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Abstract
Group announcement logic (GAL) and coalition announcement logic (CAL) allow us to reason about whether it is possible for
groups and coalitions of agents to achieve their desired epistemic goals through truthful public communication. The difference
between groups and coalitions in such a context is that the latter make their announcements in the presence of possible
adversarial counter-announcements. As epistemic goals may involve some agents remaining ignorant, counter-announcements
may preclude coalitions from reaching their goals. We study the relative expressivity of GAL and CAL and provide some
results involving their more well-known sibling APAL. We also discuss how the presence of memory alters the relationship
between groups and coalition.

1 Introduction

Quantified dynamic epistemic logics

Multi-agent epistemic logic (EL) is a modal propositional logic with formulas �aϕ standing for
‘agent a knows proposition ϕ’ [27]. The logic is typically interpreted on the so-called Kripke models
that are relational structures with for each agent an equivalence relation on the domain of abstract
states. Public announcement logic (PAL) is an extension of EL with dynamic epistemic operators that
allow us to reason about the effects of agents simultaneously and publicly acquiring some truthful
information [20, 33]. It contains formulas [ψ]ϕ standing for ‘after truthful public announcement of
ψ , ϕ (is true)’. The effect of the public announcement of ψ is a restriction of the underlying model on
which the formula is interpreted to the states where ψ is true, and in the resulting model restriction,
the formula ϕ is then interpreted. ELs such as PAL where dynamic modalities are interpreted by way
of model transformations are often known as dynamic epistemic logics (DELs). Arbitrary public
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announcement logic (APAL) is a variant of PAL with quantification over public announcements [6].
It extends the language of PAL with formulas [! ]ϕ that express that ‘after any public announcement,
ϕ holds’ (i.e. on condition that this public announcement is true in the current state). Many versions
of APAL have been proposed. The DELs with quantified announcements that we consider in this
contribution are called group announcement logic (GAL) [2] and coalition announcement logic
(CAL) [3]. In the former, [G]ϕ means that ‘after any (simultaneous) announcement by the agents in
group G, ϕ holds’, whereas in the latter, [〈G〉]ϕ is read as ‘given any (simultaneous) announcement
by the agents in group G, there is a simultaneous announcement by the remaining agents, such that
ϕ holds afterwards’. The CAL quantifier thus hides an alternation of a universal and an existential
quantifier. Both in GAL and CAL, such simultaneous announcements are conjunctions of formulas
known by the agents, i.e. they have shape �aϕa ∧ · · · ∧ �zϕz where {a, . . . , z} is a subset of the set
of all agents. In other words, agents only announce what they know.

The GAL and CAL modalities have been applied to specify notions and problems in imperfect
information games and in security protocols (what can the principals guarantee after any protocol?)
[2, 3], in epistemic game theory [32] and in general in reasoning about games and strategies
(coalition announcements formalize playability) [11]. There are relations between GAL and CAL,
and logics of strategic capability such as ATL [5] and ATEL [28], and between GAL and CAL, and
logics of agency such as STIT and Next-STIT [29]. The relation is that the dual 〈[G]〉ϕ of the CAL
quantifier can be interpreted as ‘the agents in G are capable of ensuring that ϕ’ and that the dual
〈G〉ϕ of the GAL quantifier can be interpreted as ‘after the agents in G act, ϕ is true’. To get a
GAL-like (or CAL-like) effect in such logics, we need to combine agency modalities with temporal
modalities in their logical languages: such logics are typically interpreted on larger structures where
the model transformations of DELs appear within such larger models as transitions that interpret
temporal modalities such as ‘next’-time operators.

Other DELs do not model public events such as public announcements, but private announcements
and partial observation in general, where best known is action model logic [8]; for a recent survey,
see [21]. Quantification over such modalities is also an actively pursued topic [14, 15, 16].

History-based semantics for DELs

Typically, in DELs, the formulas are interpreted in the updated (transformed) model where, so
to speak, it is no longer known how this came about. The agents are memoryless. History-based
semantics for DEL, for agents with memory, have been proposed in such works as [12, 21, 34],
as well as in [7, 9, 10], with an interesting difference in approaches. In the former, a sequence of
events or actions (such as announcements) is stored in memory that is, in principle, available for
agents and that allows to refer to past actions in the logical language (in typically some sort of
converse modality). This is the ‘yesterday’ operator in [34–36]. In fact, in [12, 21], such histories
of actions are then not used for agents to reason about the past, but in order to embed DELs into
temporal ELs; however, in principle, such information is there. In contrast, [7, 9] contain operators
that allow to refer to an initial information state from the current information state but abstracting
from the sequence of announcements that may have led to the current state. So one cannot distinguish
between different developments (different sequences with different intermediate information states)
resulting in the same final state. We focus on APAL with memory (APALM) [9, 10] as its language
contains a quantifier, like APAL. In APALM, instead of models with an abstract domain of states,
we have models with an initial and a current domain of states. This has the effect that the initial
information state remains available for interpretation of formulas in the current state. The logical
language of APALM extends that of APAL with formulas ϕ0, for ‘ϕ was initially true’ (as well
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FIGURE 1. An APAL vs. EL example.

as other features, such as a universal modality). Therefore, in this logic, �aϕ
0 means that agent

a knows that ϕ was true (in the past). The semantics are therefore history-based (although in the
abstract sense that only considers the initial information state in the past, and not all intermediate
stages leading to the current state). They hence allow to reveal more structure of updated models,
also in a precise technical sense as follows. In PAL, it may happen that initially non-bisimilar states
have become bisimilar in the updated model (for bisimulation, see [11]). But in APALM, we can
still distinguish such states namely with the above ϕ0 formulas (so that another notion of bisimilarity
is required [9]). In our contribution, we also present versions of group announcement logic GAL
and coalition announcement logic CAL with Memory, which we therefore call GALM and CALM
(the former already appears in [10]). As we will show, the presence of memory affects their
expressivity.

Expressivity of DELs

A topic of interest for announcement logics is their relative expressivity. DELs such as announcement
logics have various and surprising expressivity results, due to group epistemic phenomena and to the
interaction of dynamic and epistemic features, and those results are often non-trivial to establish [1,
2, 6, 20, 24, 30]. It is known that EL is as expressive as PAL [33] and that APAL, GAL and CAL
are (strictly) more expressive than PAL [2, 6]. The relative expressivity of APAL, GAL and CAL
has been an open question for quite a while [2, 15]. We partially answer this question: we show that
CAL is not at least as expressive as GAL. This is one direction needed to determine the relative
expressivity of GAL and CAL. As a consequence, also APAL is not at least as expressive as GAL.
Whether GAL is not at least as expressive as CAL remains unanswered. Additionally, we show that,
in contrast, GALM is at least as expressive as CALM.

To introduce these expressivity results, we present some examples. Each formula in a logical
language determines a set of pointed models on which that formula is true (we assume equivalence
relations throughout). This is the property associated with that formula, and different languages
may thus describe a different set of properties: they then have a different expressivity. The larger
expressivity of APAL with respect to PAL (and EL) is because the APAL quantifier implicitly
quantifies over all propositional variables in the language as well as over formulas of arbitrary modal
depth (the modal depth is the maximal stack of epistemic modalities �a in a formula). One proof
that APAL is more expressive than PAL is based on modal depth. Consider the three pointed models
in Figure 1.

On the left a model wherein two agents a, b are both ignorant about p. The actual state is framed.
In the middle, a bisimilar infinite representation of the model. Now consider the formula 〈! 〉(�ap ∧
¬�b�ap), for ‘there is announcement (model restriction) after which a knows p but b does not
know that’. No model restriction of the left model (or, therefore, of the middle one) can achieve that.
But on the assumption that there is an epistemic formula ψ equivalent to 〈! 〉(�ap ∧ ¬�b�ap) (so
expressing the same property), it has a modal depth. Now consider a version of the middle model
where beyond the modal depth from the actual framed state the ‘chain’ is cut off. The ‘endpoints’
satisfy the unique property that a or b there knows the truth about p. Therefore, in such a model,
there is after all an announcement restricting it to the model on the right wherein �ap ∧ ¬�b�ap
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FIGURE 2. Model Mt and various restrictions thereof. Announced formulas are superindexes and
points of models are subindexes.

is true (see [6]). On the other hand, this large finite model and the infinite model (and thus also the
two-state model bisimilar to it) satisfy the same formulas of modal depth up to that of the assumed
ψ . Therefore, this equivalent ψ cannot exist. The expressivity arguments involving GAL and CAL
are far more involved, but based on similar principles.

Now for GALM and CALM. A familiar phenomenon in PAL is that non-bisimilar states become
bisimilar after an announcement, such as states t and u in the models M and Mp in Figure 2. Initially,
b does not know whether p in t (¬�bp ∧ ¬�b¬p) but knows that p in u (�bp), whereas afterwards,
p is common knowledge in t and in u.

Of course states do not have to become bisimilar. In the restriction M¬�bp, the states s and t still
make different formulas true. But Mp∧¬�bp, on the right, is bisimilar to Mp. These matters also play
a part in logics with announcements made by agents such as GAL and CAL. The announcement p has
the same effect as �ap (an announcement by a), and p∧¬�bp has the same effect as �ap∧�b¬�bp
(a joint announcement by a and b). The difference between GAL and CAL is that, given a group of
agents G, in the latter, the remaining agents make their announcement simultaneously with those in
G, whereas in the former they may make it afterwards. In much more complex models than the above,
later then may be too late because the remaining agents would have needed the distinguishing power
between states that were initially different but now no longer, such as t and u in M respectively Mp.
If those remaining agents can remember what was initially true, they can still make the distinction: in
state t of Mp, it holds that (¬�bp ∧¬�b¬p)0, whereas in state u it holds that (�bp)0. Consequently,
in GALM and CALM, we expect groups of agents to have additional expressive ‘power’. And this
is indeed the case.

Outline of the contribution

In what follows, we first provide formal definitions of the concepts discussed here in Section 2. Then,
as a warm-up, in Section 3, we show that CAL is not at least as expressive as APAL. In Section 4,
we discuss why an intuitive translation of CAL formulas into GAL formulas does not work. To set
the scene for the main result, we first introduce the notion of formula games for GAL and CAL in
Section 5, and then, in Section 6, provide two classes of model distinguishable by a GAL formula.
Finally, we prove that CAL is not at least as expressive as GAL in Section 7 and have that APAL is
not at least as expressive as GAL as a corollary. On top of that, in Section 8, we show that GALM is
at least as expressive as CALM. We conclude and discuss further research in Section 9.

2 Technical background

2.1 Languages and semantics

Let us fix a finite set of agents A and a countable set of propositional variables P.
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DEFINITION 1
The languages of epistemic logic EL, public announcement logic PAL, arbitrary public announce-
ment logic APAL, group announcement logic GAL and coalition announcement logic CAL are
defined by the following grammars:

EL � ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ

PAL � ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ | [ϕ]ϕ
APAL � ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ | [ϕ]ϕ | [! ]ϕ
GAL � ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ | [ϕ]ϕ | [G]ϕ
CAL � ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ | [ϕ]ϕ | [〈G〉]ϕ,

where p ∈ P, a ∈ A and G ⊆ A. Duals are defined as ♦aϕ := ¬�a¬ϕ, 〈ψ〉ϕ := ¬[ψ]¬ϕ,
〈! 〉ϕ := ¬[! ]¬ϕ, 〈G〉ϕ := ¬[G]¬ϕ, 〈[G]〉ϕ := ¬[〈G〉]¬ϕ. Given some G, we will denote A \ G as G.
We will also use abbreviations � := p ∨ ¬p and ⊥ := p ∧ ¬p.

Formula �aϕ is read as ‘agent a knows ϕ’; [ψ]ϕ means that ‘after the public announcement of
ψ , ϕ will hold’; [! ]ϕ is read as ‘after any public announcement, ϕ is true’; [G]ϕ is read as ‘after
any joint public announcement by agents from group G, ϕ holds’; and [〈G〉]ϕ is read as ‘for any
announcement by coalition G, there is a simultaneous announcement by the anti-coalition such that
ϕ holds after the joint announcement’.

DEFINITION 2
A model M is a tuple (S, ∼, V), where S is a non-empty set of states, ∼: A → 2S×S is an equivalence
relation for each agent, and V : P → 2S is the valuation function. We will denote model M with a
distinguished state s as Ms and sometimes call it a pointed model. Whenever necessary, we refer to
the elements of the tuple as SM , ∼M and V M . We will also write MX

s = (SX , ∼X , V X ), where X ⊆ S,
s ∈ X , SX = X , ∼X

a =∼a ∩(X × X ) for all a ∈ A, and V X (p) = V(p) ∩ X .

It is assumed that for group and coalition announcements, agents know the formulas they
announce. In the following, we write ELG = {∧i∈G �iψi | for all i ∈ G, ψi ∈ EL} (with typical
elements ψG) to denote the set of all possible announcements by agents from group G.

DEFINITION 3
Let Ms = (S, ∼, V) be a model, p ∈ P, G ⊆ A.

Ms |� p iff s ∈ V(p)

Ms |� ¬ϕ iff Ms �|� ϕ

Ms |� ϕ ∧ ψ iff Ms |� ϕ and Ms |� ψ

Ms |� �aϕ iff Mt |� ϕ for all t ∈ S such that s ∼a t
Ms |� [ψ]ϕ iff Ms |� ψ implies Mψ

s |� ϕ

Ms |� [! ]ϕ iff Ms |� [ψ]ϕ for all ψ ∈ EL
Ms |� [G]ϕ iff Ms |� [ψG]ϕ for all ψG ∈ ELG

Ms |� [〈G〉]ϕ iff Ms |� ψG → 〈ψG ∧ χG〉ϕ for all ψG ∈ ELG and some χG ∈ ELG,

where Mψ
s = (Sψ , ∼ψ , Vψ) with Sψ = {s ∈ S | Ms |� ψ}, ∼ψ

a is the restriction of ∼a to Sψ for all
a ∈ A, and Vψ(p) = V(p) ∩ Sψ for all p ∈ P. We call a formula ϕ valid, or a validity, if for all Ms it
holds that Ms |� ϕ.
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2.2 Bisimulation and expressivity

DEFINITION 4
Let M = (SM , ∼M , V M ) and N = (SN , ∼N , V N ) be models. We say that M and N are bisimilar if
there is a non-empty relation B ⊆ SM × SN , called a bisimulation and denoted M ←−−−−−−→ N , such
that for all B(s, t), the following conditions are satisfied.

Atoms for all p ∈ P: s ∈ VM (p) if and only if t ∈ V N (p),
Forth for all a ∈ A and u ∈ SM such that s ∼M

a u, there is a v ∈ SN such that t ∼N
a v and B(u, v),

Back for all a ∈ A and v ∈ SN such that t ∼N
a v, there is a u ∈ SM such that s ∼M

a u and B(u, v).

We say that Ms and Nt are bisimilar and denote this by Ms � Nt if there is a bisimulation linking
states s and t.

As in the case of standard modal logic [26], bisimulation between models implies that the models
satisfy the same formulas of APAL, GAL and CAL.

THEOREM 1
Given Ms and Nt, if Ms � Nt, then for all ϕ ∈ APAL ∪ GAL ∪ CAL, we have that Ms |� ϕ if and
only if Nt |� ϕ.

PROOF. The proof is by induction on ϕ. Propositional, boolean and epistemic cases are as usual. The
case of public announcements follows from the corresponding result for action models [20, Theorem
6.21]. Finally, the cases of arbitrary, group and coalition announcements follow from the fact that
public announcements preserve bisimilarity and the induction hypothesis. �

DEFINITION 5
Let n ∈ N and M = (SM , ∼M , V M ) and N = (SN , ∼N , V N ) be models. We say that Ms and Nt are
n-bisimilar if there is a non-empty relation B ⊆ SM × SN , called an n-bisimulation and denoted
Ms �n Nt, which is defined inductively as follows. Relation B is a 0-bisimulation between Ms and
Nt if Atoms holds for (s, t). Relation B is n + 1-bisimulation between Ms and Nt if the following
conditions are satisfied.

Atoms for all p ∈ P: s ∈ V M (p) if and only if t ∈ V N (p),
Forth for all a ∈ A and u ∈ SM such that s ∼M

a u, there is a v ∈ SN such that t ∼M
a v and

Mu �n Nv,
Back for all a ∈ A and v ∈ SN such that t ∼M

a v, there is a u ∈ SM such that s ∼M
a u and

Mu �n Nv.

It is a standard result that Ms �n Nt implies Ms |� ϕ if and only if Nt |� ϕ for ϕ ∈ EL with modal
depth less or equal n [26]. This, however, does not hold if ϕ contains a quantified announcement,
since these operators quantify over formulas of arbitrary modal depth.

DEFINITION 6
Let L and L′ be two languages and ϕ ∈ L and ψ ∈ L′. Formulas ϕ and ψ are called equivalent, if
for all Ms it holds that Ms |� ϕ iff Ms |� ψ .

DEFINITION 7
Let L and L′ be two languages. We say that L is at least as expressive as L′, denoted L′ � L, if for
every ϕ ∈ L′, there is an equivalent ψ ∈ L. We write L′ < L if L′ � L and L �� L′, and we say that
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FIGURE 3. From left to right: models Ms, M1a
s (bottom), M2a

u (top), M1b
s , M2b

t and Ma,b
x , with

x ∈ {s, t, u, v} (four single-state models).

L is strictly more expressive than L′. We call L and L′ incomparable if L′ �� L and L �� L′. Finally,
if L′ � L and L � L′, we call L and L′ equally expressive and write L = L′.

The standard result from the literature [33] is that EL = PAL. It is also known that PAL <

APAL [6], PAL < GAL [2] and PAL < CAL [3].

3 Coalitions and arbitrary announcements

It was proved in [2] that APAL �� GAL. The intuition behind the proof is that a group of agents G
can only force G-definable restrictions of a given model, whereas APAL modalities may force any
restriction of the model up to bisimulation. The same reasoning can be applied to both groups and
coalitions. Therefore, we use the proof from [2] and modify it to show that APAL �� CAL.

THEOREM 2
APAL �� CAL.

PROOF. Consider the APAL formula 〈! 〉(�ap ∧ ¬�b�ap). Let us assume that there is an equivalent
CAL formula ψ . Without loss of generality, we also assume that propositional atom q does not occur
in ψ . Now, consider the models in Figure 3.

These models correspond to various restrictions of M that agents can enforce. We need to show
that the APAL formula distinguishes M and M1a, and no CAL formula can distinguish them.
Formally, it should be the case that Ms |� ψ and M1a

s |� ψ , while Ms |� 〈! 〉(�ap ∧ ¬�b�ap)

and M1a
s �|� 〈! 〉(�ap ∧ ¬�b�ap).

That Ms |� 〈! 〉(�ap ∧ ¬�b�ap) and M1a
s �|� 〈! 〉(�ap ∧ ¬�b�ap) is easy to check. In order to

make �ap ∧ ¬�b�ap true, it is required to remove state t and retain states u and v. In model Ms
announcement of p ∨ q would do the trick. And in model M1a

s , none of the possible updates satisfies
the formula.

To prove that Ms |� ψ if and only if M1a
s |� ψ , we need to show that for all subformulas ϕ of ψ ,

all states reachable from s, and all updates of M by agents’ announcements, the equivalence holds.
We consider only cases of coalition announcements and prove only the first row of the equivalences
(proofs for other three rows are similar).

Let ϕ ∈ CAL and q does not appear in ϕ.
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Induction hypothesis:

Ms |� ϕ iff M1a
s |� ϕ iff Mu |� ϕ iff M2a

u |� ϕ

Ma,b
s |� ϕ iff M1b

s |� ϕ iff M1b
u |� ϕ iff Ma,b

u |� ϕ

Mt |� ϕ iff M1a
t |� ϕ iff Mv |� ϕ iff M2a

v |� ϕ

Ma,b
t |� ϕ iff M2b

t |� ϕ iff M2b
v |� ϕ iff Ma,b

v |� ϕ

Case [〈∅〉]ϕ. Let Ms |� [〈∅〉]ϕ. This is equivalent to the fact that there is a joint {a, b}-announcement
χa ∧ χb such that Mχa∧χb

s |� ϕ. All possible results of updating Ms with χa ∧ χb are presented in
Figure 3 (models Ms, M1a

s , M1b
s and Ma,b

s ). Therefore, at least one of the restrictions should satisfy
ϕ, i.e. (Ms |� ϕ or M1a

s |� ϕ or M1b
s |� ϕ or Ma,b

s |� ϕ) (∗).
According to the induction hypothesis, (∗) is equivalent to M1a

s |� ϕ or Ma,b
s |� ϕ. The latter

means that there is an {a, b}-announcement in model M1a
s such that ϕ holds in the resulting model,

which is equivalent to M1a
s |� [〈∅〉]ϕ.

Statement (∗) is also equivalent, by the induction hypothesis, to (Mu |� ϕ or M2a
u |� ϕ or M1b

u |� ϕ

or Ma,b
u |� ϕ). These are all possible restrictions of Mu by {a, b}-announcements, which is equivalent

to Mu |� [〈∅〉]ϕ by the semantics.
Finally, (∗) is equivalent to (M2a

u |� ϕ or Ma,b
u |� ϕ), which holds if and only if there is an

{a, b}-announcement in M2a
u such that ϕ is true in the resulting updated model. This is equivalent to

M2a
u |� [〈∅〉]ϕ by the semantics.
Case [〈{a, b}〉]ϕ. The same as above with the replacement of ‘or’ with ‘and’ in (∗).
Case [〈{a}〉]ϕ. Let Ms |� [〈{a}〉]ϕ. This is equivalent to the fact that for every a-announcement χa

there is a b-announcement χb such that Mχa∧χb
s |� ϕ. We consider all these restrictions: (Ms |� ϕ or

M1b
w |� ϕ) and (M1a

s |� ϕ or Ma,b
s |� ϕ)(†).

By the induction hypothesis, (†) is equivalent to (M1a
s |� ϕ or Ma,b

s |� ϕ), which means that for
every a-announcement in model M1a, there is a b-announcement such that ϕ holds in the resulting
model. The latter is equivalent to M1a

s |� [〈{a}〉]ϕ by the semantics.
According to the induction hypothesis, (†) is equivalent to (Mu |� ϕ or M1b

u |� ϕ) and (M2a
u |� ϕ

or Ma,b
u |� ϕ). These are all possible combinations of a’s announcements and b’s responses in Mu.

Hence, it is equivalent to Mu |� [〈{a}〉]ϕ by the semantics.
Finally, (†) is equivalent to (M2a

u |� ϕ or Ma,b
u |� ϕ), and the latter holds if and only if for

all a-announcements in M2a
u (agent a cannot change the model in a non-trivial way), there is a b-

announcement such that ϕ is true in the resulting updated model, which is equivalent to M2a
u |�

[〈{a}〉]ϕ by the semantics.
Case [〈{b}〉]ϕ. Similar reasoning as above. �

4 Agents who forget how to play

While reasoning about the coalitional ability and announcements, it is quite natural to wonder
whether coalition announcements could be equivalently defined by formulas of GAL. In particular,
the semantics of 〈[G]〉ϕ suggests that we can consider a coalition’s announcement and the anti-
coalition’s response as separate consecutive group announcements. In this section, we show that
the most intuitive way of defining coalition announcement in terms of group announcements,
〈[G]〉ϕ ↔ 〈G〉[G]ϕ, is not valid.
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FIGURE 4. Model M1
s and various restrictions thereof.

This result is a consequence of how public announcements work. Indeed, in the updated model, all
the states not satisfying the announced formula are removed, and agents forget that they considered
these states possible. Such lack of memory may lead to the situation when agents lose their power to
force certain submodels. We utilize this feature in the following proof, where after an announcement
by G, some states, which G could distinguish in the original model, become bisimilar.

PROPOSITION 1
〈G〉[G]ϕ → 〈[G]〉ϕ is not valid.

PROOF. We present a counterexample (Figure 4) to the contraposition [〈G〉]ϕ → [G]〈G〉ϕ (strictly
speaking, the contraposition has ¬ϕ, but we refer to the form of the axiom).

Let G = {a} and G = {b, c}. Also, let ϕ := ♦a�b¬p ∧ ♦a(♦bp ∧ ♦b¬p). This formula is a
distinguishing formula of state s of model M2, i.e. ϕ is true only in M2

s and nowhere else in this
proof.

First, we show that M1
s |� [〈a〉]ϕ. By the semantics of CAL, this means that for every ψ{a}, there

are χ{b} and χ{c} such that M1
s |� ψa → 〈ψ{a} ∧χ{b} ∧χ{c}〉ϕ. Observe that agent a can update M1

s in
two non-equivalent ways: either leaving the whole model as it is or restricting it to {u′, t′, s, t, u}. On
the other hand, due to the fact that intersection of unions of relations of b and c is an identity relation,
agents {b, c} can force all possible submodels of M1

s . For either of a’s announcements, agents {b, c}
can make an announcement such that the model is reduced to {t′, s, t, u}. Particularly, b announces
a formula true in {u′, t′, s, t, u}, and c announces a formula true in {t′, s, t, u, v}. Such a simultaneous
joint announcement results in model M2

s and M2
s |� ϕ.

Now, let us show that M1
s �|� [a]〈{b, c}〉ϕ, which is equivalent, by the semantics, to M1

s |�
〈a〉[{b, c}]¬ϕ. Let a announce ψ{a} := �a(¬p → ♦bp) that is true in {u′, t′, s, t, u}. The resulting

model Mψa
s and a smaller bisimilar M3

s are presented in Figure 4.
In model M3

s agents {b, c} can force the following updated models: {s, t, u}, {s, t} and {s}. Results
of corresponding updates are M3

s itself and M4
s and M5

s , respectively. It is easy to check that none of
them satisfy ϕ. Hence, M1

s �|� [a]〈{b, c}〉ϕ. �
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We have shown that an obvious way of defining CAL operators in GAL does not work. However,
this does not tell us anything about the relative expressivity of the two logics. We approach this
general problem in the following sections.

5 Formula games

The standard approach to comparing expressivity of modal languages is by using formula games
[20, Chapter 8]. In this section, we present formula games for CAL and GAL. In order to deal
with coalition announcement modalities, we use relativized group announcements1 that allow us
to consider an announcement by a coalition and a counter-announcement by an anti-coalition as
separate moves in the game.

DEFINITION 8 (NNF).
Negation normal form (NNF) is defined by the following BNF.

ϕ ::= � | ϕ ∧ ϕ | �aϕ | [G]ϕ | [G, ϕ]ϕ | [〈G〉]ϕ
| ⊥ | p | ¬p | ϕ ∨ ϕ | ♦aϕ | [ϕ]ϕ | 〈G〉ϕ | 〈G, ϕ〉ϕ | 〈[G]〉ϕ .

If for some formula ϕ in NNF, the outermost operator is from the top line, then we say that ϕ is
in universal negation normal form (UNNF), and if the outermost operator is from the line below,
then ϕ is in existential negation normal form (ENNF). We denote the corresponding languages as
UNNF and ENNF . We would also like to point out the absence of clause 〈ϕ〉ϕ in the BNF. As it
will become clear later, in Proposition 2, we can do without it.

The intended meaning of a relativized group announcement 〈G, ψ〉ϕ is that ‘given some ψ , there is
an announcement χG by the agents from G, such that after the simultaneous announcement of ψ and
χG, ϕ is true’. In other words, relativized group announcement are like normal group announcements
with an additional given formula being announced at the same time with the agents’ announcement.
In the context of coalition announcements [〈G〉]ϕ, relativized group announcement 〈G, ψG〉ϕ serves
as an intermediate step in a game and as a means to ‘memorize’ announcement ψG of G.

PROPOSITION 2
Every formula of GAL and CAL is equivalent to a formula in NNF.

PROOF. The proof is a straightforward ‘pushing’ of negations inside of the scope of operators. We
use translation function t : (GAL ∪ CAL) → NNF that is defined as follows:

t(¬p) = ¬p
t(¬(ϕ ∧ ψ)) = t(¬ϕ) ∨ t(¬ψ)

t(¬�aϕ) = ♦at(¬ϕ)

t(¬[ψ]ϕ) = t(ψ) ∧ t([ψ]¬ϕ)

t(¬[G]ϕ) = 〈G〉t(¬ϕ)

t(¬[〈G〉]ϕ) = 〈[G]〉t(¬ϕ)

t(p) = p
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

t(�aϕ) = �at(ϕ)

t([ψ]ϕ) = [t(ψ)]t(ϕ)

t([G]ϕ) = [G]t(ϕ)

t([〈G〉]ϕ) = [〈G〉]t(ϕ)
�

1A sound and complete logic with coalition and relativized group announcements is presented in [23]. The truth conditions
for the relativized group announcements are Ms |� [G, χ ]ϕ iff Ms |� χ and ∀ψG ∈ ELG: Ms |� [ψG ∧ χ ]ϕ; Ms |� 〈G, χ〉ϕ
iff Ms |� χ implies ∃ψG ∈ ELG: Ms |� 〈ψG ∧ χ〉ϕ.
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Note that �, ⊥, [G, ψ]ϕ and 〈G, ψ〉ϕ will not appear in the image of the translation. These
formulas, however, play the role of final and intermediate steps in games.

Now we are ready to define formula games.

DEFINITION 9 (Formula games).
Let some model Ms and ϕ in NNF be given, and suppose that M is the set of pointed submodels NX

t
of model Ms, where X ⊆ S and s ∈ X . A formula game for ϕ over Ms is a tuple Gϕ

Ms
= (V∀, V∃, E, Δ),

where

• V∀ = {�Nt, ψ� | Nt ∈ M, ψ ∈ UNNF} ∪ {�Nt, X , χ , ψ� | Nt ∈ M, X ⊆ S, χ , ψ ∈ NNF}
is the set of vertices of the ∀-player;

• V∃ = {�Nt, ψ� | Nt ∈ M, ψ ∈ ENNF} is the set of vertices of the ∃-player;
• E ⊂ (V∀ ∪ V∃) × (V∀ ∪ V∃) is the set of edges, where

E =
⋃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{(�Nt, p�, �Nt, ��), (�Nt, ¬q�, �Nt, ��)
| t ∈ V(p)and t �∈ V(q)}

{(�Nt, p�, �Nt, ⊥�), (�Nt, ¬q�, �Nt, ⊥�)
| t �∈ V(p)and t ∈ V(q)}

{(�Nt, ψ ∧ χ�, �Nt, ψ�), (�Nt, ψ ∧ χ�, �Nt, χ�)}
{(�Nt, ψ ∨ χ�, �Nt, ψ�), (�Nt, ψ ∨ χ�, �Nt, χ�}
{(�Nt,�aψ�, �Nu, ψ�) | t ∼a u}
{(�Nt,♦aψ�, �Nu, ψ�) | t ∼a u}
{(�Nt, [χ ]ψ�, �Nt, X , χ , ψ�)}
{(�Nt, X , χ , ψ�, �Nu, χ�) | u ∈ X }
{(�Nt, X , χ , ψ�, �Nu, t(¬χ)�) | u ∈ S \ X }
{(�Nt, X , χ , ψ�, �NX

t , ψ�)}
{(�Nt, [G]ψ�, �Nt, [t(ψG)]ψ�)}
{(�Nt, 〈G〉ψ�, �Nt, t(ψG) ∧ [t(ψG)]ψ�)}
{(�Nt, [〈G〉]ψ�, �Nt, 〈G, t(ψG)〉ψ�)}
{(�Nt, 〈[G]〉ψ�, �Nt, [G, t(ψG)]ψ�)}
{(�Nt, [G, χ ]ψ�, �Nt, χ ∧ [t(ψG) ∧ χ ]ψ�)}
{(�Nt, 〈G, χ〉ψ�, �Nt, t(¬χ) ∨ (t(ψG) ∧ [χ ∧ t(ψG)]ψ)�)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

• Δ is the initial vertex �Ms, ϕ�.

The game is played between the ∀-player and the ∃-player, and a play consists of a sequence of
vertices Δ, Δ1, . . . , Δn. The play is built by the players such that for some edge (Δm, Δm+1) ∈ E
if Δm ∈ V∀, then the universal player chooses Δm+1, and if Δm ∈ V∃, then the existential player
chooses Δm+1. If either player is unable to move, i.e. they are in a �-vertex or ⊥-vertex, then they
lose the game. For examples of formula games, see Appendix A.
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Whether a vertex in a formula game belongs to the ∃-player or to the ∀-player depends on the
current subformula: if the subformula is in ENNF , then it is the ∃-player’s move, and if the
subformula is in UNNF , then it is the ∀-player’s move. Edges E in Definition 9 specify which
kinds of moves are available to the players in various vertices. For example, if we are in vertex
�Nt, ψ ∨ χ� of a formula game, then the existential player can choose either to move to vertex
�Nt, ψ� or to vertex �Nt, χ�. If the current vertex of a game is �Nt�aψ�, then the ∀-player can
choose any a-successor state u of t, and the game continues in �Nuψ�.

Now, if a game is in vertex �Nt, [χ ]ψ�, then the ∃-player chooses any subset X of the set of states
S of the original model M . From the resulting vertex of the game �Nt, X , χ , ψ�, the ∀-player can
challenge the choice of X by the existential player in three following ways. First, she can check
whether χ indeed holds in all states of X , or, formally, she makes a move to vertex �Nu, χ� for some
u ∈ X . Alternatively, the ∀-player can check whether all χ -states were included in X by making a
transition to vertex �Nu, t(¬χ)� for some u ∈ S \ X . Finally, the universal player can allow the game
to carry on in submodel NX

t with subformula ψ , i.e. she can make a move to vertex �NX
t , ψ�. All

these three options are designed to mimic the semantics of public announcements.
As for quantifier modalities, consider, for instance, vertex �Nt, [〈G〉]ψ�. Since [〈G〉]ψ ∈ UNNF ,

the ∀-player can move to any vertex �Nt, 〈G, t(ψG)〉�, where ψG ∈ ELG. From the chosen vertex, the
∃-player then moves to one of the vertices �Nt, t(¬ψG)∨ (t(χG)∧ [ψG ∧ t(χG)]ψ)� with χG ∈ ELG.
These moves follow the semantics of coalitional announcements.

Let us ensure that there are no loops in games, i.e. plays of games are finite.

PROPOSITION 3
Given formula ϕ in NNF, pointed model Ms, and a game Gϕ

Ms
, every play of the game is finite.

PROOF. The proof is by induction on subformulas of ϕ.
Base case: in the case of a propositional variable, there is exactly one step in a play of the game.
Induction hypothesis: plays of the game for subformulas ψ , t(¬χ) and χ are finite on all pointed

submodels Nt of M .
The propositional and epistemic cases are straightforward, so we omit them. Also note that it

means that plays for epistemic formulas are finite.
Case �Nt, [χ ]ψ�: in this node of the game, the existential player chooses a subset of the set of

states of the given model. Such a choice leads to one of the vertices �Nt, X , χ , ψ�. Every possible
choice of the ∀-player from this vertex — �Nt, χ�, �Nu, t(¬χ)� or �NX

t , ψ�—leads to a vertex with
a play for either χ , t(¬χ) or ψ that is finite by the induction hypothesis. Hence, a play of the game
in �Nt, [χ ]ψ� is finite.

Case �Nt, [G]ψ�: there is just one step from this vertex to some �Nt, [t(ψG)]ψ�, and using the
induction hypothesis and the fact that agents can only announce epistemic formulas, we conclude
that the play from this vertex is finite.

Cases �Nt, 〈G〉ψ�, �Nt, [G, χ ]ψ� and �Nt, 〈G, χ〉ψ� are similar to the previous one.
Case �Nt, [〈G〉]ψ�: from this vertex, there is exactly one ∀-step to some �〈G, t(ψG)〉ψ�. Since

t(ψG) is a formula of EL, and G can only announce epistemic formulas, we have that a play from
�Nt, [〈G〉]ψ� is finite.

Case �Nt, 〈[G]〉ψ� is the same as above. �
The next proposition ties together satisfiability and the existence of a winning strategy. In

particular, we show that if a formula is true in a model, then the ∃-player has a winning strategy
in the corresponding formula game, and vice versa. Or, equivalently, a formula is false in a model if
and only if in the corresponding formula game the ∀-player has a winning strategy.
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PROPOSITION 4
The ∃-player has a winning strategy in a game Gϕ

Ms
if and only if Ms |� ϕ.

PROOF. From right to left. The proof is by induction on the size of subformulas of ϕ. Observe that
this is straightforward to provide a size relation c such that quantifiers are taken into account first.
See [23] for an example of such a relation.

Base case: assume that Ms |� p. Then the corresponding formula game consists only of one ∃-
step from �Ms, p� to �Ms, �� and the latter is the winning vertex of the existential player. The same
argument holds for ¬p.

Induction hypothesis: assume that for all pointed submodels Nt of M and all formulas t(ψ) in
NNF such that c(t(ψ)) < c(ϕ), if Nt |� t(ψ), then �Nt, t(ψ)� is a winning position for the ∃-player.

Propositional and epistemic cases are straightforward.
Case Ms |� [ψ]χ : by the semantics this means that Ms |� ¬ψ or Mψ

s |� χ . If the former is the
case, then consider X = �ψ�M and Y = W \ �ψ�M , where X can be an empty set. We have that
for all t ∈ X : Mt |� ψ and for all u ∈ Y : Mu |� t(¬ψ). By the induction hypothesis, this implies
that �Mt, ψ� and �Mu, t(¬ψ)� are winning positions for the existential player for all t ∈ X and
u ∈ Y . Hence, �Ms, X , ψ , χ� is also a winning position for the ∃-player that she can choose from
�Ms, [ψ]χ�.

If Mψ
s |� χ , then again, we consider X = �ψ�M similarly to the case of Ms |� ¬ψ . Since s ∈ X ,

we need to deal with an additional case MX
s |� χ . By the induction hypothesis, this means that

�MX
s , χ� is a winning position for the ∃-player. Hence, �Ms, X , ψ , χ� is also a winning position for

the ∃-player that she can choose from �Ms, [ψ]χ�.
Case Ms |� 〈G〉ψ : by the semantics, Ms |� 〈G〉ψ is equivalent to ∃ψG: Ms |� 〈ψG〉ψ . The latter

is equivalent to Ms |� t(ψG) ∧ [t(ψG)]ψ . By the induction hypothesis, that means that the ∃-player
can always choose a step in the game that corresponds a winning position �Ms, t(ψG) ∧ [t(ψG)]ψ�.
Thus, �Ms, 〈G〉ψ� is also a winning position for the existential player.

Case Ms |� [G]χ : a similar argument as above.
Case Ms |� 〈[G]〉ψ : by the semantics of coalition announcements, this is equivalent to ∃ψG, ∀χG:

Ms |� ψG ∧ [ψG ∧ χG]ϕ. By the induction hypothesis, the latter is equivalent to the fact that
�Ms, t(ψG) ∧ [t(ψG) ∧ t(χG)]� are winning positions of the existential player. This means that
�Ms, [G, t(ψG)]� is also a winning position for the ∃-player, which she can choose from �Ms, 〈[G]〉ϕ�.

Case Ms |� [〈G〉]ψ : similar to the previous one.
From left to right. A similar argument as in the opposite direction for the contraposition: if Ms �|�

ϕ, then the ∀-player has a winning strategy in a game Gϕ
Ms

. �

6 Chain models

In order to compare the relative expressivity of GAL and CAL, it is not enough to consider just a pair
of models. Suppose that for some ϕ ∈ GAL, we have that Ms |� ϕ and Nt �|� ϕ. In this case, formula
ϕ must have subformulas with group announcement operators, for otherwise ϕ would be a CAL
formula as well. Hence, in ϕ or its negation, there is an existential group announcement operator
〈G〉ψ . According to the semantics, this implies that we can substitute 〈G〉ψ with some 〈ψG〉ψ . And
ϕ with such a substitution for all group announcements operators is a PAL (and hence CAL) formula.
In other words, given two finite models, group announcement operators [G]ϕ can be ‘simulated’ via
a disjunction of finitely many (up to equivalence of corresponding updated models) possible updates
[ψG]ϕ.
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FIGURE 5. A (1, 12)-chain.

FIGURE 6. A bisimulation (wavy arrows) between chains (1, 5) (in the middle) and (1, 10) (starts at
the top and wraps around on the right to the bottom).

The same argument can be carried out for any finite set of epistemic models. Therefore, in order to
unleash the full potential of group announcement operators, we consider two infinite sets of models.
After that, we show that there is GAL formula that is true in one such set and false in the other, and
no CAL formula can capture the difference between the sets.

The models we are dealing with are called chain models.

DEFINITION 10 (Chain models).
A chain model, or a chain, is an epistemic model M = (S, ∼, V), where

• S = {l, l + 1, . . . , r − 1, r} ⊂ Z is a finite set of consecutive integers,
• x ∼a y if and only if y = x + 1 and x is even,
• x ∼b y if and only if y = x + 1 and x is odd,
• z − 1 ∼c z ∼c z + 1 if and only if z mod 3 = 1,
• V(p) = {3k, 3k − 1 ∈ S | k ∈ Z}.

We use pair (l, r) to refer to the corresponding chain model.

In a graphical representation of chains, we use a solid line for agent a’s relation, a dashed line
for b’s relation and c cannot distinguish states in the same dotted box. An example of a chain is
presented in Figure 5.

Chain models are regular in their structure, and they may only differ from each other in leftmost
and rightmost states. Hence, we can give a classification of chains based on their extremities.

DEFINITION 11 (Classification of chains).
Let some chain model (x, y) be given.

• If x mod 6 = 1 (y mod 6 = 4), then Mx |� �a¬p (My |� �a¬p).
• If x mod 6 = 2 (y mod 6 = 3), then Mx |� �b�ap (My |� �b�ap).
• If x mod 6 = 3 (y mod 6 = 2), then Mx |� �ap (My |� �ap). Note that for such an x (y), chain

(x, y) is bisimilar to model (2x− (y+1), y) ((x, 2y−x+1)) via bisimulation {(x+k, x−k −1) |
0 ≤ k ≤ y − x} ({(y + k + 1, y − k) | 0 ≤ k ≤ y − x}). See Figure 6 for an example.
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FIGURE 7. [1, 2]-Models.

FIGURE 8. [0, 4]-Models.

FIGURE 9. The only chain of type [0, 2] up to bisimulation (wavy arrows).

• If x mod 6 = 4 (y mod 6 = 1), then Mx |� �b¬p (My |� �b¬p).
• If x mod 6 = 5 (y mod 6 = 0), then Mx |� �a�bp (My |� �a�bp).
• If x mod 6 = 0 (y mod 6 = 5), then Mx |� �bp (My |� �bp). Note that for such an x (y), chain

(x, y) is bisimilar to model (2x− (y+1), y) ((x, 2y−x+1)) via bisimulation {(x+k, x−k −1) |
0 ≤ k ≤ y − x} ({(y + k + 1, y − k) | 0 ≤ k ≤ y − x}). See Figure 6.

Therefore, we can describe the type of a chain (x, y) as the pair [x mod 6, y mod 6].

In our proof, we are primarily interested in models of types [1, 2], [0, 4] and [0, 2], and their
examples are depicted in Figures 7– 9. We also note that models with ‘unbroken’ c-relations are all
bismilar to a [0, 2]-chain (see Figure 9).

DEFINITION 12 (Terminal state).
Given a [1, 2]- or [0, 4]-chain M , state x of the model is called terminal, if Mx |� Ω , where Ω :=
�a¬p.

In Figures 7 and 8, the terminal state is the leftmost and rightmost states, respectively. Note that
in such models, there is only one terminal state.

In the next section, we use terminal states to define a property expressible in GAL (but not in
CAL). Moreover, terminal states may be used to target other states in the model in order to ‘cut’
chains. For example, to specify a state that is exactly three steps from the Ω-state, we can use the
formula:

Ω + 3 := ♦b♦a♦bΩ ∧ �a�b�a¬Ω .

See Figure 10 for representation of the formula.



The expressivity of quantified group announcements 1137

FIGURE 10. Removing states from a model using Ω .

FIGURE 11. Mida and Midb.

In the example, if agent b announces, for instance �b¬(Ω + 3), the updated model will be the
one without the b-link with the Ω + 3-state (squared). A similar announcement �a¬(Ω + 3) can be
made by agent a, and group {a, b} can cut any a- and b-links in models with terminal states.

Now let us consider non-terminal rightmost and leftmost states in [1, 2]- and [1, 4]-chains. They
are presented in Figure 11. In Definition 11, we pointed out that no epistemic formula can distinguish
these states from n-bisimilar ones in larger models. In other words, in order to specify such states, we
should refer to the terminal one. Epistemic formulas, however, have a finite size, and hence formulas
that refer to the terminal state are true only in chains of some depth, and we can always find a larger
chain of the same type such that any given epistemic formula that was true in the smaller model will
be false in the greater one.

Therefore, we use formulas of GAL to describe these non-terminal states, and we call these
formulas Mida and Midb. The former is defined as

Mida := �ap ∧ [A](♦b¬p → �a♦b¬p),

and it holds in the rightmost states of [1, 2]-models. The latter is defined as

Midb := �bp ∧ [A](♦a¬p → �b♦a¬p),

and it holds in the leftmost states of [0, 4]-models.

7 Groups versus coalitions

In this section, we define a property of [1, 2]-chains expressible in GAL (Section 7.1) and show that
it is impossible to capture that property in CAL (Section 7.2).

7.1 What GAL can express

We start this section with formulas that are valid on a certain class of chain models. First,

T(0, 2) := �a�b(¬p → [A]((♦ap ∧ ♦bp) → �a�b¬(�ap ∧ �bp)))

distinguishes [0, 2]-models, as there is no announcement from any agent that can make a and b know
p without removing all ¬p states.
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FIGURE 12. A (1, 8)-model, where s = 7, and (1, 8)s is an a-model.

Formulas for [1, 2]- and [0, 4]-models are as follows:

T(1, 2) := ¬T(0, 2) ∧ [�b¬Ω]T(0, 2) ∧ [¬Midb ∧ �b¬Ω]T(0, 2),

T(0, 4) := ¬T(0, 2) ∧ [�b¬Ω]T(0, 2) ∧ [¬Mida ∧ �b¬Ω]T(0, 2).

Intuitively, they mean that [1, 2]- and [0, 4]-chains are not bisimilar to [0, 2]-chains (first conjunct),
removing the link with the terminal state makes them bisimilar to a [0, 2]-chain (second conjunct),
and they differ between each other in extreme non-terminal states described by Mida and Midb (third
conjunct). Note that group announcement operators appear only in T(0, 2), Mida and Midb, and none
of these formulas mention agent c.

The actual property we are interested in applies to pointed models. Given a pointed model (l, r)s
of type [1, 2], is the terminal node in the a direction from s ((l, r)s is an a-model), or the b direction
((l, r)s is a b-model)? See Figure 12 for a representation of this problem.

We show that GAL can express whether a given pointed model is an a- or b-model.
The formula that expresses the property of Ms being a b-model is

b : Ω =
∧

⎛
⎝

�ap → 〈{c}〉(Mida ∧ T(1, 2))

¬p → �a(p → 〈{c}〉(Midb ∧ T(0, 4)))

�bp → [{c}](Midb → ¬T(0, 4))

⎞
⎠ .

Formula a : Ω can be obtained by swapping subscripts a and b, and formulas T(1, 2) and T(0, 4)

in b : Ω:

a : Ω =
∧

⎛
⎝

�bp → 〈{c}〉(Midb ∧ T(0, 4))

¬p → �b(p → 〈{c}〉(Mida ∧ T(1, 2)))

�ap → [{c}](Mida → ¬T(1, 2))

⎞
⎠ .

We sketch a proof of correctness of formula a : Ω .

LEMMA 1
Let sets MA and MB of all a and b pointed [1, 2]-chains be given. Then Ms |� a : Ω for all
Ms ∈ MA and Nt �|� a : Ω for all Nt ∈ MB.

PROOF. The reader is encouraged to use figures from the previous section for reference. Let Ms |�
a : Ω for some [1, 2]-chain Ms. Since no conjunction of any two formulas �bp, ¬p or �ap can be
true in a pointed chain, we have that either Ms |� �bp, or Ms |� ¬p, or Ms |� �ap.

Case �bp. Let Ms |� �bp. By the construction of chain models, this means that b cannot
distinguish two p-states in two adjacent c-equivalence classes, and a considers ¬p possible in the
current c-equivalence class. Hence, c can cut b’s relation making the current state a Midb state. Note
that the terminal state remains intact, and thus we have that T(0, 4) holds in the updated model. This
means that Ms |� 〈{c}〉(Midb ∧ T(0, 4)).
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Assume that Nt |� �bp. As Nt is a b : Ω-model, every cut by c either cuts the b-relation and
hence cuts the path to the terminal state, or does not satisfy Midb (c cannot make the current state to
be extreme). Therefore, Nt |� [{c}](¬Midb ∨ ¬T(0, 4)).

Case ¬p. Let Ms |� ¬p and Mu |� p for some t such that s ∼b u. By the construction of chain
models, this means that a cannot distinguish two p-states in two adjacent c-equivalence classes, and
b considers ¬p possible in the current c-equivalence class. Hence, c can cut a’s relation making
the current state t a Mida state. Note that the terminal state remains intact, and thus we have that
T(1, 2) holds in the updated model. This means that Mu |� p ∧ 〈{c}〉(Mida ∧ T(1, 2)) for some
s ∼b u. We can make the latter formula less strict so that it holds in ¬p states as well: Mu |� p →
〈{c}〉(Mida ∧ T(1, 2)). By the construction of chains, there are only two states in b-relation with the
current one: a p-state and a ¬p-state. Thus, Ms |� �b(p → 〈{c}〉(Mida ∧ T(1, 2))), and we finally
have that Ms |� ¬p → �b(p → 〈{c}〉(Mida ∧ T(1, 2))).

Assume that Nt |� ¬p and Nv |� p for some v such that t ∼b v. As Nt is a b-model, Nv is
an a- model. So, every cut by c either cuts the a-relation and hence cuts the path to the terminal
state, or does not satisfy Mida (c cannot make the current state to be extreme). Therefore, Nv |�
[{c}](¬Mida ∨ ¬T(1, 2)).

Case �ap. Let Ms |� �ap. By the construction of chain models, this means that a cannot
distinguish two p-states in two c-equivalence classes, and b considers ¬p possible in the current
c-equivalence class. Hence, if c cuts a-relation making Mida true, she also makes the terminal
state inaccessible from the current one. On the other hand, if the terminal state is still accessible
from the current state, then in this case, the current state does not satisfy Mida. This means that
Ms |� [{c}](Mida → T(1, 2)).

Assume that Nt |� ��ap. As Nt is a b-model, c has a cut such that Mida and T(1, 2) holds. Such
a cut ‘removes’ all c-equivalence classes to the right of the current state and makes the current state
the rightmost state in the updated model. Therefore, Nt |� ¬[{c}](¬Mida ∨ ¬T(1, 2)). �

7.2 What CAL cannot express

In this section, we show that no CAL formula can capture the property of a pointed model ‘being an
a-model’.

An intuition behind the proof is that CAL operators require all agents announce their knowledge
formulas simultaneously. For our chain models, intersection of agents’ relations is an identity, and
hence if it is possible to force some configuration of an a-model, then agents together, whether in
the same coalition, or divided, can replicate the same configuration in a b-model. Contrast this to
formula a : Ω in the previous section. The only agent that makes any announcements is c, and
her relation is not discerning enough to force isomorphic submodels of some a- and b-models. If c
preserves the terminal state in one class of models, she cannot replicate this announcement in the
other class such that the resulting updated models are isomorphic (c cannot cut her own equivalence
class to make Ω true in the opposite direction).

LEMMA 2
Let sets MA and MB of all a and b pointed [1, 2]-chains be given. Then, for all Ψ ∈ CAL, if
Ms |� Ψ for all Ms ∈ MA, then there exists some Nt ∈ MB such that Nt |� Ψ .

PROOF. Suppose, contrary to our claim, that for all Ms ∈ MA, there is a formula Ψ ∈ CAL such that
Ms |� Ψ and for all Nt ∈ MB it holds that Nt �|� Ψ . The proof proceeds by playing simultaneous
formula games over all pointed chains.
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We also assume that models in both sets are sufficiently large: for |Ψ | = n, we have that models
in sets MA and MB are 2n-bisimilar to each other. This is to ensure that no epistemic formula can
distinguish any two models.

Let us partition the sets of games into GA and GB where player ∃ will have a winning strategy for
games in GA, and player ∀ will have a winning strategy for games in GB.

For all moves in games except moves via coalition announcements, we proceed as follows. If it
is an ∃-player move, we consider the games played over MA and play the move for the ∃-player’s
winning strategy on all models in MA. We also play the corresponding move over MB: in the case
of disjunction, we choose the same disjunct, and in the case of ♦a-move in 2k-bisimilar states, we
consider moves equivalent if the chosen states are 2k−1-bisimilar. If it is a ∀-player move, we play
the move that agrees with the ∀ winning strategy in GB games and copy this move in the GA games.
Thus, we are playing two winning strategies against one another, and the game ends if either ∃-player
or ∀-player cannot move. However, this cannot happen because all pointed models are 2n-bisimilar.

Therefore, we need show that we can maintain the following invariant: after step i of the formula
game, there are infinitely many models of the same type in MA and MB that are still 2n−i-bisimilar.
In the final step of the game, we end up with some propositional variable on which both classes
of models agree. Hence, we have a contradiction since both players have a winning strategy by the
assumption.

Cases of boolean and epistemic formulas are trivial.
Case [χ ]ψ . Assume that for some Ms ∈ MA, �Ms, [χ ]ψ� is a winning position for the ∃-player.

This means that there is a subset X such that �Ms, X , χ , ψ� is also a winning position. Let for some
Nt ∈ MB such that Ms and Nt are 2n−i-bisimilar, �χ�N = Y . We consider two cases.

First, if Mχ
s is 2n−i−1 bisimilar to Nχ

t , then ∃ can play the corresponding move �Nt, Y , χ , ψ� in
GB, and the invariant continues to hold.

In the second case, if Mχ
s and Nχ

t are not 2n−i−1-bisimilar, there is some u ∈ SM and some v ∈ SN

such that Mu and Nv disagree on the interpretation of χ , and s and t are within the same 2n−i−1 steps
from s and t, respectively. Suppose Mu |� χ and Nv �|� χ . In this case, the ∃-player must still play
the corresponding move �Nt, Y , χ , ψ� in GB, as any alternative to Y would allow the ∀-player to have
a winning strategy. The universal player, however, can respond with the moves �Mu, χ� in GA and
�Nv, t(¬χ)� in GB. According to Proposition 4, the ∃-player has a winning strategy in �Nv, t(¬χ)�,
and thus the ∀-player has a winning strategy in �Nv, χ�. Since u and v are the same number of steps
away from s and t, we have that Mu is an a-model if and only if Nv is a b-model. Moreover, since u
and v are within 2n−i−1 steps and the original models Ms and Nt are 2n−i-bisimilar, it follows that
Mu and Nv are 2n−i−1-bisimilar. Hence, the invariant holds for those models and the proof proceeds
in Mu and Nv.

So, we must reach coalition operators. Note that at this point games may cease to be over
[1, 2]-models since prior public announcements may have cut chains in various ways. However,
this does not affect the proof as we are interested in agents’ announcements rather than in chain
types. Moreover, for the coalition cases, we do not have to keep the invariant since all these
cases lead straight to a contradiction. Moreover, without loss of generality, we assume that agents’
announcements are in NNF.

We will consider only existential coalition announcement operators 〈[G]〉ψ , and the cor-
responding results for [〈G〉]ψ can be obtained by swapping A to B and the ∃-player to
the ∀-player.

Case 〈[{a, b, c}]〉ψ . Let Ms |� 〈[{a, b, c}]〉ψ . According to Definition 9, there is a relativized group
announcement by a, b and c such that �Ms, [∅, ψ{a,b,c}]ψ� is a winning position for the ∃-player. For
this node, there is only one possible ∀-step: �Ms, [ψ{a,b,c}]ψ�. Since MB is infinite, there is a model
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FIGURE 13. An a-model (above) and a b-model (below).

Nt and an announcement χ{a,b,c} by a, b and c, such that M
ψ{a,b,c}
s is isomorphic to N

χ{a,b,c}
t (see Figure

13 for an example).
Indeed, consider set Sψ{a,b,c} . We can enumerate states in the set from left to right. Next, let N0 =

(W 0, ∼0, V 0) be a model such that S0 = Sψ{a,b,c} , sn+1−i ∈ V 0(p) if and only if si ∈ V(p) and

sn+1−i ∼0
a sn−i if and only if si ∼a si+1 for all a ∈ A. In other words, we flip model M

ψ{a,b,c}
s from

left to right. Note that agents’ relations are also f lipped: if state w was an a-state, it would become
a b-state. Moreover, we can always find a b-model Nt that has N0 as a submodel. Since agents can
together enforce any configuration of Nt, they have a joint announcement χ{a,b,c} such that N

χ{a,b,c}
t is

isomorphic to M
ψ{a,b,c}
s , where N

χ{a,b,c}
t = N0. The same argument can be made in other cases of the

proof.
Thus, �Nt, [χ{a,b,c}]ψ� (and hence �Nt, [∅, χ{a,b,c}]ψ�) is a winning position for the ∃-player, and

she has a winning strategy for a model from MB. A contradiction. Note that since agents a, b and c
can together enforce any configuration of a model (up to bisimulation), the argument holds for the
case of arbitrary public announcements.

Case 〈[{a, b}]〉ψ . Let Ms |� 〈[{a, b}]〉ψ . This means that �Ms, 〈[{a, b}]〉ψ� is a winning position
for the ∃-player. Therefore, �Ms, [{c}, ψ{a,b}]ψ is also a winning node for the player. This means
that whichever announcement ψ{c} by agent c the ∀-player chooses, the ∃-player is still in a winning
position �Ms, ψ{a,b}∧[ψ{a,b} ∧ ψ{c}]ψ�. There is a model Nt ∈ MB such that for some announcement

χ{a,b} by agents a and b it holds that M
ψ{a,b}
s is isomorphic to N

χ{a,b}
t , and c has an isomorphic set of

possible counter-announcements (see Figure 13 for an example). This is due to the fact that a and
b can together force any configuration of a model. Hence, �Nt, [{c}, χ{a,b}]ψ� is also a winning
position for the existential player, and this leads to a contradiction.

Case 〈[{a, c}]〉ψ . Let Ms |� 〈[{a, c}]〉ψ . This means that �Ms, 〈[{a, c}]〉ψ� is a winning position
for the ∃-player. Therefore, �Ms, [{b}, ψ{a,c}]ψ is also a winning node for the player. This means
that whichever announcement ψ{b} by agent b the ∀-player chooses, the ∃-player is still in a winning
position �Ms, ψ{a,c} ∧ [ψ{a,c} ∧ ψ{b}]ψ�. Consider a model Nt ∈ MB. If there is some announcement

χ{a,c} by agents a and c such that M
ψ{a,c}
s and N

χ{a,c}
t are isomorphic, then, by the similar reasoning

as in the previous case, we have a contradiction. See Figure 14, where counter-announcements by b
are depicted by dashed rectangles.

Note that {a, c} sometimes cannot make such an announcement because the coalition cannot cut
a’s relations that are within c-equivalence classes, and M

ψ{a,c}
s may contain some extreme state.

In other words, this a’s relations that a and c cannot cut may have been cut by a previous public
announcement (and hence, the corresponding state is the rightmost or the leftmost one). Since our
chosen a-model is large enough even after being trimmed by public announcements (i.e. because the
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FIGURE 14. An a-model (above) and a b-model (below).

FIGURE 15. An a-model (above) and a b-model (below).

invariant holds), there is an a-relation in M
ψ{a,c}
s between two c-equivalence classes that b can cut.

Moreover, a submodel M
ψ ′{a,c}
s of M

ψ{a,c}
s that is restricted by that b-cut can also be forced by {a, c}

(because c can cut this relation as well). Thus, replicating the corresponding move in Nt allows the
existential player to have a winning strategy in a b-model no matter what agent b announces at the
same time, and in this case, the set of responses by b will be a subset of those she had in the a-model.
This means that �Nt, [{b}, χ{a,c}]ψ) is also a winning node for the ∃-player. Hence, a contradiction.
For an example, see Figure 15, where the set of counter-announcements by b in a b-model is a subset
of the set of counter-announcements by b in an a-model.

Case 〈[{b, c}]〉ψ is similar to the previous one.

Case 〈[{a}]〉ψ . Similar to the case 〈[{a, c}]〉ψ . If a cannot make Nt isomorphic to M
ψ{a}
s , then

it is enough to cut a b-relation between two c-equivalence classes and ‘announce’ such a subset

of M
ψ{a}
s . In this case, it is still an a-announcement in the b-model, as well as it is one of the

counter-announcements by {b, c} in the a-model (c cuts b’s relation). Hence, the set of counter-
announcements in the b-model is the subset of counter-announcements in the a-model.

Cases 〈[{b}]〉ψ and 〈[{c}]〉ψ are as the previous one.
This completes the proof. �
Combining Lemmas 1 and 2, we obtain the final result.
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THEOREM 3
GAL �� CAL.

In case 〈[{a, b, c}]〉ψ of the proof agents a, b and c can together force any configuration of a
given model. This is due to the fact that the intersection of the corresponding relations is an identity
relation. Hence, for chain models 〈[{a, b, c}]〉ψ is equivalent to 〈! 〉ψ (and [〈{a, b, c}〉]ψ is equivalent
to [! ]ψ), and we have the following result.

COROLLARY 1
GAL �� APAL.

That GAL �� APAL was conjectured in [2], where it was also shown that APAL �� GAL. Now
we combine these two results.

THEOREM 4
APAL and GAL are incomparable.

8 Agents who remember how to play

Our counterexample to the validity of 〈[G]〉ϕ ↔ 〈G〉[G]ϕ in Proposition 1 relied on the fact that
after a group announcement by G, G lose their ability to force submodels they were able to force in
the initial situation. This is due to the fact that the G-announcement made some states of the model
bisimilar. Since G do not ‘remember’ some of the states they considered possible in the original
model, G lose their strategies in the current model.

The authors of [9, 10] analyse a similar situation arguing that the agents forget what was true after
any non-trivial update. To mitigate this, they propose extensions of APAL and GAL with copies of
initial models for each epistemic model. Moreover, they extend the syntax of APAL and GAL with
operators that allow access to the initial model and call the new logics arbitrary public announcement
logic with memory (APALM) and group announcement logic with memory (GALM). We similarly
define coalition announcement logic with memory (CALM). The main result of [10] is a complete RE
axiomatization of GALM [10, Theorem 25]. The authors do not consider CALM and do not present
expressivity results for these logics. The language and semantics of GALM in our contribution and
[10] are the same.2

DEFINITION 13
Given a countable set of propositional variables P, and a finite set of agents A, the languages of
APALM, GALM and CALM are defined by the following grammars:

APALM � ϕ := � | p | 0 | ϕ0 | ¬ϕ | ϕ ∧ ϕ | �aϕ | Uϕ | [ψ]ϕ | [! ]ϕ
GALM � ϕ := � | p | 0 | ϕ0 | ¬ϕ | ϕ ∧ ϕ | �aϕ | Uϕ | [ψ]ϕ | [G]ϕ
CALM � ϕ := � | p | 0 | ϕ0 | ¬ϕ | ϕ ∧ ϕ | �aϕ | Uϕ | [ψ]ϕ | [〈G〉]ϕ,

where p ∈ P, a ∈ A and ψ is a formula without quantifiers. We also refer to the fragment without
quantifiers and public announcements as ELM.

2One of the authors gave a talk at DaLí 2020 with Alexandru Baltag in the audience, after which they had a lively
discussion on the possibility of defining something like GALM along the lines of APALM [9]. Then they each went their own
way. Only much later, after submission, both groups of authors found out about each other’s GALM work and communicated
on their respective results.
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DEFINITION 14
An epistemic model with memory is a tuple M = (S, S0, ∼, V),3 where S ⊆ S0 is the initial domain,
and everything else is the same as in an ordinary epistemic model. For M , the corresponding initial
model is M0 = (S0, S0, ∼, V).

Now, in the extended languages, formulas with 0 have access to the initial model. Moreover, agents
can announce such formulas.

DEFINITION 15
Let an epistemic model with memory M = (S, S0, ∼, V) be given. The definition of semantics is an
extension of the one for the logics without memory. The semantics4 of APALM, GALM and CALM
are as usual with the following exceptions:

Ms |� 0 iff S = S0

Ms |� ϕ0 iff M0
s |� ϕ

Ms |� Uϕ iff Mt |� ϕ for all t ∈ S
Ms |� [! ]ϕ iff Ms |� [ψ]ϕ for all ψ ∈ ELM
Ms |� [G]ϕ iff Ms |� [ψG]ϕ for all ψG ∈ ELMG

Ms |� [〈G〉]ϕ iff Ms |� ψG → 〈ψG ∧ χG〉ϕ for all ψG ∈ ELMG and some χG ∈ ELMG,

where ELMG and ELMG are defined similarly to ELG and ELG.

Of course, the set S with the requirement S ⊆ S0 of epistemic models with memory is not
always a definable subset of S0. Hence, a subset of these models is considered. An announcement
model is an epistemic model with memory M = (S, S0, ∼, V) such that S = (S0)ψ for some
quantifier-free ψ .

Let us reconsider the counterexample to the validity of 〈[G]〉ϕ ↔ 〈G〉[G]ϕ from the perspective
of GALM and CALM in Figure 16. Recall that G = {a}, G = {b, c} and ϕ := ♦a�b¬p ∧ ♦a(♦bp ∧
♦b¬p).

It is easy to see that announcement ψ{a} := �a(¬p → ♦bp) of {u′, t′, s, t, u} by a does not make u

and u′, t and t′ bisimilar in the updated model Mψa
s , and hence {b, c} retain their powers. In particular,

b and c can make a subsequent announcement that refers to the initial model, χ{b,c} := �b(♦bp)0 ∧
�c((p → (�bp ∨ ♦c¬p)))0. The resulting model, M

ψ{a},χ{b,c}
s , satisfies ϕ.

Thus, in GALM and CALM, as opposed to GAL and CAL, agents do not lose their strategies after
public announcements. Once they can distinguish a pair of states, they are always able to distinguish
them by referring to the initial model.

Now we give this intuition a formal treatment. In what follows, we will occasionally use validities
of PAL and of GALM. They can be found in [20, Chapter 4] and [10], respectively. In order to show
that 〈G〉[G]ϕ → 〈[G]〉ϕ, let us first show a useful auxiliary proposition.

3We use the same letters for both standard epistemic models and epistemic models with memory because different types
of models never appear in the same context in the paper.

4Again, we use the same symbol |� for both the semantics of APAL, GAL, CAL and their counterparts with memory.
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FIGURE 16. Model Ms and an its updates M
ψ{a}
s and M

ψ{a},χ{b,c}
s , with the current model depicted in

the rounded rectangles.

PROPOSITION 5
�a(�aϕ)0 ↔ (�aϕ)0 is valid.

PROOF. The validity of the formula from left to right follows from the validity of T axiom.
Consider the contrapositive of the other direction: ♦a¬(�aϕ)0 → ¬(�aϕ)0. Using GALM

validity ¬ϕ0 ↔ (¬ϕ)0, we can rewrite the latter as ♦a(♦a¬ϕ)0 → (♦a¬ϕ)0.
Assume that for an arbitrary Ms we have that Ms |� ♦a(♦a¬ϕ)0. By the semantics, this means that

there is t ∈ S such that s ∼a t and Mt |� (♦a¬ϕ)0. The latter is equivalent to M0
t |� ♦a¬ϕ, which in

turn is equivalent to the fact that there is u ∈ S0 such that t ∼a u and M0
u |� ¬ϕ. By the definition

of announcement models, it follows that if s ∈ S, then s ∈ S0. Since ∼a is an equivalence relation,
it follows from s ∼a t and t ∼a u that s ∼a u. Hence, we have M0

s |� ♦a¬ϕ, which is equivalent to
Ms |� (♦a¬ϕ)0 by the semantics. �

From Proposition 5, it follows that if an agent knows some formula in the initial model, then after
any update they will know that they knew the formula.

COROLLARY 2
(�aϕ)0 ∧ ψ ↔ 〈ψ〉�a(�aϕ)0 is valid.

PROOF. Let Ms |� (�aϕ)0 ∧ ψ for some arbitrary Ms. It is a theorem of GALM that ϕ0 ↔ [χ ]ϕ0

for all quantifier-free χ . Thus, Ms |� (�aϕ)0 ∧ ψ is equivalent to Ms |� [ψ](�aϕ)0 ∧ ψ , and then,
by PAL reasoning, to Ms |� 〈ψ〉(�aϕ)0. Finally, the latter is equivalent to Ms |� 〈ψ〉�a(�aϕ)0 by
Proposition 5. �

The next proposition follows from the definition of announcements models. Informally, it states
that we can make the announcement, by which the announcement model is defined, explicit.

PROPOSITION 6
Let Ms = (S, S0, R, V) be an announcement model such that S = (S0)τ for some τ . Then the
following holds:

Ms |� ϕ iff M0
s |� 〈τ 〉ϕ.
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PROPOSITION 7
Let M = (S, S0, R, V) be an announcement model, S = (S0)τ for some τ , θ be a formula and G ⊆ A.
For all χG, there is ψG such that

Ms |� 〈θ〉〈ψG〉ϕ iff Ms |� 〈θ ∧ χG〉ϕ.

PROOF. Assume that for an arbitrary Ms with S = (S0)τ and χG := ∧
i∈G �iψi, we have Ms |�

〈θ ∧ ∧
i∈G �iψi〉ϕ. Consider ψG := ∧

i∈G �i(�i[τ ]ψi)
0. We need to show that

Ms |� 〈θ〉〈
∧
i∈G

�i(�i[τ ]ψi)
0〉ϕ iff Ms |� 〈θ ∧

∧
i∈G

�iψi〉ϕ.

Consider Ms |� 〈θ〉〈∧i∈G �i(�i[τ ]ψi)
0〉ϕ. By Proposition 6, we can rewrite it as

M0
s |� 〈τ 〉〈θ〉〈

∧
i∈G

�i(�i[τ ]ψi)
0〉ϕ,

which is equivalent, by application of 〈ψ〉〈χ〉ϕ ↔ 〈ψ ∧ 〈ψ〉χ〉ϕ twice, to

M0
s |� 〈τ ∧ 〈τ 〉θ ∧ 〈〈τ 〉θ〉

∧
i∈G

�i(�i[τ ]ψi)
0〉ϕ.

By Corollary 2, we get

M0
s |� 〈τ ∧ 〈τ 〉θ ∧

∧
i∈G

(�i[τ ]ψi)
0〉ϕ,

and since the announcement is made in the initial model, we can get rid of zeroes in the
announcement:

M0
s |� 〈τ ∧ 〈τ 〉θ ∧

∧
i∈G

�i[τ ]ψi〉ϕ.

By PAL reasoning (in particular, by validity ψ ∧ �a[ψ]ϕ ↔ 〈ψ〉�aϕ), the latter is equivalent to

M0
s |� 〈〈τ 〉θ ∧ 〈τ 〉

∧
i∈G

�iψi〉ϕ,

and further to

M0
s |� 〈τ 〉〈θ ∧

∧
i∈G

�iψi〉ϕ

by 〈ψ〉χ ∧ 〈ψ〉ϕ ↔ 〈ψ〉(ψ ∧ χ) and 〈ψ〉〈χ〉ϕ ↔ 〈〈ψ〉χ〉ϕ. From the fact that S = (S0)τ by
Proposition 6, we yield

Ms |� 〈θ ∧
∧
i∈G

�iψi〉ϕ.

�
Finally, we are to show that [〈G〉]ϕ ↔ [G]〈G〉ϕ.

PROPOSITION 8
[〈G〉]ϕ ↔ [G]〈G〉ϕ is valid.
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FIGURE 17. Overview of the expressivity results. An arrow from L1 to L2 means L1 � L2. If there
is no symmetric arrow, then L1 < L2. This relation is transitive, and we omit transitive arrows in the
figure. An arrow from L1 to L2 is crossed out, if L1 �� L2. Arrows labelled with the question mark
denote open problems.

PROOF. From left to right. Assume that Ms |� [〈G〉]ϕ for some arbitrary Ms. By the semantics, this
means that ∀ψG, ∃ψG : Ms |� ψG → 〈ψG ∧ ψG〉ϕ. Pick an arbitrary true ψG and the corresponding
ψG. By Proposition 7, there is a χG such that Ms |� 〈ψG〉〈χG〉ϕ, which implies Ms |� [ψG]〈χG〉ϕ.
Since ψG was arbitrary, we can conclude that Ms |� [G]〈G〉ϕ. The other direction was proved in
[25]. �

Having the validity in Proposition 8, it is straightforward to define a translation from formulas of
CALM into equivalent formulas of GALM. Whether there is a translation in the other direction is
an open problem.

COROLLARY 3
CALM � GALM.

9 Conclusion and open questions

The interaction between group and coalition announcements is not trivial. As we showed, the simple
rewriting via 〈[G]〉ϕ ↔ 〈G〉[G]ϕ does not work; the agents may forget that they used to distinguish
certain states and thus lose some of their strategies.

In order to tackle the problem of the relative expressivity of GAL and CAL, we introduced
formula games that employed, apart from the normal formulas of the languages, relativized group
announcements. The latter allowed us to split moves in game that corresponded to coalition
announcements: first, we chose an announcement by a coalition, then we chose an announcement by
the anti-coalition. The games were played on two infinite sets of chain models, and this leads to the
proof of CAL being not at least as expressive as GAL. We get the corresponding result for APAL as
a corollary and, moreover, showed that CAL is not at least as expressive as APAL.

The landscape of the expressivity results of the logics of quantified announcements and the
remaining open questions are shown in Figure 17.

We also argued that agents do not forget their strategies if the access to the initial model is
preserved. In particular, we showed that GALM is at least as expressive as CALM: if agents can
refer to the initial model, then once they are able to distinguish states, they will always be able to do
it (as long as the states are in the current model). Whether GALM is more expressive that CALM is
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an open question. Our proof for GAL and CAL does not extend trivially to the logics with memory,
since in the proof we rely on the fact that chains become bisimilar after being cut certain way. This
cannot be guaranteed in the presence of memory.

Taking into account that all of APAL, GAL and CAL are undecidable [4], finding expressive
decidable fragments is an interesting avenue of further research. One way to go about this is by
restricting the range of quantification. APAL with boolean quantification and its expressivity was
studied in [17]; APAL with the quantification over positive (universal) fragment of EL, wherein the
negation appears only in front of propositional variables, was presented in [18], and the expressivity
of other versions of APAL was discussed in [19].
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FIGURE A.1. Models (from left to right) M {s,t}
s , M {s}

s , M {s,t}
t and M {t}

t .

FIGURE A.2. Formula game for [p]♦a¬p over Ms.

A Examples of formula games

Consider model M and all its pointed submodels in Figure A.1 as an example. The set of pointed
submodels of M is {M {s,t}

s , M {s}
s , M {s,t}

t , M {t}
t }, and agent b’s relation is identity. The formula game

for [p]♦a¬p is presented in Figure A.2, and the formula game for 〈[{b}]〉�ap is partially shown in
Figure A.3.

We have that Ms �|� [p]♦a¬p and Ms |� 〈[{b}]〉�ap. Indeed, in Figure A.2 the ∃-player does not
have a winning strategy, and in Figure A.3, she does (noting that none of a’s announcements modify
the original model).
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FIGURE A.3. Formula game for 〈[{b}]〉�ap over Ms.
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