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Abstract

While many event-triggered control strategies are available in the literature, most of them are designed ignoring the presence of
measurement noise. As measurement noise is omnipresent in practice and can have detrimental effects, for instance, by inducing
Zeno behavior in the closed-loop system and with that the lack of a positive lower bound on the inter-event times, rendering
the event-triggered control design practically useless, it is of great importance to address this gap in the literature. To do so, we
present a general approach for set stabilization of (distributed) event-triggered control systems affected by additive measurement
noise. It is shown that, under general conditions, Zeno-free static as well as dynamic triggering rules can be designed such that the
closed-loop system satisfies an input-to-state practical set stability property. We ensure Zeno-freeness by proving the existence of
a uniform strictly positive lower-bound on the minimum inter-event time. The general approach is applied to point stabilization
and consensus problems as particular cases, where we show that, under similar assumptions as the original work, existing schemes
can be redesigned to robustify them to measurement noise. Consequently, using this approach, noise-robust triggering conditions
can be designed both from the ground up and by simple redesign of several important existing schemes. Simulation results are
provided that illustrate the strengths of this novel approach.

Key words: Event-triggered control; Networked control systems; Dynamic output-based control; Remote and distributed control;
Stability of hybrid systems.

1 Introduction

In recent years, event-triggered control (ETC), see, e.g.,
[16,21] and the references therein, has been studied exten-
sively as a resource-aware sampling paradigm, as an al-
ternative to periodic time-triggered control, reducing the
computational burden and/or the communication band-
width of the control strategies, while still ensuring impor-
tant closed-loop stability and performance properties. In
ETC, the sampling or transmission instants are decided
on the basis of well-designed state- or output-based trig-
gering conditions, rendering these instants not necessarily
periodic. The general idea in ETC is to allow more flex-
ibility in the sampling and communication processes and
adapt the communication to the system needs according
to the desired objectives.

Most literature on ETC for continuous-time systems as-
sumes that perfect state or output information is available
for control, see, e.g., [25,12]. In most physical systems, this
assumption is typically not satisfied as essentially all sen-
sors are susceptible to measurement noises. The presence
of measurement noises may cause the absence of a posi-
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tive lower bound on the inter-event times, and, even Zeno
behavior (an infinite number of transmission times in a
finite time interval) if not carefully handled, as demon-
strated in, e.g., [5]. If an ETC scheme exhibits Zeno behav-
ior, it is practically useless as it cannot be implemented
and certainly is not saving communication resources com-
pared to time-triggered periodic control. Therefore, estab-
lishing strong Zeno-freeness is important, not only for im-
plementability and saving resources, as an analytic lower
bound on the inter-event times determines the worst-case
scenario in terms of resource utilization, but also for the
stability analysis and proofs to be complete and meaning-
ful.

Few solutions have been proposed in the literature to ad-
dress this problem, see, e.g., [20,1]. However, these rely on
restrictive assumptions on the noise signal, in particular,
the noise has to be differentiable and its derivative has to be
bounded in an L∞ sense. Moreover, the ensured input-to-
state stability (ISS) or Lp-stability of the closed-loop sys-
tem holds with respect to the noise and its time-derivative.
When dealing with real sensors, the differentiability condi-
tion and global boundedness of the derivative of the noise
may not be natural assumptions. The observer-based ap-
proach in [18] overcomes this issue, but these results only
apply to linear systems and involve multiple additional in-
ternal models, thereby requiring extra processing power
and energy to run. An alternative result is studied in [23],
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where a periodic event-triggered controller (PETC), in the
sense that the triggering rule is only evaluated at some pe-
riodically spaced discrete instants, is run simultaneously
with a continuous event-triggered controller (CETC), and
transmission occurs when the triggering conditions of both
controllers hold. The downside to this particular method
is that, if the state is close to the origin, transmissions
occur periodically, sometimes called “Zeno-like” behavior
in literature, see, e.g., [26,27], hence, the communication
benefit of ETC might not be preserved. ETC design under
measurement noise becomes even harder when designing
distributed event-triggered controllers for consensus [21].
We are aware of only one work dealing with measurement
noise in this context, [14], where the control input is in-
tegrated to estimate an upper-bound for the error. Due
to the use of an upper-bound on the error and the use of
an absolute fixed threshold condition, the amount of con-
troller updates (network bandwidth) required may become
relatively large compared to other ETC consensus algo-
rithms, see, e.g., [9]. With this in mind, there is a strong
need for event-triggered controllers applicable to systems
where the available output information is corrupted by
(additive) measurement noise, where more natural condi-
tions are imposed on the type of noise signals.

In this context, we are interested in a general approach to
design event-triggered controllers robust to measurement
noise. The approach that we present is based on space-
regularized (fixed threshold) ETC, see, e.g., [19], in line
with classical event generators, such as [25,12,10]. To an-
alyze the resulting ETC closed-loop system, we present a
new hybrid model, in which a jump models a transmission.
The model does not involve the derivative of the noise as
opposed to [20,1]. This new model is instrumental, and,
based on it, we provide general prescriptive conditions,
under which both static and dynamic triggering rules can
be designed, to ensure an input-to-state practical stabil-
ity property, while ruling out Zeno phenomena. In partic-
ular, we will show that applying space-regularization, i.e.,
enlarging the “flow set” of the hybrid model, needs to be
done with care to ensure the existence of a strictly posi-
tive (semi-global) minimum inter-event time, which only
requires that an upper-bound of the noise level is known.
Our results apply to the general scenario where N plants,
possibly interconnected, are each controlled by an event-
triggered controller. We thereby cover both classical point
stabilization problems (N = 1) as in, e.g., [25,12,10,8],
where we also extend the results to output-feedback con-
trol, and consensus problems (N > 1) as in, e.g., [7], in a
unified way. Moreover, we explain how our approach leads
to modifications of the triggering rules presented in [25,12]
to ensure Zeno-freeness in presence of measurement noise.
We also apply the approach to consensus seeking prob-
lems, where we show that we can maintain “long” inter-
event times even in the presence of measurement noise.
We show this, for instance, for “robustified” versions of
[9,11]. Lastly, we present numerical case studies to show
the effectiveness of our technique and to demonstrate the
implications of applying space-regularization.

An alternative to our approach for preventing Zeno by
applying space-regularization is the application of time-
regularization, where the time between two events is glob-

ally lower-bounded by an a priori enforced “waiting time”.
As we will illustrate in the numerical examples, this often
results in so-called “Zeno-like” behavior, a term used in the
context of PETC in, e.g., [26,27], i.e., communication oc-
curs approximately periodically with the inter-event times
equal to the imposed waiting time, when the state is close
to the desired stability set, thereby not preserving the
sparse communication benefits of ETC. The application
of space-regularization combined with time-regularization
can be beneficial to recover sparse transmission times while
obtaining more freedom in the selection of the tuning pa-
rameters, see Remark 5. However, as time-regularization is
not necessary to obtain sparse communication, and due to
the fact that time-regularization typically introduces no-
tational complexity and requires stronger conditions, we
do not include it for the general exposition in this work. In
a numerical example, see Section 7.2.2, we will illustrate
the benefits of using space-regularization also for time-
regularized (dynamic) ETC.

This work generalizes the results of our preliminary version
[22]. Compared to [22], where only static state-feedback
controllers were considered, we include several extensions,
such as output-feedback controllers, more general holding
functions and dynamical disturbances. Moreover, the full
proofs are provided here, which are not available in [22].

The remainder of this paper is structured as follows. In
Section 2, we present the preliminaries and notational con-
ventions. Section 3 contains the problem statement. We
present the hybrid model and the approach in Section 4.
The main results are given in Section 5. We apply the ap-
proach to case studies in Section 6. Finally, we illustrate
the obtained results numerically in Section 7, and provide
conclusions in Section 8.

2 Preliminaries

2.1 Notation

The sets of all non-negative and positive integers are de-
noted N and N>0, respectively. The fields of all reals and
all non-negative reals are indicated by R and R⩾0, respec-
tively. The identity matrix of size N × N is denoted by
IN , and the vectors in RN whose elements are all ones
or zeros are denoted by 1N and 0N , respectively; the in-
dex of 0N or 1N is dropped when clear from the con-
text. The N × M zero matrix is denoted 0N,M . For N
vectors xi ∈ Rni , we use the notation (x1, x2, . . . , xN ) to

denote
[
x⊤1 x⊤2 . . . x⊤N

]⊤
. Given a pair of square matri-

ces A1, . . . , An, we denote by diag(A1, . . . , An) the block-
diagonal matrix where the main diagonal blocks consist of
the matrices A1 to An and all other blocks are zero ma-
trices. By ⟨·, ·⟩ and | · | we denote the usual inner prod-
uct of real vectors and the Euclidean norm, respectively.
For a measurable signal w : R⩾0 → Rnw , we denote
by ∥w∥∞ := ess supt∈R⩾0

|w(t)| its L∞-norm provided it

is finite, in which case we write w ∈ L∞. A function
w : R⩾0 → Rnw is said to be càdlàg “continue à droite,
limite à gauche”, denoted by w ∈ PC, when there exists a
sequence {ti}i∈N with ti+1 > ti > t0 = 0 for all i ∈ N and
ti → ∞when i→ ∞ such that w is continuous on (ti, ti+1)
where limt↑ti w(t) exists for all i ∈ N>0 and limt↓ti w(t)
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exists for all i ∈ N with limt↓ti w(t) = w(ti), i.e., w is
piecewise continuous, right continuous and left limits exist
for each ti, i ∈ N>0. Given a set W ⊆ Rnw , we denote by
PCW the set of functions {w ∈ PC | w(t) ∈ W for all t ∈
R⩾0}. Note that continuous functions are contained in PC,
{ti}i∈N can be chosen arbitrarily then. For any x ∈ RN ,
the distance to a closed non-empty set A is denoted by
|x|A := miny∈A |x− y|. The interior of a set A is denoted
intA. Given a vector x ∈ Rnx and a set A ⊆ Rnx × Rny ,
Πx(A) denotes the projection of A onto the x-plane Rnx ,
i.e., Πx(A) = {z ∈ Rnx | ∃y ∈ Rny s.t. (z, y) ∈ A}. Given
a set-valued mapping M : Rn ⇒ Rm, the domain of M is
the set domM = {x ∈ Rm | M(x) ̸= ∅}. We consider K,
K∞ and KL functions as defined in [13, Chapter 3]. By ∧
and ∨ we denote the logical and and or operators respec-
tively.

2.2 Graph theory

A weighted graph G := (V ,E , A) consists of a vertex set
V := {1, 2, ..., N}, a set of edges E ⊂ V × V and an
adjacency matrix A ∈ RN×N . An ordered pair (i,m) ∈ E ,
with i,m ∈ V , is an edge from i tom. For an edge (i,m) ∈
E , i is called the in-neighbor ofm, andm is called the out-
neighbor of i. Every (i,m) ∈ E has an associated weight,
denoted αim ∈ R>0. The adjacency matrix A := (ai,m),
i,m ∈ V of a graph is defined as

ai,m :=

{
αim if (i,m) ∈ E ,

0 otherwise.
(1)

The set V in
i of the in-neighbors of i is defined as V in

i :=
{m ∈ V | (m, i) ∈ E } and the set of out-neighbors as
V out
i := {m ∈ V | (i,m) ∈ E }. An undirected graph is a

graph, where, for every edge (i,m) ∈ E , (m, i) is also in E .
A sequence of edges (i,m) ∈ E connecting two vertices is
called a directed path for these two vertices. A connected
graph G is defined as a graph where there exists a di-
rected path between any two vertices in V . The in-degree
is defined as dini :=

∑
m∈V in

i
αmi and the out-degree as

douti :=
∑

m∈V out
i

αim. The in-degree matrix Din and out-

degree matrix Dout are diagonal matrices with dini respec-
tively douti as the ith diagonal element. A weight-balanced
digraph (directed graph) is a digraph where douti = dini
for all i. The Laplacian L of a graph G is defined as
L := Dout −A. For an undirected graph, Din := Dout.

2.3 Hybrid systems

Based on the formalism of [13], we model hybrid systems
H(F, C, G,D,X,V) as{

ξ̇ ∈ F (ξ, ν)

ξ+ ∈ G(ξ, ν)

(ξ, ν) ∈ C,
(ξ, ν) ∈ D, (2)

where ξ ∈ X ⊆ Rnξ denotes the state, ν an external
input taking values in V ⊆ Rnv , C ⊆ X × V the flow
set, D ⊆ X × V the jump set, F : X × V ⇒ Rnξ the
(set-valued) flow map and G : X × V ⇒ Rnξ the (set-
valued) jump map. Sets C and D are assumed to be closed.
We refer to [13] for notions related to (2) such as hybrid
time domains or hybrid arcs. For a hybrid time domain
E, suptE := sup {t ∈ R⩾0 : ∃j ∈ N such that (t, j) ∈ E},
supj E := sup {j ∈ N : ∃t ∈ R⩾0 such that (t, j) ∈ E} and

supE := (suptE, supj E). Given a hybrid arc ϕ, the nota-
tion domϕ represents its domain, which is a hybrid time
domain in the terminology of [13]. We consider the notion
of solutions proposed in [15].

Definition 1 ([15]) Given ν ∈ PCV, a hybrid arc ϕ is a
solution 1 to H, if

(S1) for all j ∈ N such that Ij := {t | (t, j) ∈ domϕ} has

nonempty interior, it holds that ϕ̇(t, j) ∈ F (ϕ(t, j),
ν(t)) for almost all t ∈ int Ij and (ϕ(t, j), ν(t)) ∈ C
for all t ∈ int Ij;

(S2) for all (t, j) ∈ domϕ such that (t, j + 1) ∈ domϕ,
(ϕ(t, j), ν(t)) ∈ D and ϕ(t, j + 1) ∈ G(ϕ(t, j), ν(t)).

We will also use the following definitions.

Definition 2 Given an input ν ∈ PCV, a solution ϕ is
called non-trivial, if domϕ contains at least two points. We
say that ϕ is maximal, if there does not exist another solu-
tion ψ toH for the same input ν such that domϕ is a proper
subset of domψ (i.e., domϕ ⊂ domψ, but domϕ ̸= domψ)
and ϕ(t, j) = ψ(t, j) for all (t, j) ∈ domϕ. We denote the
set of all maximal solutions to H for input ν by SH(ν). We
say that the solution ϕ is complete, if domϕ is unbounded,
and we say that it is t-complete, if supt domϕ = ∞. We
say that H is persistently flowing if all maximal solutions
for all ν ∈ PCV are t-complete.

Remark 1 If C andD do not depend on the input ν, the in-
puts can be taken as measurable functions instead of piece-
wise continuous; see [15] for further insights on this point.

In this paper, we consider systems H that are persis-
tently flowing, i.e., systems whose maximal solutions are
t-complete, and thus we focus on the stability notions as
defined below.

Definition 3 For a persistently flowing hybrid system H,
a non-empty closed set A ⊂ Rnξ is input-to-state prac-
tically stable (ISpS), if there exist γ ∈ K, β ∈ KL and
d ∈ R⩾0 such that for any input ν ∈ PCV and any associ-
ated solution ξ,

|ξ(t, j)|A ⩽ β(|ξ(0, 0)|A, t) + γ(∥ν∥∞) + d, (3)

for all (t, j) ∈ dom ξ. If (3) holds with d = 0, then A is
said to be input-to-state stable (ISS) for H.

To prove that a given non-empty, closed set A is IS(p)S,
we will use the following Lyapunov conditions; recall that,
whenH is persistently flowing, necessarilyG(D)×V ⊂ C∪
D, otherwise, not all maximal solutions would be complete.

Proposition 1 Suppose H is persistently flowing and let
A ⊂ Rnξ be a non-empty closed set. If there exist V :
domV → R⩾0, α, α, α ∈ K∞, γ ∈ K and c ∈ R⩾0 such
that

i) Πξ(C ∪ D) ⊂ domV and V is continuously differen-
tiable on an open set containing Πξ(C),

ii) for any ξ ∈ X,
α(|ξ|A) ⩽ V (ξ) ⩽ α(|ξ|A),

iii) for all (ξ, ν) ∈ C and all f ∈ F (ξ, ν),

⟨∇V (ξ), f⟩ ⩽ −α(|ξ|A) + γ(|ν|) + c,

1 This corresponds to the notion of e-solution, see [15, Defini-
tion 4.3].
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C1 P1u1̃
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ETM 1 ỹ1̂̃y . . .

CN PNuN

ỹN

ETM N ỹN̂̃y

Network

physical interconnection

Figure 1. Networked control setup with Event-Triggering
Mechanism (ETM). ETM i determines when the current noisy
output ỹi is transmitted over the network.

iv) for all (ξ, ν) ∈ D and all g ∈ G(ξ, ν),

V (g)− V (ξ) ⩽ 0,

then A is ISpS. If, moreover, c = 0 in item iii), then A is
ISS.

Sketch of proof Let ν ∈ PCV and ξ be an associ-
ated solution to H, (t, j) ∈ dom ξ and 0 = t0 ⩽ t1 ⩽
. . . ⩽ tj+1 = t the jump times of ξ which satisfy
dom ξ∩([0, t]×{0, 1, . . . , j}) =

⋃
i∈{0,1,...,j}

[ti, ti+1]×{i}. For

each i ∈ {1, 2, . . . , j} and for almost all s ∈ [ti, ti+1], item

3) of Proposition 1 implies that
〈
∇V (ξ(s, i)), ξ̇(s, i)

〉
⩽

−α(|ξ(s, i)|A)+ γ(|ν(s)|)+ c. Similar arguments as in [24,
Lemma 2.14] complete the proof as 1) V does not increase
at jumps due to item iv) of Proposition 1, 2) item ii) holds,
and 3) H is persistently flowing. ■

3 Problem formulation

We consider a collection ofN ∈ N>0 interconnected plants
P1, P2, . . . , PN . Each plant Pi, i ∈ N := {1, 2, . . . , N}, is
equipped with a sensor that communicates its measured
output, which is affected by measurement noise, to the
controllers C1, C2, . . . , CN via a digital packet-based net-
work, see Fig. 1. Plant Pi, i ∈ N , has state xp,i ∈ Rnxp,i ,
ideal output yi ∈ Rny,i and measured output ỹi ∈ Rny,i ,
affected by noise, with dynamics

Pi :


ẋp,i = fp,i(xp, ui, vi),

yi = gp,i(xp,i),

ỹi = gp,i(xp,i) + wi = yi + wi,

(4)

where ui ∈ Rnu,i is the control input of Pi, xp :=
(xp,1, xp,2, . . . , xp,N ) is the concatenated plant state,
vi ∈ Rnv,i is a process disturbance, wi ∈ Rny,i is the i-th
measurement noise, fp,i : Rnp × Rnu,i × Rnv,i → Rnxp,i is
continuous and gp,i : Rnxp,i → Rny,i is continuously dif-
ferentiable, where np :=

∑
i∈N nxp,i

. Note that fp,i may
depend on the states of other plants, and, as such, physical
couplings are allowed, as illustrated in Fig. 1. We assume
that the process disturbances vi and the measurement
noises wi satisfy the following assumption.

Assumption 1 For each i ∈ N , vi ∈ L∞ ∩ PC and
wi ∈ PCWi , where Wi :=

{
wi ∈ Rny,i

∣∣ |wi| ⩽ wi

}
for

some known wi ∈ R⩾0.

Assumption 1 imposes natural boundedness conditions on

the process disturbance and the noise and it does not im-
pose restrictions on the existence or boundedness of their
derivatives, as was required in, e.g., [20,1].

The controller Ci with state xc,i ∈ Rnxc,i and nxc,i
∈ N,

i ∈ N , is given by

Ci :

{
ẋc,i = fc,i(xc,i, ỹi, ̂̃y ),

ui = gc,i(xc,i, ỹi, ̂̃y ),
(5)

with fc,i : Rnxc,i ×Rny,i ×Rny → Rnxc,i and gc,i : Rnxc,i ×
Rny,i × Rny → Rnu,i continuous maps, ny :=

∑
i∈N ny,i

and where ̂̃y denotes the sampled “networked” version of
the outputs, which will be made more precise next. Note
that static controllers are included in (5) by taking nxc,i =
0.

The i-th sensor, i ∈ N , broadcasts its output ỹi to the con-
trollers C1, C2, . . . , CN over the digital network. The cor-
responding transmissions occur at time instants tik, k ∈ N,
which are generated by a local Event-Triggering Mech-
anism (ETM), which is to be designed. Because of the
packet-based communication over the network, the i-th
controller, which depends on the outputs of Pj , j ∈ N ,
does not have continuous access to ỹ := (ỹ1, ỹ2, . . . , ỹN ),

but only to its estimate ̂̃y := ( ̂̃y 1, ̂̃y 2, . . . , ̂̃yN ) and to its lo-
cal output ỹi. When ETM i ∈ N , transmits the measured

output of plant i over the network, ̂̃y i is updated according
to ̂̃y i((t

i
k)

+) = ỹi(t
i
k). (6)

In between transmissions the estimate evolves according
to a holding function fh,i : Rny,i → Rny,i , fh,i continuous,
i.e.,

˙̂
ỹ i = fh,i( ̂̃y i). (7)

Consequently, each local controller that uses ̂̃y i should im-
plement the holding function fh,i locally. Of course, when
a controller Cj does not depend on ỹi, Cj does not need

to generate ̂̃y i, but, to derive the model, we proceed as if
it would for the sake of notational convenience. The case
of a Zero-Order-Hold (ZOH), for instance, corresponds to
the choice fh,i = 0. For modeling purposes, we define ŷi
and ŵi, where

ŷi((t
i
k)

+) = yi(t
i
k),

˙̂yi = fh,i(ŷi + ŵi),

ŵi((t
i
k)

+) = wi(t
i
k),

˙̂wi = 0.
(8)

Hence, ŵi is the value of wi at the last transmission instant
of ETM i. Due to the aforementioned definitions, we obtain

that ̂̃y i = ŷi + ŵi.

We define the ideal network-induced error ei as the dif-
ference between the sampled output ŷi without measure-
ment noise and the current output yi without measurement
noise:

ei := ŷi − yi. (9)

Note that ei is not known by the ETM, and therefore, can-
not be used by the corresponding local triggering condition
for determining tik, k ∈ N. Hence, we also define the mea-
sured network-induced error ẽi as the difference between

the estimated output ̂̃y i and the current measured output
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ỹi, which are both affected by noise, i.e.,

ẽi := ̂̃y i − ỹi = ei + ŵi − wi. (10)

The local ETM at plant i does have access to ẽi. We de-
note the concatenated variables corresponding to (9) and
(10) as e := (e1, e2, . . . , eN ) and ẽ := (ẽ1, ẽ2, . . . , ẽN ), re-
spectively.

We proceed by emulation and assume that the controllers
C1, C2, . . . , CN are designed such that, in closed loop with
the plants P1, P2, . . . , PN , the closed-loop system satisfies
an input-to-state stability property in the absence of a
communication network (i.e., under perfect communica-

tion in the sense that ̂̃y = ỹ). We will formalize these prop-
erties in Section 5 below. Based on these controllers, which
can be designed with any (nonlinear) design tool as long
as the assumption stated in Section 5 holds, our objective
is to determine the transmission times tik, k ∈ N, for any
i ∈ N , based on suitable local ETMs, to ensure that:

(a) the combined closed-loop system (4), (5) satisfies an
input-to-state practical stability property in the pres-
ence of measurement noise and process disturbances;

(b) there exists a strictly positive lower-bound on the
time between any two transmissions generated by
ETM i, i.e., for any initial condition there exists a
Ti > 0 such that tik+1 − tik ⩾ Ti for all k ∈ N, i ∈ N .

This problem formulation is further formalized in the next
section in terms of hybrid systems concepts.

4 Hybrid model

We model the overall system as a hybrid system H as in
Section 2.3, for which a jump corresponds to the broadcast-
ing of one of the noisy outputs ỹi, i ∈ N , over the network.
We allow the local triggering (transmission) conditions to
depend on a local auxiliary variable denoted ηi ∈ R⩾0,
i ∈ N , as is the case in dynamic triggering [12,8]. The
dynamics of ηi is designed in the following. We will also
consider static triggering conditions as a special case, in
which case ηi is not needed.

We define η := (η1, η2, . . . , ηN ) ∈ RN
⩾0, and stack the vari-

ables x := (x1, x2, . . . , xN ) with xi := (xp,i, xc,i), e :=
(e1, e2, . . . , eN ) and ŵ := (ŵ1, ŵ2, . . . , ŵN ) in

χ := (x, e, ŵ). (11)

The full state for H becomes ξ := (χ, η) = (x, e, ŵ, η) ∈ X,
where X := Rnx × Rny × W × RN

⩾0, W := W1 × W2 ×
. . . ×WN with Wi as defined in Assumption 1 and nx :=∑

i∈N
(
nxp,i

+ nxc,i

)
. We define the concatenated exoge-

nous inputs ν := (v, w) ∈ V, where V := V × W, V :=
Rnv,1 ×Rnv,2 × . . .×Rnv,N and with v := (v1, v2, . . . , vN )
and w := (w1, w2, . . . , wN ). The flow map F : X× V → X
can then be written as

F (ξ, ν) :=

(f(x, e, ŵ, v, w), g(x, e, ŵ, v, w),0ny , Ψ̄(ỹ, ̂̃y , ẽ, u, η)). (12)

Based on (4), (5) and (10), we obtain f(x, e, ŵ, v, w) :=
(f1(x, e, ŵ, v1, w1), f2(x, e, ŵ, v2, w2), . . . , fN (x, e, ŵ, vN , wN )),
where fi : Rnx ×Rny ×W×Rnv,i ×Rny,i → Rnx,i is given

by

fi(x, e, ŵ, vi, wi) :=[
fp,i (xp, gc,i(xc,i, gp,i(xp,i) + wi, gp(xp) + e+ ŵ), vi)

fc,i (xc,i, gp,i(xp,i) + wi, gp(xp) + e+ ŵ)

]
with gp(xp) := (gp,1(xp,1), gp,2(xp,2), . . . , gp,N (xp,N )).
Based on (4), (7) and (10), we obtain g(x, e, ŵ, v, w) :=
(g1(x, e, ŵ, v1, w1), g2(x, e, ŵ, v2, w2), . . . , gN (x, e, ŵ, vN ,
wN )), where gi(x, e, ŵ, vi, wi) := fh,i(gp,i(xp,i)+ei+ŵi)−
fy,i(x, e, ŵ, vi, wi) with

fy,i(x, e, ŵ, vi, wi) :=

∂gp,i
∂xp,i

fp,i (xp, gc,i(xc,i, gp,i(xp,i) + wi, gp(xp) + e+ ŵ), vi) .

The function Ψ̄ defines the dynamics of the local triggering
variables η, and it is defined as

Ψ̄(ỹ, ̂̃y , ẽ, u, η) := (Ψ̄1(η1, o1), Ψ̄2(η2, o2), . . . , Ψ̄N (ηN , oN )),

where oi := (ỹi, ̂̃y , ẽi, ui) ∈ Rno,i with no,i := 2ny,i + ny +
nu,i is the locally available information at ETM i, and

Ψ̄i(ηi, oi) = Ψi(oi)− φi(ηi), (13)

with φi, i ∈ N , any class-K∞ function, and Ψi in (13) will
be constructed in the following.

The flow set C ⊆ X× V is given by

C :=
⋂
i∈N

Ci (14)

with

Ci := {(ξ, ν) ∈ X× V | ηi + θiΨi(oi) ⩾ 0} , (15)

where θi ∈ R⩾0 is a nonnegative tuning parameter. By se-
lecting a larger θi, the first triggering occurs earlier than
when θi is small, given the same initial condition, see [12,
Proposition 3.2], where this is shown for the particular
case of state-feedback and specific functions Ψi, i ∈ N , re-
lated to [25]. Generally, enlarging θi results in faster con-
vergence but smaller inter-event times compared selecting
θi smaller, which allows to tune bandwidth usage versus
performance, see [12] for more details.

The jump set is given by

D :=
⋃
i∈N

Di (16)

with

Di :=
{
(ξ, ν) ∈ X× V | ηi + θiΨi(oi) ⩽ 0

∧ Ψi(oi) ⩽ 0
}
.

(17)

The jump map G : X× V ⇒ X is, for any (ξ, ν) ∈ X× V,
given by

G(ξ, ν) :=
⋃
i∈N

Gi(ξ, ν) (18)

with

Gi(ξ, ν) :=

{{
(x,Γie,Γiŵ + Γiw, η)

}
, when (ξ, ν) ∈ Di,

∅, when (ξ, ν) ̸∈ Di,
(19)
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where Γi := diag (∆i,1,∆i,2, . . . ,∆i,N ) with

∆i,j :=

{
0ny,j ,ny,j

, if i ̸= j,

Iny,j
, if i = j,

(20)

and where Γi := Iny
− Γi. For future use, we use the com-

pact notation Fχ to denote the flow map of variable χ as

Fχ(χ, ν) :=
(
f(x, e, ŵ, v, w), g(x, e, ŵ, v, w),0ny

)
, (21)

and the jump map Gχ defined as

Gχ(χ, ν) :=
⋃
i∈N

{
(x,Γie,Γiŵ + Γiw)

}
. (22)

The maps Fχ and Gχ will be used to formulate suitable
conditions on the physical system (in absence of a network)
for the design of suitable event generators.

Because of the chosen modelling setup, in particular (8)
and (10), H does not depend on the time-derivative of w
as in [20,1]. This modeling choice is instrumental to work
under more general and more natural assumptions on the
measurement noise, see Assumption 1.

To formalize objective (ii) stated at the end of Section 3,
we introduce, for any solution ξ to H for ν ∈ PCV and
i ∈ N , the set

Ti(ξ, ν) :=
{
(t, j) ∈ dom ξ | (t, j + 1) ∈ dom ξ ∧ (23)

(ξ(t, j), ν(t)) ∈ Di ∧ (ξ(t, j + 1), ν(t)) ∈ Gi(ξ(t, j), ν(t))
}
.

In words, Ti(ξ, ν) contains all hybrid times belonging to
the hybrid time domain of a solution ξ to H given input ν
at which a jump occurs due to triggering condition i (Di

and Gi). The next (new) definition will be considered in
place of item (ii) at the end of Section 3 in the rest of this
paper.

Definition 4 SystemH has a semi-global individual min-
imum inter-event time (SGiMIET) if, for all ∆ ⩾ 0 and
all i ∈ N , there exists a τ iMIET > 0 such that for any input
v ∈ PCV and associated solution ξ with |ξ(0, 0)| ⩽ ∆, for
all (t, j), (t′, j′) ∈ Ti(ξ, ν),

t+ j < t′ + j′ =⇒ t′ − t ⩾ τ iMIET. (24)

If τ iMIET can be chosen independently of ∆ for all i ∈ N ,
then we say thatH has a global individual minimum inter-
event time (GiMIET).

Definition 4 means that the (continuous) time between
two successive transmission instants due to a trigger of
condition i are spaced by at least τ iMIET units of time,
and that τ iMIET depends on the set of initial conditions in
general.

Using the hybrid model H and the terminology in Defini-
tion 4, we can now formally state the problem formulation
at the end of Section 3 as follows: For a given non-empty
closed set A ⊂ Rnx ×Rny ×W (describing a target set for
the state χ ∈ Rnx × Rny × W), synthesize the functions
Ψi, i ∈ N , such that AH := {ξ ∈ X | χ ∈ A ∧ η = 0} is
ISpS w.r.t. AH and H has the SGiMIET property for all
θi ∈ R⩾0, i ∈ N .

5 Main result

5.1 Main Assumption

As indicated in Section 3, we assume that the controllers
Ci, i ∈ N , are designed such that the closed-loop system
satisfies suitable stability properties, as formalized below
in terms of the data of H. We show in Section 6 how these
properties can be naturally obtained for several important
case studies.

Assumption 2 There exist α, α, α ∈ K∞, γ ∈ K, βi ∈ K
and continuous functions δi : Rno,i → R⩾0, where no,i =
3ny,i + nu,i, for all i ∈ N , a non-empty closed set A ⊂
Rnx ×Rny ×W and a continuously differentiable function
V : Rnx × Rny ×W → R⩾0 such that

i) for any χ ∈ Rnx × Rny ×W,

α(|χ|A) ⩽ V (χ) ⩽ α(|χ|A), (25)

ii) for all χ ∈ Rnx × Rny ×W and ν ∈ V,

⟨∇V (χ), Fχ(χ, ν)⟩ ⩽− α(|χ|A) + γ(|ν|)
+

∑
i∈N

(βi(|ẽi|)− δi(oi)) , (26)

iii) for all χ ∈ Rnx × Rny × W and ν ∈ V such that
(ξ, ν) ∈ D and g ∈ Gχ(χ, ν),

V (g)− V (χ) ⩽ 0, (27)

iv) for every p > 0 and ν ∈ PCV, there exists q ⩾ 0 such
that for all ϕ ∈ SH(ν,B) 2 with B := {ξ ∈ X | |ξ| ⩽
p}, |ϕ(t, j)| ⩽ q for all (t, j) ∈ domϕ.

Items i)-iii) of Assumption 2 impose Lyapunov conditions
on the χ-system of H. In particular, items i) and ii) im-
ply that the χ-system satisfies an input-to-state dissipa-
tivity property during flow w.r.t. the set A, which directly
connects to the controller robustly stabilizing A. These
properties may be verified by Lyapunov-based analysis on
the closed-loop dynamics ignoring the presence of the net-
work at first. After obtaining a suitable Lyapunov function,
the behavior of the network-induced imperfections can be
taken into account by including an additive disturbance on
the output. If the resulting closed-loop (continuous-time)
system is ISS with respect to this additive disturbance,
items i)-iii) of Assumption 2 are generally satisfied. Item
iii) implies that the Lyapunov function does not increase
at jumps. This condition directly holds when the expres-
sion of V only involves x, for instance, as x evolves contin-
uously over time and is thus not affected by jumps. As we
will see in Section 6.2.2, in some existing ETC setups, the
Lyapunov function involves e and the auxiliary variables
ηi may be updated after a transmission (and not kept con-
stant as we do here). In such cases, item iii) is required to
ensure that transmissions do not destabilize the system.
Items i)-iii) of Assumption 2 imply that, in absence of a
digital network (and thus, ei = ẽi = 0 and ŵi = wi), the
set A is input-to-state stable with respect to inputs ν.

Item iv) is a boundedness property of the solutions to H;
this condition directly follows for many relevant cases from

2 SH(ν,B) denotes the set of maximal solutions ϕ for the hy-
brid system H with ϕ(0, 0) ∈ B and input ν.
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items i)-iii) of Assumption 2, such as when A is compact,
or when Πx(A) is compact and a ZOH is employed. More
details are given in Section 5.4, particularly Lemma 1. In
other cases, e.g., when Πx(A) is unbounded or when A is
not compact and a non-zero holding-function is used, the
dynamics of the system have to be exploited to establish
item iv) of Assumption 2, as we will show, e.g., in the
consensus case study in Section 6.2.

Again, a broad range of examples of systems verifying
Assumption 2 are provided in Section 6. Items i), ii)
and iv) may be verified when designing the controllers
C1, C2, . . . , CN and holding functions fh,i, i ∈ N , at the
first step of emulation. The challenge is to design the local
triggering conditions to handle the potentially destabi-
lizing effect due to the measurement noise and the true
network-induced error ei in ẽi in item ii) of Assumption
2, which is addressed in the next subsection.

5.2 Dynamic triggering rules

The next theorem explains how to design the dynamics of
the dynamic triggering variable η, in particular Ψi, i ∈ N ,
in (13) to ensure the desired objectives based on Assump-
tions 1, 2. Its proof is provided in the appendix.

Theorem 1 Consider system H as given by (12), (15),
(17) and (19) and suppose Assumptions 1 and 2 hold. We
define for all i ∈ N , ξ ∈ X and all ν ∈ V

Ψi(oi) := δi(oi)− βi(|ẽi|) + ci (28)

with ci > βi(2wi) being a tuning parameter and wi and βi
come from Assumptions 1 and 2, respectively. System H
with (28) is persistently flowing, has a SGiMIET and the
setAH := {ξ ∈ X | χ ∈ A∧η = 0} is ISpS for all θi ∈ R⩾0,
i ∈ N .

Theorem 1 provides the expression of Ψi, i ∈ N , which
ensures that the ISS property of the set A guaranteed by
Assumption 2 in the absence of the network, is approxi-
mately preserved in the presence of the digital network.
Moreover, the existence of a strictly positive lower-bound
on the inter-event times of each triggering mechanism is
guaranteed. The interest of Theorem 1 lies in its basic na-
ture, generality and in revealing the main concepts as a
“prescriptive approach,” and we will show its broad appli-
cability in several important applications in Section 6.

The expression of Ψi in (28) is based on so-called space-
regularization, as by introducing ci, we enlarge the flow
set to ensure the existence of a SGiMIET. While space-
regularization is well known in the hybrid systems litera-
ture and has been used in different forms in event-triggered
control, see, e.g., [5,10,3,19], the selection of ci has to be
done carefully in the presence of measurement noise, be-
cause the Zeno-freeness a priori only holds if ci satisfies
the condition mentioned in Theorem 1.

A few remarks are in order. First, note that the conse-
quence of ci > βi(2wi) in Theorem 1 is that we obtain a
practical stability notion, i.e., the constant d in (3) is non-
zero, see Remark 3 below for more details. Second, inter-
estingly, Theorem 1 does not require to make assumptions
on the differentiability of wi, and a fortiori on bounded-
ness properties of ẇi, as was required in various works
in ETC considering measurement noise, see, e.g., [20,1].

Additionally, we may exploit the structure present in spe-
cific scenarios or ETC mechanisms to obtain less conser-
vative bounds for the parameters ci and, in some cases, a
global individual MIET (see Definition 4), as opposed to
a semiglobal one as in Theorem 1, as will be illustrated in
Section 6.

5.3 Static triggering rules

We can derive similar results when the triggering condi-
tions are static, i.e., when no variable ηi is used to define
the transmission instants. In this case, we obtain the hy-
brid system Hs defined as

χ̇ = Fχ(χ, ν), (χ, ν) ∈ Cs,

χ+ ∈ Gχ(χ, ν), (χ, ν) ∈ Ds,
(29)

where
Cs :=

⋂
i∈N

Cs
i , Ds :=

⋃
i∈N

Ds
i (30)

with the sets Cs
i ,Ds

i as

Ds
i := {(χ, ν) ∈ Rnx × Rny ×W × V | Ψi(oi) ⩽ 0},

Cs
i := {(χ, ν) ∈ Rnx × Rny ×W × V | Ψi(oi) ⩾ 0}, (31)

where Ψi(oi) ⩽ 0 is a (local) static triggering condition,
which is designed according to the following result.

Corollary 1 Consider system (29) and suppose Assump-
tions 1 and 2 hold. We define for all i ∈ N , χ ∈ Rnx ×
Rny ×W and ν ∈ V

Ψi(oi) := δi(oi) + ci − βi(|ẽi|) (32)

with ci > βi(2wi) a tuning parameter. The system Hs with
(32) is persistently flowing, has a SGiMIET, and the set A
is ISpS.

The proof of Corollary 1 follows similar steps as the proof
of Theorem 1, and is therefore omitted.

Remark 2 Corollary 1 and Assumption 2 allow us to con-
sider the special case where δi = 0 for some i ∈ N . In this
case,Ψi is given byΨi(oi) := ci−βi(|ẽi|), with ci > βi(2wi)
a tuning parameter. Note that triggering conditions of this
form are often called absolute triggering conditions or fixed
threshold policies in the event-triggered control literature,
see, e.g., [5,3,19].

Remark 3 The parameters ci for i ∈ N in Theorem 1
and Corollary 1 are directly related to the constant d in the
ISpS definition (3). From the proof of Theorem 1, it follows
that (3) holds with d =

∑
i∈N ci, where ci comes from (28).

Hence, for a tighter ultimate bound on |ξ(t, j)|AH , we re-
quire that the ci’s are smaller. Recall, however, that due to
Theorem 1, ci is lower-bounded by βi(2wi), and thus the in-
fimum value of d is dmin =

∑
i∈N βi(2wi) to ensure proper

SGiMIET and for handling measurement noise. On the
other hand, selecting a small ci implies a small lower bound
on the inter-event times, i.e., that the constants τ iMIET in
(24) are small. Hence, this suggests a trade-off between
large lower bounds on the inter-event times and “asymp-
totic closeness” to AH in terms of d, see (3), which is tun-
able via the selection of ci, i ∈ N . Of course, the tuning
is limited due to the constants ci being bounded from be-
low by wi. Hence, the guaranteed ultimate bounds are also
bounded from below, as they are directly dependent on the
bounds wi.
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Remark 4 We recover as a particular case the result of
[5, Remark V.3] when we specialize our results to the same
setting, i.e., when a single linear plant model is considered
and ZOH devices are implemented. Indeed if βi is the iden-
tity function as in [5], we recover the lower-bound ci > 2wi

in Theorem 1. The results here are more general as they
apply to a broad range of nonlinear and distributed problem
setups, as we will show in Section 5 below.

Remark 5 Due to the modeling similarities, our space-
regularization approach can also be applied to [8] with
minimal adjustments. In [8], time-regularization is used
to design triggers for classes of nonlinear systems in ab-
sence of measurement noise. By including this approach,
these triggering techniques can be made robust to measure-
ment noise with minimal changes. Due to the additional
(notational) burden of including time-regularization, the
(typically stronger) conditions that are required for time-
regularization and the fact that our technique works without
time-regularization, we opted to omit time-regularization
from this paper to ensure that the main message is not
blurred by too many technicalities. However, we would like
to point out that by using time-regularization, there is no
need for a (strictly positive) lower bound on the constants
ci, and, hence, we can obtain ISS properties in this case by
selecting ci = 0 for all i ∈ N . As will be demonstrated in
Section 7, including space-regularization can still be ben-
eficial to obtain more favorable inter-event times close to
the desired stability set A.

5.4 Boundedness of ξ

We provide the following lemma to ensure item iv) based
on items i)-iii) of Assumption 2 for several common cases.

Lemma 1 Consider system H as given by (12), (15), (17)
and (19), with the trigger dynamics as given by (28) in case
of dynamic triggering and (32) in case of static triggering.
When Assumption 1 and items i)-iii) of Assumption 2 hold,
and one of the following conditions is met:

• A is compact;
• Πx(A) is compact and fh,i = 0 for all i ∈ N ;

then item iv) of Assumption 2 also holds.

The proof of this lemma 1 is provided in the Appendix.
Other cases for which Assumption 2 is satisfied (without
having the conditions of Lemma 1) are discussed in the
next section (e.g., the consensus case).

6 Case studies

In this section, we revisit and extend several existing event-
triggering techniques of the literature to handle measure-
ment noise, exploiting the prescriptive approach laid down
in the previous sections. We want to stress that a non-
exhaustive sample of a few well-known techniques is con-
sidered, however, manymore can be handled given the gen-
erality of our approach. To apply the approach, we prove
that Assumption 2 is verified, which allows us to then di-
rectly apply Theorem 1 and Corollary 1. At the end of this
section, in Table 1, the original triggering rules and their
(robustified) counterparts are summarized.

6.1 The nonlinear single-system case

In this section, we aim to stabilize the origin of a single
plant using a dynamic output-feedback controller, thereby
revisiting the techniques of [3,25,12], originally developed
for static feedback laws ignoring measurement noise. As
such, we consider a single plant P and a single controller
C, i.e., N = 1 in Fig. 1, where the plant is given by

P :

{
ẋp = fp(x, u, v)

y = gp(xp)
(33)

and the ‘ideal’ non-networked feedback controller by

C :

{
ẋc = fc(xc, y)

u = gc(xc, y).
(34)

The plant and controller states are concatenated as x :=
(xp, xc), whose dynamics are then given by

ẋ = f(x, ε, v) :=

[
fp(xp, gc(xc, gp(xp) + ε), v)

fc(xc, gp(xp) + ε)

]
. (35)

where ε ∈ Rny can be perceived as an additive measure-
ment error. We employ in this case a ZOH, i.e., fh = 0 in
(7). We assume that the following properties hold.

Assumption 3 Maps fp, fc and gc are locally Lipschitz
and gp is continuously differentiable. Additionally, there
exist locally Lipschitz α, α, α, ϱ,∈ K∞, ϑ ∈ K, a locally
Lipschitz positive definite function ζ : R⩾0 → R⩾0 and a
continuously differentiable Lyapunov function W : Rn →
R⩾0 satisfying, for all x ∈ Rnx , w ∈ Rny and v ∈ V,

α(|x|) ⩽W (x) ⩽ α(|x|) (36)

and

⟨∇W (x), f(x, ε, v)⟩
⩽ −α(|x|)− ζ(|y|) + ϱ(|ε|) + ϑ(|v|). (37)

Assumption 3 implies that the origin of ẋ = f(x, ε, v) is
ISS with respect to (ε, v). We derive the following result
from Assumption 3.

Proposition 2 Consider system (33) with controller (34)
and suppose Assumption 3 holds. Then all conditions of
Assumption 2 are met for A = {χ ∈ Rnx ×Rny ×W | x =
0} with β(s) = ϱ(2s) for s ⩾ 0, δ(o) = ζ( 12 |ỹ|) for ỹ ∈ Rny

and V (χ) =W (x) as in Assumption 3.

Proof We take V (χ) =W (x) for all χ = (x, e, ŵ) ∈ Rnx ×
Rny×W. By Assumption 3, items i) and iii) of Assumption
2 hold. Let χ = (x, e, ŵ) ∈ Rnx ×Rny ×W. In view of the
definition of Fχ, (10) and (37),

⟨∇V (χ),Fχ(χ, ν)⟩ = ⟨∇W (x), f(x, ẽ+ w, v)⟩
⩽ −α(|x|)− ζ(|y|) + ϱ(|ẽ+ w|) + ϑ(|v|), (38)

where we take ε = ẽ+w, such that the input to the feedback

controller is ̂̃y = y+ẽ+w. Next, we use the weak triangular
inequality, see [17], i.e., for any γ ∈ K, γ(a+ b) ⩽ γ(2a) +
γ(2b) for any a, b ∈ R⩾0, to obtain

⟨∇V (χ), Fχ(χ, ν)⟩
⩽ −α(|x|)− ζ(|y|) + ϱ(2|ẽ|) + ϱ(2|w|) + ϑ(|v|). (39)
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From the weak triangular inequality we also obtain
−ζ(|y|) − ζ(|w|) ⩽ −ζ

(
1
2 (|y|+ |w|)

)
⩽ −ζ

(
1
2 |y + w|

)
=

−ζ
(
1
2 |ỹ|

)
. Thus,

⟨∇V (χ), Fχ(χ, ν)⟩
⩽− α(|x|)− ζ(|y|)− ζ(|w|) + ϱ(2|ẽ|)
+ ϱ(2|w|) + ζ(|w|) + ϑ(|v|)

⩽− α(|x|)− ζ
(
1
2 |ỹ|

)
+ ϱ(2|ẽ|) + γ(|ν|)

(40)

for some γ ∈ K and where we recall that ν = (v, w). Hence
item ii) of Assumption 2 holds. Since Πx(A) = {0} (which
is compact) and fh = 0, item iv) of Assumption 2 holds as
well due to Lemma 1. ■

Proposition 2 implies that, for any bounded measurement
noise as defined by Assumption 1, the trigger dynamics de-
fined in Theorem 1 and the static trigger defined in Corol-
lary 1 render the origin of the closed-loop system ISpS with
the SGiMIET property.

As a special case of Proposition 2, when the output of the
system is the full state, i.e., when y = xp, and when the
controller is static, i.e., when u = k(xp) as in [25,12], the
conditions on Assumption 3 can be relaxed as follows.

Assumption 4 The maps fp and k are Lipschitz continu-
ous on compacts. Additionally, there exist α, α, α, ζ,∈ K∞,
ϑ ∈ K and a continuously differentiable Lyapunov function
W : Rn → R satisfying, for any x ∈ Rnx ,

α(|x|) ⩽W (x) ⩽ α(|x|),
⟨∇W (x),f(x, ε, v)⟩ ⩽ −α(|x|) + ϱ(|ε|) + ς(|v|), (41)

implying that the origin of ẋ = f(x, ε, v) is ISS with respect
to ε and v.

We derive the following result from Assumption 4.

Corollary 2 Consider system ẋ = fp(x, u, v) with con-
troller u = k(x) and suppose Assumption 4 holds. Then
all conditions of Assumption 2 are met for A = {χ ∈
Rnx × Rny × W | x = 0} with β(s) = ϱ(2s) for s ⩾ 0,
δ(o) = σα( 12 |ỹ|) for ỹ ∈ Rnx , with σ ∈ (0, 1) a tuning pa-
rameter, and V (χ) =W (x) as in Assumption 4.

Proof Let x ∈ Rnx . By noting that y = x, we obtain, for
any σ ∈ (0, 1),

−α(|x|) =− (1− σ)α(|x|)− σα(|x|)
=− (1− σ)α(|x|)− σα(|y|). (42)

The result is then obtained by following similar steps as
the proof of Proposition 2. ■

Remark 6 Corollary 2 is a generalization of the setting
considered in [3,25,12], towards the inclusions of measure-
ment noise as well as process disturbances. Indeed, if the
measurement noise and process disturbances are absent, we
recover the exact cases as [3,25,12]. Thus, triggers designed
by these methods can be made robust to measurement noise
(and process noise) by applying the presented approach.

Remark 7 For a single system (i.e. when N = 1), the
event-triggered system H has a global MIET when the sys-
tem and controller dynamics are linear.

6.2 Consensus for multi-agent systems

A specific field of interest for ETC is consensus of multi-
agent systems. We study several event-triggering control

schemes in this context next. We focus on single integrator
systems, where each plant Pi, which we call agent in this
section, has dynamics ẋi = ui, with xi, ui ∈ R, and the
output yi = xi. However, the ideas in this paper apply to
more general settings as well.

For a network topology described by a connected weight-
balanced digraph G with Laplacian L, it is known that
agents achieve consensus when the ideal (static) control
law

ūi =
∑

m∈V in
i

(xi − xm), (43)

with V in
i the in-neighbors of agent i, is applied, see [6].

In vector notation, this is written as ū = −Lx, where
ū := (u1, u2, . . . , uN ) and L is the Laplacian matrix of
the graph. We use the noisy sampled states for each agent
instead of the actual states, resulting in the actual control
law

ui =
∑

m∈V in
i

(̂̃y i−̂̃ym) =
∑

m∈V in
i

(xi+ei+ŵi−xj−em−ŵm),

(44)
written in vector notation as

u = −L(x+ e+ ŵ). (45)

Hence, the closed-loop system dynamics are

ẋ = −Lx− Le− Lŵ. (46)

We employ a ZOH as the holding function, which results
in the dynamics for the hybrid system as

Fχ(χ) = (−Lx− Le− Lŵ, Lx+ Le+ Lŵ,0N ). (47)

We are interested in stability properties of the consensus
set

A :=
{
χ ∈ RN2

×W | x1 = x2 = . . . = xN

}
. (48)

We show that the results of Section 5 can be applied to
render the ETC schemes of [11,9,4] robust to measurement
noise.

6.2.1 Decentralized strategy for undirected graphs [11]

For this case we consider an undirected, connected graph.
The event generator is of particular interest, since the orig-
inal paper does not show that solutions are Zeno-free, as
noted in [21]. By applying the proposed results, we can de-
sign robust distributed triggering rules such that the sys-
tem H has the SGiMIET property and thus does not ex-
hibit Zeno behavior.

We consider the Lyapunov function candidate W (x) =
1
2x

⊤Lx for x ∈ RN . Note that, due to the undirected

graph, L⊤ = L. Using (46), for all x ∈ RN ,

⟨∇W (x), f(x, e, ŵ)⟩ = −(x+ e+ ŵ)⊤L⊤Lx

=− (x+ e+ ŵ)⊤L⊤L(x+ e+ ŵ − e− ŵ)

=− u⊤u− u⊤L(e+ ŵ)

=− u⊤u− u⊤L(ẽ+ w),

(49)

where we use (10) to substitute e + ŵ by ẽ + w. Fol-
lowing [11], using Young’s inequality, we obtain for some

9



a ∈ (0, 1
2Ni

), where Ni denotes the number of neighbors

for agent i, i.e., Ni = cardV in
i , that

⟨∇W (x), f(x, e, ŵ)⟩ ⩽
∑
i∈N

−(1−2aNi)u
2
i+

1
aNi

(
ẽ2i + w2

i

)
.

(50)
Similarly, by using the first expression in (49), we can also
bound it as

⟨∇W (x), f(x, e, ŵ)⟩ ⩽
∑
i∈N

−(1−2aNi)z
2
i +

1
aNi

(
ẽ2i + w2

i

)
(51)

where zi := Lix, and Li denotes the i-th row of the matrix
L. With these preliminaries in place, we are ready to state
the next proposition, with which we show that Assumption
2 holds.

Proposition 3 Assumption 2 holds for (22) and (47) with
A as defined in (48)with βi(s) =

1
aNis

2 and δi(oi) = σi(1−
2aNi)u

2
i , whereNi denotes the number of neighbors of agent

i and a ∈ (0, 1
2Ni

), σi ∈ (0, 1) are tuning parameters.

Proposition 3 implies that, for any bounded measurement
noise as defined by Assumption 1, the triggering conditions
defined by Theorem 1 and Corollary 1 render the hybrid
system H ISpS w.r.t. AH with the SGiMIET property.

Proof We use the Lyapunov function V (χ) = W (x) =

x⊤Lx for any χ = (x, e, ŵ) ∈ RN2 × W. According to
[9, Lemma 1], for this Lyapunov function, there exist 0 <
β < β such that β|χ|A ⩽ V (χ) ⩽ β|χ|A, hence item i) of
Assumption 2 holds. Additionally, item iii) holds as x is
not affected by jumps. For item ii) of Assumption 2, let
x ∈ RN and recall that (50) and (51) hold. Moreover, note
that ui as in (44) is included in oi as it is locally available.
Then, for any σi ∈ (0, 1), it holds that

⟨∇V (χ), Fχ(χ)⟩ = ⟨∇W (x), f(x, e, ŵ)⟩
⩽

∑
i∈N −(1− σi)(1− 2aNi)z

2
i + 1

aNiw
2
i

− σi(1− 2aNi)u
2
i +

1
aNiẽ

2
i

⩽ −α(|χ|A) + γ(|w|) +
∑

i∈N −σi(1− 2aNi)u
2
i +

1
aNiẽ

2
i

(52)
for some α ∈ K∞ and γ ∈ K, where α can be obtained
from [21, (3)] and the sandwich bounds. Hence, item ii)
of Assumption 2 holds. To prove that item iv) of As-
sumption 2 holds, we cannot use Lemma 1. However, ob-
serve that x̄ = 1

N

∑
i∈N xi is invariant under the dynam-

ics (46) as the graph is undirected, i.e., ˙̄x = 0, and hence,
S := {x ∈ RN | x̄ = 1

N

∑
i∈N xi} is forward invariant for

a fixed x̄ ∈ RN . Let p > 0 and ν ∈ PCV. Items i)-iii) of
Assumption 2 are sufficient to prove (3) (with the disre-
gard of t-completeness), see the proof of Lemma 1. Since
S ∩ Πx(A) =

{
x ∈ RN | x1 = . . . = xN = x̄(0, 0) =

1
N

∑
i∈N xi(0, 0)

}
is compact when |ξ(0, 0)| is bounded, it

is trivial to see that the x-part of the trajectories x(t, j)
lie in a compact set for all |ξ(0, 0)| ⩽ p. Due to the use
of the ZOH, the network-induced error is then necessarily
upper-bounded by the maximum of the distance between
two points in the compact set of trajectories of x and the
value of e(0, 0) (see the proof of Lemma 1, case 2). Since
this set is compact, the network-induced error cannot grow
unbounded. Moreover, ŵ ∈ W which is compact. Lastly,

Πη(AH) = {0}, therefore, η remains bounded over the tra-
jectories of the hybrid system due to the ISpS properties.
Hence, there exists a q ⩾ 0 such that for all (maximal) so-
lutions with |ξ(0, 0)| ⩽ p, |ξ(t, j)| ⩽ q for all (t, j) ∈ dom ξ.
Thus, item vi) of Assumption 2 holds, and all items of As-
sumption 2 are satisfied. ■

6.2.2 Decentralized strategy including time-regularization
for undirected graphs [9]

Here we consider the setup of [9] without transmission de-
lays to avoid blurring the exposition with too many tech-
nicalities. For this case we consider an undirected, con-
nected graph. For the scheme of [9], we require that each
agent has an internal clock, τi ∈ R⩾0, such that τ̇i = 1 on
flows and τ+i = 0 at any triggering instant of agent i, i.e.,
the clock is reset if agent i transmits its state. We denote
the hybrid system in which these clocks are integrated in
H with Hclock. Hence, the state for the hybrid system can
be written as ξ = (χ, τ, η) where χ = (x, e, ŵ) is as before
in (11), and τ := (τ1, τ2, . . . , τN ).

To prove that Assumption 2 holds in order to be able to ap-
ply Theorem 1 and Corollary 1, we analyze the Lyapunov
function candidateW (x) = 1

2x
⊤Lx for any x ∈ RN . Based

on a similar procedure as in Section 6.2.1, we can deduce
that

⟨∇W (x), f(x, e, ŵ)⟩
⩽

∑
i∈N −(1− 2aNi)u

2
i +

1
aNi

(
e2i + ŵ2

i

)
(53)

and

⟨∇W (x), f(x, e, ŵ)⟩
⩽

∑
i∈N −(1− 2aNi)u

2
i +

1
aNi

(
e2i + ŵ2

i

)
. (54)

Combining the two inequalities (53) and (54) results in

⟨∇W (x), f(x, e, ŵ)⟩
⩽

∑
i∈N −diz2i − σiu

2
i + (γ2i − µi)e

2
i +

1
aNiŵ

2
i , (55)

see also [9], with di := ϱ(1−2aNi), σi := (1−ϱ)(1−2aNi)

and γi :=
√

1
aNi + µi and where a ∈ (0, 1

2Ni
), ϱ ∈ (0, 1)

and µi ∈ R>0 are tuning parameters. Additionally, we
define

ωi(τi) :=


{1}, when τi ∈ [0, τ iMIET),

[0, 1], when τi = τ iMIET,

{0}, when τi > τ iMIET,

(56)

with constant τ iMIET as

τ iMIET = −
√
αiσi
γi

arctan

(
(λ2i − 1)

√
αiσi

λi(αiσi + 1)

)
, (57)

where αi, λi ∈ (0, 1) are tuning parameters.

We show again that Assumption 2 holds.

Proposition 4 Assumption 2 holds for (22) and (47) with

A⋆ =
{
(χ, τ) ∈ R2N ×W × RN

⩾0 | xi = xm for all

i,m ∈ N ∧ e = 0 ∧ τ ∈ RN
⩾0

}
, (58)

βi(ẽi, τi) = (1− ωi(τi))× γ2i

(
1

αiσi
λ2i + 1

)
ẽ2i and δi(oi) =

(1 − αi)σiu
2
i , where di, ϱ, σi, γi come from (55) and τi, ωi

from (57) and (56), respectively.
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Proposition 4 implies that, for any bounded measurement
noise as defined by Assumption 1, the ETMs defined by
Theorem 1 render the hybrid system Hclock ISpS w.r.t.
AHclock

= {(χ, τ, η) ∈ R2N × W × RN
⩾0 × RN

⩾0 | (χ, τ) ∈
A⋆ ∧ η = 0}. Let us note that, due to the inclusion of the
timer-dependent function ωi in the triggers, the system
has a GiMIET (instead of a SGiMIET) in this particular
case, and, as it cannot have finite escape times, is therefore
persistently flowing. Additionally, there is no requirement
(i.e., no lower bound) on the space-regularization constants
ci, and, in fact, if ci = 0 for all i ∈ N , we obtain ISS w.r.t.
AHclock

(instead of ISpS). The specific choice of ωi where
ωi(τi) is set-valued when τi = τ iMIET makes the function
outer semi-continuous, which ensures well-posedness of the
hybrid system, see [13, Theorem 6.30]. The fact that ωi

is set-valued does not matter for solutions, as ωi is only
set-valued at a measure zero set, hence via Carathéodory’s
existence theorem we still have solutions in the extended
sense, i.e., any solution satisfies the differential equation
almost everywhere.

Proof We are interested in the stability of the set A⋆ in
(58). To this end, we analyze the Lyapunov function, for
any (χ, τ) ∈ R2N ×W × RN

⩾0,

U(χ, τ) =W (x) +
∑
i∈N

γiϕi(τi)e
2
i (59)

with

dϕi
dτi

= −ωi(τi)γi

( 1

αiσi
ϕ2i (τi) + 1

)
(60)

and initial condition ϕi(0) = λ−1
i where λi ∈ (0, 1) is

a tuning parameter. Strictly speaking U is Lipschitz
and not continuously differentiable and the general-
ized Clarke derivative should be used here. However,
as τ̇i = 1, ⟨∇U(χ, τ), Fχ(χ)⟩ exists almost everywhere,
and thus Proposition 1 hold almost everywhere, hence
we continue with slight abuse of notation by writing the
derivative of U as if it was continuously differentiable.
The constant τ iMIET is chosen such that ϕi(τ

i
MIET) = λi,

which ensures that ϕi(τi) ⩾ λi for all τi ∈ R⩾0.
As stated in [9], there exist α1, α2 ∈ K∞ such that
α1(|χ|A) ⩽ U(ξ) ⩽ α2(|χ|A), hence, item i) of Assump-
tion 2 holds. For any (χ, τ) ∈ R2N ×W × RN

⩾0,

⟨∇U(χ, τ), Fχ(χ)⟩

⩽ ⟨∇W (x), f(x, e, ŵ)⟩+
∑
i∈N

γi
dϕi
dτi

e2i + 2γiϕieiui

⩽
∑
i∈N

−diz2i − σiu
2
i + (γ2i − µi)e

2
i +

1

a
Niŵ

2
i

+ γi
dϕi
dτi

e2i + γ2i
1

αiσi
ϕ2i e

2
i + αiσiu

2
i

⩽
∑
i∈N

−diz2i − µie
2
i +

1

a
Niŵ

2
i

− (1− αi)σiu
2
i + (1− ωi(τi))γ

2
i

( 1

αiσi
λ2i + 1

)
e2i .

(61)

Due to (10), we can upper-bound e2i as

e2i =(ẽi − ŵi + wi)
2

=ẽ2i + ŵ2
i + w2

i − 2ẽiŵi + 2ẽiwi − 2ŵiwi

=ẽ2i + ŵ2
i + w2

i − 2(ẽi + ŵi − wi)ŵi

+ 2(ẽi + ŵi − wi)wi − 2ŵiwi

=ẽ2i − ŵ2
i − w2

i + 2ŵiwi − 2eiŵi + 2eiwi

⩽ẽ2i − ŵ2
i − w2

i + ŵ2
i + w2

i + 2κie
2
i +

1
κi

(
ŵ2

i + w2
i

)
= ẽ2i + 2κie

2
i +

1
κi

(
ŵ2

i + w2
i

)
(62)

for any κi ∈ R⩾0. Then, we select κi such that

κi :=
ϑiµi

2

(
γ2i

( 1

αiσi
λ2i + 1

))−1

(63)

for some ϑi ∈ (0, 1). With this, we deduce from (61) that

⟨∇U(χ, τ), Fχ(χ)⟩

⩽
∑
i∈N

−diz2i − µie
2
i +

1

a
Niŵ

2
i − (1− αi)σiu

2
i

+ (1− ωi(τi))γ
2
i

( 1

αiσi
λ2i + 1

)
e2i

⩽
∑
i∈N

−diz2i − (1− ϑi)µie
2
i +

1

a
Niŵ

2
i +

1

κi

(
ŵ2

i + w2
i

)
− (1− αi)σiu

2
i + (1− ωi(τi))γ

2
i

( 1

αiσi
λ2i + 1

)
ẽ2i

⩽ α(|χ|A⋆) +ϖ(|w|) +
∑
i∈N

−(1− αi)σiu
2
i

+ (1 − ωi(τi))γ
2
i

( 1

αiσi
λ2i + 1

)
ẽ2i . (64)

for some ϖ ∈ K, and, indeed, item ii) of Assumption 2
holds. Additionally, for any (χ, τ) ∈ R2N ×W × RN

⩾0 and

(g, τ+) ∈ Gχ(χ,w),

U(g, τ+)− U(χ, τ) = −γiλie2i ⩽ 0, (65)

and item iii) of Assumption 2 also holds. To prove that
item iv) of Assumption 2 holds, we refer to the proof of
Proposition 3, as the set S := {x ∈ RN | x̄ = 1

N

∑
i∈N xi}

is also forward invariant for fixed x̄ in this case.

The terms related to ŵi have been absorbed in the function
ϖ, as its L∞-norm can be bounded as

∥ŵi∥∞ ⩽ ∥wi∥∞, (66)

hence, we can obtain a similar condition as (3) based on
∥wi∥∞.

The fact that τi in theory may grow unbounded as t→ ∞
is not an issue, as the value of U(χ, τ) is not affected by
τi when τi > τ iMIET. Hence, we could take the dynamics
of τi as τ̇i = ωi(

1
2τi), which would not affect the system

behavior, but it would ensure that τi ∈
[
0, 2τ iMIET

]
. Since,

in that case, all states would remain bounded, the satis-
faction of item iv) of Assumption 2 is not affected by our
initial choice of the dynamics for τi and the fact that A∗

is unbounded in τ .

Due to the inclusion of the timer ωi in the function βi,
by definition Ψi(oi) ⩾ 0 for all τi ∈ [0, τ iMIET], hence, the
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system has a GiMIET. Thus, the system is persistently
flowing and Hclock is IS(p)S w.r.t. AHclock

. Moreover, due
to the GiMIET, we do not require the lower-bound on ci.
When ci = 0 is selected for all i ∈ N , the system Hclock is
ISS. ■

Remark 8 Equation (65) in the proof of Proposition 4
implies that we can modify the reset of ηi as

η+i (oi) := ηi + γiλi (max [|ẽi| − 2w, 0])
2
. (67)

As a result we use an estimated lower bound for ei, i.e.,

ηi(oi)
+ ⩽ ηi + γiλie

2
i , (68)

so that item iii) of Assumption 2 still holds, while only
using locally available information (i.e. ẽi and not ei). This
may be of interest, as increasing ηi after a reset directly
increases the inter-event times. Hence, by modifying the
reset, the average inter-event timemay become significantly
larger when the initial condition is sufficiently far from the
consensus set.

6.2.3 Decentralized strategy for weight-balanced digraphs
[4]

In the case of [4], we consider a network topology described
by weight-balanced digraphs. Hence, this scheme requires
a less restrictive network topology compared to Sections
6.2.1 and 6.2.2.

Proposition 5 Assumption 2 holds for (22) and (47) with

A as defined in (48), βi(s) =
(

d2
i

ϑi
+ γi

)
s2 for any s ⩾ 0

and δi(oi) = σi(1 − ϑi)u
2
i , where di denotes the degree of

agent i, ϑi :=
∑

j∈V out
i
αijϱij, γi :=

∑
j∈V in

i

αji

ϱji
, and with

ϱij > 0 (chosen such that ϑi ∈ (0, 1)) and σi ∈ (0, 1) tuning
parameters.

Proof We start by analyzing the Lyapunov function
V (χ) = 1

2x
⊤L⊤x for any χ ∈ R2N ×W. Due to the prop-

erties of L, item i) of Assumption 2 holds. Additionally,
items iii) holds trivially. Note that from [4, (13)], we know
that for any additive disturbance ε ∈ RN and any x ∈ RN ,
it holds that

⟨∇V (χ), Fχ(x, ϵ,0N )⟩ ⩽
∑
i∈N

−(1− 1
2ϑi)u

2
i −diεiui+ 1

2γiε
2
i

(69)
with ϑi :=

∑
m∈V out

i
αimϱim, di the degree of agent i, γi :=∑

m∈V in
i

αmi

ϱmi
and where ϱim > 0 are tuning parameters.

Recall that αim denotes the weights corresponding to the
graph. By substitution of ε = e + ŵ = ẽ + w in (69), we
obtain

⟨∇V (χ), Fχ(χ)⟩
⩽

∑
i∈N

−(1− 1
2ϑi)u

2
i − di(ẽi + wi)ui +

1
2γi(ẽi + wi)

2.

(70)
By applying Young’s inequality, we derive

⟨∇V (χ), Fχ(χ)⟩

⩽
∑
i∈N

−(1− ϑi)u
2
i +

1

2

(
d2i
ϑi

+ γi

)
(ẽi + wi)

2.
(71)

As, for any p, q ∈ R, it holds that 1
2 (p+ q)2 ⩽ p2 + q2, we

obtain

⟨∇V (χ), Fχ(χ)⟩

⩽
∑
i∈N

−(1− ϑi)z
2
i +

(
d2i
ϑi

+ γi

)
ẽ2i +

(
d2i
ϑi

+ γi

)
w2

i ,

(72)
where zi = Lix with Li the i-th row of matrix L. Note that
the constants ϱij are chosen such that ϑi ∈ (0, 1). Then,
for any σi ∈ (0, 1), it holds that

⟨∇V (χ), Fχ(χ)⟩ ⩽
∑
i∈N

−(1−σi)(1−ϑi)z2i +
(d2i
ϑi

+γi

)
w2

i

− σi(1− ϑi)u
2
i +

(d2i
ϑi

+ γi

)
ẽ2i , (73)

and item ii) of Assumption 2 also holds with δi(oi) and
βi(s) as specified in Proposition 5. To prove that item iv)
of Assumption 2 holds we refer to the proof of Proposition
3 (due to the graph being weight-balanced, x̄ is also in-
variant under the dynamics in this case). Hence, all items
of Assumption 2 are satisfied. ■

A comparison between the original ETM and robustified
one for measurement noise of several examples in this sec-
tion are summarized in Table 1.
Table 1
Comparison of the original triggering rules vs. the modified
ones to be robust to measurement noise using Theorem 1.

[25,12] Ψ(o) = σα(|x|)− ϱ(|e|) (static)
Modified Ψ(o) = σα( 1

2
|x̃|)− ϱ(2|ẽ|) + c with c > ϱ(4w)

[11] Ψi(oi) = σi(1− aNi)u
2
i − 1

a
Nie

2
i (static)

Modified Ψi(oi) = σi(1− 2aNi)u
2
i − 1

a
Niẽ

2
i + ci

with ci >
4
a
Niw

2
i

[9] Ψi(oi) =(1− αi)σiu
2
i

− (1− ωi(τi))γ
2
i

(
1

αiσi
λ2
i + 1

)
e2i ,

σi = (1− ϱ)(1− aNi)
Modified Ψi(oi) =(1− αi)σiu

2
i + ci

− (1− ωi(τi))γ
2
i

(
1

αiσi
λ2
i + 1

)
ẽ2i ,

σi = (1− ϱ)(1− 2aNi)

with ci ⩾ 0

[4] Ψi(oi) = σi(1− 1
2
ϑi)u

2
i + dieiui − 1

2
γie

2
i

Modified Ψi(oi) = σi(1− ϑi)u
2
i −

( d2i
ϑi

+ γi
)
ẽ2i + ci

with ci >
(

d2i
ϑi

+ γi
)
4w2

i

7 Numerical examples

We illustrate our results through several numerical exam-
ples. In all simulations, we use piecewise constant noise sig-
nals that are generated using a uniform probability distri-
bution, i.e., after 10−4 seconds have elapsed, we generate a
new random number from a uniform distribution to obtain
a new value for the disturbances and noises ν. Thereby,
the generated signals are random and discontinuous.

7.1 Lorenz attractor

We consider the controlled Lorenz model of fluid convec-
tion in [2] affected by external disturbances and measure-
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ment noise. The system has dynamics

Σ :


ẋ1 = −ax1 + ax2 + v1
ẋ2 = bx1 − x2 − x1x3 + u+ v2
ẋ3 = x1x2 − cx3 + v3
y = x1

(74)

with parameters a, b, c related to some physical constants,
all begin strictly positive. This system is controlled by the
static output feedback controller

u = −
(p1
p2
a+ b

)
y (75)

where p1, p2 > 0. We select fh = 0 in (8), i.e., we apply
a ZOH, and are interested in stabilizing the origin of the
system, i.e., we are interested in the stability of the set
A := {χ ∈ Rnx × Rny ×W | x = 0}.
Proposition 6 Consider system (74) with controller
(75). All conditions of Assumption 2 are met for
A := {χ ∈ Rnx × Rny × W | x = 0} with β(s) =
2

µp2

(
p1a+ p2b

)2
s2 for s ⩾ 0, δ(o) = 1

2σap1ỹ
2 for ỹ ∈ Rny

and V (χ) = p1x
2
1 + p2x

2
2 + p2x

2
3.

Proof Let V (χ) := p1x
2
1 + p2x

2
2 + p2x

2
3 for all χ ∈

Rnx × Rny × W. Item i) of Assumption 2 holds, as
min{p1, p2}|χ|2A ⩽ V (χ) ⩽ max{p1, p2}|χ|2A. Computing
the derivative of V along the trajectories of χ, we ob-
tain for any χ ∈ Rnx × Rny × W and ν ∈ V, after some
simplification and recalling that e+ ŵ = ẽ+ w,

⟨∇V (χ), Fχ(χ, ν)⟩ =− 2ap1x
2
1 − 2p2x

2
2 − 2cp2x

2
3

+ 2p1v1x1 + 2p2v2x2 + 2p2v3x3
− 2(ap1 + bp2)x2(ẽ+ w).

(76)

By applying Young’s inequality, the right-hand side of (76)
can be bounded as

⟨∇V (χ), Fχ(χ, ν)⟩ ⩽ −ap1x21 − p2x
2
2 − cp2x

2
3

+ 1
ap1v

2
1 + 2p2v

2
2 +

1
cp2v

2
3 − 2(ap1 + bp2)x2(ẽ+ w).

(77)

Since, due to Young’s inequality, for any µ > 0 it holds
that

−2(ap1+bp2)x2(ẽ+w) ⩽ µp2x
2
2+

1
µp2

(
p1a+p2b

)2
(ẽ+w)2

⩽ µp2x
2
2 +

2
µp2

(
p1a+ p2b

)2
(ẽ2 + w2)

and for all w, x1 ∈ R it holds that

−x21 = −x21 − w2 + w2 ⩽ − 1
2 (x1 + w)2 + w2,

we conclude that

⟨∇V (χ), Fχ(χ, ν)⟩ ⩽ −α|x|2A + γ|ν|2

+ 2
µ

(
p1

p2
a+ b

)
ẽ2 − 1

2σap1(x1 + w)2 (78)

where σ, µ ∈ (0, 1), and for some sufficiently small α > 0
and sufficiently large γ > 0, hence item ii) of Assumption

2 holds with β(s) = 2
µp2

(
p1a + p2b

)2
s2 for s ⩾ 0 and

δ(o) = 1
2σap1ỹ

2 for ỹ ∈ Rny . Since V (χ) only involves x,
which is not affected by jumps, item iii) of Assumption 2
is naturally satisfied. For item iv) of Assumption 2, we use
the results of Lemma 1, as Πx(A) is compact and fh = 0.
■
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Figure 2. Evolution of the states (top) and inter-event times
(bottom) of the Lorenz oscillator using the dynamic trigger
obtained by applying Theorem 1 to Proposition 6 with c = 0.1
and initial condition x(0, 0) = (−20,−20, 30).

We simulate the results of Proposition 6. We set the pa-
rameter values to a = 10, b = 28, c = 8/3, and we take
p1 = 3 and p2 = 3a as in [2]. We select the tuning param-
eters µ = 0.8, σ = 0.75 and the function φ(η) := ϵηη with
ϵη = 0.05. We select vi as a piecewise constant function
generated by taking values of vi every 10

−4 time units from
a uniform probability distribution in the interval [−2, 2].
Hence, ∥vi∥∞ ⩽ 2 for all i ∈ {1, 2, 3}. Moreover, for the
measurement noise we choose w = 1 · 10−4, and it is gen-
erated via the procedure described at the start of Sec-
tion 7. Lastly, we select the space-regularization parameter
c = 0.1, which satisfies c > β(2w) = 0.0025. We demon-
strate the results of Theorem 1, i.e., we implement a dy-
namic triggering scheme with trigger dynamics

η̇ = 1
2σap1ỹ

2 − 2

µp2
(ap1 + bp2)

2ẽ2 + c− ϵηη (79)

and do pure dynamic triggering, i.e., we set θ = 0 and
trigger when η = 0. The resulting trajectories and inter-
event times are plotted in Fig. 2.

From Fig. 2 we deduce that, close to the attractor, inter-
event times are several orders of magnitude larger than the
minimum inter-event time. Hence, sparse communication
is preserved in the presence of measurement noise, while
(practical) stability is preserved.

7.2 Consensus

In this section, we illustrate the results of Sections 6.2.1-
2 with N = 8 agents that are connected as described in
Fig. 3. In both cases we set wi = 10−4 for all i ∈ N ,
i.e., wi is generated via the procedure described at the
start Section 7, and its values are taken from a uniform
probability distribution in the interval [−10−4, 10−4].
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numerical examples.
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Figure 4. Evolution of the states (top) and inter-event times
(bottom) of the MAS using the static trigger obtained by ap-
plying Corollary 1 to Proposition 3 with ci = 0 and initial
condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

7.2.1 Decentralized static ETM of Proposition 3

To illustrate the results of Proposition 3, we select σi = 0.5
for all i ∈ N and a = 0.1. Note that, for these pa-
rameters, maxi(βi(2wi)) = 1.2 · 10−6, hence we select
ci > 1.2 · 10−6 to guarantee Zeno-freeness. We demon-
strate the results of Corollary 1, i.e., we apply static
triggering. Two cases are simulated, first with no space-
regularization for all i ∈ N (i.e. ci = 0), to demonstrate
that we indeed obtain Zeno-like behavior, and second
with ci = 2 · 10−6 > maxi(βi(2wi)). In Fig. 4, the evo-
lution of the states xi, i ∈ N and the corresponding
inter-event times for ci = 0 are shown for the initial con-
dition x(0, 0) = (8, 6, 4, 2,−2,−4,−6,−8), e(0, 0) = 0N

and ŵ(0, 0) = w(0). Fig. 5 depicts the same simulations
for ci = 2 · 10−6.

We note that when ci = 0 for all i ∈ N , we indeed ob-
tain “Zeno-like” behavior, see, e.g., [26,27], i.e., the inter-
event times converge to the times where noise signal is dis-
continuous when close to the consensus set. If the space-
regularization constant ci is designed properly (e.g., as in
Fig. 5), we can see that indeed the inter-event times close
to the consensus set remain relatively large, and desirable
behavior for the overall system is obtained.

7.2.2 Decentralized dynamic ETM of Proposition 4

For the simulation of the dynamic triggering condition of
Proposition 4, the tuning parameters of [9] are used, i.e.,
ϱ = µi = ϵη,i = 0.05, a = 0.1 and αi = 0.5 for all i ∈ N .
We thus obtain γi = 4.478 and σi = 0.76 for agents i ∈ N
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Figure 5. Evolution of the states (top) and inter-event times
(bottom) of the MAS using the static trigger obtained by ap-
plying Corollary 1 to Proposition 3 with ci = 2 · 10−6 and ini-
tial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

with two neighbors (i.e.,Ni = 2, thus agents P1, P4, P6 and
P7) and γi = 5.482 and σi = 0.665 for agents i ∈ N with
three neighbors (i.e., Ni = 3, thus agents P2, P3, P5 and
P8). We choose λi = 0.2 for all agents. For these values, we
obtain τ iMIET = 0.1562 for agents i ∈ N for which Ni = 2
and τ iMIET = 0.1180 for agents i ∈ N for which Ni = 3.

We demonstrate the results of Theorem 1, i.e., we apply
dynamic triggering. Two cases are simulated, first with no
space-regularization for all i ∈ N , for which we obtain ISS
w.r.t. the consensus set, second with space-regularization
constant ci = 1 · 10−5 for all i ∈ N , for which we have
ISpS w.r.t. the consensus set. To compare with the re-
sults to [9] (not considering measurement noise), in all
cases we select θi = 0. In Fig. 6, the evolution of the
states xi, i ∈ N , with ci = 0 and the corresponding inter-
event times are shown for the initial condition x(0, 0) =
(8, 6, 4, 2,−2,−4,−6,−8), e(0, 0) = 0N , ŵ(0, 0) = w(0),
τ(0, 0) = 0N and η(0, 0) = 0N . Fig. 7 depicts the same
simulations for ci = 1 · 10−7.

From Fig. 6 and 7 we can make a few observations. For
ci = 0, close to the consensus set the inter-event times
are generally close to τ iMIET. This can be explained from
the observation that, in these cases, η+i = 0 and ui is
generally small, and consequently, the increase in ηi for
τ ∈ [0, τ iMIET) is limited. Additionally, we observe that
by selecting a ci > 0, the inter-event times are generally
significantly larger than the enforced minimum inter-event
time. Moreover, because there is no lower-bound on ci,
a relatively small ci is often sufficient to obtain desirable
average inter-event times. We want to stress that this is a
beneficial aspect of this particular scheme, since in general
there are constraints on the minimum size of the space-
regularization constants ci to ensure Zeno-freeness.

Even though the inclusion of ci leads to ISpS instead of
ISS properties, applying space-regularization leads to trig-
gering conditions that are not only robust to measurement
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Figure 6. Evolution of the states (top) and inter-event times
(bottom) of the MAS using the dynamic trigger obtained by
applying Theorem 1 to Proposition 4 with ci = 0 and initial
condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).
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Figure 7. Evolution of the states (top) and inter-event times
(bottom) of the MAS using the dynamic trigger obtained by
applying Theorem 1 to Proposition 4 with ci = 1 · 10−7 and
initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

noise, but also have, on average, larger inter-event times for
the considered simulations. Since ISS only leads to asymp-
totic behavior of the consensus set for vanishing noise, and
since most measurement noise is non-vanishing, practical
stability or ISpS with larger inter-event times may be more
desirable when having communication limitations in mind.

In Fig. 8, the distance of the solution to the consensus
set is depicted. We note that even though the inter-event
times are more favorable if we apply space-regularization,
the remaining distance to the consensus set has the same
order of magnitude, which underlines the effectiveness of
applying both space- and time-regularization at the same
time.
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Figure 8. Distance of agents to the consensus set A.

8 Conclusions

In this paper, we presented a general “prescriptive” ap-
proach for set stabilization of event-triggered control sys-
tems affected by measurement noise. It is shown how, by
careful design, to obtain both dynamic and static trigger-
ing conditions that render a closed set input-to-state (prac-
tically) stable with a guaranteed positive (semi-)global in-
dividual minimum inter-event time. Key to obtaining this
approach is a novel hybrid model that describes the behav-
ior of event-triggered control systems and the careful appli-
cation of space-regularization. Due to this model and the
space-regularization, differentiability conditions are not
required on the measurement noises, as opposed to the ex-
isting works in the literature. The strengths and generality
of the approach were demonstrated on several interesting
event-triggered control problems, such as the stabilization
of the origin for single-plant systems and consensus prob-
lems for multi-agent systems, robustifying them for mea-
surement noise. The approach presented in this paper is
focused on to CETC, but the main concepts can be used
as a starting point for the development of PETC schemes
that are robust to noises as well, in the sense that com-
munication occurs sparsely rather than reducing to (ap-
proximately) periodic communication with the inter-event
times equal to the sampling period, when the state is close
to the desired stability set.

A Proofs

The first step in proving Theorem 1 and Lemma 1 is to en-
sure the satisfaction of the Lyapunov conditions in Propo-
sition 1. To this end, we introduce the Lyapunov function
candidate U , defined for all ξ ∈ X, where we recall that
X = Rnx × Rny ×W × RN

⩾0, as

U(ξ) := V (x) +
∑
i∈N

ηi. (A.1)

The following lemma will be useful in the sequel.

Lemma 2 Consider systemH as given by (12), (15), (17),
(19), and (28). When Assumption 1 and items i)-iii) of
Assumption 2 are satisfied, items i)-iv) of Proposition 1
are also satisfied.

Proof Recall that V is continuously differentiable by As-
sumption 2, hence the function U is also continuously dif-
ferentiable. Since Πξ(C ∪ D) ⊆ X and U is continuously
differentiable, item i) of Proposition 1 holds. Recall that
AH := {ξ ∈ X | χ ∈ A ∧ η = 0}. Due to item i) of As-
sumption 2, there exist functions α1, α2 ∈ K∞ such that
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for all ξ ∈ X
α1(|ξ|AH) ⩽ U(ξ) ⩽ α2(|ξ|AH) (A.2)

and thus item ii) of Proposition 1 holds. Next, we have for
all ξ ∈ X and ν ∈ V,

⟨∇U(ξ), F (ξ, ν)⟩ ⩽ ⟨∇V (χ), Fχ(χ, ν)⟩+
∑
i∈N

Ψ̄i(oi)

(13),(26),(28)

⩽ −α(|χ|A) + γ(|ν|) +
∑
i∈N

(
ci − φi(ηi)

)
⩽ −αd(|ξ|AH) + γ(|ν|) + c (A.3)

with c :=
∑

i∈N ci and for some αd ∈ K∞. Hence, item iii)
of Proposition 1 holds. In view of (19) and (27), we note
that for all (ξ, ν) ∈ D and g ∈ G(ξ, ν),

U(g)− U(ξ) ⩽ 0, (A.4)

thus, item iv) of Proposition 1 also holds. ■

Since we have not established that the system is persis-
tently flowing, we cannot claim that AH is IS(p)S, how-
ever, the bound (3) of Definition 3 holds w.r.t. AH as long
as the solution is defined (i.e., for all (t, j) ∈ dom ξ). A
similar argument can be constructed for the hybrid sys-
tem Hs given by (21), (22), (30) and the static triggering
condition (32).

A.1 Proof of Theorem 1

Due to Lemma 2, we are left with proving that all maximal
solutions to H are complete and that H has a SGiMIET,
which implies that H is persistently flowing. We continue
with proving completeness of maximal solutions first.

A.1.1 Completeness of maximal solutions

To prove that all maximal solutions are complete, we use
the following proposition, which is taken from [15, Propo-
sition 9], using closedness of C.
Proposition 7 Consider the hybrid system H in Section
4 where Ψi is given by (28). Given an input ν ∈ PCV, there
exists a non-trivial solution ϕ to H with ϕ(0, 0) = ξ ∈ X if
and only if (ξ, ν(0)) ∈ D or

(VC) there exist ϵ > 0 and an absolutely continuous func-
tion z : [0, ϵ] → Rnx such that z(0) = ξ, ż(t) ∈
F (z(t), w(t)) for almost all t ∈ [0, ϵ] and (z(t), w(t)) ∈
C for all t ∈ [0, ϵ].

If (VC) holds for all ξ ∈ Rnx and all ν ∈ PCV with
(ξ, ν(0)) ∈ C \ D, then for all ν ∈ PCV every maximal
solution ϕ ∈ SH(ν) satisfies exactly one of the following
properties:

(a) ϕ is complete;
(b) ϕ is not complete and “ends with flow”: domϕ is

bounded and the interval IJ := {t : (t, J) ∈ domϕ}
with J = supj domϕ is open to the right, and there
does not exist an absolutely continuous function z :

IJ → X satisfying ż(t) ∈ F (z(t), ν(t)) for almost all
t ∈ IJ and (z(t), ν(t)) ∈ C for all t ∈ int IJ , and such
that z(t) = ϕ(t, J) for all t ∈ IJ ;

(c) ϕ is not complete and “ends with a jump” or a “dis-
continuity” of w: domϕ is bounded with (T, J) :=
sup domϕ ∈ domϕ, (ϕ(T, J), ν(T )) ̸∈ C ∪ D.

Let ν ∈ PCV and (ξ, ν(0)) ∈ C\D be given. To ensure com-
pleteness of ϕ ∈ SH(ν), we first prove that (VC) holds. Let
t1 > t0 = 0 denote the time at which the first discontinu-
ity in ν occurs. There exists an ϵ1 ∈ (0, t1) such that v and
w are continuous on [0, ϵ1]. Since F in (12) is continuous
in both the state and time, we can use Peano’s existence
theorem to conclude that there exist (possibly multiple)
solutions z to ż(t) ∈ F (z(t), ν(t)) with z(0) = ξ defined
on [0, ϵ2] where ϵ2 ⩽ ϵ1. Next, we have to show that the
solutions z(·) remain in C on [0, ϵ] for some ϵ ∈ (0, ϵ2]. We
write z = (x, e, ŵ, η). Observe that if we have for all i ∈ N
that ηi(0) > 0, |ŵi(0)| < wi and ηi(0) + θiΨi(oi(0)) > 0
then certainly the solution will remain in Ci for some non-
trivial time window due to the “gap” to the boundary of
C in (15) and continuity of solutions. Consider all M ⊆ N
for which one of these inequalities does not hold and let
i ∈ M. For i ∈ M and since ξ ∈ C \ D we can distinguish
three cases, which may or may not hold simultaneously:

1) ηi(0) + θiΨi(oi(0)) = 0 and Ψi(oi(0)) > 0 (implying
that θi = 0),

2) ηi(0) = 0 and ηi(0)+θiΨi > 0 (implying that Ψi > 0),
3) |ŵi(0)| = wi.

For cases 1) and 2), we note that η̇i(0) = Ψ̄i(ηi(0), oi(0)) =
Ψi(oi(0)) > 0. Recall that x, e, ŵ, η and w are continuous
on the interval [0, ϵ2]. Since ηi(0) = 0, Ψ̄i is continuous, and
Ψi(oi) > 0 for some nontrivial time window, we find that
ηi ⩾ 0 on this time window by means of the comparison
lemma, and consequently ηi + θiΨi(oi) ⩾ 0 on some time

window. For case 3), we note that, in view of (8), ˙̂w = 0.
Consequently, in all cases, there exists ϵ′i ∈ [0, ϵ2] such that
z(t) ∈ Ci for any t ∈ [0, ϵ′i]. Since C is the intersection of
C1, . . . , CN with N ∈ N>0, there exists ϵ > 0 such that
z(t) ∈ C for any t ∈ [0, ϵ].

Since (VC) holds for (ξ, ν(0)) ∈ C \ D and ν ∈ PCV, there
exists a non-trivial solution to H for any ξ and ν ∈ PCV
with (ξ, ν(0)) ∈ C ∪ D. Hence, any maximal ϕ satisfies
exactly one of the three cases (a)-(c) in Proposition 7.

Item (b) cannot occur due to item iv) of Assumption 2,
as the states of the hybrid system remain bounded for all
(t, j) ∈ domϕ, hence, there are no finite escape times.

Item (c) only occurs if either G(D) × V ̸⊂ C ∪ D or if
(ξ(T, J), ν(T )) ̸∈ C∪D due to a discontinuity in w. For the
former, we note that C ∪ D = X × V. In view of (19), we

note that ŵ+
i = wi if i broadcasts its state and ŵ+

i = ŵi

otherwise. Additionally, η+i = ηi. Consequently, G(D) ×
V ⊂ C ∪ D. Furthermore, since C ∪ D = X × V, item (c)
cannot occur due to a discontinuity in signal w, since by
Assumption 1,w(t) ∈ W for all t ⩾ 0. Thus we deduce that
ϕ is complete. Since ν and ϕ ∈ SH(ν) have been arbitrarily
selected, we have proved that all maximal solutions are
complete. Next we show that maximal solutions are also
t-complete.

A.1.2 t-completeness and SGiMIET

We prove t-completeness by showing that system H has
the SGiMIET property.We proceed by examining the time
between two successive jumps generated by triggering con-
dition i ∈ N . To do so, note that the “static triggering
condition” Ψi(oi) ⩽ 0 always holds when the (mixed) dy-
namic triggering condition ηi + θiΨi(oi) ⩽ 0 ∧Ψi(oi) ⩽ 0
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is satisfied. Let ν ∈ PCV, ∆ ⩾ 0 and ϕ ∈ SH(ν,B) with
B = {Ξ ∈ X | |Ξ| ⩽ ∆}. Since ηi(t, j) ⩾ 0 for all
(t, j) ∈ domϕ, we analyze when Ψi(oi) ⩽ 0, i.e., when

δi(oi) + ci − βi(|ẽi|) ⩽ 0 (A.5)

holds to under-estimate the inter-event times generated
by triggering condition i. Since δi takes non-negative val-
ues only, we can under-estimate the inter-event times for
triggering condition i by analyzing when

ci ⩽ βi(|ẽi|), (A.6)

i.e., when |ẽi| ⩾ β−1
i (ci). Note that we can upper-bound

the right-hand side of the latter inequality, in view of As-
sumption 1, as

β−1
i (ci) ⩽ |ẽi| ⩽ |ei|+ |wi|+ |ŵi| ⩽ |ei|+ 2wi. (A.7)

Hence, we can under-estimate the inter-event times by an-
alyzing when

β−1
i (ci)− 2wi = |ei|. (A.8)

Recall that, by the condition on ci in Theorem 1, we have
ci > βi(2wi), thus, the left-hand side of (A.8) is strictly
positive. In view of (A.8), we define

ci := β−1
i (ci)− 2wi > 0. (A.9)

Since |ei| is set to 0 after a transmission due to trig-
gering rule i, the inter-event time for triggering rule i is
lower bounded by the time it takes for |ei| to grow from
0 to ci in view of (A.8). Note that the bound in (A.9) is
not dependent on actual values of wi, only on the upper-
bounds presented in Assumption 1. In the following, we
provide a lower-bound on this inter-event time. In view
of Lemma 2, we have that there exists a q > 0 such that
|ϕ(t, j)| ⩽ q for all (t, j) ∈ domϕ. Since F in (12) is con-
tinuous and ∥ν∥∞ is finite by Assumption 1, there exists
µ > 0 such that |F (ϕ(t, j), ν(t))| ⩽ µ for all (t, j) ∈ domϕ.
Thus, for almost all j ∈ N⩾0 and almost all t ∈ Ij where

Ij = {t : (t, j) ∈ dom ξ}, d|ei(t)|
dt ⩽ µ. Consequently, the

time between any two transmissions generated by trigger-
ing rule i is larger than or equal to ci/µ. Hence, H has
the SGiMIET property and all maximal solutions are t-
complete. In other words, H is persistently flowing.

Since the system is persistently flowing, combined with the
result of Lemma 2, we also have that H is ISpS w.r.t. the
set AH according to Proposition 1. ■

Proof of Lemma 1

Let ν ∈ PCV and p > 0 be given. Using Lemma 2, we
establish that for all ξ ∈ SH(ν,B) with B := {Ξ ∈ X |
|Ξ| ⩽ p}, |ξ(t, j)|AH ⩽ λ for all (t, j) ∈ dom ξ, where λ > 0
depends on p, ∥ν∥∞ and c in (A.3). For the first case, i.e.,
when A is compact (and thus AH is compact), the set
S := {Ξ ∈ X | |Ξ|AH ⩽ λ} is compact. Since ξ(t, j) ∈ S for
all (t, j) ∈ dom ξ, there exists q > 0 such that |ξ(t, j)| ⩽ q
for all (t, j) ∈ dom ξ, hence, item iv) of Assumption 2 is
satisfied. For the second case, i.e., when Πx(A) is compact
and a ZOH is employed, we have that |x(t, j)|Πx(A) ⩽ λ
for all (t, j) ∈ dom ξ due to (3). Hence, since Πx(A) is
compact, there exists a r > 0 such that |x(t, j)| ⩽ r for all
(t, j) ∈ dom ξ. Since all maps gp,i in (4) are continuous,
there exists s > 0 such that |y(t, j)| ⩽ s for all (t, j) ∈

dom ξ, and, consequently, |ỹ(t, j)| ⩽ s̄ for all (t, j) ∈ dom ξ,
where s̄ = s+wi. Moreover, due to the ZOH, ei(t, j) is the
difference between two points on the trajectories of ỹi(t, j)
after the first jump. Consequently, there exists a ς > 0
(possibly dependent on e(0, 0)) such that |e(t, j)| ⩽ ς for
all e(0, 0) ∈ Πe(B) and all (t, j) ∈ dom ξ. Lastly, ŵ ∈ W,
which is compact, and |η(t, j)| ⩽ λ due to (3) (as Πη(AH)
is compact). Thus, since ξ = (x, e, ŵ, η), there exists q > 0
such that |ξ(t, j)| ⩽ q for all (t, j) ∈ dom ξ. ■
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