
HAL Id: hal-04238162
https://hal.science/hal-04238162

Submitted on 29 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring Moore Machine for Adaptive Online Hybrid
Automaton Identification

Yan Monier, Gregory Faraut, Bruno Denis, Nabil Anwer

To cite this version:
Yan Monier, Gregory Faraut, Bruno Denis, Nabil Anwer. Inferring Moore Machine for Adaptive
Online Hybrid Automaton Identification. IFAC World Congress 2023, Jul 2023, Yokohama, Japan.
�10.1016/j.ifacol.2023.10.040�. �hal-04238162�

https://hal.science/hal-04238162
https://hal.archives-ouvertes.fr

Inferring Moore Machine for adaptive
online Hybrid Automaton Identification

Yan Monier, Gregory Faraut, Bruno Denis, Nabil Anwer

LURPA, ENS Paris-Saclay, Université Paris-Saclay, 4 Av. des
Sciences, 91190 Gif-sur-Yvette.(name.surname@ens-paris-saclay.fr)

Abstract: In the context of CPS modeling, this paper proposes a new method for online
adaptive identification of hybrid systems. The method relies on a Moore machine identification
process; A mapping between a hybrid automaton and a discrete event Moore machine is
proposed, and a new online adaptive Moore machine identification method is proposed. A case
study illustrates the proposed method.

Keywords: Cyber-Physical System, Discrete Event System, Hybrid System, Identification.

1. INTRODUCTION

Digital twin (DT) [Qi et al. (2021)] and Cyber-Physical
Systems (CPS) [Napoleone et al. (2020)] are well known
as key enablers of the industry 4.0 revolution. However,
some problems remain when developing and implementing
such systems in the industry. It is then essential to develop
methods and tools allowing a fast and personalized tran-
sition to match the industry 4.0 requirements and leading
to models with high fidelity of CPS that fit the industry
4.0 needs [Oztemel and Gursev (2020)]. Such model shall
respect a certain number of properties. Among them are
the properties of the CPS in the context of digital twin
modeling [Qi et al. (2021)]: the model needs to be able to
simulate the system on its own and in synchronization with
it. Moreover, it needs to follow the system during its life
cycle; it may be able to adapt to fit the system’s behavior,
whatever the evolutions of the system. Finally, it may be
connected to the physical and cyber environment of the
system. The model needs to be interpretable by humans
and take into account external factors from the Cyber and
Physical spaces.

To model the dynamics of a CPS, it is necessary to take
into account both process and controller, which interact in
a closed loop. Early works relied on discrete event models.
The first works were based on discrete event models, for
example, in the field of diagnosis [Roth et al. (2011)] or
supervision [Wonham et al. (2017)].An improvement of
those models has been proposed through the development
of timed models [de Souza et al. (2020)] incorporating
time requirements. Those models are well suited to take
into account the discrete dynamics of the controller but
cannot take into account the continuous dynamics of the
process. The solve this problem, a hybrid model able to
represent discrete and continuous dynamics of the system
has been produced [Lauer and Bloch (2019)]. Currently,
the synthesis of those models is done by experts who design
and implement specific models for specific purposes.

While this approach remains conceivable at the system de-
sign stage, it would be very time and resource-consuming
for the recurrent adaptation of the model to the sys-

tem behaviors evolutions’ over its life cycle. The solution
proposed in this work to overcome this problem is the
automated generation of hybrid system models from the
observation of input-output traces from the CPS. Such
process is known as System Identification.

System identification has been performed on several types
of models. It first started with continuous dynamical model
identification [Liu and Hanssens (1982)], consisting in opti-
mizing transfer function parameters. However, such mod-
els could not capture the discrete dynamics of the system
representing several functioning modes. More focused on
discrete state modeling, identification has also been per-
formed for Discrete Event Systems [Estrada-Vargas et al.
(2010)], such as Moore Machine [Giantamidis et al. (2021)]
and timed systems [de Souza et al. (2020)]. However, those
models could not capture the continuous dynamic of the
system. This is the reason why identification methods have
been developed to identify hybrid systems [Yang et al.
(2021)] capturing both discrete and continuous dynamics
of the system. However, the current solutions proposed to
identify hybrid systems are inconsistent with the needs for
CPS and digital twin modeling. Actual methods don’t pro-
vide online identification of deterministic hybrid models
that could be simulated and used as digital twins of cyber-
physical systems. In [Soto et al. (2021)], an online identi-
fication method is proposed, but the generated model can
only reproduce the observed behavior of the system and
can’t extrapolate its future evolution. In this paper, we
propose to add three assumptions to actual methods of
automaton inference :

1) No required knowledge about the initial state of the
system. The inference method’s input data come from
experimental system signal records. The proposed method
does not need to associate a unique and known state
of the system at the beginning of each signal recording.
This feature allows on-the-fly (or online) observations
during system operation without setting up controlled
observation sessions.

2) The observed repetitive behaviors of the system must
be translated into cycles in the underlying directed graph

of the identified hybrid automaton. CPS have many repet-
itive behaviors. Our method will highlight these repetitive
behaviors in the form of a cycle in the directed graph
that is underlying in hybrid automaton. This will give
more compact and more human-readable automata. A
good representation of the control cycle behaviors should
also enable the model to extrapolate the simulation of
the system beyond the input data used for the inference
process.

3) The inference method must be adaptive. In the context
of the digital twin, a new challenge appears: updating the
model as soon as the real system behavior evolves. When
new data is recorded on the system, our adaptive approach
takes into account the existing model and updates it with
the new data, while a classic method builds a new model
from scratch with the history of all recorded data. Then,
our inference method should not require the recalculation
of the complete automaton but only a local update of the
part of the automaton impacted by new data. This should
reduce the amount of computation compared to a complete
model recalculation.

This paper will focus on adaptive hybrid automaton infer-
ence for online identification of hybrid systems [Yang et al.
(2021)]. In section 2, the hybrid automaton identification
problem is presented. In section 3, we then give the global
framework of the Identification method we are developing.
In section 4, we present the automaton inference algo-
rithms developed. In Section 5, the process is illustrated
through a simple academic example. Finally, we conclude
our paper in Section 6 with a summary of research findings
and future perspectives.

2. HYBRID AUTOMATON IDENTIFICATION AND
PROBLEM STATEMENT

In the CPS context where controllers interact with sensor
actuator signals, deterministic hybrid automaton with
output and input will be considered for identification.
When identifying the model, especially under the form
of a Finite-State-Machine, most existing works assume
that the set of traces used for identification starts from
the same state. However, for the identification of CPS,
it is impossible to guarantee that the observed traces
start from the same place without prior knowledge of the
system. We then suppose that the system’s initial state
for each trace observed is unknown. Identifying our system
as a hybrid Automaton raises the problem of considering
several possible initial states.

2.1 Preliminaries

Definition 1. (Hybrid Automaton). A hybrid automaton
is a formal model of cyber-physical systems. Some ex-
ternal physical quantity (discrete, binary, or continuous)
influences the system and makes it switch mode if a cer-
tain condition is satisfied. We define a Deterministically
guarded hybrid automaton with Input and Output with
Several initial states (DHAIOS) as a tuple of the fol-
lowing components. A hybrid automaton H is a 9-uplet:
(L,Xi, Xo, F low, S,Guard, Jump,Linit, Xinit) with:

• L is a finite set {l1, l2, ...ln} of locations that represent
modes of the hybrid system.

• Xi is a finite set of real-valued input variables while
Xo is the output variables one. X = Xi ∪ Xo is
set of all variables. We write Ẋ the set of ẋ, the
first derivative variable of x ∈ X during continuous
evolution inside a mode, and we write X ′ the set of
x′, the update of x ∈ X at the conclusion of a discrete
change.

• Flow is a function that associates a flow to a location.
A flow is a predicate whose free variables are from
X ∪ Ẋ; it states the possible continuous evolution
when the hybrid system is in the mode represented
by location l. The set of flows is noted F .

• S is a finite set of switches s = (•s, s•) ∈ L×L, where
•s is the source location of s, while s• is the target
location of s. Switches represent discrete transitions.

• Guard is a function that assign a condition g ∈ G to
every switch s ∈ S where g is a predicate over the set
X of variables and G the set of all guards conditions.
An additional constraint guarantees that switches can
not occur simultaneously. ∀(s1, s2) ∈ S2 if •s1 = •s2
then predicate g1 ∧ g2 is false, where g1, resp. g2, is
the guard condition of switch s1, resp. s2.

• Jump is a function that maps every switch to a
jump condition. A jump condition is a predicate over
X ∪X ′. It states the update of the variables’ values
when the hybrid system makes the discrete change. τ
symbolizes the jump x′ = x.

• Linit ⊂ L is an non empty set of potential initial
locations.

• Xinit is a function that maps l ∈ Linit to a predicate
X l

init on the initial valuation of X. ∀l ∈ Linit and
∀x ∈ X then X l

init(x) = xl
init ∈ R.

Definition 2. (Guard/Jump/Flow Trace).

We define a Guard/Jump/Flow Tuple Gtu as a 3-tuple
(g, j, f l) with : g ∈ Guard, j ∈ Jump and fl ∈ Flow.

We define a Guard/Jump/Flow Traces Gtr of length
|Gtr| = z, z ∈ N, as a sequence of Guard/Jump/Flow
tuples: Gtr = Gtu1...Gtuz We note ϵ the empty guard,
the guard used in the first tuple of the Guard/Jump/flow
Traces if no guard is satisfied at the beginning of the Trace.

2.2 Related works

Hybrid system identification consists in building mathe-
matical models of dynamical systems switching between
different operating modes from experimental observations
[Lauer and Bloch (2019)]. In the literature, several solu-
tions are proposed to perform hybrid automaton identifica-
tion over several research communities. [Yang et al. (2021)]
proposes a framework for hybrid identification that is
adapted by several other works depending on the purpose
of the identification method [Lamrani et al. (2018)]. Others
prefer to use artificial intelligence to solve the problem
[Brusaferri et al. (2020)]. Computer scientists propose an
online synthesis of a hybrid automaton [Soto et al. (2021)]
which could be helpful for diagnostics but less for simula-
tion.

However, the methods proposed to identify hybrid au-
tomata remain relatively similar, with each their advan-
tages and flaws. We could, for most of the paper studied in

the literature, devise the hybrid automaton Identification
Problem into five sub-problems:

• SP1: Change-point Identification (divides sampled
signals into several groups)

• SP2: Mode Classification (regroups similar group of
sampled data)

• SP3: Flow Identification (associate a flow to each
previously identified mode)

• SP4: Guard and Jump Identification (find a switching
condition explaining each change of mode)

• SP5: hybrid automaton Synthesis (generate the hy-
brid automaton from the previous result)

However, we noted two significant improvements that
could be proposed for the hybrid system identification of
CPS. One of them is about the lacking feature of online
identification. A lot of previous works mention this feature
as a possible improvement, but only a few have dealt with
it [Soto et al. (2021)][Saberi et al. (2021)]. None to our
knowledge has studied it for a hybrid automaton model
respecting the properties of the model needed for Cyber-
Physical Systems [Napoleone et al. (2020)].

The other improvement that can be made comes from
the non-management of non-optimal decisions made while
solving the different Sub-Problems. The point is that some
results obtained by solving one sub-problem could help to
solve the other sub-problems. For example, in the current
framework, the mode classification sub-problem (SP2) is
often solved after solving the change-point identification
sub-problem (SP1). However, if a mode is isolated alone
during the mode classification process (SP2), it is either a
real singularity (a mode appearing only once in the train-
ing set), or it is due to a wrong decision performed during
the change point identification process (SP1). This infor-
mation could be transmitted back to the Change Point
Identification sub-problem solver, which would propose,
if necessary, a corrected change-point detection solution.
The idea would be to develop retroactive loops between
Sub-Problem solvers to improve the overall quality of the
identification.

2.3 Problem statement

We noticed that most works dealing with hybrid system
identification come from computer science or dynamical
continuous system communities. They develop tools to
solve sub-problems 1 to 4 and generally adapt an already
existing automaton inference method to infer the hybrid
automaton [Medhat et al. (2015)]. However, considering
the future improvement that will be performed to solve
sub-problem 1 to 4 (adaptive and online identification),
no work in the literature proposes an adequate solution
for sub-problem 5. Since our field of expertise is focused
on Discrete Event Systems and Automaton Identification,
the problem of hybrid automaton identification studied in
this paper will only focus on developing an online adap-
tive solver of Sub-Problem 5. We will suppose that sub-
problems 1 to 4 can be solved online and adaptively; the
two main flaws identified in the previous section are cor-
rected, so sub-problems 1 to 4 solvers can interact through
a closed-loop communication process to adaptively update
their solution. We define the online adaptive identification
process as an identification process able to update its iden-

tification output (the model obtained by identification)
according to a change in its input (the training set used for
identification). The Problem of this paper is then how to
solve the online and adaptive sub-problem identification 5
(hybrid automaton inference) with:

• as input of the method, the modification performed
on one or several adaptive Guard/Jump/Flow Traces
(for each trace, a Guard/jump/flow tuple can be
changed, added, or removed). Since we aim at ob-
taining a model that can be simulated determinis-
tically, we will suppose that the guard identified by
sub-problems 1 to 4 solvers are exclusive (two guard
predicates can’t be verified at the same time, for the
same valuation of variables)

• as Output of the method, a DHAIOS, the identified
Deterministic Hybrid Automaton with Input and
Output with Several potential initial states. The
DHAIOS should also be able to represent by its
structure the control cycle of the system it modelizes.

It is however important to notice that to our knowledge,
such an adaptive online Guard/Jump/Flow Trace identifi-
cation method doesn’t exist yet in the literature. However
several works propose methods solving Sub-Problems 1
to 4 [Lamrani et al. (2018)] [Saberi et al. (2021)] allow-
ing to obtain with little adaptation, an equivalence of
Guard/Jump/Flow Trace. Those results could still be used
as input of the method we develop in this paper to perform
online hybrid automaton inference.

3. GLOBAL FRAMEWORK BASED ON MOORE
MACHINE IDENTIFICATION

In this section, we present the global framework of the
proposed method and its link with the Moore Machine
Identification Problem.

3.1 Global Framework

The method developed to solve Sub-Problem 5 is based
on the rich literature about discrete event system identifi-
cation [Estrada-Vargas et al. (2010)]. Several works about
hybrid system identification propose a labeling procedure
for guard, flow, or jump to manipulate them like events
[Yang et al. (2021)]; some even use this labeling to infer
Mealy Automaton [Medhat et al. (2015)]. Inspired by those
works, the ideas and concepts of the proposed methods
reside in a bijection between a Deterministic Moore Ma-
chine with several potential initial states (DMMS) and a
DHAIOS associated with a newly developed online adap-
tive DMMS Identification method. The framework is pre-
sented (fig 1).

Considering the output given by the online and adaptive
resolution of Sub-Problems 1 to 4, we develop in a first
part a labeling algorithm allowing us to perform a bijection
between Guard/Jump/Flow Traces and a Moore Machine
Input Output Sequences. We then develop an online adap-
tive DMMS Identification Method allowing us to generate
on the fly a DMMS. We then apply a reverse mapping
algorithm that transforms the DMMS into a DHAIOS.

adaptive online
Sub-Problem 1 to 4

solver

Label Maping

Guard/Jump/Flow
Traces updated

Adaptive Moore
Machine identifier

Moore
I/O-Traces
updated

Moore Machine
Updated

Reverse Mapping
DHAOIS updated

New sample data from the system

b c

d

proposed method SP5

 Dynamic Hybrid Automaton Identifier
a

Fig. 1. DHAIOS identification Framework focused on the
resolution of Sub-Problem 5

3.2 Moore Machine formalism

Definition 3. (Moore Machine). A Deterministic Moore
Machine with multi-initial States is a tuple M of the form
M = (I,O,Q, q0, δ, λ), where:

• I is a finite set of input symbols.
• O is a finite set of output symbols.
• Q is a finite set of states.
• Q0 is a non-empty set of initial states.
• δ : Q× I → Q is a transition function.
• λ is a output function, λ : Q → O.

We also define δ⋆ : Q × I⋆ → Q as follows (for all set S,
S⋆ denotes the set of all finite sequences over the set S ;
ϵ ∈ S⋆ denotes the empty sequence over S ; w ·w′ denotes
the concatenation of two sequences w,w′ ∈ S⋆. For q ∈ Q,
w ∈ I⋆, and a ∈ I:

• δ⋆(q, ϵ) = q.
• δ⋆(q, w · a) = δ(δ⋆(q, w), a).

We also define λ⋆ : Q× I⋆ → O⋆.

• λ⋆(q, ϵ) = λ(q)
• λ⋆(q, w · a) = λ⋆(q, w) · λ(δ⋆(q, w · a))

We note SI/O, the set of n Input/Output-traces (I/O-
traces) Sk, with Sk a sequence of mk I/O-pair pk,l. I is
the set of inputs and O is the set of outputs

SI/O = {S1, ..., Sn}, n ∈ N
Sk = {pk,1, ..., pk,mk

},mk ∈ N
pk,l = (x, y), x ∈ I, y ∈ O

We name the tuple (k, l) the identifier of the I/O pair
pk,l, l symbolizes the position of the I/O pair in the kth

I/O-trace of SI/O. We note pk,l(I) (pk,l(O)) the input (the
output) of a I/O-pair.

pk,l(I) = x

pk,l(O) = y

We call ρi(Sk) (ρO(Sk)) the input (the output) sequence
of Sk.

ρi(Sk) = (pk,1(I), ..., pk,mk
(I))

ρO(Sk) = (pk,1(O), ..., pk,mk
(O))

We define w, a I/O-word of size |w| = z, z ∈ N a sequence
of z I/O-pair: w = p1...pz

3.3 Moore Machine Identification

The problem of learning Dynamical Moore Machines with
Several potential initial states from Moore input-output
traces is defined as follows [Giantamidis et al. (2021)].
Given an input alphabet I , an output alphabet O, and a
set of Rtrain I/O-traces, called the training set, we want to
synthesize automatically and dynamically a deterministic,
complete, Moore machine M = (I,O,Q,Q0, δ, λ), such
that M is consistent with Rtrain, i.e., ∀(ρI , ρO) ∈ Rtrain:
λ⋆(ρI) = ρO.(Rtrain is assumed to be itself consistent, in
the sense it does not contain two different pairs with the
same input word.)

4. AUTOMATON INFERENCE ALGORITHMS

As explained in the General Framework, the Resolution
of the Sub-Problem 5 is divided into three steps, the
Label Mapping, the Moore Identification method, and The
reverse mapping from Moore Machine to DHAIOS.

We will note the identified DMMS: iDMMS = (iI,i O,i Q,
iQ0,

i λ,i δ) and the identified DHAIOS: iDHAIOS =
(iL,i Xi,

i Xo,
i Flow,i S,i Guard,i Jump,i Linit,

i Xinit)

4.1 Label-Mapping

Considering a Guard/Jump/Flow Trace, iG is the set of
Guards predicates in the Guard/Jump/Flow Trace, iF the
set of flows predicate and iJ the set of jumps predicate.
Each time a new Guard/Jump/Flow tuple is observed, the
pair of flow and jump is mapped to a label, the set of those
label is iO. The Guard is mapped to a label, the set of
those label is iI. It Results in two bijective function, the
Input Bijection to Guard (IBG) and the Output Bijection
to Jump and Flow (OBJF):

IBG : iI → iG

OBJF : iO → iJ × iF

This mapping operation allows us to transform each
Guard/Jump/Flow tuples into a Moore I/O-pair. For a
given x ∈i I, we note G(x) the guard associated with
x by the IBG. For a given y ∈i O, we note J(y) the
jump associated with y by the OBJF and F(y) the flow
associated with y by the OBJF.

4.2 Moore Identification

Considering the characteristics the identified hybrid au-
tomaton need to have, the Moore Machine identification
method developed need to:

• identify a deterministic model.
• identify a model that is updated online adaptively
depending on how the I/O-traces change.

• Highlight the control cycle behavior of the system.

The idea to overcome the online adaptive and determinis-
tic issue consists in mapping every element of the Moore
I/O trace to a location of the identified Moore Machine.
Doing so, each time an element of the I/O trace change,

only the location or transition associated with it can be
modified. To respect the determinism condition, we will
also link each I/O pair to a history of antecedent I/O
pairs, ensuring that for the given Input of the I/O pair,
the model has no other option than generating the output
of the I/O pair. Since several I/O traces will be assigned
to the same location, it should highlight the control cycle
behavior of the system. The General Framework of the Dy-
namic Deterministic Moore Machine Identification method
is presented in fig 2.

Rule Updater
I/O-pair changed or added

Sub-Rule Updater

Rule
Changed

I/O-pair mapping
Updater

Sub-Rule
changed

I/O pair mapping
Changed

Moore Machine
Updater

Moore Machine updated

 Adaptive Moore Machine identifierSP5.c

c.2

c.1

c.3

c.4

Fig. 2. Online Adaptive Moore Machine Identification
Framework

The Rule Updater

The first operation of the method is called the Rule
Updater, After observing a new or modified IO pair pk,l =
(x, y), if necessary, the rule rk,l associated with the I/O
pair is modified or added. The rule gives the minimal (in
size) history sequence of I/O pair finishing by pk,l ensuring
that, in any I/O traces used for the identification, the
input x occurring after the history of the rule generates
the output y.

We note Hist(w), the history of a word w as the word
preceding the last I/O-pair of w:

w = p0, ..., pd, d ∈ N
Hist(w) = p0, ..., pd−1

We define the Rule rk,l as the word of the minimal size of
trace Sk, ending by I/O-pair pk,l = (x, y) such as in any
set of traces of SI/O, the history of rk,l can’t be followed
by the I/O-pair (x, yb) with yb ̸= y. The history of rk,l
represents a deterministic condition on the occurrence of
output y after observing input x.

rk,l = min|w|({w ∈ Wprev(k, l − 1)\Ω(k,l)} · pk,l

with:

Ω(k, l) =

⋃
i,j∈IE(k,l) WPrev(i, j − 1)})

IE(k, l) = {i, j ∈ N2, pi,j(I) = x, pi,j(O) ̸= y}
(x, y) = pk,l

WPrev(k, l) is the set of world in Sk, ending by pk,l:

Wprev(k, l) = {w = pk,l−i...pk,l, i ∈ [0, ..., l − 1]}

The Sub-Rule Updater

The problem with the previously defined Rule is that if
we want to respect a history for a given rule rk,l with
|rk,l| = n, we then at least need the previous I/O-pair to

be consistent with the history of rk,l. If |rk,l−1| < n − 1,
the rule rk,l−1 is not a history long enough to ensure rule
|rk,l|, it is not consistent with it. We then need to define
the set of history imposed on an I/O-pair by the rules of
its succeeding I/O-pairs, that is the Sub-Rule.

We note w−1 the last I/O-pair of a word w:

w = p0, ..., pd, d ∈ N
w−1 = pd−1

We define srk,l, the Sub-Rule of an I/O-pair pk,l as the set
of words ending by pk,l that are Sub-Word of a rule of an
I/O pair succeeding pk,l.

srk,l = {w ∈
⋃
i≥l

SW (rk,i), w−1 = pk,l}

with SW(w), the Sub-Word set of a word w, the set of
words included in w and starting by the first I/O-pair of
w:

SW (w) = {wi, i ∈ [0, ..., z − 1]}

with:

{
w = (x1, y1)...(xz, yz), z = |w|
wi = (x1, y1)...(xz−i, yz−i)

The I/O-pair mapping updater

The next step is the I/O-pair mapping updater; it updates
the mapping operated between a given I/O-pair and a
word respecting the rules and sub rules of this I/O pair.

We define the Word to I/O-Pair Mapping (Wpm) as a
function that associates the I/O-pair pk,l to the longer
word among the rule and sub-rules of pk,l and consistent
with the I/O-pairs before pk,l.

Wpm(k, l) = max|w|({w ∈ Wprev(k, l) ∩ SR})
SR = (srk,l ∪ {rk,l})

The Moore Machine Updater

The method’s final step is the construction of the DMMS
from the WPM elaborated during the previous step. The
Moore Machine construction is executed in 5 steps:

• We define WM as the set of mapped words:

WM = {Wpm(k, l), k ∈ [1, ..., |SI/O|], l ∈ [1, ..., |Sk|]}
• For each word wm in WM, a location is created, with,

as associated output the last output of the last IO-
pair of wm:

iQ = {qwm, wm ∈ WM}
iλ : qwm → wm−1(O)

• For a given wm ∈ WM , if it exists an I/O-pair
pk,l, such as WPM(pk,l)=wm, then, if pk,l+1 exists, a
transition is created from the location associated to
Wpm(pk,l) to the location associated toWpm(pk,l+1),
there can’t be more than one transition going from
WPM(pk,l) to WPM(pk,l+1). We define T, the set of
transitions tuples:

T = {(qwm1, qwm2),∃(k, l) ∈ (N)2,

Wpm(k, l) = wm1,Wpm(k, l + 1) = wm2}
• All transition is associated with the input of the

last I/O-pair of the wm associated with its target
location:

∀(qwm1, qwm2) ∈ T
iδ : qwm1 × wm2−1(I) → qwm2

• The potential initial states are the states that are
mapped to the first I/O pair of each I/O-sequences:
iQ0 = {qwm, wm = Wpm(k, 1), k ∈ [1,, |SI/O|]}

The result of this 4th step is then the identified Moore
Machine: iDMMS = {iI, iO, iQ, iQ0,

iλ, iδ}. A reduction
algorithm can then be used if needed to reduce the model’s
size.

cart
position

Cart system

start signal cart speed

Identification method
DHAIOS

Fig. 3. Cart system identification process

4.3 Converting Moore Machine into DHAIOS

We finally need to define the reverse mapping converting
the Moore machine back into a hybrid automaton. We
define:

• iXi the set of variables observed from the cyber-
physical system considered as input.

• iXo the set of variables observed from the cyber-
physical system considered as output.

iL is constructed from the set of states of the DMMS:
iL = {lwm, qwm ∈ iQ}

The set flow function iFlow is constructed from the output
function of the DMMS:

iFlow : lqwm → F (δ(qwm))

The set of switch iS is constructed from the transition
function of the DMMS:

iS = {(lqwm1, lqwm2),
iδ(qwm1, wm2−1(I)) = qwm2}

The guard function iGuard is constructed from the tran-
sition function of DMMS:

iGuard : s → G(wm2−1(I)), s = (lqwm1, lqwm2) ∈ iS
iδ(qwm1, wm2−1(I)) = qwm2

The Jump function iJump is constructed from the output
function of the DMMS:

iJump : s → J(iδ(qwm2)), s = (lqwm1, lqwm2) ∈ iS

The potential states of initial location iLinit is constructed
from the set of initial states:

iLinit = {lqwm, qwm ∈ iQ0}

The output function of the DMMS, applied to the poten-
tial initial states, gives the initial values of the variables:

iXinit : lqwm → J(δ(qwm)), lqwm ∈ iL0

The identified hybrid automaton is then iDHAIOS:

(iL, iXi,
iXo,

iFlow, iS, iGuard, iJump, iLinit,
iXinit)

Using an adapted Moore machine minimization method,
the DHAIOS obtained can then be minimized if needed.

5. CASE STUDY

Moore I/O Trace :

x

v

Sampled I/O Traces from CPS

Guard/Jump/Flow Trace

SP
1 to 4

Moore
Machine

Identification

Reverse
Mapping

cart accelerating

cart decelerating

cart at max speed cart stopped

Label
Mapping

Output Map to Flow/Jump
(OMFJ)

Input Map to Guard
(IMG)

F J O G I

Fig. 4. Dynamic hybrid automaton identification example

The case study developed here is a simple system consist-
ing of a cart controlled by an operator. The operator can
click on a button to start or stop the cart. If the cart is
”started”, it accelerates until it reaches a maximum speed

(v=20). When it is ”stopped”, it decelerates until reaching
zero speed. The identification process of this system is
illustrated in fig 3. A signal is sent to the system by
an operator (start signal) to start or stop the cart. The
variable speed and position are two output variables of the
systems. Fig 4 illustrates the four steps of the identification
method:

• In the first step, the sampled traces of signal coming
from the system is transformed into a dynamical
Guard/Jump/Flow Trace

• In the second step, a mapping table is created, each
flow and jump is associated with an Output alphabet,
and all guards are associated with an Input alphabet;
this allows to transform the Guard/Jump/Flow trace
into a Moore Sequence.

• In the Third Step, the Moore Machine Identification
method is applied

• Finally, the reverse mapping method is applied, trans-
forming the Moore machine into a hybrid automaton

6. CONCLUSION AND FUTURE WORK

Based on a constructed bijection between a Moore Ma-
chine and a hybrid automaton, we succeeded in developing
an Adaptive Online Moore Machine inference method solv-
ing the online adaptive hybrid automaton inference prob-
lem. The proposed method can infer a deterministic hybrid
automaton from Guard/jump/Flow traces without prior
knowledge of the system’s initial state. The inferred au-
tomaton also displays control cycle behaviors of the iden-
tified system. Moreover, the method can locally update the
inferred hybrid automaton if any Guard/jump/Flow traces
used as input is extended, reduced, modified, added, or
deleted. Future work will address a real case implementa-
tion and mathematical proof of the method’s performance.
We noticed that the method could still be improved, es-
pecially by modifying the rules and sub-rules generation
properties, reducing the inferred automaton’s size even
more, thus increasing the pertinence of displayed control
cycle behaviors. It is also important to notice that the full
potential of this method can not be exploited yet with the
actual methods solving hybrid system identification Sub-
Problem SP 1 to 4. Other improvements must then be
proposed to solve those 4 sub-problems adaptively.

REFERENCES

Brusaferri, A., Matteucci, M., Portolani, P., Spinelli, S.,
and Vitali, A. (2020). Hybrid system identification using
a mixture of NARX experts with LASSO-based feature
selection. In 2020 7th International Conference on Con-
trol, Decision and Information Technologies (CoDIT),
545–550. IEEE, Prague, Czech Republic.

de Souza, R., Moreira, M., and Lesage, J.J. (2020). A
timed model for discrete event system identification and
fault detection. IFAC-PapersOnLine, 53(2), 808–813.

Estrada-Vargas, A.P., López-Mellado, E., and Lesage, J.J.
(2010). A Comparative Analysis of Recent Identification
Approaches for Discrete-Event Systems. Mathematical
Problems in Engineering, Vol.2010. Publisher: Hindawi.

Giantamidis, G., Tripakis, S., and Basagiannis, S. (2021).
Learning Moore machines from input–output traces.
International Journal on Software Tools for Technology
Transfer, 23(1), 1–29.

Lamrani, I., Banerjee, A., and Gupta, S.K.S. (2018).
HyMn: Mining linear hybrid automata from input out-
put traces of cyber-physical systems. In 2018 IEEE
Industrial Cyber-Physical Systems (ICPS), 264–269. St.
Petersburg.

Lauer, F. and Bloch, G. (2019). Hybrid System Identifi-
cation: Theory and Algorithms for Learning Switching
Models, volume 478 of Lecture Notes in Control and In-
formation Sciences. Springer International Publishing.

Liu, L. and Hanssens, D. (1982). Identification of multiple-
input transfer function models. Communications in
Statistics - Theory and Methods, 11(3), 297–314.

Medhat, R., Ramesh, S., Bonakdarpour, B., and Fis-
chmeister, S. (2015). A framework for mining hybrid
automata from input/output traces. In 2015 Interna-
tional Conference on Embedded Software (EMSOFT),
177–186. IEEE, Amsterdam, Netherlands.

Napoleone, A., Macchi, M., and Pozzetti, A. (2020). A
review on the characteristics of cyber-physical systems
for the future smart factories. Journal of Manufacturing
Systems, 54, 305–335.

Oztemel, E. and Gursev, S. (2020). Literature review
of Industry 4.0 and related technologies. Journal of
Intelligent Manufacturing, 31(1), 127–182.

Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang,
L., and Nee, A. (2021). Enabling technologies and tools
for digital twin. Journal of Manufacturing Systems, 58,
3–21.

Roth, M., Lesage, J.J., and Litz, L. (2011). The concept of
residuals for fault localization in discrete event systems.
Control Engineering Practice, 19(9), 978–988.

Saberi, I., Faghih, F., and Bavil, F.S. (2021). A Passive
Online Technique for Learning Hybrid Automata from
Input/Output Traces. arXiv:2101.07053 [cs].

Soto, M.G., Henzinger, T.A., and Schilling, C. (2021).
Synthesis of hybrid automata with affine dynamics from
time-series data. In Proceedings of the 24th International
Conference on Hybrid Systems: Computation and Con-
trol, 1–11. ACM, Nashville Tennessee.

Wonham, W.M., Cai, K., and Rudie, K. (2017). Supervi-
sory Control of Discrete-Event Systems: A Brief History
– 1980-2015. IFAC-PapersOnLine, 50(1), 1791–1797.

Yang, X., Beg, O.A., Kenigsberg, M., and Johnson, T.T.
(2021). A Framework for Identification and Validation
of Affine Hybrid Automata from Input-Output Traces.
ACM Transactions on Cyber-Physical Systems.

