optimizing content caching to maximize the density of successful receptions in device-to-device networking[END_REF], and D S is convex. Then, for a feasible set of cache and power allocations (y vi ) v∈V, i∈C and (s vu ) (v,u)∈E to be a solution of [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF], the following conditions are necessary: For all v ∈ V , i ∈ C, there exists a constant α vi for which

d yvi D = α vi , if y vi ∈ (0, 1), d yvi D ≥ α vi , if y vi = 0, d yvi D < α vi , if y vi = 1. ( 25 
)
For all feasible (∆s vu

) (v,u)∈E at (s vu ) (v,u)∈E (i,p)∈R ∂D (i,p) ∂s vu (Y, S) • ∆s vu ≥ 0, ( 26 
) (i,p)∈R ∂D (i,p) ∂s ju (Y, S * * ) • ∆s ju ≥ 0, j ∈ V \v, ( 27 
)
where S * * is the optimal power, ∆s vu at s vu is an incremental direction which is feasible if there exists δ > 0 such that (s vu + δ • ∆s vu ) ∈ D S for any δ ∈ (0, δ). Proof: The necessary conditions follow from the arguments in Theorem 2. However, we still need to detail why ( 26) is true. By the convexity of cost functions, the cost difference of two configurations (Y, S a ) and (Y, S * * ) for any feasible S a is

(i,p)∈R D (i,p) (Y, S a ) - (i,p)∈R D (i,p) (Y, S * * ) ≥ (i,p)∈R ∂D (i,p) ∂s vu (Y, S * * )(s a vu -s * * vu ) ≥ 0,
where the last inequality follows from the complementary slackness condition in [START_REF] Ioannidis | Jointly optimal routing and caching for arbitrary network topologies[END_REF], i.e.,

∂D (i,p)
∂svu (Y, S * * ) = 0 since s * * vu > 0, and u∈Ov (i,p):(u,v)∈p s * * vu (i, p) < ŝv . Furthermore,

(i,p)∈R D (i,p) (Y, S a ) - (i,p)∈R D (i,p) (Y, S * * ) ≥ (i,p)∈R ∂D (i,p) ∂s ju (Y, S * * )(s a ju -s * * ju ) ≥ 0, j ∈ V \v,
where the last inequality also follows from the complementary slackness condition in [START_REF] Ioannidis | Jointly optimal routing and caching for arbitrary network topologies[END_REF]. □ If D (i,p) (Y, S) is jointly convex in (Y, S), the above conditions are also sufficient when [START_REF] Dehghan | A utility optimization approach to network cache design[END_REF] holds for all v ∈ V . Furthermore, the optimal S * * is unique if D S is strictly convex. Moreover, if D (i,p) (Y, S) is strictly convex in Y , then the optimal cache allocations Y * * for the relaxed cost function are unique as well. We do not prove this statement. However, it can be proven using arguments similar to those in [START_REF] Xi | Node-based optimal power control, routing, and congestion control in wireless networks[END_REF]Theorem 3].

d) Pareto optimality of D(Y, S): When f (SINR vu (S)) is chosen to be (2), we infer that the sufficiency part of Theorem 2 does not hold since D (i,p) (Y, S) is in general not jointly convex in (Y, S). Hence, we further need to establish the conditions for a Pareto optimal operating point for quasi-convex cost functions (as shown in Prop. 2). We next show that for a solution (Y * * , S * * ) that both satisfies ( 25) and ( 26), we have the following Pareto optimal property. Theorem 3: Pareto optimality of D(Y, S). From Prop. 2 on the quasi-convexity we have f (SINR vu (S)) in (2), g p k i (Y ) in [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF], and the relaxed delay-cost function for RCF in [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF] are quasi-convex. If a pair of feasible cache and power allocations ((y * * vi ), (s * * vu )) satisfies conditions ( 25)-( 26) [42, Thm. 3] simultaneously, then the vector of transmission delays (D (i,p) (Y * * , S * * )) (i,p)∈R is Pareto optimal, i.e., there does not exist another pair of feasible allocations

((y # vi ), (s # vu )) such that D (i,p) (Y # , S # ) ≤ D (i,p) (Y * * , S * * ), ∀(i, p) ∈ R,
with at least one inequality being strict.

Proof: See Appendix E. □ Given the relaxed delay-cost function D(Y, S) of the form (15), Theorem 3 implies that at the Pareto optimal point, the cost of a request (i, p) ∈ R cannot be strictly reduced without increasing the cost of another request (i ′ , p ′ ) ∈ R.

D. Subgradient Algorithm

For general SINR scenario, the sufficient condition for the convexity given in [START_REF] Ji | The throughput-outage tradeoff of wireless one-hop caching networks[END_REF] is not necessarily satisfied, and hence the objective function is not necessarily convex. In this section, we introduce a Clarke subgradient projection method for the non-smooth non-convex problem.

1) Algorithm Overview: Let y to denote the vectorized caching variable Y , namely y ∈

[0, 1] |V ||C|×1 with y vi = y (i-1)|V |+v , ∀v ∈ V, i ∈ C.
Algorithm 2 Projected Subgradient Method 1: Choose S 0 , y 0 , small scalar ϵ > 0 and let t = 0 2: do Update S t+1 and y t+1 by (28); 7:

Let t = t + 1; 8: while D t -D t-1 > ϵ 9: Let (y * sub , S * sub ) = (y t , S t ); 10: Implement b) Rounding.

For the t-th iteration, the subgradient projection method can be summarized by the following:

S t+1 = S t + ξ t S ( St -S t ), St = [S t -w t S d t S ] + D S , y t+1 = y t + ξ t y (ȳ t -y t ), ȳt = [y t -w t Y d t y ] + Dy , (28 
) where ξ t S , ξ t y ∈ (0, 1] are step sizes respectively corresponding to S and y, w t S and w t Y are positive scalars, [x] + A denotes projection of vector x on a convex constraint set A, and

d t S = ∇ S D(Y t , S t ), d t y ∈ ∂ y D(Y t , S t ) ( 29 
)
where d t S and d t y are the Clarke subgradients at iteration t with respect to S and y, respectively. ∂ y D(Y t , S t ) is the subdifferential with respect to y.

2) Subgradient: Provided that the function D(Y, S) is not jointly convex, identifying normal subgradients is generally difficult, as a valid subgradient should form a global underestimator of D(Y, S). Nevertheless, a local generalization of subgradient, i.e., the "Clarke subdifferential", 9 could be calculated efficiently. Specifically, note that since D(Y, S) is continuously differentiable in S over set D S , the Clarke subdifferential of D(Y, S) with respect to S will only contain the gradient. Meanwhile, ∂ y D(Y t , S t ) could be explicitly calculated by evaluating ∂ yvi g p k i 's inside the term (16) and using [START_REF] Blaszczyszyn | Optimal geographic caching in cellular networks[END_REF], where

∂ yvi g p k i =                      {1}, if k l=1 y p l i < 1 {0}, if k l=1 y p l i > 1 [0, 1], if k l=1 y p l i = 1. (30) 
3) Step Size: The gradient/subgradient magnitudes might be significantly different for Y and S, and therefore we calculate their step sizes separately. We use a modified Polyak's step size [START_REF] Polyak | Introduction to Optimization[END_REF]. Let D t = D(y t , S t ), then

ξ t y = D t -Dt ∥d t y ∥ 2 , ξ t S = D t -Dt ∥d t S ∥ 2 (31) 
where Dt = min j=0,••• ,t D(y t , S t ) -δ t is an estimate of the local minima, {δ t } t≥0 is a sequence of positive scalars satisfying lim t→∞ δ t = 0 and lim t→∞ t m=0 δ m = ∞. We summarize the subgradient projection method that achieves the local minima in Algorithm 2.

To the best of our knowledge, the theoretical convergence guarantees of the alternating optimization method (Algorithm 1) for non-smooth bi-convex functions, and the Clarke subgradient method (Algorithm 2) for non-smooth non-convex functions have not been established. 10 Nevertheless, our extensive simulation results on various network scenarios in Sect. IV demonstrate that both algorithms converge at a desirable rate.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the proposed joint power control and caching network model. We simulate a network in accordance with the model in Sect. II and compare the performance of Algorithms 1 (ALT) and 2 (SUB) to the LRU, LFU and FIFO cache replacement policies for several scenarios, which have been widely used in web caching [START_REF] Aggarwal | Caching on the world wide web[END_REF], [START_REF] Wang | A survey of web caching schemes for the internet[END_REF]. These baseline policies depend on a history of requests kept in time, and operate on a time slot basis, whereas our approach is designed to solve a snapshot of the network averaged over time. We pair these baseline policies with power optimization to have a fair comparison. To make this distinction clear, we name these power optimal (PO) policies POLRU, POLFU and POFIFO when reporting results.

Simulation setup. We simulate a network with 7 MCs, where the cell layout is such that one MC at the center and 6 MCs, which model the first-order neighbors of the center MC, surround the centering MC. The network has 5 SCs per MC, and 30 users per MC. Users are distributed uniformly at random within the coverage area of the MC. We use Lloyd's algorithm [START_REF] Lloyd | Least squares quantization in PCM[END_REF] to construct voronoi cells for this coverage area and place the SCs at the centers of these cells. The users do not cache items, and each one requests a single item at a given time, from a catalog of |C| = 150 items, 11 based on a Zipf distribution with parameter γ which can be interpreted as the popularity distribution of content items. The backhaul is the source for all items while the MC and SCs are not designated sources for any item. When a request for an item arrives at the MC or an SC, if the item is not already cached there, it is retrieved from an uplink node that caches the item or from the backhaul and then cached. In our simulations, we capture the interference power from the other MCs, i.e., the inter-cell interference, and incorporate it into the noise level N u . We also assume that in case of outage events in a given MC, the cost to the backhaul is significantly smaller than the cost of obtaining a neighboring cell. For scenarios with a larger catalog size, our approach can still be implemented conditioning on a selected subset of items based on popularity. For Algorithms 2 and 1, we set the initial points S 0 and Y 0 so that s 0 vu = ŝv /|O v | and y 0 vi = 0 for all v, u ∈ V and i ∈ C. While the algorithms we propose can optimize a snapshot of the network, LRU, LFU and FIFO policies assume a cache history. Therefore, we simulate these policies in a time-slotted fashion and compare their average results to our algorithms.

We next detail our observations from five distinct simulation settings. To measure the gains, the default setting for 10 We refer the readers to [START_REF] Gorski | Biconvex sets and optimization with biconvex functions: A survey and extensions[END_REF] for bi-convex optimization and [START_REF] Daniilidis | Pathological subgradient dynamics[END_REF] for Clarke-subgradient optimization. 11 We note that the choice of catalog size is aligned with the literature on geographic caching, e.g., in [START_REF] Blaszczyszyn | Optimal geographic caching in cellular networks[END_REF], where |C| = 25 and cache memories are of size 5, and more recently in [START_REF] Kamran | DECO: Joint computation, caching and forwarding in data-centric computing networks[END_REF] and [START_REF] Mahdian | Kelly cache networks[END_REF] for |C| ranging from 100 to 300. simulations is that the SC cache capacity is c sc = 5, the MC cache capacity is c mc = 10, ŝv = 200, γ = 0.5, the path loss exponent is n = 3.7 and the noise power is N u = 1 for all u ∈ V . Below, in each figure, we plot D o over one of these parameters while keeping the others as default. We include other necessary parameters and details in these discussions.

Effect of cache capacity constraints. We present the results of this setting in Fig. 2. We see that, with increasing cache capacities, our joint optimization algorithms reduce delay at a much faster rate compared to traditional replacement algorithms. SUB and ALT algorithms also achieve a point of minimum delay given large enough caches, while traditional algorithms do not converge to such a point and perform worse than SUB and ALT with all values of the cache capacity constraint. Numerically, SUB and ALT methods achieve up to 50% less delay at c sc = 6 compared with traditional algorithms. The improvement begins to saturate at c sc = 6 and diminishes at c sc = 10. This is because, with a large enough cache capacity, almost all requests are fulfilled at a nearby SC, and we can hardly improve the delay by providing more caches. The simulation result also implies that for delay saturation, it takes up to 2× the cache capacity for traditional algorithms to match the delay performance of SUB and ALT.

Effect of power constraints. We present the results of this setting in Fig. 3. We observe that traditional methods and our algorithms show a similar decreasing trend in delay when the total power budget is increased. However, we can still observe the benefit of jointly optimizing power with caching: our algorithms achieve up to 50% less delay versus the best-performing traditional method, POLFU. Moreover, when the individual power budget ŝv is more than 100, the decrease speed of total delay versus power budget drops to a low level. This result is because when the power budget is high enough, the noise (combined with the inter-cell interference) is negligible compared with intra-cell interference, which limits the SINR. A higher power budget would not help reduce the average intra-cell interference level.

Effect of request distribution. We sketch the delay behavior as a function of the Zipf exponent γ in Fig. 4. As γ increases, the requests become more skewed towards the most popular items, which causes a reduction in the delay. We also observe the delay performance of SUB and ALT methods is up to 30% better than traditional replacement models reinforced with power optimization. The advantage of SUB and ALT against the other algorithms decreases with γ because as γ increases, the Zipf distribution becomes more centralized to the popular content items, reducing the size of popular items. Thus, with increasing γ, the advantage of SUB and ALT against the traditional priority-based caching policies diminishes.

Effect of noise power. We capture the effect of the noise N u at the receiving user of the centering MC. As shown in Fig. 5, the delay of all algorithms degrades with the increasing noise because the effective SINR of each link degrades. The delay performance of SUB and ALT is up to 50% better than traditional algorithms across different noise levels N u . Convergence of SUB and ALT. We present the results of this setting in Fig. 6. We observe that while both algorithms reach the minimum in similar times, ALT has a much steeper initial decrease in the relaxed delay-cost D. This is because the number of power variables is significantly smaller than the number of caching variables. ALT optimizes them separately which results in the initial steep decrease where power variables are being optimized whereas SUB optimizes them jointly leading to longer durations for each iteration. Furthermore, the subhessian matrix of D(Y, S) does not satisfy the necessary properties for joint convexity, as we detailed in Sect. III-A.3, causing a slow convergence for SUB.

V. CONCLUSION

We considered the problem of joint power and caching optimization to minimize the transmission delay for a stationary request process in wireless HetNets. Because this problem is NP-complete, we studied several approximation methods that rely on convex relaxation and rounding of caching variables to construct an integral solution. More specifically, we provided necessary and sufficient conditions for the optimality of RCF to the joint optimization problem. We demonstrated Pareto optimality of the solution to RCF and devised two solution techniques: alternating optimization technique when RCF satisfies biconvexity and subgradient projection algorithm for general non-convex RCF. The results of our approach can enable the wireless HetNets to optimally exploit the resources to minimize the use of the backhaul connection, hence reduce the transmission delays in both mobile devices and the infrastructure, and support latency-sensitive applications. They also quantify the potential cost savings from the deployment of SCs. More generally, optimal caching and power control algorithms represent a key enabling technology for realizing the potential of mobile edge computing and fog computing.

Possible extensions of this work include devising decentralized techniques and designing both uncoded and coded caching schemes via distributed adaptive stochastic descent algorithms and implementing them in practice. Furthermore, these results will inform the design of edge cloud architectures by clarifying the relative benefits of centralized and distributed implementation. Querying for content can be seen as a simplified case of querying for a result of a computation or service. Thus, caching and routing algorithms are essential ingredients of an edge computing infrastructure that optimally schedules processing and job flows. Therefore, quantifying the potential cost savings from the deployment of SCs with caching capabilities via optimal routing algorithms is critical. Extensions also include leveraging more practical interference mitigation schemes instead of having all transmissions on the same frequency, and a more detailed analysis of backhaul costs to effectively route the requests and control the traffic load on SCs and to overcome the transmission delay incurred in the backhaul due to limited bandwidth and dynamic channel conditions. Further incorporating the unequal file sizes and the (non-instantaneous) cache download times will improve the accuracy of the proposed framework. Finally, our proposed framework could also be extended to incorporate energy efficiency in wireless HetNets, by adding a term of weighted total power consumption in the objective.

APPENDIX A PROOF OF THEOREM 1

The proof follows from relaxing and bounding techniques. By Goemans and Williamson [START_REF] Goemans | New 3/4-approximation algorithms for the maximum satisfiability problem[END_REF], [START_REF] Ageev | Pipage rounding: A new method of constructing algorithms with proven performance guarantee[END_REF], we have

k l=1 (1 -y p l i ) ≤ 1 -(1 -(1 -1/k) k ) min 1, k l=1 y p l i ≤ 1 -(1 -1/e) min 1, k l=1 y p l i , (32) 
as (1 -1/k) k ≤ 1/e. On the other hand, we have [START_REF] Chen | Probabilistic caching in wireless D2D networks: Cache hit optimal versus throughput optimal[END_REF], the relaxed cost function for serving a request (given that each request (i, p) ∈ R is well-routed) can be written concisely in terms of the allocation:

D o (Y, S) = E ν [D o (X, S)]. Using (
D(Y, S) (a) ≥ (i,p)∈R λ (i,p) |p|-1 k=1 f (SINR p k+1 p k (S)) k l=1 (1 -y p l i ) = D o (Y, S), (33) 
where (a) is due to [START_REF] Chen | Probabilistic caching in wireless D2D networks: Cache hit optimal versus throughput optimal[END_REF]. We also upper bound D(Y, S) as

D(Y, S) (b) 
≤ (i,p)∈R λ (i,p) |p|-1 k=1 f (SINR p k+1 p k (S))E ν [g p k i (X)], (34) 
where (b) follows from the concavity of the min operator and employing [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF], and 

E ν [g p k i (X)] (c) ≤ 1 -(1 -1/e)E ν min 1, k l=1 x p l i = 1 -(1 -1/e)E ν 1 - k l=1 x p l i = 1 -(1 -1/e) 1 - k l=1 y p l i , where (c) is due to (1 -1/k) k ≤ 1/e.
From ( 33) and ( 34 

APPENDIX B PROOF OF PROPOSITION 1

Note that the objective function D(S, Y ) in ( 15) is convex in caching variables Y . It is convex in S if every f (SINR p k+1 p k (S)) is convex in S where SINR p k+1 p k (S) is concave in S for all k. However, given that SINR p k+1 p k is strictly increasing, ∇ 2 SINR p k+1 p k (S) cannot be negative definite. Letting C = f -1 , based on the observations [START_REF] Huang | Distributed interference compensation for wireless networks[END_REF], if

C ′′ (x) • x + C ′ (x) ≤ 0, ∀x ≥ 0, (37) 
then C is concave in P ≜ (log(s vu (i, p))) (v,u)∈E, (i,p):(u,v)∈p (power measured in dB). From above relation, since

C ′′ (x) = 2f ′ (x) 2 -f (x)f ′′ (x) f (x) 3
≤ 0, and f (x) ≥ 0, ∀x ≥ 0, we have

2f ′ (x) 2 -f (x)f ′′ (x) ≤ 0, yielding 0 ≤ 2f ′ (x) 2 f (x) ≤ f ′′ (x). Hence, f (SINR p k+1 p k ) is convex in P .
The condition in (37) equivalently yields the following for f -1 (SINR p k+1 p k ) to be concave in P :

2f ′ (x) 2 -f (x)f ′′ (x) f (x) 3 • x - f ′ (x) f (x) 2 ≤ 0. (38) 
Reordering the terms in [START_REF] Hanly | Capacity and power control in spread spectrum macrodiversity radio networks[END_REF] we get the desired result.

In addition to the condition in [START_REF] Hanly | Capacity and power control in spread spectrum macrodiversity radio networks[END_REF] on convexity in log power variables, f (SINR vu (S) might be convex in s vu when the nodes have a total power constraint as given by ( 9) which is satisfied with equality. We next explain the requirement under which the convexity in powers holds. Assuming that the total transmit power is fixed and equal to ŝ, since the routings are predetermined, a user's total received power lumped with the noise power, coined s, will be fixed given the allocation of the transmit power. Hence, f (SINR vu (S) =

1 log 2 (1+ svu s-svu )
for (v, u) ∈ E. Using this relation and computing the second order derivative of f (SINR vu (S) with respect to s vu , it can be shown via algebraic manipulation that f (SINR vu (S) is convex in s vu provided that s vu ≤ 3 4 s. We also emphasize that this condition is not restricted to the high SINR regime and is valid under general SINR values, provided that the total transmission power constraint is satisfied with equality.

APPENDIX C PROOF OF PROPOSITION 2

With no loss of generality, assume that S a ̸ = S b such that D(Y, S a ) < D(Y, S b ). Then, a function D defined on a convex subset D Y × D S of a real vector space is quasiconvex in S given Y , if for all S a ̸ = S b and α ∈ (0, 1) we have the following condition:

D(Y, αS a + (1 -α)S b ) < D(Y, S b ). ( 39 
) Since D is linear in f , it is easily verified that a sufficient condition for D(Y, S) to be quasi-convex in S is when f is quasi-convex. While the sum of quasiconvex functions defined on the same domain need not be quasiconvex, we will detail why quasi-convexity will be preserved in our setting.

For

f (SINR vu (S a )) < f (SINR vu (S b )) we have f (SINR vu (αS a + (1 -α)S b )) = 1 log 2 (1 + SINR vu (αS a + (1 -α)S b )) < 1 log 2 (1 + SINR vu (S b )) = f (SINR vu (S b )), (40) 
where we used (2). Under a total power constraint we note that f (SINR vu (S)) decreases in s vu . Since f (SINR vu (αS a +

(1 -α)S b )) < max f (SINR vu (S a )), f (SINR vu (S b )) = f (SINR vu (S b
)) for all (v, u) ∈ E and max is Schur-convex, and by ordering the summands of |p|-1 k=1 f (SINR p k+1 p k (S)) in a decreasing manner, we have that

max |p|-1 k=1 f (SINR p k+1 p k (S a )), |p|-1 k=1 f (SINR p k+1 p k (S b )) = |p|-1 k=1 f (SINR p k+1 p k (S b )).
Hence, we infer from [START_REF] Dvir | Power-aware recovery for geographic routing[END_REF] and the order-preserving mapping that (39) holds which implies D(Y, S a ) < D(Y, S b ).

We can also observe that

f (αSINR vu (S a ) + (1 -α)SINR vu (S b )) = 1 log 2 (1 + αSINR vu (S a ) + (1 -α)SINR vu (S b )) < 1 log 2 (1 + SINR vu (S b )) = f (SINR vu (S b )), (41) 
where inequality follows from that SINR vu (S a ) >

SINR vu (S b ) which implies αSINR vu (S a ) + (1 - α)SINR vu (S b ) > SINR vu (S b ). Furthermore, f (SINR vu (S)) is a monotonically decreasing function of SINR vu (S). Hence, f (SINR vu (S)) is quasi-convex in SINR vu (S).
Note that D(Y, S) is convex with respect to set D Y , which is due to [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF]. Note also that D is quasi-convex in Y . This can be shown using the condition that if

D(Y a , S) < D(Y b , S), (42) 
then for any λ ∈ (0, 1) it holds that

D(λY a + (1 -λ)Y b , S) < D(Y b , S). (43) 
To verify D is quasi-convex, it is necessary that g p k i (Y )'s given in [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF] are quasi-convex. Assume

g p k i (Y a ) < g p k i (Y b ).
Then for all Y a ̸ = Y b and λ ∈ (0, 1):

g p k i (λY a + (1 -λ)Y b ) = 1 -a k min 1, k l=1 λy a p l i + (1 -λ)y b p l i (a) ≤ 1 -a k λ min 1, k l=1 y a p l i + (1 -λ) min 1, k l=1 y b p l i = λg p k i (Y a ) + (1 -λ)g p k i (Y b ) < g p k i (Y b ), (44) 
where (a) is due to the concavity of the min function. This verifies that D is quasi-convex in Y .

APPENDIX D PROOF OF THEOREM 2

If the optimization problem satisfies some regularity conditions [START_REF] Bertsekas | Nonlinear Programming[END_REF], the necessary conditions for a solution of the nonlinear RCF in [START_REF] Malak | Spatially correlated content caching for device-to-device communications[END_REF] are given by the KKT conditions. Then, the following four groups of conditions hold:

(i) For stationary, the local solution (Y * * , S * * ) needs to satisfy the following subgradients with respect to Y = (y vi ) and the gradients with respect to S = (s vu ) values: (ii) For primal feasibility, we require that

y * * vi -1 ≤ 0, v ∈ V, i ∈ C, ( 45 
) -y * * vi ≤ 0, v ∈ V, i ∈ C, (46) 
i∈C

y vi ≤ c v , v ∈ V, (47) 
u∈Ov

s * * vu -ŝv ≤ 0, v ∈ V, (48) 
-s * * vu ≤ 0, v, u ∈ V.

For dual feasibility, we require that µ vi , ν vi , η v , β v ≥ 0, v ∈ V, i ∈ C, γ e,r ≥ 0, e = (u, v) ∈ E, r = (i, p) ∈ R (50) (iii) The complementary slackness conditions are given as 

µ vi (y * * vi -1) = 0, v ∈ V, i ∈ C, ν vi • y * * vi = 0, v ∈ V, i ∈ C, η v i∈C y vi -c v = 0, v ∈ V,
Solving the gradients ( 52) and ( 53), along with the complementary slackness conditions in [START_REF] Fleischer | Tight approximation algorithms for maximum general assignment problems[END_REF], we obtain the necessary conditions, which concludes the proof.

APPENDIX E PROOF OF THEOREM 3

The proof follows from employing similar techniques as in [42, Sect. VI-C, Theorem 4].

We initially assume that the joint power and cache allocation problem is quasi-convex. With this assumption, for a fixed cache allocation (y * * vi ) v∈V, i∈C , the relaxed delay-cost is a convex function of S. Therefore, any feasible power allocation S * satisfying [START_REF] Yeh | VIP: A framework for joint dynamic forwarding and caching in named data networks[END_REF] 

In this case, any initial power and cache allocation configuration can be driven to a limiting (Y * * , S * * ) such that the condition ( 26) is satisfied at S * * given Y * * , and Y * * satisfies [START_REF] Dehghan | A utility optimization approach to network cache design[END_REF] given S * * . We now suppose that under the more general convex power allocation region model, there are algorithms that also can drive the power and cache configuration to a limit (Y * * , S * * ) such that the conditions ( 26) and ( 25 Since D (i,p) is twice continuously differentiable on S, there exists ϵ > 0 such that for all α ∈ [1 -ϵ, 1) (i,p)∈R ∂D (i,p) ∂s vu (Y α , S * * )(S α -S * * ) ≥ 0, where the second inequality comes from [START_REF] Liu | Fair caching networks[END_REF]. However, this result contradicts [START_REF] Peşović | Single-hop vs. multi-hop-Energy efficiency analysis in wireless sensor networks[END_REF]. Hence, there does not exist another pair of feasible allocations ((y # vi ), (s # vu )) such that D (i,p) (Y # , S # ) ≤ D (i,p) (Y * * , S * * ), ∀(i, p) ∈ R, with at least one inequality being strict.

  a) quasi-convexity of D(Y, S), b) necessary conditions for optimality of D(Y, S), c) generalized necessary conditions for optimality of D(Y, S) assuming strict convexity of the feasible set of all S, denoted by D S , and d) Pareto optimality of the solution to D(Y, S).

  demonstrate a) quasi-convexity of D(Y, S), b) necessary conditions for optimality of D(Y, S), c) generalized necessary conditions for optimality of D(Y, S) under strict convexity of D S , and d) Pareto optimality of the solution to D(Y, S). Finally in Sect. III-D we provide a subgradient projection algorithm for the general setting.

1 )

 1 Biconvex optimization of D(Y, S) under the condition of Prop. 1 on convexity in log powers, and 2) General joint optimization where D(Y, S) is not jointly convex in Y and S. For the former, we exploit alternating optimization methods. For the latter, we prove various results on D(Y, S): a) quasi-convexity, b) necessary conditions for optimality, c) generalized necessary conditions under strict convexity of D S , and d) Pareto optimality of D(Y, S).

Algorithm 1 1 :

 11 3.1, Conditions (A)] for the GOP algorithm. However, [70, Ch. 3.1], [72, Theorem 1, Condition (d)] require the multipliers for the primal problem to be uniformly bounded, which may not be true for RCF. Hence, employing the GOP algorithm does not guarantee termination in a finite number of steps for any ϵ > 0 [70, Theorem 3.6.1], or at the global optimum of (15) [70, Theorem 3.6.2]. Alternating Optimization for Biconvex D(Y, S) Begin: S 0 ∈ D S ; Y 0 ∈ D Y ; 2: Let t = 0; 3: do 4: Y t+1 = arg min Y D(Y, S t ) (convex with start point Y t ); 5: S t+1 = arg min S D(Y t+1 , S) (convex with start point S t ); 6:

  1 does not hold. We first present a general result on the relaxed cost function D(Y, S) without putting any assumptions on the log powers or the caching variables. a) Quasi-convexity of D(Y, S): Proposition 2: The relaxed delay-cost function D(Y, S) of RCF in (18) is quasi-convex.

Fig. 2 .

 2 Fig. 2. D o versus increasing small cell cache capacity (assume cmc = 2 csc), with γ = 0.5, ŝv = 200 and Nu = 1.

Fig. 3 .

 3 Fig. 3. D o versus node power budget ŝv, with csc = 5, cmc = 10, γ = 0.5 and Nu = 1.

Fig. 4 .

 4 Fig. 4. D o versus parameter γ of Zipf distribution of requested items, with csc = 5, cmc = 10, ŝv = 200 and Nu = 1.

Fig. 5 .

 5 Fig. 5. D o versus receiver noise power Nu, with csc = 5, cmc = 10, ŝv = 200 and γ = 0.5.

Fig. 6 .

 6 Fig. 6. Convergence of SUB and ALT algorithms as described by D with respect to time. csc = 2, cmc = 4, ŝv = 100 and γ = 0.25.

  Hence, D o (Y, S) ≥ (D(Y, S) -D ub /e)/(1 -1/e). Hence, D(Y, S) ≤ D ub /e + (1 -1/e)D o (Y, S),

  ), we have D(Y, S) ≥ D o (Y, S) ≥ (D(Y, S) -D ub /e)/(1 -1/e). (36) Because Y * ∈ D Y is optimal, D o (Y * , S) ≤ D o (Y * * , S). From (36) and the optimality of Y * * , D o (Y * * , S) ≤ D(Y * * , S) ≤ D(Y * , S) ≤ D ub /e + (1 -1/e)D o (Y * , S).

d

  yvi D(Y * * , S) + v,i µ viv,i ν vi + v∈V η v = 0, ∀ v, i, ∂D(Y, S * * ) ∂s vu + v∈V β v -e∈E, r∈Rγ er = 0, ∀(u, v), (i, p).

  vu -ŝv = 0, v ∈ V, γ e,r • s * * vu = 0, e = (u, v) ∈ E, r ∈ R. (51) (iv) The subgradients with respect to y vi should satisfy d yvi D(Y * * , S) = u∈Ov (i,p):(u,v)∈pλ (i,p) |p|-1 k=1 f (SINR p k+1 p k (S))d yvi g p k i (Y * * ) = -µ vi + ν vi + η v = α vi , v ∈ V, i ∈ C.(52)Wheny vi = 0, constraint(45) is eliminated, and d yvi D(Y * * , S) ≥ α vi . Similarly, if y vi = 1, constraint (46) is eliminated, and d yvi D(Y * * , S) < α vi . This verifies (23). (v) The gradients with respect to the power variables are ∂D(Y, S * * ) ∂s vu = u∈Ov (i,p):(u,v)∈p λ (i,p) ∂f (SINR vu (S * * )) ∂s vu g ui (Y ) = -β v + γ e,r , e = (u, v) ∈ E, r = (i, p) ∈ R.

  satisfies that D(Y, S * * ) = min S∈D S (i,p)∈R D (i,p) (Y, S). (54) Given any feasible power allocation, if condition (25) holds at cache allocation (y * * vi ) v∈V, i∈C , then D(Y * * , S) = min Y ∈D Y (i,p)∈R D (i,p) (Y, S).

  ) hold simultaneously. Although global optimality cannot be guaranteed, the Pareto optimality can be shown.Suppose that D(Y # , S # ) Pareto dominates D(Y * * , S * * ). Without loss of generality, we can assumeD (m,r) (Y # , S # ) < D (m,r) (Y * * , S * * ). (56)Because both Y # and Y * * belong to D Y , andD Y is strictly convex, Y β = βY * * + (1 -β)Y # is achievable for all β ∈ (0, 1). Moreover, Y # ̸ = Y * * because otherwise, S # ̸ = S * * ,and from Pareto domination we would have(i,p)∈R D (i,p) (Y * * , S # ) < (i,p)∈R D (i,p) (Y * * , S * * ).(57)However, this contradicts[START_REF] Fedor | On the problem of energy efficiency of multihop vs one-hop routing in wireless sensor networks[END_REF]. Therefore, Y β is in the interior of D Y for any β ∈ (0, 1).From the same reasoning, S # ̸ = S * * and S α = αS * * + (1 -α)S # is feasible for any α ∈ [0, 1] simply by linearity of feasible power allocations.SinceD (i,p) is quasi-convex, D(Y α , S α ) Pareto dominates D(Y * * , S * * ) as well for any α ∈ (0, 1), since D (m,r) (Y α , S α ) ≤ max{D (m,r) (Y # , S α ), D (m,r) (Y * * , S α )} < D (m,r) (Y * * , S * * ), and D (i,p) (Y α , S α ) ≤ D (i,p) (Y * * , S * * ) for (i, p) ̸ = (m, r).Summing up all the terms on LHS and RHS, we have for any α ∈ (0, 1)(i,p)∈R D (i,p) (Y α , S α ) < (i,p)∈R D (i,p) (Y * * , S * * ). (58)By optimality condition[START_REF] Yeh | VIP: A framework for joint dynamic forwarding and caching in named data networks[END_REF] and the fact that Y α is in the interior of D Y for any α ∈ (0, 1), we have for any α ∈ (0, 1) and (v, u) ∈ E, (i,p)∈R ∂D (i,p) ∂s vu (Y * * , S * * )(S # -S * * ) (i,p)∈R ∂D (i,p) ∂s vu (Y * * , S * * )(S α -S * * ) > 1 1 -α (i,p)∈R ∂D (i,p) ∂s vu (Y * * , S * * )( Sα -S * * ) ≥ 0, where (a) follows from S α = αS * * + (1 -α)S # , and Sα is some power matrix strictly dominating S α . Following similar steps, from (27) for j ∈ V \v, (i ′ , p ′ ) : (u, j) ∈ p ′ (i,p)∈R ∂D (i,p) ∂s ju (Y * * , S * * )(S # -S * * ) ∂D (i,p) ∂s ju (Y * * , S * * )( Sα -S * * ) ≥ 0.

(

  i,p)∈R ∂D (i,p) ∂s ju (Y α , S * * )(S α -S * * ) ≥ 0, j ∈ V \v, (i ′ , p ′ ) : (u, j) ∈ p ′ .(60)Combining[START_REF] Rappaport | Wireless Communications: Principles and Practice[END_REF] with the convexity ofD (i,p) (Y α , •) implies (i,p)∈R D (i,p) (Y α , S * * ) ≤ (i,p)∈R D (i,p) (Y α , S α ) < (i,p)∈R D (i,p) (Y * * , S * * ) (61)

TABLE I NOTATION

 I 

  r , if s vu = 0,

	∂D ∂s vu	= -β v , if s vu > 0 and	u∈Ov	s vu = ŝv ,
	∂D ∂s vu	= 0, if s vu > 0 and		

u∈Ov s vu < ŝv ,

In this paper, we primarily consider the transmission delay assuming a lightly loaded system which we detail in Sect. II.

Routing is fixed and each request is a pair that is jointly determined by the item requested and the fixed multi-hop path traversed to serve this request.

Since the transceiver is the major source of power consumption in a node and long distance transmission requires high power, in some cases multi-hop routing can be more energy efficient than single-hop routing[START_REF] Fedor | On the problem of energy efficiency of multihop vs one-hop routing in wireless sensor networks[END_REF],[START_REF] Peşović | Single-hop vs. multi-hop-Energy efficiency analysis in wireless sensor networks[END_REF].

If subsets of nodes are allocated different frequencies, as in OFDMAbased networks, then we can determine the resulting subset of interfering nodes[START_REF] Dhillon | Modeling and analysis of K-tier downlink heterogeneous cellular networks[END_REF]. This also reduces interference and improves the SINR coverage.

In ICN, since there is no source or destination information in packets, responses follow the reverse path of requests[START_REF] Ioannidis | Adaptive caching networks with optimality guarantees[END_REF].

A function is piecewise continuously differentiable if each piece is differentiable throughout its subdomain, even if the whole function may not be differentiable at the points between the pieces [63, Ch. 3].

We refer the readers to[START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF] for the definition of Clarke subdifferential.