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NEUROSC I ENCE

The value of time in the invigoration of human
movements when interacting with a robotic
exoskeleton
Dorian Verdel1,2*, Olivier Bruneau3, Guillaume Sahm1,2, Nicolas Vignais1,2, Bastien Berret1,2,4

Time and effort are thought to be subjectively balanced during the planning of goal-directed actions, thereby
setting the vigor of volitional movements. Theoretical models predicted that the value of time should then
amount to high levels of effort. However, the time-effort trade-off has so far only been studied for a narrow
range of efforts. To investigate the extent to which humans can invest in a time-saving effort, we used a
robotic exoskeleton to substantially vary the energetic cost associated with a certain vigor during reaching
movements. In this situation, minimizing the time-effort trade-off should lead to high and low human efforts
for upward and downward movements, respectively. Consistently, all participants expended substantial
amounts of energy upward and remained essentially inactive by harnessing the work of gravity downward,
while saving time in both cases. A common time-effort trade-off may therefore determine the vigor of reaching
movements for a wide range of efforts.

Copyright © 2023 The

Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

NonCommercial

License 4.0 (CC BY-NC).

INTRODUCTION
Most actions in daily life require us to select the speed or duration of
goal-directed movements, that is, their vigor (1). Movement vigor is
thus an ubiquitous feature of volitional actions, the setting of which
is thought to be rooted in the basal ganglia (2, 3), particularly, the
striatum (4–10). Current works suggest that vigor essentially reflects
the internal value, or utility, of a given action (1, 11–13). Numerous
behavioral studies have shown that vigor is indeedmodulated by the
expected reward of the task at hand (14–19), with reward tending to
be discounted over time (20–22). However, if the modulation of
vigor allows modifying the time needed to accomplish a task,
then it also affects energy expenditure. Reward has also been
found to increase the propensity to put extra effort into a task
(11, 23). Therefore, movement vigor may generally result from
the maximization of a capture rate, such as the sum of all rewards
acquired minus all efforts expended, divided by the time. This
global tendency has been observed in humans and many other
species in foraging-like tasks (24–27). An alternative formulation
considers vigor as the outcome of the minimization of a subjective
weighting between a cost of time (CoT) and a cost of movement,
modulated by the expected reward (20, 21), which is convenient
to model vigor in reaching tasks (28, 29). When reward is not ex-
plicit (e.g., pointing to a light spot), movement vigor could then be
determined by a common trade-off between time and effort, which
could represent a trait-like feature of individuality (30–34). Empir-
ical evidence of such a subjective CoT was recently reported in an
isometric reaching task without explicit reward (35). On the basis of
this premise, several computational models were developed to
account for the vigor of individuals during walking (34) and reach-
ing (20, 29, 31, 35, 36), from a similar minimum time-effort (MTE)
principle. Estimation of the underlying CoT in reaching was

obtained from point-to-point movements of various amplitudes,
using effort costs traditionally represented in motor control (29,
31), although other factors such as accuracy or comfort may also
modulate vigor in general (37–41).

Computational models revealed that the putative CoT should ac-
tually grow quickly to account for the vigor of self-paced pointing
movements, such that time could amount to relatively high levels of
effort. That is, people could be prone to expend substantial energy
to avoid excessively long movement times. Previous paradigms did
not allow to test this prediction because the energetic cost of actions
was too small or varied marginally through different conditions of
the task (11, 20, 27, 31, 35, 36). Furthermore, while moving faster
means increasing kinetic energy, it does not necessarily have to
come from human muscles, as demonstrated by using an electric
bike or cycling downhill for instance. Therefore, do people rely on
a common time-effort trade-off to set movement vigor when the
effort term is broadly varied experimentally?

Here, we designed an original experiment leveraging the versa-
tility of a robotic exoskeleton to investigate this question. Two con-
ditions requiring either a high- or low-energy expenditure to move
with a similar vigor were implemented. The task consisted of per-
forming vertical forearm movements to point-light targets while
wearing the exoskeleton (Fig. 1). During upward movements, the
exoskeleton provided an assistance along a predefined human-like
trajectory so that the participant could comfortably and accurately
complete the task without any effort (the duration of this trajectory
will be referred to as Tj). Crucially, Tj could be notably longer than
the participant’s preferred movement duration (MD) in the task
(this preferred duration will be referred to as Th,0). In this case,
the MTE theory predicts that all participants should be prone to en-
ergize the movement by generating elbow flexion torques (Fig. 2A).
To induce high levels of effort and strongly penalize potential time
savings, the robot applied a viscous-like resistance proportional to
the participants’maximum voluntary force as soon as they outpaced
it (this resistive torque will be referred to as τv). During downward
movements, we took advantage of gravity to design a different as-
sistance whereby saving a similar amount of time as for upward
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movements would instead require virtually no effort. In this case,
the MTE theory predicts that all participants should remain practi-
cally inactive to behave optimally (Fig. 2B). This apparatus allowed
for a significant departure from the MTE predictions depending on
the participants’ choice. For instance, participants could choose to
remain inactive under all conditions, thus failing to save time when
relevant in the sense of the MTE theory. In contrast, participants
could actively put energy into the task under all conditions, thus
failing to save effort when relevant in the sense of the MTE
theory. Thus, the results will determine whether vigor is the result
of a common time-effort trade-off during reaching movements
whose energy cost for a certain duration varies greatly or whether
the MTE principle should be revised.

RESULTS
In this experiment, we asked n = 12 participants to perform reach-
ing movements to point-light targets at their preferred pace. The
movements consisted of a discrete sequence of vertical elbow flex-
ions and extensions. Both the target and a visual feedback of the
participant’s current position were displayed on a large screen in
front of the participant. Our experiment was divided in two ses-
sions. In the first session (baseline), the exoskeleton was controlled

in transparent mode, that is, no assistancewas provided by the robot
that compensated for its own dynamics and minimized interaction
efforts (42, 43). In this session, before being installed in the exoskel-
eton, the participants also performed a maximum isometric volun-
tary force (MVF) test using an one-axis force transducer (see
Materials and Methods for details regarding the procedure). The
main objectives of the baseline session were to estimate the
nominal vigor of the participants (i.e., their preferred MD in the
task) and their maximal force characteristics. This allowed to
design a subject-specific assistance, which was normalized with
respect to time and effort for the subsequent test session.
Knowing the nominal vigor of the participants in the task further
allowed us to infer the CoT for the optimal control simulations (29,
35). In the test session, we asked the same participants to perform
similar movements but with a personalized assistance provided by
the robot. To this aim, we programmed the exoskeleton to follow
minimum jerk trajectories of different durations, ranging from
the participant’s preferred vigor (Tj = 100% Th,0) to a 6× slower
vigor (Tj = 600% Th,0). Participants could decide to outpace the
planned trajectory at any time during the movement. For upward
movements, this required an active effort from the participant,
but for downward movements, the planned trajectory could be out-
paced by simply remaining inactive because of the effects of gravity.

Fig. 1. Illustration of the task and the different input torques involved. The
term τj is the torque provided by the robot as a biological movement assistance
(here a minimum jerk trajectory of duration Tj), which is activated as long as the
participant does not outpace the planned trajectory. The term τh is the net torque
produced by the humanmuscles (τh = 0 when the participant is inactive). The term
τv is a viscous-like torque applied by the robot, which replaces τj as soon as the
participant outpaces the planned trajectory. F is the measured interaction force.

Fig. 2. Theoretical predictions for an assistance 6× slower than the nominal
vigor of the participant in the task (i.e., Tj = 600% Th,0).On both panels, the red
and blue disks illustrate the strategies preserving the participant preferred dura-
tion (Th,0) and the exoskeleton’s planned duration (Tj), respectively. The black disk
represents the optimal strategy according the MTE hypothesis. (A) Possible strat-
egies for upward movements. The curves depict the evolution of time and effort
costs (and their sum) as a function ofMD (see Eq. 9 for the definition of these costs).
Here, the CoT is represented by a linear function for the sake of clarity (dashed line).
In practice, it was computed following a preexisting methodology (29) and result-
ed in a sigmoidal CoT (see fig. S2). For upward movements, the blue disk corre-
sponds to the strategy of remaining inactive (represented by the dashed black
line labeled “Inactivity”). Alternatively, participants could save time by generating
elbow flexion torques (i.e., τh > 0), which is represented by the red shaded area.
Last, participants could generate elbow extension torques (i.e., τh < 0), although it
would mean voluntarily wasting both time and effort (blue shaded area). (B) Pos-
sible strategies for downward movements. The elbow flexion and elbow extension
regions differ from (A) because both flexion and extension torques can allow
saving time under this condition (although the latter strategy would be nonopti-
mal from the MTE perspective). The critical difference for downwardmovements is
that participants could save time by passively applying a downward force on the
exoskeleton, taking advantage of gravity (dashed black line labeled Inactivity). A
strong deviation from this nearly optimal strategy could be observed if participants
use a fixed effort–based heuristic to save time, either by generating flexion torques
or by generating elbow extension torques. a.u., arbitrary units.
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For both movement directions, when the planned trajectory was
outpaced, the robot applied a viscous-like resistance proportional
to the participant’s MVF as follows

τυ ¼ σαMVFð _q � _qjÞ if σðq � qjÞ . δ
¼ 0 otherwise ð1Þ

where q and _q are the robot joint angular position and velocity, qj
and _qj are the planned jerk angular position and velocity, δ = 0.02
rad is the deviation from the planned jerk trajectory in the direction
of the movement (σ = 1 and σ = −1 for flexions and extensions, re-
spectively) and α = 0.1 is the resistance’s strength set to 10% of the
MVF. The deviation δ was chosen so that weight was sufficient to
outpace the exoskeleton for downward movements. The reader is
deferred to Materials and Methods for more details about all the
procedures.

Baseline session
In the baseline session, participants performed self-paced vertical
pointing movements of four different amplitudes without active as-
sistance/resistance from the robot and low-accuracy constraints.
Qualitatively, the velocity profiles were overall bell-shaped as it is
commonly observed for unrestrained point-to-point movements
of this type (see Fig. 3, A, B, D, and E). The only exception was
for the largest movement amplitude that tended to exhibit a correc-
tion near the end of the movement (see Fig. 3, B and E). For our
purpose, we observed the classical affine amplitude–duration rela-
tionship that characterizes the vigor of self-paced reaching move-
ments (31, 33, 44, 45). This relationship was observed at both
individual and population levels, for upward and downward move-
ments separately (see Fig. 3, C and F). These findings are consistent
with results from previous studies with the same exoskeleton
(42, 46).

The average affine fits across participants for upward and down-
ward movements (black lines in Fig. 3, C and F), which were used to
compute the vigor scores with respect to the population average for

each participant and each direction (see Eq. 4), were as follows

TðAÞ ¼ 2:8Aþ 0:37 for upward movements
TðAÞ ¼ 2:29Aþ 0:52 for downward movements

�

ð2Þ

The spreading of individual vigor scores followed the same trend
as in previous studies (32, 33), which was verified both for upward
and downward movements (see Fig. 4, A and B). Moreover, the
vigor scores of participants exhibited a strong consistency across di-
rections (r = 0.97, P < 10−6; Fig. 4C). This analysis justifies a poste-
riori the use of the average amplitude-duration relationship of each
participant to design the subject-specific assistive control law of the
test session.

Test session
In the test session, two amplitudes [17.5° for small amplitude (SA)
and 35° for large amplitude (LA)] and four assistance durations (Tj
= 100, 200, 400, and 600% Th,0) were considered. The assistance was
self-triggered by pressing a button with the left hand such that the
participant could easily synchronize with the exoskeleton at the be-
ginning of eachmovement. The assistance followed aminimum jerk
velocity profile [see Eq. 3 and (47, 48)]. For upward movements, the
planned trajectory was accurately followed if the participants re-
mained inactive. For downward movements, the planned trajectory
was followed only if the participants accompanied the robot’s move-
ment by carrying their weight. The participants could generate
elbow flexion torques (τh > 0) or elbow extension torques (τh < 0)
to apply an effort on the exoskeleton at any time during the move-
ment. When they outpaced the planned trajectory, the exoskeleton
applied a resistance proportional to the difference between the
minimum jerk velocity and the actual velocity (see Eq. 1). This re-
sistance was calibrated on the basis of the MVF of the participant. It
is worth noting that no resistance was applied to the participant if
the actual velocity profile corresponded to the minimum jerk
profile. Moreover, independently of the participant’s behavior, the
exoskeleton was position-programmed near the target to remove

Fig. 3. General kinematics averaged across all participants in the transparent exoskeleton for both upward and downward movements. (A and D) Averaged
positions for upward (A) and downward (D) movements across population. SDs are depicted as shaded areas. (B and E) Averaged velocities for upward (B) and downward
(E) movements across population. (C and F) Amplitude-MD linear regressions for each participant (gray) for upward (C) and downward (F) movements. The average
behavior of participants is shown in black. The mean correlation coefficient and its SD across participants are reported for each movement direction.
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any possible confound related to a speed-accuracy trade-off (37, 41,
49). The experimental data were eventually compared to optimal
control simulations according to the MTE theory, with the CoT
identified in the baseline session. The CoT was identified following
a preexisting procedure, based on inverse optimal control, intro-
duced in (29) (for more details, see the “CoT estimation” section
and the Supplementary Materials). We also compared these
results to fixed-time simulations performed with the preferred du-
ration of the average participant (Th,0) and with the planned dura-
tion of the assistance (Tj), which can be seen as two extreme non-
MTE strategies. The reader is deferred toMaterials andMethods for
more details. Note that all analyses were done on a behavioral
plateau, which was attained after a couple of trials.

Qualitatively, the experimental results indicated that the partic-
ipants systematically saved time compared to the planned duration
of the assistance (see velocity profiles in Fig. 5 for LA and fig. S1 for
SA). Overall, these velocity profiles exhibited one main acceleration
and one main deceleration although they were less smooth than
minimum jerk velocity profiles due to the interaction with the
robot. Peak velocities were larger than those of the assistance, and
MDs were shorter. Noticeably, the MTE simulations were generally

better at predicting the observed trajectories than simulations per-
formed in fixed duration Tj or Th,0.

Quantitatively, the participants’ behavior was described by three
main parameters in this task: (i) the MD relative to the preferred
MD, (ii) the maximum interaction force between the participant
and the exoskeleton in percentage of the MVF from the agonist
muscle group (i.e., flexors when moving upward and extensors
when moving downward), and (iii) the work of the interaction
force. The first two of these parameters are normalized by individ-
ual data in agreement with the design of the experiment. The work
is used as an absolute estimation of the additional energy expended
by the participant to modulate the execution of the task (and pos-
sibly save time).
Movement duration
The MD measured during the experiment for the different condi-
tions of assistance, directions, and amplitudes is depicted in Fig. 6,
A, B, D, and E.

The results show that participants moved much faster than Tj
under the 200, 400, and 600% conditions. This behavior was
visible during movements of both amplitudes (SA and LA),
without any noticeable difference and independently of movement
direction (upward and downward). Nevertheless, participants did

Fig. 4. Individual vigor scores and consistency between upward and downward directions. The gray dashed line represent a vigor score of 1, which corresponds to
performing movements of the same duration as the group average. (A) Individual vigor scores for upward movements, sorted from lowest to highest. (B) Individual vigor
scores for downward movements, sorted from lowest to highest. (C) Correlation analysis showing the consistency of vigor scores with regard to movement direction
(Pearson correlation test).

Fig. 5. Average trajectories measured for the LA and for each assistance duration. Green, the average recorded position and velocity profiles (as insets); light green,
the individual trajectories; black, the MTE predictions; blue, the minimum jerk planned by the assistance; red, the constant time strategy. Under the 100% condition, the
red and blue curves are covered by the black curve. (A) Upward movements. (B) Downward movements.
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not return to their nominal MD in the task (Th,0, measured during
the baseline session). MD tended to increase as Tj increased for both
amplitudes and both directions. The increase in MD tended to be
higher for upward than for downward movements. Under the 100%
condition, participants were on average slightly faster than during
the baseline experiment, thereby suggesting that they were not
completely passive and spent some effort to save even a little time.

These qualitative trends were confirmed by statistical Friedman
tests. In particular, a main effect of the condition (W = 0.72, Q3 =
25.9, P < 10−4) and a main effect of the direction (W = 0.69, Q1 =
8.33, P = 0.0039) were observed. These tests also confirmed that
movement amplitude has no effect on the normalized MD (W =
0.11, Q1 = 1.33, P = 0.25).

Wilcoxon-Nemenyi pairwise comparisons were used as post hoc
tests to assess the most salient differences between conditions. First,
upward movements of SA were significantly slower under the 200,
400, and 600% conditions than under the 100% condition (in all
cases: P ⩽ 9.7 × 10−5, D ⩾ 1.66 where D was Cohen’s D). The
same trend was observed for downward movements of SA with
movements performed under 200, 400, and 600% conditions
being significantly slower than under the 100% condition (in all
cases: P ⩽ 0.012, D ⩾ 1.22). Second, upward movements of LA
were significantly slower under the 200, 400, and 600% conditions
than under the 100% condition (in all cases: P ⩽ 3.7 × 10−5, D ⩾
1.83). Upward movements of LA were also significantly slower
under the 400% condition than under the 200% condition (P =
0.01, D = 1.08). Last, downward movements of LA were shown to
be significantly slower under the 200, 400, and 600% conditions

than under the 100% condition (in all cases: P ⩽ 0.02, D ⩾ 1.14),
and those performed under the 600% condition were significantly
slower than those performed under the 200% condition (P = 0.03, D
= 1.05). In summary, these comparisons across conditions show
that MD tended to increase as Tj increased, independently of the
direction and amplitude. Furthermore, comparisons were per-
formed to analyze differences between upward and downward
movements. Results were that MD was significantly smaller for
downward movements than for upward movements in LA under
the 200% condition (P = 0.002, D = 1.43), in both SA and LA
under the 400% condition (for both amplitudes: P ⩽ 0.002, D ⩾
1.38), and only in SA under the 600% condition (P = 0.004, D =
1.12). Therefore, upward movements were overall slower than
downward movements during the test session.

Overall, the MTE model replicated well the observed MDs with
the CoT identified during the baseline session. We evaluated the
model predictions in terms of average absolute errors (AAEs) on
MD (see Fig. 6, C and F). In agreement with the qualitative velocity
profiles, the error of the MTE model was lower than those obtained
when simulating movements withMD Tj (i.e., with the plannedMD
or with MD Th,0 (i.e., with the preferred MD of the average partic-
ipant). The only notable exception was the AAE observed for down-
ward movements in SA because the MTE prediction slightly
overestimated MD under this condition. These differences might
be due to transitory mechanical effects from the exoskeleton that
have a more macroscopic impact on short and small movements.
These mechanical effects are mainly due to changes in the motor

Fig. 6. Chosen relative MD of participants when assisted by the exoskeleton with different Tj values. Average data are represented by green lines with SD repre-
sented by green shaded areas. Outputs of different simulated motor strategies are depicted as follows: blue, simulation results with MD = Tj; red, simulation results with
MD = Th,0; black, simulation results under the MTE hypothesis. (A and B) Relative MD of upward movements for the SA (A) and the LA (B). (C) AAEs of the different
hypothetical strategies for both SA and LA for upward movements. (D and E) Relative MD of downward movements for the SA (D) and the LA (E). (F) AAEs of the
different modeled strategies for both SA and LA for downward movements.
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quadrants of the exoskeleton when moving downward, as detailed
in previous works (42, 50).
Maximum interaction force
To understand the behavior of the participants in terms of effort, we
analyzed the maximum interaction force between the human and
the exoskeleton relative to the MVF of the agonist group (Fig. 7,
A, B, D, and E). A positive value of this parameter means that the
participant generated an elbow flexion torque (which is necessarily
done actively), and a negative value means that the participant
applied an overall negative torque on the exoskeleton (which can
be done either passively—because of gravity—or actively by gener-
ating elbow extension torques).

The results show that, on average, participants tended to gener-
ate more and more elbow flexion torque as Tj increased (Fig. 7, A
and B). Moreover, whenmoving upward under the 100% condition,
the maximum interaction force between the participants and the
exoskeleton was around zero on average. This means that partici-
pants tended to synchronize with the exoskeleton rather than
being completely passive. Their behavior was different during
downward movements for which the maximum interaction force
was globally constant and independent of Tj (Fig. 7, D and E).
These trends were statistically confirmed by Friedman tests. In par-
ticular, a main effect of the assistance condition (W = 0.79, Q3 =
28.3, P < 10−5) and a main effect of the direction (W = 1, Q1 =
12, P < 10−3) were observed. Once again, movement amplitude
did not seem to have a significant effect on the used motor strategy,
showing the robustness of the observations (W = 0.03, Q1 = 0.33, P
= 0.56).

Wilcoxon-Nemenyi pairwise comparisons on SA upward move-
ments showed that participants applied significantly more force on
the robot by generating elbow flexion torques under the 200, 400,
and 600% conditions than under the 100% condition (in all cases: P
⩽ 0.005, D ⩾ 1.37). The participants also generated significantly
higher elbow flexion torques under the 400% condition than
under the 200% condition (P = 0.022, D = 0.87). On the contrary,
no significant difference was found between the forces applied on
the exoskeleton during downward movements. The same trends
were observed during LA upward movements for which the partic-
ipants generated significantly higher elbow flexion torques to accel-
erate the motion of the robot under the 400 and 600% conditions
than under the 100% condition (in both cases: P ⩽ 7.3 × 10−4, D ⩾
1.75). The participants also generated significantly higher elbow
flexion torques under the 600% condition than under the 200%
condition (P = 0.0035,D = 1.27). As for SA, no significant difference
was found between the forces applied on the exoskeleton during
downward movements for LA. In summary, the participants
applied an increasing maximal force on the exoskeleton as Tj in-
creased for upward movements. For downward movements, they
applied a constant maximal force, independent of Tj.

Furthermore, participants applied significantly different forces
(in terms of absolute values) on the exoskeleton between upward
and downward movements for all the conditions and for both SA
(in all cases: P ⩽ 2.46 × 10−4, D ⩾ 1.85) and LA (in all cases: P ⩽
0.0011, D ⩾ 1.58). Overall, the constant force applied when moving
downward (i.e., � 8:59+ 0:84%FExt

max) was remarkably close to the
maximal effect of the weight of the human forearm and hand as

Fig. 7. Maximum interaction forcewhen the participant is assisted by the exoskeletonwith different Tj values. Average data are represented by green lines and SDs
as green-shaded areas. Outputs of different simulatedmotor strategies (based on the dynamics from Eqs. 8 and 10; seeMethods) are depicted as follows: blue, simulation
results with MD = Tj; red, simulation results with MD = Th,0; black, simulation results under the MTE hypothesis. (A and B) Maximum interaction force during upward
movements for the SA (A) and the LA (B). (C) AAE of the different modeled strategies for both SA and LA for upward movements. (D and E) Maximum interaction force
during downward movements for the SA (D) and the LA (E). (F) AAE of the different modeled strategies for both SA and LA for downward movements.
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estimated from anthropometric tables (i.e., � 8:62%FExt
max). There-

fore, this suggests that participants were able to take advantage of
gravity to save time when moving downward.

Last, we evaluated the model predictions in terms of maximum
interaction force with the same error criterion as for MD (see Fig. 7,
C and F). For this parameter, the MTE theory provided clearly the
best results compared to alternative fixed-time strategies. On the
one hand, simulations performed with MD = Tj consistently result-
ed in a maximal interaction force whose sign was opposite to the
measures. On the other hand, simulations performed with MD =
Th,0 overestimated the interaction force that participants generated
during the experiment. In contrast, the MTE theory correctly pre-
dicted the experimental trends across assistance durations, ampli-
tudes, and movement directions.
Work of interaction force
To get an absolute estimation of the total energy input (in joules)
from the participants onto the exoskeleton, we analyzed the work of
the measured interaction force. A negative value for this parameter
means that the interaction force mainly worked in the direction op-
posite to the motion. On the contrary, a positive value would reflect
that the measured interaction force worked in the same direction as
the motion. In particular, if a participant remains inactive during
downward movements, then this parameter should remain positive
and approximately constant across conditions of assistance for a
given amplitude because the work of weight only depends on the
initial and final positions. The work of interaction force during
the different experimental conditions is reported in Fig. 8 (A, B,
D, and E).

The average work in joules turned out to be very similar to what
was observed in terms of maximum interaction force. For upward
movements, there was an increase in the human energy input to dis-
place the robot when Tj increased for both movement amplitudes.
On the contrary, the work of interaction force was almost constant
across conditions when moving downward. Overall, the energy
input to the robot was higher for LA compared to SA movements,
which was expected given the previous results on MD maximum
interaction force and the fact that the work of weight only
depends on the initial and final positions. These trends were con-
firmed by Friedman tests that revealed significant main effects of
assistance duration (W = 0.8, Q3 = 28.9, P ⩽ 10−5), movement di-
rection (W = 0.69,Q1 = 8.33, P = 0.004), and amplitude (W = 1,Q1 =
12, P ⩽ 10−3). Since the main effect of movement amplitude could
be expected for the work, the associated post hoc tests will not be
described hereafter.

Wilcoxon-Nemenyi pairwise comparisons revealed that, for
upward movements in SA, the participants expended more energy
under the 200, 400, and 600% conditions than under the 100% con-
dition (in all cases: P ⩽ 7.31 × 10−4, D ⩾ 1.66). Moreover, partici-
pants expended significantly more energy under the 400 and 600%
conditions than under the 200% condition (in both cases: P ⩽ 0.017,
D ⩾ 1.06). The same trends were observed for upward movements
for LA Participants expended significantly more energy under the
200, 400, and 600% conditions than under the 100% condition (in
all cases: P ⩽ 0.046, D ⩾ 0.98). Furthermore, participants expended
significantly more energy under the 600% condition than under the
200 and 400% conditions (in both cases: P ⩽ 0.02, D ⩾ 1.11).

Fig. 8. Work of the interaction force when the participant is assisted by the exoskeleton with different Tj values. Average data are represented by green lines, and
SDs are represented as green shaded areas. Outputs of different simulated motor strategies are depicted as follows: blue, simulation results with MD = Tj; red, simulation
results with MD = Th,0; black, simulation results under the MTE hypothesis. (A and B) Work for upward movements for the SA (A) and the LA (B). (C) AAE of the different
modeled strategies for both SA and LA for upward movements. (D and E) Work for downward movements for the SA (D) and the LA (E). (F) AAE of the different modeled
strategies for both SA and LA for downward movements.
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Furthermore, there was no significant effect of the assistance condi-
tion on the energy expended when moving downward for both am-
plitudes. In summary, participants were willing to expend more and
more energy as Tj increased for upward movements. For downward
movements, the work remained nearly constant, as did the
maximum of the interaction force.

The analyses conducted on the effect of direction revealed that
the work of interaction force was higher for downward movements
than for upward movements performed in SA under the 100% con-
dition (P = 0.0086, D = 1.26). On the contrary, the work was always
significantly higher for upward movements than for downward
movements under the 400% condition (for both amplitudes: P ⩽
0.0051, D ⩾ 1.42) and under the 600% condition (for both ampli-
tudes: P ⩽ 0.0051, D ⩾ 1.36).

The nearly constant work of interaction force measured during
downwardmovements (i.e., 0.68 ± 0.15 J for SA and 1.14 ± 0.17 J for
LA) was remarkably close to the work of the human forearm’s
weight for both amplitudes [i.e., 0.71 J for SA and 1.42 J for LA
using anthropometric tables (51)]. This is in agreement with the
previous observations made on the relative maximum force
applied by the participants. Therefore, this result confirms that
the participants took advantage of gravity-related efforts to acceler-
ate the exoskeleton during downward movements, without actively
producing work. Since the exoskeleton was controlled to never miss
the target at the end of the motion, participants did not even have to
expend energy to decelerate the system when approaching
the target.

Last, we evaluated the model predictions regarding the work of
interaction force with the AAE as for the other two parameters
(Fig. 8, C and F). Here again, the MTE theory provided the best
results in terms of AAE In particular, simulations performed with
MD = Tj consistently resulted in a negative work of interaction
force, meaning that the simulated participant either generated
elbow flexion torques (i.e., τh > 0 in downward simulations) or pas-
sively applied a negative force (i.e., the negative work is mainly due
to weight in upward simulations) against the exoskeleton. Further-
more, simulations performed with MD = Th,0 systematically overes-
timated the energy expenditure of the participants during the real
experiment. In contrast, the MTE theory predicted well the work of
interaction force across assistance durations Tj, amplitudes, and
movement directions.

DISCUSSION
In the present paper, we examined the extent to which participants
rely on a common time-effort trade-off under conditions that
induce low- or high-energy costs to move with a certain vigor. To
manipulate the usual relationship between vigor and effort, we used
a robotic exoskeleton that could either assist or resist the partici-
pant’s motion. During upward movements, the results indicated
that all participants saved time compared to the duration planned
by the robotic assistance, thereby demonstrating a high propensity
to expend energy to save time. During downward movements, a
similar time saving was achieved by switching to a low-effort strat-
egy, thereby showing that participants did not mechanically associ-
ate saving time with expending more energy. Overall, the observed
behavior was consistent with the minimization of a time-effort
trade-off.

All participants consistently expended substantial amounts of
energy to save time during upward movements but did not return
to their nominal vigor in the task. The reason is likely that, when
outpacing the reference trajectory of the robot, a viscous resistance
was applied. Consequently, returning to the nominal vigor would
have been admittedly possible but extremely expensive from an en-
ergetic point of view. For example, the work required to move with
their nominal vigor would have been about 12 J per movement for
the 600% and LA condition, Fig. 8B). Nevertheless, the energy ex-
penditure consented by the participants remained high during
upward movements, with an average work of 7.05 ± 1.78 J when
generating elbow flexion torques under this condition, which cor-
responds to an average work rate of 4.28 ± 2.08 J s−1. For the sake of
comparison, the work of the limb’s weight when performing an un-
constrained elbow flexion of amplitude LA (accounting for most of
the energy cost in these self-paced movements) was around 1.42 J,
which amounts to an average work rate of 1.21 J s−1 with the mean
vigor of our participants. Overall, these findings demonstrate that
participants were willing to produce at least 3.6× their original
work rate and spend about 5× their usual energy expenditure to
get closer to their nominal vigor in the task.

This observation suggests that a cost growing quickly with time
must be represented in the planning of these goal-directed actions.
Otherwise, it seems difficult to explain why participants would
expend so much energy to increase their vigor in such point-to-
point movements. This additional human effort was not dedicated
to control the final accuracy since it was always handled by the robot
itself near the target. Moreover, participants started to energize the
motion since its beginning. An alternative argument could be that
participants just implemented a simple heuristic to solve the task at
hand, without optimizing a genuine time-effort compromise. The
rationale could be that it is a natural strategy because people are
used to expend energy to produce movement. However, duration,
interaction force, and work systematically tended to increase with
the robot’s planned duration during upward movements, which
agrees with previous results obtained in an isometric task involving
virtual movements (35). The slower the assistance, the more partic-
ipants generated flexion torques while consenting to reduce their
vigor. This confirms that neither effort nor time was simply pre-
served or minimized alone across conditions. This energy expendi-
ture pattern was very different for downward movements. Although
MD followed a similar evolution, the energy expended by the par-
ticipants was consistently very low across all assistance durations
and significantly lower than for upward movements. The interac-
tion measured in terms of force and work was indistinguishable
from that of an inactive participant using only their weight to ener-
gize the motion planned by the exoskeleton. This capacity to exploit
gravity is reminiscent of other results showing that the brain can
optimally harness the effects of gravity to reduce effort during ver-
tical arm movements (50, 52–56).

Incidentally, this observation suggests that the strategy exhibited
by participants during upward movements was not simply guided
by a reluctance to inactivity. Nevertheless, in this task without ex-
plicit reward, it is unclear whether the hypothesized CoT only rep-
resents the temporal discounting of reward. Any type of cost
growing with time could actually produce the same behavior.
However, other authors have extensively studied how reward can
affect movement vigor (14–19) and it is thus possible to assume
that an implicit reward was associated with task achievement. By
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saving time on each trial, participants could leave the experiment
earlier, which may be seen as a global reward as well. Since we
did not explicitly manipulate reward in the task, we assumed that
it was constant across conditions, which was reflected in our
choice to use the same CoT in the model. Specifically, our paradigm
modified the vigor-effort relationship by associating very large or
low effort costs to the nominal vigor of each participant in the
task. This paradigm, together with the simulation results, provide
evidence for the minimization of a common time-effort trade-off
across a wide range efforts, ranging from strongly active to mostly
passive behaviors.

To derive our results, it is worth noting that we normalized the
task to each nominal participant’s vigor and maximal voluntary
force. It is known that there is a large interindividual variability
on these parameters (16, 17, 30, 31, 33, 35). We found no correlation
between the maximum force and the nominal vigor in our partici-
pants (R = −0.12, P = 0.59). Without normalization, the results
might have been more variable across participants in the test
session. For instance, vigorous participants could have been more
prone to expend substantial amounts of energy to save time.
However, what is considered a substantial amount of energy may
also depend on the strength of the participant. To avoid these com-
plications, we opted for a normalization in terms of time and effort.
A linear mixed model analysis revealed that the three main param-
eters under investigation could not be predicted by the nominal
vigor of participants (see eq. S1 for details). That is, more vigorous
participants were not more prone to save time or expend energy
than less vigorous participants in the test experiment, thereby sug-
gesting that the normalization was effective. Nevertheless, it is
worth noting that a trend linking vigor to the duration of
between-trial periods, which was not normalized in the protocol,
was observed although it was not significant (Pearson correlation:
r = −0.5, P = 0.11). Last, one limitation of our study is that the con-
clusions were drawn from a relatively small number of participants.
However, the statistical effect sizes were generally high (in most
cases, D > 1), meaning that our results reach a strong level of con-
fidence. As expected, a post hoc power analysis confirmed these
conclusions by reaching a power of 0.93 for the smallest reported
Cohen’s D (i.e., D = 0.98) and a power above 0.95 for all the other
comparisons (i.e., with D ⩾ 1.05).

Beyond that limitation, we believe that there are several interest-
ing implications of the present results. In particular, with the emer-
gence of new technologies for assisting human movement such as
exoskeletons or co-bots, vigor may become a key factor to induce a
more symbiotic interaction, whether it be for neurorehabilitation or
for the prevention of musculoskeletal disorders at work (57–61).
However, current assistive robots can be relatively slow for safety
concerns or computational reasons. This may cause unanticipated
effects if, as predicted by the MTE theory, humans prefer to expend
energy to save time when interacting with a too slow robot. The
present study suggests that even a small reduction of vigor could
lead the participants to attempt to strongly energize the motion if
possible or reject the technology otherwise. Although the present
paper does not allow to assess how the participants would actually
behave during more complex tasks, for example, involving more
degrees of freedom or strong accuracy constraints, it still provides
an interesting piece of information for the field of human-robot
interaction.

Last, understanding the invigoration of human movements is
also essential for a better understanding of Parkinson’s disease, as
underlined by several studies (62–65). While bradykinesia is often
associated with a misestimation of effort (62, 63), it could be equiv-
alently explained by a misestimation of time (66). One may specu-
late that the modulation of the basal ganglia’s input signals, which
are known to determine movement vigor as a result of a dopamine/
serotonin equilibrium (6, 8, 64, 65, 67–71), could regulate the inter-
play between time and effort via the direct and indirect pathways.
Further analyses of the neural substrates involved in the time-
effort trade-off would help to clarify the mechanisms involved in
action selection, particularly when it comes to set movement
invigoration.

MATERIALS AND METHODS
Participants and materials
Participants
A total of n = 12 participants (seven females) were involved in the
experiment (mean age, 28 ± 6 years old; mean height, 1.72 ± 0.07 m;
mean weight, 64 ± 12 kg, mean flexors MVF, 236.5 ± 93.4 N; mean
extensors MVF, 173.4 ± 67.4 N). All the participants were healthy,
right-handed adults without known neurological disorder or injury
that could have affected the experiment. The participants gave their
written informed consent as required by the Helsinki declaration to
participate to the experiment, which was approved by the local
ethical committee for research (CER-Paris-Saclay-2021-048).
MVF bench test
Individual MVF was measured on a custom H-shaped test bench
made of aluminum profile and screwed into the ground to
prevent any unwanted movement. A force transducer was
mounted on the bench. This transducer was turned upward for
tests conducted on elbow extensors and downward for
elbow flexors.
Kinematics
Three-dimensional kinematics were measured by means of an op-
toelectronic motion capture device (10 Oqus 500+ infrared
cameras, 100 Hz; Qualisys, Gothenburg, Sweden). The device
tracked the position of twelve 10-mm reflective markers taped on
the robot and seven 10-mm reflective markers taped on the partic-
ipant. Themarkers taped on the participant were used to control the
posture a posteriori. All the kinematic analyses were conducted on
the recorded data of the marker taped at the end-effector of the
robot. These analyses were equivalent to use the markers taped on
the participant, given that the position of each participant with
respect to the exoskeleton was constant in the tested motion
range (72).
Exoskeleton
The ABLE exoskeleton used in the experiment is an active upper-
limb exoskeleton (73). This exoskeleton was designed to be partic-
ularly compliant, which allowed to reach high levels of transparency
(42, 74). This exoskeleton replicates the three shoulder rotations (in-
ternal/external, adduction/abduction, and flexion/extension) and
the elbow flexion/extension of the human arm. The investigations
here were restricted to the elbow joint of the exoskeleton for sim-
plicity and the other joints were thus mechanically locked. Further-
more, the physical interfaces used to connect the human arm to the
exoskeleton have been designed to maximize comfort andminimize
unwanted interaction efforts (75, 76). These developments were
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particularly important in the present context because the efforts
transitioning at the level of the wrist interface could be intense, de-
pending on the participant’s will to move fast.
Interaction efforts
A force-torque (FT) sensor (1010 Digital FT, ATI; maximum
sample rate, 7 kHz) was placed at the level of the wrist human-exo-
skeleton interface. This FT sensor could measure the six compo-
nents (three forces and three torques) of the interaction efforts.
During the present study, only the normal component of the inter-
action efforts was analyzed since it was the only one kinematically
admissible by the human and exoskeleton elbow joints.

Experimental protocols
The baseline session was introduced to estimate the participants’
nominal vigor and their MVF This was used to design the
subject-specific assistive control law and identify the average CoT
of the participants in the task. The test session was introduced to
assess the extent to which participants implemented an MTE strat-
egy when interacting with an assistive exoskeleton programmed to
move at different speeds.
Protocol of the baseline experiment
Before performing the pointing task with a transparent exoskeleton,
the participants were asked to perform six trials of MVF of 5 s each.
Half of these trials were used to assess the MVF of the elbow flexors
(mainly the biceps brachii and the brachioradialis), and the other
half were used to assess the MVF of the elbow extensors (mainly
the different heads of the triceps brachii). The participants
pushed against a force transducer, while their arm was vertical
and their forearm horizontal. The contact between the participant
and the force transducer was made of a foam-covered part to min-
imize discomfort and was located just behind the styloid process of
the radius (flexors MVF tests) or the styloid process of the ulna (ex-
tensors MVF tests). The MVF was defined as the maximum force
measured during the three tests.

Then, the participants were installed inside the exoskeleton and
stood on a height-adjustable platform so that the position of the
exoskeleton was always the same regardless of the height of the par-
ticipant. They were asked to perform 32 flexions and 32 extensions
of the elbow of an amplitude A ∈ {35°, 26.25°, 17.5°, 8.75°} (eight
flexions and eight extensions per amplitude) with the exoskeleton
set in transparent mode [i.e., controller minimizing interaction
efforts based on previous works (42, 43, 76)]. Since only elbow flex-
ions and extensions were required, the shoulder joints of the exo-
skeleton were mechanically locked. The target to reach to was
defined as a green disk (4 cm in diameter) displayed on a vertical
screen and visual feedback of the current hand position was contin-
uously displayed as a red disk cursor (1 cm in diameter). The screen
was placed at 1 m of the (fixed) elbow of the exoskeleton. The cursor
position was updated in real time to give a visual feedback of the
current hand’s position, defined at the interaction between the
line of the exoskeleton forearm segment and the plane defined by
the screen. In all cases, the participants were instructed to execute
those visually guided movements at their preferred velocity.
Throughout the movement, the target to reach was continuously
displayed, and it disappeared once the participant had stayed
within it for 2 s with a velocity below 1 mm s−1. The subsequent
target was then displayed and so on, thereby alternating upward
and downward movements.

Protocol of the test experiment
In the test session, the participants performed a total of four blocks
of 80 trials, while the exoskeleton provided an assistance. Each block
tested only one of the two amplitudes (i.e., A ∈ {35°, 17.5°}) with the
same initial posture qi. Each block was divided in two sub-blocks of
20 upward movements and 20 downward movements each, which
implies 40 trials per sub-block. Each sub-block allowed to test a con-
dition of planned duration Tj. The order of occurrence of the am-
plitudes and Tj was pseudo-randomized across participants. At the
beginning of each sub-block, the participants were asked to relax
using a message displayed on the screen for the first flexion and
the first extension of each Tj. This allowed to let the participant
feel that movement was planned by the robot and the kind of assis-
tance that they could receive by remaining inactive.

The assistive control law was designed via a proportional-inte-
gral (PI) controller, the gains of which were set to allow the exoskel-
eton to track the reference trajectory in presence of any participant,
when the switch to a viscous resistance was deactivated. The robot
reference trajectory was derived from a minimum jerk model (47,
48). This model is commonly used to generate smooth and bell-
shaped velocity profiles. Despite known limits to capture velocity
asymmetries observed because of gravity or accuracy (49, 77), this
model was sufficient here to provide a human-like reference trajec-
tory to be tracked by the PI controller. Precisely, the exoskeleton was
controlled in position to minimize the tracking error e = qj − q,
where q is the actual joint position of the robot and qj (i.e., the
desired robot trajectory) is defined as follows

qjðtÞ ¼ qi þ A½10ðt=TjÞ
3
� 15ðt=TjÞ

4
þ 6ðt=TjÞ

5
� ð3Þ

with qi being the initial joint position of the robot and Tj being the
robot’s MD determined after identification of the individual pre-
ferred duration Tn for amplitude A (with A ∈ {35°,17.5°}).

Once the assistance allowed the participant to reach to the target
while remaining passive and without allowing the exoskeleton to
switch its control mode, we considered the case where the partici-
pant could accelerate the motion, whether it be passively (with
weight) or actively (meaning τh ≠ 0). Since the gains of the PI con-
troller were high enough to ensure a good tracking of the minimum
jerk trajectory with the user inside the exoskeleton, the participant
would not be able to substantially deviate from that minimum jerk
trajectory without implementing an additional control mechanism.
Therefore, to test our hypothesis, we introduced a criterion to detect
when a participant overtook the robot and then switched to a
viscous-like resistance while deactivating the PI controller.

The viscous-like torque resisting the human input was propor-
tional to difference between the measured velocity ( _q) and the ref-
erence jerk velocity ( _qj). This viscous resistance was standardized
according to the MVF of each participant, which resulted in the ex-
pression introduced in Eq. 1.

Near the spatial end of each movement, the robot was position
controlled to ensure that the target was always accurately reached.
This allowed to remove accuracy concerns for the participant and to
minimize intertrial endpoint variance by design, thereby avoiding
any unwanted speed-accuracy trade-off which could influence
MD (37, 41, 49).
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Data analysis
Kinematics
Three-dimensional position data of the marker placed on the exo-
skeleton’s end-effector were used to assess the movement kinemat-
ics. Position data from the other markers were used as control to
monitor residual motions. Position datawere filtered (low-pass But-
terworth, 5-Hz cutoff, fifth-order, zero-phase distortion, butter
function from the scipy package) as in previous studies (56, 72,
77). Then, velocity and acceleration were obtained by numerical dif-
ferentiation. Movements were segmented using a threshold set at
5% of the peak velocity of the considered movement. All the ana-
lyzed parameters were computed using the last 12 upward and 12
downward movements of each block to ensure that they reflect the
adapted behavior of participants.

For each participant, a vigor score (vgn) was computed following
preexisting methods based on MDs (31, 35), as follows

vgn ¼

X4

i¼1
TðAiÞ

2

X4

i¼1
TnðAiÞTðAiÞ

ð4Þ

where T(Ai) is the average duration computed from the population-
based Eq. 2 for amplitude Ai and Tn(Ai) is the averaged MD of the
nth participant for amplitude Ai. If the computed vgn is above 1, it
means that the concerned participant moved overall faster than the
population average. On the contrary, if the computed vgn is below 1,
it means that the concerned participant moved overall slower than
the population average.
Interaction efforts
As previously stated, the normal component of the interaction
efforts was used to assess the force applied by the participants on
the robot. These efforts were filtered (low-pass Butterworth, 5-Hz
cutoff, fifth-order, zero-phase distortion, butter function from the
scipy package) and segmented on the basis of the kinematic segmen-
tation. Using these force data and kinematics, the work of the inter-
action force was estimated as follows

W ¼
ðT

0
τi _qdt ð5Þ

where W is the work, T is the final time, _q is the elbow joint angular
velocity estimated from the robot encoders, and τi is the interaction
torque resulting from the normal component of the interaction
force at the elbow joint.

Statistical analysis
The statistical analyses were conducted using custom Python 3.8
scripts and the Pingouin package (78). The normality [Shapiro-
Wilk (79)] and sphericity [Mauchly’s (80)] of the data distribution
were first verified. Since the results of these verification were not
positive, Friedman tests were performed to check for possible
main effects of the condition, the direction, and the amplitude of
movement. The significance level of the Friedman tests was set at
P < 0.05.

Post hoc comparisons were performed bymeans of nonparamet-
ric pairwise Wilcoxon-Nemenyi comparisons. Their significance
level was set at P < 0.05, and for each test, the Cohen’s D was com-
puted to analyze the effect size.

Last, for information, a post hoc power analysis was performed
using the G *Power software (version 3.1.9.7) (81, 82) in post hoc
mode with α = 0.05 and with the Cohen’s D reported in the paper.

Optimal control simulations
CoT estimation
The CoT was identified on the basis of the affine amplitude-dura-
tion relationship averaged across all participants and directions [i.e.,
T(A) = 2.545A + 0.445, r2 = 0.99]. The following model of the in-
teraction dynamics was used when the robot was controlled in
transparent mode

Jh€q ¼ τh � lhmhg cosðqÞ � Bh _q ð6Þ

where Jh = 0.043 kg m−2 is the human inertia, mh = 1.42 kg is the
human forearm plus hand mass, lh = 0.17 m is the distance between
the elbow and the center of gravity of the forearm plus hand ensem-
ble [these three parameters were computed using Winter’s anthro-
pometric tables (51)], and Bh = 0.05 N · m · s rad−1 was the viscous
coefficient of the elbow [this value was obtained in a previous study
(83)]. The joint position (respectively velocity and acceleration) was
denoted by q (respectively _q and €q). The assumption of perfect
transparency was coherent with previous control developments
(42, 43, 76), which allowed to cancel the significant effects of the
exoskeleton on MD and peak velocity.

The minimum commanded torque change model was used in
the present paper to predict human movement (84). As a conse-
quence, the state was defined as x ¼ ðq; _q; τhÞ`, and the control var-
iable was defined as u ¼ _τh. The cost function used to simulate
movements from an initial state xi = [qi,0, mhgl cos (qi)]⊤ to a
final state xf = [qf,0, mhgl cos (qf )]⊤ in transparent mode and to
identify the CoT was as follows

CðuÞ ¼
ðT

0
uðtÞ2 dt ð7Þ

where T was estimated from the average affine amplitude-duration
relationship for a given amplitude A = ∣qf − qi∣. Then, the procedure
described by eqs. S2 to S4, based on deterministic optimal control
theory, was applied to identify the CoT (29, 85, 86). This procedure
allows to identify the CoT using the optimal Hamiltonian values of
optimal control simulations performed in fixed time T(A) for each
movement amplitude A using the affine fit above. A sigmoidal
fitting was then performed on the sampled CoT values to extrapo-
late the CoT outside the time interval in which it was identified, as
proposed in (29, 31). After this procedure, our model was able to
predict the nominal vigor of the average individual when the
optimal control problem was run in free time. The addition of the
CoT to themovement costC(u) yielded exactly the optimal duration
T(A), which corresponds to the average experimental duration for a
movement joining qi to qf.
Simulations of possible behaviors with the assistance
Our experiment induced two main situations: one in which it was
only possible to save time at the cost of an important energy expen-
diture (upward movements) and one in which being essentially in-
active was sufficient to save time (downward movements). These
two configurations were simulated separately because they
suppose quite different interaction dynamics. Furthermore, each
situation included three possible scenarios: (i) actively generating
torque at the elbow in the direction of the target (red shaded
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areas in Fig. 2), (ii) remaining inactive (which is passively applying a
negative force on the robot, black dashed lines in Fig. 2), and (iii)
actively generating elbow torques in the opposite direction to the
target (blue shaded areas in Fig. 2). The latter scenario was unlikely
from the MTE viewpoint and hardly doable in practice during
upward movements because the assistance was performed by a rel-
atively strong position control of the robot.

Prediction of human behavior when saving time is energetically ex-
pensive. First, the behavior of participants in a situation that did not
allow saving time without expending energy was simulated (which
corresponds to the red shaded area in Fig. 2A). This scenario was
tested during upward movements with the jerk assistance in the
present experiment. If the participant wanted to save time in this
case, then they needed to take control of both their own and the
exoskeleton’s dynamics while counteracting the viscous resistance.
The system was thus simulated from the initial state xi = [qi,0, (lhmh
+ lrmr)g cos (qi)]⊤ to the final state xf = [qf,0, (lhmh + lrmr)g cos
(qf )]⊤, and the dynamics was formulated as follows

Jtot€q ¼ τh � Btot _q � bτvcþ � ðlhmh þ lrmrÞg cosðqÞ ð8Þ

where τh is the human torque, Jtot = Jh + Jr is the total inertia of the
coupled system, Btot = Bh + Br is the total viscous torque of the
human and exoskeleton elbows, respectively, and (lhmh + lrmr) is
the total mass-length product inducing gravity torque. The values
of human parameters were the same as in Eq. 6. The values of robot
parameters were Jr = 0.3 kg m−2, Br = 0.12 N · m · s rad−1, and lrmr =
0.26 kg m−1, which were identified following a preexisting proce-
dure (42). Last, bτvcþ means that only the positive part of the
viscous resistance is taken into account to prevent it from becoming
an assistance at the end of the simulated movements (when _q , _qj,
see the end of velocity profiles when Tj ≠ 100% Th,0 in Fig. 5A).

Under the 100% condition, participants tended to synchronize
with the exoskeleton. Therefore, the torque applied by the assistance
τj was added to Eq. 8 in the simulations. Under the other conditions,
this torque was not taken into account in the dynamics because par-
ticipants systematically moved faster than the assistance, which de-
activated it. Instead, the cost of following the assistance was
computed separately (see blue vertical dashed dotted line in
Fig. 2A for an illustration).

Last, all these simulations were performed in free time with a
final time T ∈ (0, Tj] and an objective cost function that minimizes
a compromise between time and effort as in Eq. 7, using the previ-
ously identified CoT. This leads to an optimal movement time, il-
lustrated by the black disk in Fig. 2A). This cost function was as
follows

CðuÞ ¼
ðT

0
uðtÞ2 dt þ

ðT

0
gðtÞ dt ð9Þ

TheMTE cost defined by Eq. 9 was then compared to (i) the cost
of following the assistance, which outputs are represented in blue in
Figs. 6 to 8, and (ii) the cost of always moving at the preferred ve-
locity, which outputs are represented in red in Figs. 6 to 8.

Prediction of human behavior when saving time while being inac-
tive is possible. Second, the behavior of participants when saving
time was not necessarily energetically expensive was simulated
(which corresponds to both the red shaded area and black dashed
line in Fig. 2B). This case corresponded to downward movements
with the jerk assistance in the present experiment. In this scenario,

the weight of the participant and of the exoskeleton was helping to
save time and naturally counterbalancing the viscous resistance.
Moreover, the position control implemented at the beginning and
end of movements allowed participants to be completely relieved of
weight control if they wished to. In that case, only the inertia and
natural viscosity of the human and robot segments and joints were
handled by the participant. The system was thus simulated from the
initial state xi = (qi,0,0)⊤ to the final state xf = (qf,0,0)⊤, and the dy-
namics was formulated as follows

Jtot€q ¼ τh � Btot _qþ bτv � ðlhmh þ lrmrÞg cosðqÞcþ ð10Þ

During simulations of downward movements and contrary to
those predicting upward movements, gravity torques were directly
compared to the viscous resistance, and only positive values were
taken into account in the dynamics. This simulated a natural com-
pensation of all or a part of the viscous resistance by weight if par-
ticipants generated elbow extension torques (i.e., downward) or
remained inactive (which respectively corresponds to the red
shaded area and black dashed line in Fig. 2B). The simulations
were then performed in free final time with T ∈ (0, Tj] and using
the same objective cost function as for upward movements (see
Eq. 9).

Last, the case of participants generating elbow flexion torques,
meaning torques in the opposite direction to the target, was only
simulated for a duration corresponding to Tj as an illustration (rep-
resented in blue in Figs. 6 to 8). The cost of movement is trivially
higher in that case given it induces an increase in both the cost of
effort and the CoT (see dashed and dashed dotted curves in the blue
shaded area in Fig. 2B).

All the simulation parameters reported in the present paper were
either direct results of the optimal control problem (relative MD) or
computed using classical dynamics (interaction forces and work).
All the simulations were performed using the MATLAB (Math-
Works) version of GPOPS-II (87–89), which is a software based
on an orthogonal collocation method relying on SNOPT to solve
the nonlinear programming problem (90).
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