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Abstract
Arbitrary public announcement logic (APAL) is a logic of change of knowledge with modalities representing quantification
over announcements. We present two rather different versions of APAL wherein this quantification is restricted to formulas
only containing a subset of all propositional variables: SAPAL and SCAPAL. Such restrictions are relevant in principle for the
specification of multi-agent system dynamics. We also present another version of APAL, quantifying over all announcements
implied by or implying a given formula: IPAL. We then determine the relative expressivity of all these logics and APAL.
We also present complete axiomatizations of SAPAL and SCAPAL and show undecidability of satisfiability for all logics
involved, by arguments nearly identical to those for APAL. We show that the IPAL quantifier, motivated by the satisfaction
clause for substructural implication, yields a new substructural dynamic consequence relation.

Keywords: APAL, quantification over announcements, substructural logic, expressivity

1 Introduction

The modal logic of knowledge was originally proposed to give a relational semantics for the
perceived properties of knowledge, such as that what you know is true, and that you know what you
know, and to contrast this with the properties of other epistemic notions such as belief [27]. Already
in [27] the analysis of paradoxical phenomena that you cannot be informed of factual ignorance
while ‘losing’ that ignorance, the so-called Moorean phenomena [33], played an important role.
On the heels of the logic of (single agent) knowledge came the multi-agent logics of knowledge,
wherein similar phenomena are not so paradoxical: there is no issue with my knowledge of your
ignorance. This led on the one hand to the development of group epistemic notions such as common
knowledge [6, 32] and distributed knowledge [26], topics that we will bypass in this contribution. On
the other hand this led to increased interest in the analysis of multiple agents informing each other of
their ignorance and knowledge, often inspired by logic puzzles [32, 34]. This culminated in Plaza’s
public announcement logic (PAL) [36], wherein such informative actions became full members of
the logical language besides the knowledge modalities; parallel developments of dynamic but not
epistemic logics of information change are [43, 50].
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The logic PAL contains a dynamic operator representing the consequences of information change
that is similarly observed by all agents, the so-called public (and truthful) announcement. We let [ψ]ϕ
stand for ‘after truthful public announcement of ψ , ϕ (is true)’. Every PAL formula is equivalent to
a formula without public announcements, so that PAL is as expressive as epistemic logic EL (a.k.a.
the logic S5) [36].

From PAL there were various directions for further generalization. One could consider public
announcements in the presence of group epistemic operators such as common knowledge, or non-
public information change such as private or secret announcements to some agents while other agents
do not or only partially observe that. Both were simultaneously realized in action model logic [10];
parallel, now lesser known, developments are [23].

A different direction of generalizing PAL is to consider quantifying over announcements.
Arbitrary public announcement logic APAL was proposed in [8] and contains a construct [! ]ϕ
standing for ‘after any truthful public announcement, ϕ (is true)’, i.e. for all ψ , [ψ]ϕ. In order to
avoid circularity, the APAL quantifier is only over announcements not containing [! ] modalities.
There is an infinitary (not RE) axiomatization for the logic [9], where an open question remains
whether there is a finitary (RE) axiomatization. APAL is undecidable [20], and the complexity of
model checking is PSPACE-complete [1]. There are versions of APAL with finitary axiomatizations
or decidable satisfiability problems [11, 17, 46], or that model aspects of agency [1, 2, 22]. APAL
is more expressive than PAL [8]. The relative expressivity of versions of APAL is rather intricate,
and most relevant in view of potential applications. For example, group announcement logic GAL
and APAL are incomparable in expressivity [22], and in GAL we can formalize goal reachability in
finite two-principal security protocols [1].

In this contribution we investigate some novel versions of APAL. If we quantify over announce-
ments only using atoms in subsets Q ⊆ P we obtain the logic SAPAL, and if these subsets are
required to be finite we get FSAPAL. If we quantify over announcements only using atoms occurring
in the formula under the scope of the quantifier, we obtain the logic SCAPAL. If we quantify over
announcements implying a given formula ψ or implied by a given formula ψ and if such ψ may
also contain quantifiers we obtain logic QIPAL and if they are not allowed to contain quantifiers we
obtain IPAL.

Note that there is a strong, but not well-known, relation between quantification over public
announcements and epistemic planning [15]. In the latter, we wish to satisfy some epistemic goal ϕ

by finding a sequence of actions, which could be public announcements, successively transforming
multi-agent models for the system until ultimately leading to a model satisfying goal ϕ. In the former,
we wish to satisfy 〈! 〉ϕ (for ‘there is an announcement, or a sequence of announcements, after which
ϕ’) by finding a sequence of announcements (successively transforming multi-agent models) after
which ϕ. In both, undecidability can only be tamed by restricting what can be announced. The way
to obtain decidability in epistemic planning is often to restrict the number of actions [5, 16]. This
goes beyond merely restricting the number of atoms. Such an action may have a precondition of
certain modal depth. But therefore, we no longer quantify over arbitrary modal depth as in the APAL
versions considered here, but over bounded modal depth.

The common factor in each of the APAL variants considered in this paper is that they restrict
the domain of quantification to certain formulas that are considered relevant or permissible in
some context. In APAL, [! ]ϕ means that ϕ holds after any truthful public announcement, including
announcements that are completely irrelevant to the matter at hand. While it may be fun to read about
Sherlock Holmes determining the identity of the killer based on, say, the weather in Berlin three days
ago, such (seemingly) irrelevant announcements are not very useful in practice. Each of the variants
under consideration here tries to solve this ‘irrelevant announcements’ problem in some way.
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For SAPAL and FSAPAL, whenever we use an arbitrary announcement operator, we need to
specify the relevant domain of discourse Q ⊆ P for that operator. We then consider only those
announcements that are considered relevant by virtue of pertaining to this domain of discourse.
Think of an expert witness who is only allowed to opine on matters within their area of expertise.
For a more technical example, suppose that we want to allow users to query a database in limited
ways, while keeping a certain fact p secret. One way to do this is to allow queries only about domain
Q. We can then verify that p remains unknown after the answer to the query is given by checking
that [Q](¬Kp ∧ ¬K¬p) holds.

More generally, when modelling dynamics of a multi-agent system it is often the case that the
vocabulary is finite. In particular, often only a finite number of atomic propositions are considered
relevant for each given subtask of a problem to solve, where this vocabulary might vary between
subtasks. In such cases, FSAPAL might be more suitable modelling tools than ‘generic’ APAL. For
example, consider distributed systems wherein agents may communicate about their own local state
value [29]. Similarly, in gossip protocols [28], the protocols wherein agents merely exchange their
secrets are less powerful than those wherein they are permitted to exchange other information, such
as who they previously communicated with [18, 25].

In SCAPAL we also restrict announcements to some domain of discourse, but instead of adding
this domain as a parameter to the operator, we consider a propositional variable p to be in the domain
of discourse if it occurs inside the scope of the announcement operator. This is not always a good
idea; in the database query example above, the secret p should definitely not be in the domain Q
of queries. The assumption that variables are relevant because they appear in the scope does make
sense in a conversational context, however, if we are debating the truth of ϕ, then announcements
regarding the truth of any variable that occurs in ϕ are clearly relevant.

In IPAL, we do not restrict the domain of discourse, but instead limit (from below or above)
how informative the announcement must be. An announcement [ψ] eliminates all ¬ψ states from
consideration. As such, if χ is implied by ψ , and therefore holds at least on every state where
ψ holds, then [χ ] is at most as informative as [ψ]. Likewise, if ξ implies ψ then [ξ ] is at least
as informative as [ψ]. Like SAPAL and FAPAL, this has applications in security protocols, where
communications by principals need to satisfy information goals towards other principals as well as
safety goals against eavesdroppers and other intruders [31, 37]. In such protocols, we may wonder
whether it is possible to be at least as informative as ψ while not giving eavesdropper e knowledge
of p, represented by the formula 〈ψ↓〉(¬Kep∧¬Ke¬p), or whether every communication at most as
informative as ψ is safe, represented by the formula [ψ↑](¬Kep ∧ ¬Ke¬p).

IPAL can also be useful in situations where disclosing certain information is required (by law, by
company policy or simply by social obligation), but disclosing more than the strict requirement is
possible. Or, of course, in situations where disclosing certain information is forbidden.

For IPAL we were additionally motivated by the dynamic consequence relation based on PAL pro-
posed in [44], and how the IPAL quantification (that like the PAL announcement is parametrized with
a formula) can be seen as the condition for a substructural implication. See Section 7 for more details.

In addition to these applications, we were also originally motivated by the search for ‘tameable’
versions of APAL. Ideally, a ‘tame’ version of APAL would be decidable. Or, if not decidable, we
could hope for a logic that is at least recursively enumerable (RE), and that therefore admits a finitary
axiomatization. The reason that APAL is so poorly behaved is that its distinctive [! ] operator is
extremely powerful. The corresponding operators [Q] and [⊆] in FSAPAL and SCAPAL intuitively
seem less powerful, suggesting that these logics might be tameable. Unfortunately, this turns out
not to be the case. A pretty minor modification to the undecidability proof for APAL shows that
FSAPAL and SCAPAL are undecidable, see Section 5. Even so, we hoped that the smaller domain of
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FIGURE 1. Expressivity hierarchy of logics presented in this work. An arrow means larger
expressivity. Assume transitivity. Absence of an arrow means incomparability.

quantification would allow for a finitary axiomatization. While the domain of quantification for the
arbitrary announcement operators in FSAPAL and SCAPAL is still infinite, and naive introduction
rules for [Q] and [⊆] are therefore infinitary, we had hoped to find introduction axioms for [Q] and
[⊆] using a finite (but unbounded) subset of the domain. There, too, we were frustrated, however;
while we do present axiomatizations in Section 6 these use an infinitary introduction rule, similar to
the corresponding rule in APAL.

In fact, even the intuition that [Q] and [⊆] are less powerful than [! ] turns out to be only partially
true. The domain of quantification of [Q] and [⊆] is smaller than that of [! ], and, as a result, there are
properties that can be expressed in APAL but not in FSAPAL or SCAPAL. But the smaller domain
of quantification can also be used to express things in FSAPAL and SCAPAL that are unexpressible
in APAL, see Section 4. So the expressive power of FSAPAL and SCAPAL is incomparable to, as
opposed to strictly lower than, that of APAL.

With regard to SAPAL and IPAL, since it is possible to embed APAL in either of these logics, they
are trivially at least as expressive as APAL, and their satisfiability problem is at least as hard as that
of APAL. In Section 4 we show that both are in fact strictly more expressive than APAL.

So we did not strike gold in our search for tameable variants of APAL. Still, keeping in mind the
applications discussed above, we argue that these logics are interesting in their own right. The expres-
sivity results, which we consider the principal focus of our contribution, give a thorough overview of
how these various attempts to limit the arbitrary announcement quantifier to some kind of relevant
domain compare to each other. These results we consider of interest and non-trivial, so perhaps we
did strike silver. Furthermore, that FSAPAL and SCAPAL are not tameable is a result in itself.

In Section 2 we introduce the syntax and semantics. In Section 3 we prove some modal properties
of these quantifiers. Section 4 determines the expressivity hierarchy for the reported logics. It is
shown in Figure 1. Let ≺ mean ‘strictly less expressive’ and 	 ‘incomparable’, then the results are
that PAL is strictly less expressive than any of the logics with quantifiers, and that SCAPAL ≺
FSAPAL, APAL 	 SCAPAL, APAL 	 FSAPAL, IPAL 	 SCAPAL, IPAL 	 FSAPAL and APAL
≺ IPAL. Section 5 shows the undecidability of satisfiability of our APAL versions, and Section 6
provides complete axiomatizations for SAPAL and SCAPAL; these are similar to that for APAL. We
conclude with Section 7 reinterpreting dynamic consequence in the IPAL setting.

2 Syntax and semantics: SAPAL, SCAPAL, QIPAL

Throughout this contribution, let a countable set P of propositional atoms and a finite set A of agents
be given.

DEFINITION 2.1
(Language).
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The logical language L is defined inductively as:

ϕ ::= 
 | p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | [! ]ϕ | [Q]ϕ | [⊆]ϕ | [ϕ↓]ϕ | [ϕ↑]ϕ

where p ∈ P, a ∈ A and Q ⊆ P. The propositional sublanguage is LPL, with additionally the
modalities Ka we get the epistemic formulas LEL, with additionally the construct [ϕ]ϕ it is LPAL, and
adding one of the quantifiers [! ], [Q], [⊆], [ϕ↓]ψ and [ϕ↑]ψ we obtain, respectively, LAPAL, LSAPAL
and LSCAPAL, LQIPAL↓ and LQIPAL↑ . Adding both [ϕ↓]ψ and [ϕ↑]ψ we obtain LQIPAL, and if the ϕ

in [ϕ↓]ψ and [ϕ↑]ψ is restricted to LPAL, we get LIPAL. If the Q in [Q]ϕ are (always) finite we get
LFSAPAL.

The meaning of all constructs will be explained after defining the semantics. The dual modalities
for [! ], [Q], [⊆], [ϕ↓], and [ϕ↑] are, respectively, 〈! 〉, 〈Q〉, 〈⊆〉, 〈ϕ↓〉, and 〈ϕ↑〉. Instead of ϕ ∈ LX we
also say that ϕ is an X formula. For any language L, L|Q is the sublanguage only containing atoms
in Q ⊆ P. Given ϕ ∈ L, P(ϕ) denotes the set of atoms occurring in ϕ. For [{p1, . . . , pn}]ϕ we may
write [p1 . . . pn]ϕ. The modal depth d(ϕ) of a formula is the maximum stack of epistemic modalities;
it is defined as: d(⊥) = d(p) = 0, d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}, d(Kaϕ) = d(ϕ) + 1, d([ϕ]ψ) =
d([ϕ↓]ψ) = d([ϕ↑]ψ) = d(ϕ)+ d(ψ), and d([! ]ϕ) = d([⊆]ϕ) = d([Q]ϕ) = d(¬ϕ) = d(ϕ).

We let Γ , Σ and Δ denote finite sequences of formulas, where (Γ , Δ) denotes the concatenation
of sequences (the parentheses are often omitted), and |Γ | the length of a sequence. By induction on
the length of Γ (and where ϕ, ψ are formulas) we define [Γ ]ϕ := ϕ when |Γ | = 0, and [ψ , Γ ]ϕ :=
[ψ][Γ ]ϕ when |ψ , Γ | = n+1; similarly, [Γ ↓]ϕ := ϕ when |Γ | = 0, and [(ψ , Γ )↓]ϕ := [ψ↓][Γ ↓]ϕ
when |ψ , Γ | = n+ 1.

DEFINITION 2.2
(Structures).
An epistemic model (or model) is a triple M = (S,∼, V) where S is a domain of states, ∼ is a set of
binary relations ∼a ⊆ S × S that are all equivalence relations, and V : P → P(S) maps each atom
p ∈ P to its denotation V(p).

Given a model M , we may refer to its domain, relations and valuation as SM , ∼M
a and V M ,

respectively, and we also refer to the domain of M as D(M). Bisimulation to compare models will
be defined later. A model N is a submodel of M , notation N ⊆ M , if SN ⊆ SM , for all a ∈ A,
∼N

a = ∼M
a ∩ (SN × SN ), and for all p ∈ P, V N (p) = V M (p) ∩ SN .

DEFINITION 2.3
(Semantics).
Given model M = (S,∼, V), s ∈ S and ϕ ∈ L we inductively define M , s |� ϕ (ϕ is true in state s of
model M) as:

M , s |� p iff s ∈ V(p)

M , s |� ¬ϕ iff M , s |� ϕ

M , s |� ϕ ∧ ψ iff M , s |� ϕ and M , s |� ψ

M , s |� Kaϕ iff for all t ∈ S, s ∼a t implies M , t |� ϕ

M , s |� [ψ]ϕ iff M , s |� ψ implies M |ψ , s |� ϕ

M , s |� [! ]ϕ iff for any ψ ∈ LPAL : M , s |� [ψ]ϕ
M , s |� [Q]ϕ iff for any ψ ∈ LPAL|Q M , s |� [ψ]ϕ
M , s |� [⊆]ϕ iff for any ψ ∈ LPAL|P(ϕ) : M , s |� [ψ]ϕ
M , s |� [χ↓]ϕ iff for any ψ ∈ LPAL implying χ : M , s |� [ψ]ϕ
M , s |� [χ↑]ϕ iff for any ψ ∈ LPAL implied by χ : M , s |� [ψ]ϕ
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where M |ϕ = (S′,∼′, V ′) is such that S′ = �ϕ�M = {s ∈ S | M , s |� ϕ},∼′a = ∼a∩ (�ϕ�M × �ϕ�M ),
and V ′(p) = V(p) ∩ �ϕ�M .

A formula ϕ is valid on model M , notation M |� ϕ, iff for all s ∈ S, M , s |� ϕ and ϕ is
valid, notation |� ϕ, iff ϕ is valid on all models M . A formula ϕ is a distinguishing formula
of a subset S′ ⊆ S of M (or S′ is definable by ϕ) if for all t ∈ S′, M , t |� ϕ and for all
t /∈ S′, M , t �|� ϕ.

In the dual existential reading of the semantics of the quantifiers, the ψ in ‘there is a ψ ∈ LPAL’
is the witness of the quantifier. In the semantics of the last two, ‘ψ implies χ ’ means |� ψ → χ and
‘ψ is implied by χ ’ means |� χ → ψ .

PAL and APAL Public announcement logic PAL and arbitrary public announcement logic APAL
were already introduced.

SAPAL and FSAPAL The logic with construct [Q]ϕ, for ‘after any announcement only containing
atoms in Q ⊆ P’, is called SAPAL, for APAL with quantification over formulas restricted to subsets
of variables. If those subsets are required to be finite we get FSAPAL.

SCAPAL The logic with construct [⊆]ϕ, for ‘after any announcement only containing atoms
occurring in ϕ’, is called SCAPAL (where ϕ is the formula under the scope of the quantifier [⊆]).

QIPAL The logic with constructs [ψ↓]ϕ and [ψ↑]ϕ is called QIPAL, where [ψ↓]ϕ stands for
‘after every announcement implying ψ , ϕ is true’, and [ψ↑]ϕ stands for ‘after every announcement
implied by ψ , ϕ is true’. In QIPAL we can reason over restrictions of a given model M that are
submodels of M |ψ , or over restrictions that contain M |ψ as a submodel.

Bisimulation We define several notions of bisimulation between models and obtain some elementary
invariance results for our logics. They will be used much in the expressivity Section 4.

DEFINITION 2.4
(Bisimulation).
Let M and N be epistemic models. A non-empty relation Z ⊆ SM × SN is a bisimulation between M
and N if for all Zst, p ∈ P and a ∈ A:
— atoms: s ∈ VM (p) iff t ∈ V N (p).
— forth: if s ∼M

a s′, then there is a t′ ∈ SN such that t ∼N
a t′ and Zs′t′.

— back: if t ∼N
a t′, then there is a s′ ∈ SM such that s ∼M

a s′ and Zs′t′.
If there exists a bisimulation Z between M and N we write M N , to indicate the relation), and if it
contains pair (s, t), we write (M , s) (N , t). If the atoms clause is only satisfied for atoms Q ⊆ P,
we write M QN and Z is called a Q-bisimulation or a (Q-)restricted bisimulation.

DEFINITION 2.5
(Bounded bisimulation).
Let M and N be epistemic models. For n ∈ N we define a sequence Z0 ⊇ · · · ⊇ Zn of relations on
SM × SN .
A non-empty relation Z0 is a 0-bisimulation if for all Z0st and p ∈ P:
— atoms: s ∈ VM (p) iff t ∈ V N (p).
A non-empty relation Zn+1 is an (n+ 1)-bisimulation if for all Zn+1st, a ∈ A:
— (n+ 1)-forth: if s ∼M

a s′, then there is a t′ ∈ SN s.t. t ∼N
a t′ and Zns′t′.

—(n+ 1)-back: if t ∼N
a t′, then there is a s′ ∈ SM s.t. s ∼M

a s′ and Zns′t′.
If there exists a n-bisimulation Zn between M and N we write M nN . (We also combine the
notations Q and n in the obvious way, writing Q,n.)
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Given pointed models (M , s) and (N , t) and a logic L with language LL, (M , s) ≡L (N , t) (for
‘(M , s) and (N , t) are modally equivalent’) denotes: for all ϕ ∈ LL, M , s |� ϕ iff N , t |� ϕ. Given
Q ⊆ P and n ∈ N, annotations ≡n

L and ≡Q
L restrict the evaluated formulas ϕ ∈ LL to those of

modal depth d(ϕ) ≤ n and (resp.) to ϕ ∈ LL|Q. APAL is invariant for bisimilarity, but not for
restricted bisimilarity or bounded bisimilarity: (M , s) (N , t) implies (M , s) ≡APAL (N , t), whereas
(M , s) n(N , t) may not imply (M , s) ≡n

APAL (N , t), and (M , s) Q(N , t) may not imply (M , s) ≡Q
APAL

(N , t) [8, 47]. This is because the APAL modality [! ] implicitly quantifies over formulas of arbitrarily
large modal depth and over infinitely many atoms. All logics we consider in this paper are invariant
for bisimilarity.

LEMMA 2.6
For any L considered, (M , s) (N , t) implies (M , s) ≡L (N , t).

PROOF. For L = EL, PAL, this is known from the literature [14] for EL, and for PAL because EL
and PAL are equally expressive [36]. For the other logics, let us for example consider SAPAL; the
proof for all remaining logics is similar. By induction on the structure of ϕ we show that

For all ϕ ∈ LSAPAL and for all pointed models (M , s), (N , t):
(M , s) (N , t) implies M , s |� ϕ iff N , t |� ϕ.

All inductive cases are elementary except ‘public announcement’ and ‘quantifier’.

Case quantifier
M , s |� [Q]ψ , iff M , s |� [ϕ]ψ for all ϕ ∈ LPAL|Q, iff M , s |� ϕ implies M |ϕ, s |� ψ for all

ϕ ∈ LPAL|Q, iff (*) N , t |� ϕ implies M |ϕ, s |� ψ for all ϕ ∈ LPAL|Q, iff (**) N , t |� ϕ implies
N |ϕ, t |� ψ for all ϕ ∈ LPAL|Q, iff N , t |� [ϕ]ψ for all ϕ ∈ LPAL|Q, iff N , t |� [Q]ψ .

(*): By bisimulation invariance of PAL, we obtain M , s |� ϕ iff N , t |� ϕ.
(**): Let Z : (M , s)

(N , t). Define Z′ between M |ϕ and N |ϕ as follows: Z′uv iff (Zuv and M , u |� ϕ). By bisimulation
invariance for ϕ ∈ LPAL it follows that also N , v |� ϕ, so that Z′ is indeed a relation between M |ϕ
and N |ϕ. We now show that Z′ : (M |ϕ, s)
(N |ϕ, t). The clause atoms is obviously satisfied. Concerning forth for some agent a, take any pair
(v, v′) such that Z′vv′ and let u in the domain of M |ϕ be such that v ∼a u. As u is in the domain of
M |ϕ, M , u |� ϕ. From Z′vv′ follows Zvv′. As v ∼a u in M |ϕ, also v ∼a u in M . From Zvv′, v ∼a u in
M , and forth (for Z) it follows that there is u′ in the domain of N such that Zuu′ and v′ ∼a u′. From
Zuu′, M , u |� ϕ, and bisimulation invariance for ϕ ∈ LPAL it follows that N , u′ |� ϕ, i.e., u′ is also in
the domain of N |ϕ. From Zuu′, M , u |� ϕ, and the fact the u′ is in the domain of M |ϕ it follows that
Z′uu′, as required. This proves forth. The step back is shown similarly. Note that in particular Z′st.
This therefore establishes that Z′ : (M |ϕ, s)
(N |ϕ, t), so that by definition (M |ϕ, s)
(N |ϕ, t). By induction for ψ it now follows that M |ϕ, s |� ψ iff N |ϕ, t |� ψ , as desired.

Case public announcement
The case public announcement, wherein we show that M , s |� [ϕ]ψ iff N , t |� [ϕ]ψ , is shown

fairly similarly to the case quantifier, except that in step (∗) we do not use bisimulation invariance
for ϕ ∈ LPAL but we use the inductive hypothesis for ϕ ∈ LSAPAL, and similarly on two occasions in
step (∗∗). �

COROLLARY 2.7
Let ϕ ∈ LL and M , s |� ϕ. Then (M , s) (N , t) implies (M |ϕ, s) (N |ϕ, t).
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EL is also invariant under bounded bisimulation, with bound equal to the formula’s modal depth.
As every PAL formula is equivalent to an EL formula with equal modal depth (this is a special case
of the translation introduced in [10]), it follows that PAL is similarly invariant. As we use a virtually
identical result in subsequent proofs, we give a full proof here.

LEMMA 2.8
Let n ∈ N and ϕ ∈ LPAL with d(ϕ) = k ≤ n, models (M , s) and (N , t), and M , s |� ϕ be given. If
(M , s) n(N , t), then (M |ϕ, s) n−k(N |ϕ, t).

PROOF. Let Z0 ⊇ · · · ⊇ Zn be such that Z0 : (M , s) 0(N , t), . . . , Zn : (M , s) n(N , t). For all
i = 0, . . . , n− k, let Zi

ϕ : D(M) → D(N) be defined as: Zi
ϕst iff Zi+kst and M , s |� ϕ. As d(ϕ) ≤ n,

from n-bisimulation invariance for PAL and M , s |� ϕ also follows that N , t |� ϕ.
By natural induction on n − k we show that Zn : (M , s) n(N , t) implies Zn−k

ϕ :

(M |ϕ, s) n−k(N |ϕ, t), from which the required follows.
Case n−k = 0. We show atoms. We have that Z0

ϕst iff Zkst, where the latter follows from Zk ⊇ Zn

and Znst. Therefore, Z0
ϕ : (M |ϕ, s) 0(N |ϕ, t).

Case n − k > 0. We show (n − k)-forth. Let s ∼a s′ and M , s′ |� ϕ, i.e., s ∼a s′ in M |ϕ. From
Zn : (M , s) n(N , t) and s ∼a s′ follows that there is a t′ ∼a t such that Zn−1 : (M , s′) n−1(N , t′).
As n − k = n − d(ϕ) > 0, d(ϕ) < n, so d(ϕ) ≤ n − 1. From Zn−1 : (M , s′) n−1(N , t′),
M , s′ |� ϕ and d(ϕ) ≤ n − 1 it follows by bisimulation invariance that N , t′ |� ϕ. Therefore
t′ is in the domain of N |ϕ. By induction, from Zn−1 : (M , s′) n−1(N , t′) it follows that Zn−k−1

ϕ :

(M |ϕ, s′) n−k−1(N |ϕ, t′). Therefore, t′ satisfies the requirement for (n−k)-forth for relation Zn−k
ϕ .

The clause (n− k)-back is shown similarly. �

PROPOSITION 2.9
(M , s) Q(N , t) implies (M , s) ≡Q

SAPAL (N , t) and (M , s) ≡Q
SCAPAL (N , t).

PROOF. The proof is by induction on formulas true in (M , s). The crucial case quantifier is satisfied
because (let R ⊆ Q): M , s |� [R]ϕ, iff M , s |� [ψ]ϕ for all ψ ∈ LPAL|R, iff for all ψ ∈ LPAL|R,
M , s |� ψ implies M |ψ , s |� ϕ, iff (induction, Cor. 2.7) for all ψ ∈ LPAL|R, N , s |� ψ implies
N |ψ , s |� ϕ, iff ( . . . ) N , s |� [R]ϕ.

The proof for SCAPAL is similar. �

3 Modal properties of the quantifiers

We continue by discussing some peculiarities of the semantics, where we focus on modal properties
of the quantifiers. We recall that APAL satisfies: [! ]ϕ → ϕ (T), [! ]ϕ → [! ][! ]ϕ (4), 〈! 〉[! ]ϕ →
[! ]〈! 〉ϕ (CR), and [! ]〈! 〉ϕ → 〈! 〉[! ]ϕ (MK) [8, 47].

It may be useful to brief ly consider the intuition behind these validities. The principle (T) is
valid in APAL because if ϕ is true after every announcement, then in particular it is true after
the uninformative announcement [
]. So [! ]ϕ implies [
]ϕ, which is in turn equivalent to ϕ.
Validity of (4) is most easily seen in its dual form 〈! 〉〈! 〉ϕ → 〈! 〉ϕ; if 〈! 〉〈! 〉ϕ holds, then there
are two announcements ψ and χ that, if announced after each other, will make ϕ true. The single
announcement ψ ∧ 〈ψ〉χ (informally: ‘ψ is true, and now χ is true as well’) has the same effect as
announcing ψ and χ sequentially, so 〈! 〉ϕ holds as well.

The properties (CR) and (MK) can be thought of as describing winning strategies when two
players make one announcement each, with player one trying to make ϕ true and player two trying
to make it false. Then (CR) states that if player one has a winning strategy when they make the first
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announcement, then they also have a winning strategy when they make the second announcement.
Conversely, (MK) states that if player one can win when moving second, they can also win when they
go first. The validity of these properties in APAL follows from the existence of a ‘most informative
announcement’ with respect to a given formula ϕ, that is available to either player. So player one has
a winning strategy if and only if this specific announcement makes ϕ true.

3.1 SAPAL and FSAPAL

The logic SAPAL generalizes APAL, as [P]ϕ is equivalent to [! ]ϕ. We also considered FSAPAL
where Q ⊆ P in [Q]ϕ is required to be finite.

PROPOSITION 3.1
SAPAL-valid are [Q]ϕ → ϕ (T) and [Q ∪ R]ϕ → [Q][R]ϕ (4)

PROOF. The validity of [Q]ϕ → ϕ follows from the validity of [
]ϕ ↔ ϕ. Just as for APAL,
[Q ∪ R]ϕ → [Q][R]ϕ is valid because two announcements can be made into one announcement, as
in the PAL validity [ψ][χ ]ϕ ↔ [ψ ∧ [ψ]χ ]ϕ, and because P(ψ ∧ [ψ]χ) ⊆ Q∪ R if P(ψ) ⊆ Q and
P(χ) ⊆ R. �

The SAPAL versions of CR and MK, 〈Q〉[R]ϕ → [Q]〈R〉ϕ (CR) and [Q]〈R〉ϕ → 〈Q〉[R]ϕ (MK)
are not valid in SAPAL, however.

PROPOSITION 3.2
Neither 〈Q〉[R]ϕ → [Q]〈R〉ϕ nor [Q]〈R〉ϕ → 〈Q〉[R]ϕ is valid in SAPAL.

PROOF. Let (M , 0) be the two state pointed model shown below.

Since q is false in both states, they are {q}-bisimilar. As such, no informative {q}-announcements are
possible in this model or any of its submodels, in the sense that any such announcement holds either
on all states or on no states.

As a result, we have M , 0 |� 〈¬p〉[{q}]Ka¬p but M , 0 �|� [
]{q}Ka¬p, and hence M , 0 �|�
〈{p}〉[{q}]Ka¬p → [{p}]〈{q}〉Ka¬p. Similarly, we have M , 0 �|� [{q}]〈{p}〉Ka¬p → 〈{q}〉[{p}]Ka¬p.�

Also note that all sets of variables in the above proof are finite, so CR and MK are not valid in
FSAPAL either.

3.2 SCAPAL

The SCAPAL quantifier does not distribute over conjunction: [⊆]ϕ ∧ [⊆]ψ is not equivalent to
[⊆](ϕ ∧ ψ). This is easily demonstrated by an example.

EXAMPLE 3.3
Consider model (M , 10) in Figure 2 (pq: p is true and q is false). Then:

M , 10 �|� [⊆]((Kap → KbKap) ∧ ¬q)

M , 10 |� [⊆](Kap → KbKap)

M , 10 |� [⊆]¬q
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FIGURE 2. Model (N , 1) on the left, (M , 10) in the middle, (M |(p ∨ q), 10) on the right.

The first is false, because, as depicted:

M , 10 |� 〈p ∨ q〉(Kap ∧ ¬KbKap), so
M , 10 |� 〈p ∨ q〉((Kap ∧ ¬KbKap) ∨ q), and therefore
M , 10 |� 〈⊆〉((Kap ∧ ¬KbKap) ∨ q), which is equivalent to
M , 10 �|� [⊆]((Kap → KbKap) ∧ ¬q).

The second is true because the only model restrictions containing 10 that we can obtain with formulas
involving p are {10, 11} and {10, 11, 00, 01}. The third is true because q is false in state 10.

Therefore, [⊆]ϕ ∧ [⊆]ψ is not equivalent to [⊆](ϕ ∧ ψ).

PROPOSITION 3.4
Valid in SCAPAL are [⊆]ϕ → ϕ (T), [⊆]ϕ → [⊆][⊆]ϕ (F), [⊆]〈⊆〉ϕ → 〈⊆〉[⊆]ϕ (MK) and
〈⊆〉[⊆]ϕ → [⊆]〈⊆〉ϕ (CR).

PROOF. T and 4 are valid for the same reason as in SAPAL. For CR and MK we can now (unlike for
SAPAL) use the same method as in APAL, as in any state of a model we can announce the value of
all variables occurring in ϕ. A proof of CR is found in [47,Prop. 3.10] (for the similar logic APAL+),
which corrects the incorrect proof of CR for APAL in [8]). A proof of MK is found in [8]. �

3.3 QIPAL and IPAL

We recall that in APAL the quantification is over ϕ ∈ LPAL. Fairly complex counterexamples
demonstrate that [! ]ϕ → [ψ]ϕ is invalid for certain ψ ∈ LAPAL containing quantifiers [30]. Now in
[ψ↓]ϕ, ψ ∈ LQIPAL may also contain quantifiers. This makes the relation to [! ] unclear. In LIPAL,
that ψ must be in LPAL and the relation is clearer.

PROPOSITION 3.5
Let ψ ∈ LPAL, χ ∈ LIPAL and pointed model (M , s) be given. The following are equivalent:

1. M , s |� 〈ψ↓〉χ
2. there is a ϕ ∈ LPAL such that |� ϕ → ψ and M , s |� 〈ϕ〉χ ,
3. there is a ϕ ∈ LPAL such that M |� ϕ → ψ and M , s |� 〈ϕ〉χ ,
4. there is a ϕ ∈ LPAL such that M , s |� 〈ϕ ∧ ψ〉χ .

PROOF.

1 ⇔ 2 This is the semantics of the 〈ψ↓〉 quantifier (in dual form).
2 ⇒ 3 From |� ϕ → ψ it trivially follows that M |� ϕ → ψ .
3 ⇒ 4 Suppose that there is a ϕ ∈ LPAL such that M |� ϕ → ψ and M , s |� 〈ϕ〉χ . Because

M |� ϕ → ψ , we have M |� ϕ ↔ (ϕ ∧ ψ), and therefore M |ϕ = M |(ϕ ∧ ψ). From
M , s |� 〈ϕ〉χ then follows that M , s |� 〈ϕ ∧ ψ〉χ .
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4 ⇒ 2 Suppose that there is a ϕ ∈ LPAL such that M , s |� 〈ϕ ∧ ψ〉χ . Let ϕ′ = ϕ ∧ ψ , and note
that ϕ′ ∈ LPAL. We have |� ϕ′ → ψ and M , s |� 〈ϕ′〉χ . �

So we can think of 〈ψ↓〉 as announcing ϕ ∧ ψ for some ϕ. It is important, however, that the
announcements of ϕ and ψ happen simultaneously. We cannot simply split 〈ψ↓〉 into an arbitrary
announcement 〈! 〉 and the announcement 〈ψ〉, because the truth of ψ may be affected by the
announcement of ϕ, and vice versa. Only under an additional constraint on ψ is such separation
possible.

The positive formulas L+PAL are the PAL-fragment p | ¬p | ϕ∧ϕ | ϕ∨ϕ | Kaϕ | [¬ϕ]ϕ. The truth
of positive formulas (corresponding to the universal fragment in first-order logic) is preserved after
update [48].

COROLLARY 3.6
Let ψ ∈ L+PAL. Then 〈ψ↓〉χ implies 〈! 〉〈ψ〉χ .

PROOF. Let M , s |� 〈ψ↓〉χ . From Prop. 3.5.4 we obtain that there is ϕ ∈ LPAL such that M , s |�
〈ϕ ∧ ψ〉χ . As ψ is positive, in any states where ψ is true it remains true after the update 〈ϕ ∧ ψ〉.
An additional announcement of 〈ψ〉 therefore does not remove further states. So M , s |� 〈ϕ ∧ ψ〉χ
implies M , s |� 〈ϕ ∧ ψ〉〈ψ〉χ .

By the definition of the APAL quantifier, it follows that M , s |� 〈! 〉〈ψ〉χ . �
Since every formula implies 
 and is implied by ⊥, both [
↓] and [⊥↑] quantify over every

formula in LPAL. We therefore have the following proposition.

PROPOSITION 3.7
Let ϕ ∈ LIPAL. Then [
↓]ϕ and [⊥↑]ϕ are equivalent to [! ]ϕ.

PROOF. Let model (M , s) and ϕ ∈ LQIPAL be given. Then: M , s |� [
↓]ϕ, iff M , s |� [ψ]ϕ for all
ψ ∈ LPAL with |� ψ →
, iff M , s |� [ψ]ϕ for all ψ ∈ LPAL, iff M , s |� [! ]ϕ.

Similarly, M , s |� [⊥↑]ϕ, iff M , s |� [ψ]ϕ for all ψ ∈ LPAL with |� ⊥ → ψ , iff M , s |� [ψ]ϕ for
all ψ ∈ LPAL, iff M , s |� [! ]ϕ. �

PROPOSITION 3.8
Valid in QIPAL are [ψ↑]ϕ → ϕ (T) and also [ψ↑]ϕ → [ψ↑][χ↑]ϕ and [ψ↓]ϕ → [ψ↓][χ↓]ϕ (4)

PROOF. All proofs are as in Prop. 3.1 and 3.4. �
However, [ψ↓]ϕ → ϕ (T) is invalid. This is because whenever M |ψ is a proper submodel of

a given model M , the trivial announcement is not allowed. For example, in any model where p
is true but a does not know this, we have [p↓]Kap but not Kap. Also, [ψ↑]ϕ → [χ↑][ψ↑]ϕ and
[ψ↓]ϕ → [χ↓][ψ↓]ϕ are invalid, as the following example shows for the latter.

EXAMPLE 3.9
Given is model M with two states s, t indistinguishable for a, and with p only true in s.

We have M , s |� [(p∧Kap)↓]⊥, since p∧Kap holds on neither state, so any announcement implying
p∧Kap cannot hold on any state either. Yet we also have M , s1 �|� [
↓][(p∧Kap)↓]⊥, with witnesses
p for the first announcement and p ∧ Kap for the second.
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4 Expressivity

We now address the relative expressivity of APAL, FSAPAL and SCAPAL and IPAL, where the
proof that APAL is less expressive than IPAL is considerably more involved than the other proofs.
Given logics L and L′ with languages LL and LL′ , L is at least as expressive as L′, notation L′ � L, iff
for ϕ ∈ LL there is a ϕ′ ∈ LL′ such that ϕ is equivalent to ϕ′. Logics L and L′ are equally expressive
iff L � L′ and L′ � L, L is less expressive than L′, notation L ≺ L′, iff L � L′ but L′ �� L; L and L′
are incomparable (in expressivity), notation L 	 L′, iff L �� L′ and L′ �� L.

4.1 APAL �� FSAPAL and APAL �� SCAPAL

We show that there is an APAL-formula that can distinguish two pointed models that cannot
be distinguished by any FSAPAL-formula. We use that APAL, unlike FSAPAL, quantifies over
arbitrarily many atoms. The proof is similar to the proof that APAL �� PAL in [8].

PROPOSITION 4.1
APAL � FSAPAL and APAL � SCAPAL.

PROOF. Consider APAL formula 〈! 〉(Kap∧¬KbKap), and assume towards a contradiction that ψ is
an equivalent FSAPAL formula. Let q /∈ P(ψ). Now consider models (M , 10) and (N , 1) in Figure
2, where the value of q in states 0 and 1 of N is irrelevant. These models are P(ψ)-bisimilar. We now
have that:

1. M , 10 |� 〈! 〉(Kap ∧ ¬KbKap)

2. Observe that M |(p ∨ q) |� Kap ∧ ¬KbKap. This model is shown in Figure 2.
3. N , 1 �|� 〈! 〉(Kap ∧ ¬KbKap)

4. M , 10 |� ψ iff N , 1 |� ψ

5. By Prop. 2.9, (M , 10) P(ψ)(N , 1) implies (M , 10) ≡P(ψ)

FSAPAL (N , 1).

The third item contradicts the first two items. Therefore APAL �� FSAPAL.
As Prop. 2.9 also applies to SCAPAL, this also proves that APAL �� SCAPAL. �

4.2 SCAPAL �� APAL and FSAPAL �� APAL

The proof is similar to that of the previous section, but more involved. We now show that the
assumption that there is an APAL formula ψ equivalent to SCAPAL formula 〈⊆〉(¬q ∧ Kap ∧
¬KbKap) leads to a contradiction. Prior to that we present models and lemmas used in the proof.

Consider models Mn and Nn as follows, where n ∈ N is odd. Model Mn = (S,∼, V) is such that
(i) S = [0, 2n − 1], (ii) for any i < n, 2i ∼b (2i + 1) and, except for i = 0, (2i − 1) ∼a 2i and also
(2n− 1) ∼a 0, and (iii) for any i < n, variable p is true in states 2i, variable q is only true in state n
and variable r is always false. Model Nn is like model Mn except that variable r is only true in n and
variable q is always false. Figure 3 depicts M3 and N3.

LEMMA 4.2
Let M ⊆ Mn, N ⊆ Nn, i, j, k ∈ N, with i ∈ D(M) and j ∈ D(N) be such that (M , i) k(N , j).
Then for all χ ∈ LPAL such that M , i |� χ there is a χ ′ ∈ LPAL such that N , j |� χ ′ and
(M |χ , i) k(N |χ ′, j). Furthermore, for all χ ′ ∈ LPAL such that N , j |� χ ′ there is a χ ∈ LPAL
such that M , i |� χ and (M |χ , i) k(N |χ ′, j).

PROOF. Without loss of generality, we can assume that M and N are connected. We begin by showing
that every state s of M is uniquely identifiable by some formula ϕs ∈ LPAL. If the q-state is reachable



1362 Almost APAL

FIGURE 3. The models M3 and N3.

from s, then the identifying formula is based on the shortest path to the q-state, and the agents along
that path. For example, in M3, state 5 is the only state from which the q-state, state 3, is reachable by
taking a b-edge followed by an a-edge, but not by only following an a-edge or only a b-edge. Hence,
state 5 in M3 is uniquely identified by the formula K̂bK̂aq ∧ ¬K̂aq ∧ ¬K̂bq. If the q-state is not
reachable from s and M contains at least two states, then there is a ‘leftmost’ state in M , which can
be uniquely identified by the formula ϕleft = Kap∨Kb¬p. The state s can then be uniquely identified
by its distance to this leftmost state. If M contains only one state, it can be identified trivially by 
.

Because M is a finite model and each state can be uniquely identified by a formula, each submodel
of M is the extension of a disjunction of such formulas. Every state of N is similarly uniquely
identifiable, so each submodel of N is also the extension of some formula.

In order for (M , i) and (N , j) to be k-bisimilar it is necessary and sufficient that (i) the q and r
state are not reachable in k steps from (M , i) and (N , j), respectively, (ii) there is a leftmost (resp.
rightmost) state reachable from (M , i) in less than k steps if and only if there is a leftmost (resp.
rightmost) state reachable from (N , j) in less than k steps. Condition (i) is always preserved in
submodels. In order to guarantee that (M |χ , i) k(N |χ ′, j) it therefore suffices to preserve (ii),
which can be done by taking χ or χ ′ to be the formula such that χ holds on a state l ≤ k steps to the
left/right of (M , i) if and only if χ ′ holds l steps to the left/right of (N , j). �

In general, two k-bisimilar states need not be k-indistinguishable in APAL. This is because the
[! ] operator quantifies over formulas of arbitrary depth. For submodels of Mn and Nn, however,
k-bisimilarity does imply k-indistinguishability.

LEMMA 4.3
Let M ⊆ Mn, N ⊆ Nn and i, j, k ∈ N, with i ∈ D(M) and j ∈ D(N). If (M , i) k(N , j), then
(M , i) ≡k

APAL (N , j).

PROOF. We show the equivalent formulation:

For all ϕ ∈ LAPAL, M ⊆ Mn, N ⊆ Nn and i, j, k ∈ N with i ∈ D(M) and j ∈ D(N): if
(M , i) k(N , j) and d(ϕ) ≤ k, then M , i |� ϕ iff N , j |� ϕ.

The proof is by induction on the structure of ϕ. The cases of interest are Kbϕ, [ψ]ϕ, and [! ]ϕ. As
k-bisimilarity is a symmetric relation, it suffices to show only one direction of the equivalence.
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Case Kaϕ: Suppose d(Kaϕ) ≤ k. We have M , i |� Kaϕ iff for all i′ ∼a i, M , i′ |� ϕ. As
(M , i) k(N , j), for all j′ ∼a j there is some i′ ∼a i such that (M , i′) k−1(N , j′). As d(Kaϕ) ≤ k,
d(ϕ) ≤ k − 1. Therefore, by induction, N , j′ |� ϕ. And therefore N , j |� Kaϕ.
Case [ψ]ϕ: Suppose d([ψ]ϕ) ≤ k, and M , i |� [ψ]ϕ. Let d(ψ) = x and d(ϕ) = y, then x + y =
d(ψ) + d(ϕ) = d([ψ]ϕ) ≤ k. By definition, M , i |� [ψ]ϕ iff M , i |� ψ implies M |ψ , i |� ϕ.
From M , i |� ψ , (M , i) k(N , j) and d(ψ) = x ≤ k and induction we obtain N , j |� ψ . From
(M , i) k(N , j), M , i |� ψ , d(ψ) = x ≤ k − y, a part identical to that of Lemma 2.8 except that
where bisimulation invariance for PAL is used on ψ ∈ LPAL we now use induction on ψ ∈ LAPAL,
we obtain that (M |ψ , i) y(N |ψ , j). From that, M |ψ , i |� ϕ, d(ϕ) = y and induction we obtain
N |ψ , j |� ϕ. Then, N , j |� ψ implies N |ψ , j |� ϕ is by definition N , j |� [ψ]ϕ.

Case [! ]ϕ: Suppose towards a contradiction that N , j �|� [! ]ϕ. Then there is some χ ′ ∈ LPAL such
that N , j |� χ ′ and N |χ ′, j �|� ϕ. By assumption (M , i) k(N , j), so the conditions of Lemma 4.2
are satisfied. So there is a χ ∈ LPAL such that M , i |� χ and (M |χ , i) k(N |χ , j). The induction
hypothesis and the fact that N |χ ′, j �|� ϕ then imply that M |χ , i �|� ϕ. We therefore have M , i �|� [χ ]ϕ,
contradicting M , i |� [! ]ϕ. From this contradiction, we conclude that N , j |� [! ]ϕ. �
PROPOSITION 4.4
SCAPAL �� APAL.

PROOF. Consider LSCAPAL formula ϕ = 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap). Let ψ be the supposedly
equivalent LAPAL formula. Take n > d(ψ). We now show that:

1. Mn, 0 |� 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap)

2. Nn, 0 �|� 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap)

3. Mn, 0 |� ψ iff Nn, 0 |� ψ

These items are proved by the following arguments:

1. The state n is distinguished by formula q. This allows us to distinguish each finite subset of
the domain, in the usual way, in LEL (note that there is no mirror symmetry along the 0—
n ‘diameter’ of the circular models Mn and Nn). Thus there is a formula η ∈ LEL|q that
distinguishes the set of states {0, 1}. We now have that:

Mn, 0 |� η

Mn|η, 0 |� ¬q ∧ Kap ∧ ¬KbKap
Mn, 0 |� 〈η〉(¬q ∧ Kap ∧ ¬KbKap)

Mn, 0 |� 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap)

2. On the other hand, Nn, 0 �|� 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap). This is because we cannot use that
r is only true in n, as r �∈ P(¬q ∧ Kap ∧ ¬KbKap), and because (Nn, 0) pq(O, 0). Clearly
O, 0 �|� 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap).

3. However, Mn, 0 |� ψ iff Nn, 0 |� ψ . This follows from Lemma 4.3, as n > d(ψ) and
(Mn, 0) d(ψ)(Nn, 0). �

PROPOSITION 4.5
FSAPAL �� APAL.

PROOF. As Prop. 4.4, but we now take FSAPAL formula 〈q〉(¬q ∧ Kap ∧ ¬KbKap) instead of
SCAPAL formula 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap). �

As [! ]ϕ is equivalent to [P]ϕ we rather trivially have that APAL � SAPAL, so that with Prop. 4.5
and its consequence SAPAL �� APAL we immediately obtain:
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FIGURE 4. The models M−3,3 and N−3,3.

COROLLARY 4.6
APAL ≺ SAPAL.

4.3 SCAPAL ≺ FSAPAL

We first show that SCAPAL � FSAPAL, and then show that SCAPAL ≺ FSAPAL.

PROPOSITION 4.7
SCAPAL � FSAPAL.

PROOF. It is trivial that SCAPAL � FSAPAL, since |� [⊆]ϕ ↔ [P(ϕ)]ϕ. Formally, we inductively
define a translation function f from SCAPAL to FSAPAL by

f (p) = p f (ϕ ∨ ψ) = f (ϕ) ∨ f (ψ) f ([ϕ]ψ) = [f (ϕ)]f (ψ)

f (¬ϕ) = ¬f (ϕ) f (Kaϕ) = Kaf (ϕ) f ([⊆]ϕ) = [P(ϕ)]f (ϕ)

In the final line we could equivalently have written f ([⊆]ϕ) = [P(f (ϕ))]f (ϕ), as f does not affect
the set of atoms that occur in a formula. We then have |� ϕ ↔ f (ϕ) (which is shown by induction),
and therefore SCAPAL � FSAPAL. �

We now show SCAPAL ≺ FSAPAL. In the proof we use models M−n,n and N−n,n similar to
Mn and Nn used in the previous subsection. They are depicted in Figure 4 for n = 3, compare to
Figure 3. (Imagine ‘cutting open’ M3 and N3 at the q resp. r state, and remove r as we can now use
the distinguishing power of p on the edges of the chain.) Similarly to Lemma 4.3, we first show a
Lemma 4.8.

LEMMA 4.8
Let M ⊆ M−n,n, N ⊆ N−n,n and i, j, k ∈ N, with i ∈ D(M) and j ∈ D(N). If (M , i) k(N , j), then
(M , i) ≡k

SCAPAL (N , j).

PROOF. We show by formula induction that M , i |� ϕ iff N , j |� ϕ for any ϕ ∈ LSCAPAL with
d(ϕ) ≤ k. Cases Kaψ and [χ ]ψ are the same. The case quantifier [⊆]ψ is different and shown as
follows.

First, suppose that q �∈ P(ψ). Then from (M , i) P(ψ)(N , j) and Lemma 2.9 it directly follows
that M , i |� [⊆]ψ iff N , j |� [⊆]ψ .

Next, suppose that q ∈ P(ψ); w.l.o.g. we may also assume that p ∈ P(ψ). By assumption,
(M , i) k(N , j). Just as for Lemma 4.2, every M ′ ⊆ M is definable in M by a formula in LPAL|pq,
and every N ′ ⊆ N is definable in N by a formula in LPAL|pq. It follows that for every χ ∈ LPAL|pq
with M , i |� χ there is a ξ ∈ LPAL|pq such that (M |χ , i) k(N |ξ , j), and vice versa. Therefore,
M , i |� [⊆]ψ iff N , j |� [⊆]ψ . �

PROPOSITION 4.9
SCAPAL ≺ FSAPAL.
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PROOF. We proceed as usual, however, with distinguishing FSAPAL formula 〈q〉(Kap ∧ ¬KbKap).
Let ψ be the supposedly equivalent LSCAPAL formula. Take n > d(ψ). Then:

1. M−n,n, 0 |� 〈q〉(Kap ∧ ¬KbKap)

2. N−n,n, 0 �|� 〈q〉(Kap ∧ ¬KbKap) (obvious)
3. M−n,n, 0 |� ψ iff N−n,n, 0 |� ψ (use (M−n,n, 0) d(ψ)(N−n,n, 0) & Lemma 4.8) �

4.4 Results for IPAL

Let us first present all our results for IPAL in relation to the other logics in the contribution, with the
exception of the proof that APAL ≺ IPAL, our main result.

PROPOSITION 4.10
APAL � IPAL.

PROOF. This follows from Prop. 3.7 that [
↓]ϕ is equivalent to [! ]ϕ. �
We can also obtain strictness.

PROPOSITION 4.11
APAL ≺ IPAL.

PROOF. The proof of this result is rather involved and presented in the next subsection. �
The relative expressivity between IPAL and FSAPAL/SCAPAL mirrors the results already

obtained between APAL and FSAPAL/SCAPAL.

PROPOSITION 4.12
IPAL 	 FSAPAL and IPAL 	 SCAPAL.

PROOF. FSAPAL �� IPAL and SCAPAL �� IPAL are shown as FSAPAL �� APAL (Prop. 4.5) and
SCAPAL �� APAL (Prop. 4.4), except that in the inductive case for the quantifier of the proof of
Lemma 4.3 we do not consider all witnesses ψ for the quantifier 〈! 〉 but only those that imply the
given χ in 〈χ↓〉 or that are implied by the given χ in 〈χ↓〉.

From APAL � IPAL, APAL �� FSAPAL and APAL �� SCAPAL (Prop. 4.1), we immediately
obtain IPAL �� FSAPAL and IPAL �� SCAPAL. �

4.5 APAL ≺ IPAL

This section contains the proof of Proposition 4.11.
Let us start this proof by defining the sets of models that we will use. These models consist of a

base part

plus a number of branches of the form, for some l ∈ N
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FIGURE 5. Typical model used in the proof that APAL ≺ IPAL.

The atom p holds in every state except u1, and the accessibility alternates between a and b, so the
final agent may be a or b depending on whether l is even. We refer to the state u0 as the root of the
branch.

The models that we will consider consist of a base part, where both s2 and t2 are a-attached to any
finite number of branches, possibly of different lengths. An example of such a model, where s2 is
attached to two branches of lengths 2 and 5, while t2 is attached to three branches of length 2, 3 and
4, is shown in Figure 5.

We say that two states in the model are on the same side if one can be reached from the outher
without using the a-edge between s1 and t1, and on the other side otherwise.

We then divide these types of models into two sets: a set N where there is at least one length l
such that both s2 and t2 are attached to at least one branch of length l, and a set M where there is no
such shared length l. We will first show that IPAL can uniformly distinguish between these sets.

LEMMA 4.13
Let M ∈ M and N ∈ N. Furthermore, let ϕ = [p↑](ψ1 → 〈
↓〉ψ2), where ψ1 = K̂bK̂a¬p and
ψ2 = Kb¬q ∧ K̂aK̂bq. Then M , s1 |� ϕ and N , s1 �|� ϕ.

PROOF. The key observation is that announcing any epistemic formula χ implied by p can remove
access to a branch by removing the state ui

0 for that branch, but it cannot change the length of a
branch, or remove any of the states s1, s2, t1 and t2, since all other states satisfy p, and therefore
also χ .

Let χ then be any epistemic formula implied by p such that M |χ , s1 |� K̂bK̂a¬p. Then at least one
branch on the top side of the model is retained. Because M ∈ M, there is no branch on the bottom
side of the model that has the same length. This implies that M |χ , s2 and M |χ , t2 are distinguishable
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by a modal formula. As such, there is an epistemic announcement ξ that removes s2 while retaining
s1, t1 and t2, so we have (M |χ)|ξ , s1 |� ψ2.

This suffices to show that M , s1 |� [p↑](ψ1 → 〈
↓〉ψ2).
Regarding N , since it is a member of N there is some l such that the top and bottom sides of N

both have a branch of length l. Let χ be the epistemic formula that retains a ¬p state only if it is the
root of a branch of length exactly l. Then we have N |χ , s1 |� ψ1. Yet in N |χ , the top and bottom
side of the model are bisimilar, so there is no announcement that would retain t2 while removing s2.
Hence N |χ , s1 �|� 〈
↓〉ψ2.

This suffices to show that N , s1 �|� [p↑](ψ1 → 〈
↓〉ψ2). �
Left to show is that there is no APAL formula that similarly distinguishes between M and N.

Unfortunately, this proof is significantly more complex than the other expressivity proofs in this
paper. It is therefore useful to first introduce a few auxiliary definitions and lemmas.

DEFINITION 4.14
Let (X , x) be a submodel of a model of type M or N. We classify (X , x) based on which worlds are
retained, in the following way:

• If x = uj
i and uj

0 is not reachable from x in X , then (X , x) is a dead branch.

• If at least one state uj
0 is reachable from x in X and on the same side, then this side of (X , x) is

a bouquet. If furthermore s2 or t2 is reachable on the same side, then the bouquet has a stem of
length 1. If s1 or s2 is also reachable on the same side, then the bouquet has a stem of length 2.

• If s1, s2, t1 or t2 is same-side reachable from (X , x) but no state uj
0 is, then this side of (X , x)

is a dead stem. Two dead steams have the same form if they both retain their q world or both
remove it, and both retain their ¬q world or both remove it.

DEFINITION 4.15
Let (X , x) and (Y , y) be pointed submodels of models of type M or N and let k ∈ N. We say that
(X , x) and (Y , y) are k-akin if one of the following three conditions holds for both this side of the
models and, if reachable, the other side:

• they are both dead branches,
• they are both bouquets with the same stem length and

– for every l ≤ k, if the bouquet in X has a branch of length l then so does the one in Y ,
and vice versa,

– if the bouquet in X has exactly m ≤ (k+ 1)2 branches of different lengths greater than k
then so does the one in Y , and vice versa,

– if the top and bottom sides of X and Y are each bouquets with stem 2, then the top and
bottom side of X are bisimilar if and only if the top and bottom side of Y are bisimilar,

• (X , x) and (Y , y) are both dead stems of the same form.

DEFINITION 4.16
Let k ∈ N, and let (X , x) and (Y , y) be k-akin. The relation ≈k is the restriction of the following
relation to the connected parts of the two models:

• (X , si) ≈k (Y , si) and (X , ti) ≈k (Y , ti) for i ∈ {1, 2},
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• for every 0 ≤ i ≤ k − 1, if (X , uj
i) lies in a branch of length at most k, then (X , uj

i) ≈k (Y , uj′
i ),

where (Y , uj′
i ) lies in the branch of Y at the same length at the same side,1 and vice versa,

• for every 0 ≤ i ≤ k−1, if (X , uj
i) lies in a branch of length greater than k, then (X , uj

i) ≈k (Y , uj′
i )

for every uj′
i that lies in a branch of the same side of length greater than k, and vice versa,

• for every i, i′ ≥ k, if (X , uj
i) and (Y , uj′

i′) are on the same side, then (X , uj
i) ≈k (Y , uj′

i′).

We will use ≈k as the invariant in our inductive proof. One important property of ≈k is that it is a
k-bisimulation.

LEMMA 4.17
If (X , x) ≈k (Y , y) then for every a- or b-successor x′ of x there is an a- or b-successor y′ of y such
that (X , x′) ≈k−1 (Y , y′), and vice versa.

LEMMA 4.18
The relation ≈k is a k-bisimulation.

The proofs are conceptually very simple, but still requires a lot of notation and different cases, so
we omit them.

We have now completed all the preliminary work and can prove the result that we are after.

LEMMA 4.19
Let k ∈ N, and let (X , x) ≈k (Y , y). Then for every ϕ of depth at most k, we have X , x |� ϕ iff
Y , y |� ϕ.

PROOF. By induction on formula construction. If ϕ is Boolean, then the lemma follows immediately
from the fact that ≈k is a k-bisimulation.

Suppose then as induction hypothesis that the lemma holds for all ϕ′ that are strict subformulas
of ϕ. Assume towards a contradiction that ϕ distinguishes between (X , x) and (Y , y). Since the
conditions of the lemma are symmetric we can assume without loss of generality that X , x |� ϕ

and Y , y �|� ϕ.
A Boolean combination of formulas distinguishes between two states only if one of the combined

formulas does. If the main connective of ϕ is Boolean it therefore follows immediately from the
induction hypothesis that ϕ does not distinguish between (X , x) and (Y , y). This leaves three cases
for the main connective of ϕ: Ka, [ψ] and [! ].

Suppose that ϕ = Kaψ . Then Y , y �|� Kaψ , so there is an a-successor y′ of y such that Y , y �|� ψ .
By (X , x) ≈k (Y , y) there is an a-successor x′ of x such that (X , x′) ≈k−1 (Y , y′). By the induction
hypothesis, together with the fact that d(ψ) ≤ k − 1, we then have X , x′ �|� ψ , and therefore
X , x �|� Kaψ , contradicting our assumption that Kaψ distinguishes between (X , x) and (Y , y).

Suppose that ϕ = [ψ]χ . Then X , x |� [ψ]χ , and therefore either X , x �|� ψ or X |ψ , x |� χ . In
the first case, by the induction hypothesis we also have Y , y �|� ψ , which implies that Y , y |� [ψ]χ
contradicting the assumption that [ψ]χ distinguishes between the two pointed models.

1Which must exist because (X , x) and (Y , y) are k-akin.
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In the second case, compare the models X |ψ and Y |ψ . Because ψ is, by the induction hypothesis,
invariant under ≈k , for every branch in X |ψ that is cut off at a length at most k, its counterpart in
Y |ψ is cut off at the same length. The states s1, s2, t1 and t2 are similarly retained in one model if
and only if they are retained in the other. It follows that (X |ψ , x) ≈k (Y |ψ , y). By the induction
hypothesis the two models are therefore indistinguishable by χ . This contradicts the assumption that
X , x |� [ψ]χ and Y , y �|� [ψ]χ .

Finally, suppose that ϕ = [! ]χ . We assumed X , x |� ϕ and Y , y �|� ϕ, so there is some epistemic
formula ψ such that Y , y �|� [ψ]χ . We will create an epistemic formula ψ ′ such that (X |ψ ′, x) ≈k

(Y |ψ , y).
First, note that the top and bottom side of X are bisimilar if and only if the top and bottom side

of Y are. If top and bottom are bisimilar, we can perform a bisimilarity contraction on both models,
obtaining a model where one side has been removed entirely. As such, we can assume without loss of
generality that if both sides of the model still exist, then they are non-bisimilar. Because all models
under consideration are finite this also implies that the top and bottom sides are distinguishable by a
modal formula.

As a result, every state can be uniquely identified by (1) whether it is on the top or bottom side,
(2) if it is in a branch, the length of that branch and (3) its position in the branch or in the stem. By
using a disjunction of characterizing formulas we can create a formula that retains an arbitrary set
of identifiable states.

We now create ψ ′ as follows:

1. For each side, ψ ′ holds on the stem states iff ψ does.
2. For each side, if ψ removes a branch of length l ≤ k, or trims it to a length l′ < l, then so does

ψ ′.
3. For each side, if ψ cuts down a branch of length l > k to l′ ≤ k − 1, then ψ ′ cuts down a

branch of length l′′ > k to l′.
4. For each side, if ψ retains m ≤ k2 branches of length at least k − 1, then ψ ′ retains exactly m

such branches as well.
5. For each side, if ψ retains m > k2 branches of length at least k − 1 then ψ ′ retains m′ > k2

such branches.
6. If y ends up in a short branch in Y then x’s branch in X is cut to the same length.

Note that items 3–5 can be done because of the condition that X and Y contained either the same
number of (different length) long branches, or more than (k+ 1)2 of them. Some long branches may
be ‘consumed’ to provide the branches of length l ≤ k− 1. But ψ and ψ ′ consume the same number
of branches, and at most k − 1 of them. So X has enough long branches to provide either the same
number of long branches in X |ψ ′ and Y |ψ or at least k2 of them.

By construction, the models X |ψ ′ and Y |ψ satisfy the conditions for being (k − 1)-akin.
Furthermore, x and y are in the same relative position, so (X |ψ ′, x) ≈k−1 (Y |ψ , y). By the induction
hypothesis we therefore have X |ψ ′, x |� χ iff Y |ψ , y |� χ . This contradicts our assumption that
X , x |� [! ]χ and Y , y �|� [! ]χ .

In each case, we arrived at a contradiction. So ϕ does not distinguish between (X , x) and (Y , y),
completing the induction step and thereby the proof. �

We have now shown that there is an IPAL formula that distinguishes between M and N
(Lemma 4.13) and that there is no APAL formula that similarly distinguishes the two sets
(Lemma 4.19). This implies that there is no APAL formula that is equivalent to the distinguishing
IPAL formula. So we have IPAL�� APAL. Together with APAL � IPAL (Proposition 4.10), this
yields the result that that we were after, namely that APAL ≺ IPAL (Proposition 4.11).
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5 Decidability and undecidability of satisfiability

The satisfiability problem of APAL is decidable when there is only one agent, whereas it is
undecidable when there are at least two agents [2, 20]. The approach is by encoding/formalizing
an undecidable tiling problem into APAL [13]. There are some decidable logics with quantification
over information change, e.g. Boolean arbitrary public announcement logic [46]. It is therefore a
relevant question whether the APAL versions considered in this paper are decidable. It turns out that
they are all undecidable (for more than one agent). We prove this by referring to the undecidability
proof in [2] and listing, for each of SAPAL, SCAPAL and IPAL, the exact changes needed in that
proof in order to show undecidability. For all proof details and proof structure we refer to [2].

PROPOSITION 5.1
The satisfiability problem for SAPAL, FSAPAL, SCAPAL and IPAL is undecidable.

PROOF. In [2] it is shown that, given a finite set C of colours, there is an APAL formula ϕ that
formalizes an undecidable tiling problem of tiles coloured with C. We cannot determine whether ϕ

is satisfiable as this would solve the tiling problem. Therefore the satisfiability problem of APAL is
undecidable. This formula ϕ has many constituents that describe properties that need to be satisfied
by the tiling, and APAL quantifiers occur in the formulas describing such properties (see Example
5.2 below). For each of SAPAL, SCAPAL and IPAL there is a very simple way to translate these
LAPAL formulas into equivalent LSAPAL, LSCAPAL, respectively LIPAL formulas. Furthermore, for
SAPAL the translation only uses finite sets of variables, so it is a translation to FSAPAL as well.

First, we note that the APAL undecidability proof in [2] only uses two agents and a finite set C∪Λ

of atoms that is the union of a finite set C of colours plus a set Λ = {u, d, l, r,♥,♣,♦,♠}. Let us at
least explain the intuitive meaning of these different atoms. The properties formalized in the proof
describe the requirements to tile an infinite grid where a square in the grid has four sides u, d, l, r
(for ‘up’, ‘down’, ‘left’ and ‘right’) and where each square is labeled with one of ♥,♣,♦,♠. The
four sides of the tiles have colours from C and the colours of adjoining tiles positioned on the grid
have to match. No other atoms are required.

The required truth (value) preserving translations from LAPAL to LX , where X is one of SAPAL,
SCAPAL and IPAL, are now as follows. We recall the above ϕ ∈ LAPAL encoding the tiling. Then:

• For SAPAL, replace each occurrence of [! ] in ϕ by [C ∪Λ].
• For SCAPAL, let
C∪Λ := ∧

p∈C∪Λ(p∨¬p). Now replace each subformula of ϕ of shape [! ]ψ

by [⊆](ψ ∧ 
C∪Λ).2

• For IPAL, replace each occurrence of [! ] in ϕ by [
↓].

These translations are indeed adequate. For SAPAL it is sufficient to observe that the set of atoms
P considered is C ∪ Λ and that [! ]ϕ is equivalent to [P]ϕ for the entire (finite) set of atoms. The
case SCAPAL is slightly more complex, as the witnesses of a constituent of shape [! ]ψ of the tiling
formula ϕ may need more atoms than are occurring in the formula ψ (as demonstrated below in
Example 5.2). The translation simply forces any formula bound by a quantifier to employ all atoms
in the language by adding another conjunct that does not affect the truth value as it is always true.
Finally, Prop. 3.7 showed that [
↓]ϕ is equivalent to [! ]ϕ.

Apart from these translations, no other adjustments to the proof in [2] are needed. �

2More properly, we should see this as an inductively defined translation t : LAPAL → LSCAPAL with only non-trivial
clause t([! ]ϕ) := [⊆](t(ϕ) ∧ 
C∪Λ).
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EXAMPLE 5.2
A constituent of the formula ϕ encoding the tiling of the plain is as follows, where s and e are the
two agents used in the proof. It says that for any square of the infinite grid labelled with a ♥, there
is some square below some square to the left of some square above some square to the right of that
square, that is n-bisimilar (i.e. a square that is also labelled with ♥, but now the occurrence on the
right-hand side of the formula below). See [2,page 617].

capal(♥) := ♥→[! ](Ks(r → (Ke(l → (Ks(u → Ke(d →
Ks(l → Ke(r → Ks(d → Ke(u → K̂s♥)))))))))))

For SAPAL this capal(♥) is translated into

cfsapal(♥) := ♥→[ΛC](Ks(r → (Ke(l → (Ks(u → Ke(d →
Ks(l → Ke(r → Ks(d → Ke(u → K̂s♥)))))))))))

For SCAPAL, this capal(♥) is translated into the following. Here, it is relevant to observe that in the
proof in [2] the witness formula for this occurrence of [! ] contains the atoms ♣,♦ and ♠ that do not
occur in capal(♥). Therefore, without the trivially true conjunct 
C∪Λ used in the translation, this
witness would not have been available. Merely replacing [! ] by [⊆] in capal(♥) would have resulted
a formula with a different meaning.

cscapal(♥) := ♥→[⊆](Ks(r → (Ke(l → (Ks(u → Ke(d →
Ks(l → Ke(r → Ks(d → Ke(u → K̂s♥)))))))))) ∧
C∪Λ)

For IPAL, capal(♥) is translated into:

cipal(♥) = ♥→[
↓](Ks(r → (Ke(l → (Ks(u → Ke(d →
Ks(l → Ke(r → Ks(d → Ke(u → K̂s♥)))))))))))

6 Axiomatization

In this section we report on axiomatizations of the logics under consideration. The known
axiomatization of APAL is infinitary (non-RE) [8, 9]. The infinitary axiomatizations of SAPAL (and
also of FSAPAL, as a special case) and SCAPAL are straightforward variations of the axiomatization
of APAL, and can similarly be proved sound and complete. It requires merely checking very few
and very local changes of the completeness proof, as we will see. These axiomatizations we can
confidently present as results. It seems the axiomatization of QIPAL (and of IPAL, as a special case)
is similarly a variation of that of APAL, but the adjustments there are larger and require checking
details in various parts of the completeness proof. It seems then advisable to redo the entire proof,
so that the concerned reader can check the correctness of the argument. This is beyond the scope
of our current investigation and therefore, as they say, referred to further research. However, the
value of such further research may be limited, if the conjectured axiomatization is the only outcome.
More adventurous pursuits, such as the reported search for finitary (RE) axiomatizations for APAL
variations, may then be worthier.

Let us first present the axiomatization of APAL. The derivation rule involving the quantifier is
formulated in terms of so-called necessity forms [24]. Consider a new symbol �. The necessity forms
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are defined inductively as follows, where ϕ is a formula in some logical language L and a ∈ A.

ψ(�) ::= � | (ϕ → ψ(�)) | Kaψ(�) | [ϕ]ψ(�)

A necessity form contains a unique occurrence of the symbol �. If ψ(�) is a necessity form and
ϕ ∈ L, then ψ(ϕ) ∈ L is the substitution of � by ϕ in ψ(�).

DEFINITION 6.1
([8, 9]).
The axiomatization APAL of APAL consists of the following axioms and rules. In the rule R[!], the
expressions χ([ψ]ϕ) and χ([! ]ϕ) are instantiations of a necessity form χ(�).

P All propositional tautologies K Ka(ϕ → ψ) → (Kaϕ → Kaψ)

T Kaϕ → ϕ 4 Kaϕ → KaKaϕ

5 ¬Kaϕ → Ka¬Kaϕ AP [ϕ]p ↔ (ϕ → p)

AN [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ) AC [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

AK [ϕ]Kaψ ↔ (ϕ → Ka[ϕ]ψ) AA [ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ
A[!] [! ]ϕ → [ψ]ϕ where ψ ∈ LEL MP From ϕ and ϕ → ψ infer ψ

NecK From ϕ infer Kaϕ NecA From ϕ infer [ψ]ϕ
R[!] From χ([ψ]ϕ) for all ψ ∈ LEL infer χ([! ]ϕ)

The soundness and completeness of APAL was shown in [8]. An error in that completeness proof
was later corrected in [7]. Even later a simplified completeness proof was given in [9]: that will be
our further reference. Note that the system in [9] contains an additional derivation rule ‘From ϕ infer
[! ]ϕ’, that however is derivable in APAL.

DEFINITION 6.2
(Axiomatizations SAPAL and SCAPAL).
The axiomatization SAPAL of SAPAL is as APAL but where the axiom and rule involving the
quantifier are replaced by (where Q ⊆ P):

A[Q] [Q]ϕ → [ψ]ϕ where ψ ∈ LEL|Q
R[Q] From χ([ψ]ϕ) for all ψ ∈ LEL|Q infer χ([Q]ϕ)

The axiomatization SCAPAL of SCAPAL is as APAL but where the axiom and rule involving the
quantifier are replaced by:

A[⊆] [⊆]ϕ → [ψ]ϕ where ψ ∈ LEL|P(ϕ)

R[⊆] From χ([ψ]ϕ) for all ψ ∈ LEL|P(ϕ) infer χ([⊆]ϕ)

PROPOSITION 6.3
The axiomatizations SAPAL and SCAPAL are sound and complete.

PROOF. It suffices to sketch the proof. The soundness of the axiomatizations SAPAL and SCAPAL
is evident as the axiom and the rule follow the semantics of, respectively, the [Q] and [⊆] quantifier.
All remaining axioms and rules are standard from PAL. The completeness proof proceeds exactly as
in [9], with very minimal changes: the quantifier [! ] only features in the subinductive case [ψ][! ]χ
and in the inductive case [! ]ψ of the proof of the Truth Lemma [9,pages 75–76]. Apart from
changing the notation of the quantifier, it suffices to replace four occurrences of the word ‘epistemic
formulas’, i.e. ψ ∈ LEL, by ‘epistemic formulas in LEL|Q’ respectively ‘epistemic formulas in
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LEL|P(ϕ)’. This minimal change is sufficient because the Truth Lemma for APAL is proved by a
lexicographic complexity measure wherein [ψ]ϕ is less complex than [! ]ϕ for any ψ ∈ LEL, for the
simple reason that [ψ]ϕ contains one less quantifier than [! ]ϕ. Similarly, [ψ]ϕ is less complex than
[Q]ϕ and than [P(ϕ)]ϕ for any ψ ∈ LEL. No other changes are required in the completeness proof.�

Let us now consider IPAL↓. Given the semantics of the quantifier and Proposition 3.5.4 the
candidate axiom and rule are as follows:

A[↓] [η↓]ϕ → [ψ ∧ η]ϕ where ψ ∈ LEL

R[↓] From χ([ψ ∧ η]ϕ) for all ψ ∈ LEL infer χ([η↓]ϕ)

This still seems to be sufficient to demonstrate completeness, with, given the presence of an
additional formula η, minor further adjustments of the proof for APAL.

We have not considered the case IPAL↑.
Now consider QIPAL. Instead of the changed axiom and rule above we would now need two rules

(and two similar rules for the other quantifier):

RA[↓] From ψ → η infer [η↓]ϕ → [ψ]ϕ where ψ ∈ LEL

RR[↓] From χ([ψ]ϕ) for all ψ ∈ LEL such that ψ → η, infer χ([η↓]ϕ)

It may be that completeness can still be obtained for this system, but this would require more checks,
e.g. we appear to need a slightly changed complexity measure in the completeness proof, such that
ψ → η <Size

d�
χ([η↓]ϕ) [9,page 68]. At this stage it therefore seems best to relegate all this to

conjectures.

7 IPAL, substructural logics and dynamic consequence

7.1 Introduction

In this section we discuss the motivation for the (Q)IPAL ↓-quantifier, connecting it with the
implication connective of substructural logics [21, 35, 38, 42]. This connection is explored also via
a brief study of a dynamic consequence relation [44, 45] arising from the notion of IPAL validity.

In a nutshell, our semantics of [ϕ↓]ψ is loosely inspired by the satisfaction clause for implication
in the relational semantics for substructural logic, according to which ‘ϕ implies ψ’ is satisfied
in a state iff combining that state with any state satisfying ϕ will result in a state satisfying ψ .
Information update is one natural reading of ‘combining states’ and ‘any state satisfying ϕ’ translates
in the information update setting into looking at updates with any formula implying ϕ. The dynamic
consequence relation arising from the notion of IPAL validity is not closed under most of the usual
structural rules, nor under substitution, although it satisfies a form of weakening even stronger than
that satisfied by van Benthem’s dynamic consequence arising from PAL. Details follow.

7.2 Substructural logics and implication

Substructural logics are logics weaker than classical Boolean logic. The name ref lects the fact
that their Gentzen-style formulations are obtained, roughly speaking, by omitting some (or all)
structural rules of Gentzen’s sequent calculus for intuitionistic logic, most prominently weakening
(i), contraction (c) and commutativity or ‘exchange’ (e)

Γ , Δ ⇒ ψ

Γ , ϕ, Δ ⇒ ψ
(i)

Γ , ϕ, ϕ, Δ ⇒ ψ

Γ , ϕ, Δ ⇒ ψ
(c)

Γ , ϕ, χ , Δ ⇒ ψ

Γ , χ , ϕ, Δ ⇒ ψ
(e).
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Other structural rules featuring in this contribution are strong weakening (si), left monotonicity (lm),
cautious monotonicity (cm) and ref lexivity (r).

Γ , Δ ⇒ ϕ

Γ , Σ , Δ ⇒ ϕ
(si)

Γ ⇒ ϕ

ψ , Γ ⇒ ϕ
(lm)

Γ ⇒ ϕ Γ , Δ ⇒ ψ

Γ , ϕ, Δ ⇒ ψ
(cm)

Γ , ϕ ⇒ ϕ
(r)

Substructural logics have general algebraic semantics [21] but—similarly as in modal logic—
models of a more concrete kind are better at facilitating fruitful interpretations. Substructural logics
also have general relational semantics [40, 41], directly inspired by Kripke semantics for modal
logic. In order to understand the key aspects of this semantics, one needs to take into account the
role played by implication, namely, that implication internalizes consequence in the sense that

Γ , ϕ ⇒ ψ iff Γ ⇒ ϕ → ψ .

Relational semantics for substructural logics treat implication as a binary modal operator, i.e. the
relational models contain a ternary accessibility relation R between states (pieces of information)
x, y, z that is referred to in the satisfaction (denoted |�) condition for formulas of the form ϕ → ψ :

x |� ϕ → ψ iff for all y and z, Rxyz and y |� ϕ imply z |� ψ .

This is an obvious generalization of the standard Kripke satisfaction condition for formulas of the
form �ψ . General readings indicating the relation of the ternary semantics to various notions
of conditionality have been proposed in [12]. Another approach (i.e. however, not completely
orthogonal to the former one) is to read R in terms of combining pieces of information. Dunn and
Restall point out that:

‘perhaps the best reading [of Rxyz] is to say that the combination of the pieces of information
x and y (not necessarily the union) is a piece of information in z’ [19, p. 67].

Restall adds that:

‘a body of information warrants ϕ → ψ if and only if whenever you update that information
with new information which warrants ϕ, the resulting (perhaps new) body of information
warrants ψ’ [39, p. 362] (notation adjusted).

On the informational reading, substructural implication clearly resembles an information update
operator; see also [3, 4] where it is observed that dynamic epistemic logic can be seen as a two-
sorted substructural logic, and that the product update is a special case of the ternary accessibility
relation. The question is, what kind of update operator does substructural implication represent? Our
semantics of [ϕ↓]ψ modify PAL announcements so that the result ref lects the ‘non-determinism’ of
substructural implication—in evaluating ϕ → ψ at a given state, there is no one ‘canonical’ piece
of information representing ϕ that is combined with the given state (think of the truth set of ϕ in the
PAL satisfaction clause), but usually a number of them is considered. In the semantics of [ϕ↓]ψ the
role of these various pieces of information is played by formulas implying ϕ (or, rather, by truth sets
of formulas implying ϕ).

The question is, how does this notion compare to substructural implication on the one hand and to
PAL announcements on the other. A study of dynamic consequence relations is a particularly useful
way of comparison.

7.3 Dynamic consequence

We now define a novel dynamic consequence relation⇒↓.
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DEFINITION 7.1
(Dynamic consequence).
Let Σ be a finite (possibly empty) sequence of EL-formulas and ϕ a EL-formula.

IPAL dynamic consequence Σ ⇒↓ ϕ iff |� [Σ↓]ϕ
PAL dynamic consequence Σ ⇒! ϕ iff |� [Σ]ϕ

Relation⇒↓ can be seen as a variant of⇒! which is van Benthem’s dynamic consequence relation
in its ‘local’ version [44, 45].

We can see that, trivially, the (Q)IPAL ↓-quantifier internalizes ⇒↓ similarly as substructural
implication internalizes ⇒: we have Γ , ϕ ⇒↓ ψ iff Γ ⇒↓ [ϕ↓]ψ . As shown below, ⇒↓ differs
from ⇒! by satisfying a stronger version of weakening, and it shares with ⇒! a number of other
properties usually not present in substructural consequence relations (such as not being closed under
substitution). This shows that, despite certain resemblances, one would need to further modify the
(Q)IPAL ↓-quantifier to mimic substructural implication in a PAL-like setting, and vice versa.

LEMMA 7.2
|� [ψ↓]ϕ implies |� [ψ↓][χ↓]ϕ.

PROOF. This follows from Proposition 3.8 that [ψ↓]ϕ → [ψ↓][χ↓]ϕ. �
We recall from Example 3.9 that �|� [ψ↓]ϕ → [χ↓][ψ↓]ϕ. Despite that, we still have that:

LEMMA 7.3
|� [ψ↓]ϕ implies |� [χ↓][ψ↓]ϕ.

PROOF. Assume |� [ψ↓]ϕ. Now suppose towards a contradiction that �|� [χ↓][ψ↓]ϕ. Let (M , s) be
such that M , s �|� [χ↓][ψ↓]ϕ. Then there is η implying χ such that M |η, s �|� [ψ↓]ϕ. This contradicts
assumption |� [ψ↓]ϕ. �
PROPOSITION 7.4
IPAL dynamic consequence is closed under strong weakening (si).

PROOF. Lemma 7.2 says in other words that ψ ⇒↓ ϕ implies ψχ ⇒↓ ϕ, whereas Lemma 7.3
says in other words that ψ ⇒↓ ϕ implies χψ ⇒↓ ϕ. We can show that, for arbitrary sequences,
Γ , Δ ⇒↓ ϕ implies Γ , Σ , Δ ⇒↓ ϕ, by an induction on the length of the sequences involved, using
the above sequent representations of Lemma 7.2 and Lemma 7.3. �

As observed by van Benthem, ⇒! does not satisfy (si). For example, [¬Kap]¬Kap is valid, but
[¬Kap][p]¬Kap is not valid. This is therefore a difference between⇒↓ and⇒!.

As a corollary to Proposition 7.4,⇒↓ also satisfies the structural rules left monotonicity (lm) and
cautious monotonicity (cm). These are also satisfied by⇒! [45].

Finally note that ⇒↓ (as well as ⇒! or any other conceivable dynamic consequence relation
involving public announcements) does not satisfy ref lexivity (r). For example, it is elementary that
|� [p↓]p (i.e. p ⇒↓ p), whereas on the other hand, just as elementary, �|� [(p∧¬Kap)↓](p∧¬Kap).
Just as PAL is not closed under substitution, also IPAL is not closed under substitution. Hence, ⇒↓
is not a consequence relation in the Tarskian sense.

8 Conclusions

We investigated some logics that are almost APAL but not quite: the logics FSAPAL, SCAPAL
and IPAL. They distinguish themselves by their widely varying relative expressivity. On the other
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hand, their axiomatizations are very similar to that of APAL, and they also have undecidable
satisfiability problems. We have shown that the IPAL quantifier, motivated by the satisfaction clause
for substurctural implication, yields a substructural dynamic consequence relation differing from
van Benthem’s dynamic consequence based on PAL.
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