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Abstract. Password Authenticated Key Exchange (PAKE) have become
a key building block in many security products as they provide inter-
esting efficiency/security trade-offs. Indeed, a PAKE allows to dispense
with the heavy public key infrastructures and its efficiency and porta-
bility make it well suited for applications such as Internet of Things or
e-passports. With the emerging quantum threat and the effervescent de-
velopment of post-quantum public key algorithms in the last five years,
one would wonder how to modify existing password authenticated key ex-
change protocols that currently rely on Diffie-Hellman problems in order
to include newly introduced and soon-to-be-standardized post-quantum
key encapsulation mechanisms (KEM). A generic solution is desirable for
maintaining modularity and adaptability with the many post-quantum
KEM that have been introduced.
In this paper, we propose two new generic and natural constructions
proven in the Universal Composability (UC) model to transform, in a
black-box manner, a KEM into a PAKE with very limited performance
overhead: one or two extra symmetric encryptions. Behind the simplicity
of the designs, establishing security proofs in the UC model is actually
non-trivial and requires some additional properties on the underlying
KEM like fuzziness and anonymity. Luckily, post-quantum KEM pro-
tocols often enjoy these two extra properties. As a demonstration, we
prove that it is possible to apply our transformations to Crystals-Kyber,
a lattice-based post-quantum KEM that will soon be standardized by
the National Institute of Standards and Technology (NIST).
In a nutshell, this work opens up the possibility to securely include post-
quantum cryptography in PAKE-based real-world protocols.

Keywords: Key Encapsulation Mechanism · Password-Authenticated Key
Exchange · Universal Composability
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1 Introduction

A Password Authenticated Key Exchange (PAKE) protocol allows two users to
derive a secret key over insecure channels only with the premise of sharing the
same low entropy password. PAKE has become increasingly relevant in recent
years due to the proliferation of connected devices and the growing demand for
secure communication in scenarios where a public key infrastructure (PKI) may
not be practical or desirable. It is particularly appealing for use cases like the
Internet of Things (IoT) or e-passports, where portability, independence, and
efficiency are important considerations. For IoT devices, for example, PKI is
not feasible because of the number of devices and their limited computing re-
sources and connectivity. PAKE allows these devices to securely communicate
with each other using a simple password that can be easily changed if compro-
mised. Similarly, in the case of e-passport, PAKE can be used to establish secure
communication between the passport and a reader without the need for a PKI.
It allows for a more portable and independent solution, as no central authority
is necessary to verify a passport’s authenticity. Overall, PAKE offers a trade-off
between security and efficiency as compared to traditional authenticated key
exchange protocols in certain circumstances.

Security models for PAKEs The security of PAKE will always be weaker than
the security of PKI-based authenticated key exchange. Indeed, the presence of a
low-entropy password allows powerful dictionary attacks. The conceptual idea in
the PAKE security models is to accept the possibility of such dictionary attacks
but to prove that they must be made online, i.e. that no password validity test is
accessible offline. This slight security regression compared to authenticated key
exchange is often accepted because online dictionary attacks are rarely relevant
in practical contexts and the efficiency gain of PAKE is much higher. Moreover
one can always block a user after a certain number of failed attempts. More
formally, for proving the security of PAKE, the dictionary attacks should then
be materialized in the existing security models for authenticated key exchange.
Several solutions have emerged and have been refined over the last decade. Today,
there are two main security models for PAKE protocols: the Bellare-Pointcheval-
Rogaway [BPR00] and the Universal Composability (UC) model [Can01,CR03]
with its PAKE’s version [CHK+05]. The BPR model, introduced by Bellare,
Pointcheval, and Rogaway, is a game-based security model that uses specific
games to evaluate the ability of an adversary to break the protocol. On the
other hand, the UC model, introduced by Canetti, is a simulation-based model
that provides strictly better security guarantees, as stated in the original UC
PAKE paper [CHK+05].

Existing work on PAKE. The concept of PAKE was formalized and analyzed
during the 1990s by Bellovin and Meritt with the Encrypted Key Exchange
(EKE) protocol [BM92]. Since then, various PAKE protocols have been proposed,
with some standardized by organizations such as the Internet Engineering Task
Force (IETF) [Sch17]. Over the years, two main categories of PAKE appeared.
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The first use passwords to obscure the exchanged messages while the second use
them as part of the randomness to build the necessary material, like the group
generator. EKE [BM92] and OEKE [BCP03] are typical examples of the former.
And SPEKE [Mac01] or CPace [AHH22] are examples for the latter. While many
different PAKE designs have been introduced, not all are proven in the strong UC
security model. In the previous examples of PAKE constructions, EKE [DHP+18],
OEKE [ACCP08] and CPace [AHH21] have been proven in the UC model.

Post-quantum threat. While vastly used in current security products like IoT
or e-passports, all these PAKE constructions rely on the Diffie-Hellman key ex-
change to provide cryptographic security. It raises concerns about their long-term
security, as the emergence of quantum computing in recent years threatens any
Diffie-Hellman-based key exchange, and thus any currently used PAKE. Indeed,
quantum computers would potentially break, even retroactively, the mathemat-
ical foundations of many current cryptographic systems including the difficulty
of the Diffie-Hellman problem. Therefore, it is crucial to carefully consider the
long-term security of PAKE protocols and design them accordingly. In response
to this potential threat to current cryptographic systems, the National Institute
of Standards and Technology (NIST) has launched a standardization process for
post-quantum cryptographic primitives in 2017. The goal of this campaign is
to provide new post-quantum standards for two basic and crucial cryptographic
building blocks: Key Encapsulation Mechanisms (KEMs) and digital signatures.
These two families of public-key algorithms may be used on their own but more
importantly, the future standards are destined to be included as black-boxes in
internet and IoT protocols to complement the pre-quantum bricks. Many dif-
ferent families of mathematical problems were used for the design of candidate
algorithms like error correcting codes or lattices. The analysis of the different
candidate algorithms is currently ongoing but the NIST has announced a first set
of standards in 2022 including the lattice-based KEM Crystals-Kyber [SAB+22].
More recently, specific PAKE constructions using post-quantum cryptography, in
particular, lattices assumptions, were introduced. However most lattice construc-
tions are either proven in weaker security models [GDLL17] or using mechanisms
that are highly inefficient in practice [BCV19,ZY17].

1.1 Our Contributions

This paper proposes the first generic constructions to transform a black-box
KEM into a PAKE. The idea is natural and inspired from EKE and OEKE. In
high level, it consists in encrypting the public key using the password as a secret
key. A second modification consists in either encrypting the ciphertext with
that same password or adding an authentication tag. The first transformation
is called CAKE, derived from K(EM-to-P)AKE, and the second transformation is
called OCAKE. Both constructions are graphically sketched later in the paper
in Figures 5 and 6. By design, they are simple, efficient and easy to implement.
However, the price for such simplicity must be paid on the analysis side.
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Let us first intuitively discuss the requirements on the KEM for achieving for-
mal security. Consider a KEM where the public key is designed with a par-
ticular shape, for example, the public key might always be composed of small
coefficients. When encrypted, the distribution of the sent message would look
uniformly distributed. However, any attacker may perform an offline dictionary
attack: given an encrypted public key, it will be possible to leverage the par-
ticular public key form as a condition for the valid password. In such case,
the correct password will be the one that decrypts to a public key with small
coefficients. Hence, an indistinguishability property on the distribution of the
public key, called fuzziness (formally defined in Definition 3), will be required to
avoid offline dictionary attacks. Likewise, such property on the ciphertext, called
anonymity (formally defined in Definition 4), will be essential. In addition, an-
other important property should be fulfilled by the symmectric encryption to
construct such PAKE. The needed property is ensured by the Ideal Cipher (IC)
model [BPR00]. It consists in assuming that the encryption behaves like a ran-
dom permutation on every key. While it does not retain clear weaknesses to use
a relaxed model, an ideal cipher is necessary to unwrap the proofs of our theo-
rems.
In this paper, we successfully prove our CAKE and OCAKE constructions in the
UC model assuming the above properties, the random oracle model (ROM) and
the erasure model stating that any obsolete internal information is erased.

Why two constructions? Similarly to EKE and OEKE, CAKE and OCAKE offer
slightly different security/efficiency trade-offs. Let us compare both construc-
tions:

– The first construction, CAKE, consists in encrypting both exchanged mes-
sages. It leads to an implicitly authenticated key exchange protocol based on
passwords. However a participant is not sure that the opposing party is able
to obtain the session key. This assurance can only be achieved by explicit
authentication. The security model for proving CAKE is very strong as it
captures adaptive corruptions. In other words, the model allows an attacker
to corrupt a user and thus obtain all its internal state in an adaptive way
during an ongoing execution of the protocol.

– In order to add explicit authentication of the receiver, one usually includes a
key-confirmation tag. In this case, one can remark with OCAKE that only one
symmetric encryption is required. The second encryption is just replaced by
the authentication that provides an explicit authentication to the receiver.
However, this construction can only be proven secure in the static corruption
model where the attacker may still corrupt users but the choice should be
made before the execution of the protocol. Additionally, it is here possible to
add an explicit client authentication at the end of the exchange to provide
mutual explicit authentication.

In complement, we propose to show that the assumed properties on the KEM
are not just artifacts that allow our proof to work. They are actually verified
in concrete KEMs. We choose the example of Crystals-Kyber [SAB+22] as our
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guinea pig for applying our transformations. Crystals-Kyber is a future NIST
post-quantum standard. We formally demonstrate that Kyber validates fuzziness
and anonymity leading up to security statements for CAKE-Kyber (Theorem 3)
and OCAKE-Kyber (Theorem 4).

1.2 Outline of the paper

In Section 2, we introduce the preliminary notions on KEM, their security proper-
ties with some lattice definitions and a brief introduction to Kyber. In Section 3,
we provide all the necessary information about PAKEs and their security in the
UC model. In Section 4, we present both our KEM to PAKE transformations
along with their security statements. For space reasons, the proofs are sketched
in the main body of the paper and the full proofs are detailed in Appendices A
and B. Finally, we demonstrate our techniques on Kyber in Section 5.

2 Preliminaries

2.1 Notations

We note scalars, vectors, and matrices with lowercase plain (i.e. n), lowercase
bold (i.e. e), and uppercase bold (i.e. A), respectively. We denote by negl(κ) a
negligible function of a security parameter κ. Given a finite set S, the notation
x ←$ S means a uniformly random assignment of an element of S to the vari-
able x. We note KEM the denomination of a key exchange mechanism and refer
to KEM for the specific key encapsulation mechanism algorithm.

2.2 Key Encapsulation Mechanism

Even if the Key Encapsulation Mechanism’s denomination is relatively recent,
KEMs have been widely used throughout the history of public key cryptogra-
phy. The first illustration is the fact that ElGamal [ElG85], based on the Diffie-
Hellman key exchange, can be easily seen as a KEM. We will demonstrate later
in this section that it enjoys several security notions, such as semantic security,
fuzziness, and anonymity. Thereafter, with the NIST competition, many new
researches have conducted to the introduction of KEM using a wide variety of
structures. Let us cite a few examples: SABER [DKRV18,DKR+20], Crystals-
Kyber [BDK+18,SAB+22], NewHope [ADPS16,PAA+19] on lattice-based as-
sumptions or alternatively McEliece[McE78,ABC+22] on code-based assump-
tions.

Definition 1 (Key Encapsulation Mechanism). A Key Encapsulation
Mechanism (KEM) is a triple of algorithms (KeyGen, Encaps, Decaps):

– KeyGen: Returns a of pair public-secret keys (pk, sk) ∈ P × SK
– Encaps: Takes a public key pk ∈ P as input to produce a ciphertext c ∈ C

and a key K ∈ K. The ciphertext c is called an encapsulation of the key K;
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– Decaps: Takes a secret key sk ∈ SK and an encapsulation c ∈ C as input,
and outputs K ∈ K.

where SK, P, C, and K are the sets of secret keys, public keys, ciphertexts and
session keys.

The formalization of the sets P, C, and K will impact the security notions pre-
sented in the sequel.

Correctness. The correctness of a KEM requires that, for a security parameter
κ,

Pr

[
(pk, sk)←$ KeyGen(1κ)
(c,K)← Encaps(pk) : Decaps(sk, c) = K

]
> 1− negl(κ).

Security Notions. The usual security notion for KEM is semantic security, also
known as indistinguishability :

Definition 2 (Indistinguishability). We define the advantage of any adver-
sary A in deciding the key of the KEM by:

AdvindKEM(A) =
∣∣∣∣ PrDR

[A(c,K) = 1]− Pr
D$

[A(c,K ′) = 1]

∣∣∣∣ .
where we consider the real and random distributions

DR = {(pk, sk)← KeyGen(1κ); (c,K)← Encaps(pk) : (c,K)},
D$ = {(pk, sk)← KeyGen(1κ); (c,K)← Encaps(pk);K ′ ←$ K : (c,K ′)}.

In all the advantage definitions, we will denote AdvindKEM(t) the maximal advantage
any adversary can have within time t.
Let us introduce additional properties for KEMs, on the distributions of the pub-
lic keys and of the encapsulations. We will denote by fuzziness the randomness of
public keys, and by anonymity the randomness of the encapsulation. The latter
is the usual definition, when the ciphertext distribution does not depend on the
public key, and thus does not leak any information about the recipient.

Definition 3 (Fuzzy KEM). A KEM is said fuzzy if the distribution of the
public keys output by the KeyGen algorithm are computationally indistinguishable
from uniform keys in P. More formally, we define the advantage of any adversary
A in breaking the fuzziness of the KEM by:

AdvfuzzyKEM (A) =
∣∣∣∣ PrDR

[A(pk) = 1]− Pr
D$

[A(pk) = 1]

∣∣∣∣ ,
where

DR = {(pk, sk)← KeyGen(1κ) : pk} and D$ = {pk←$ P : pk}.
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Definition 4 (Anonymous KEM). A KEM is said anonymous if the distribu-
tion of the ciphertexts outputted by the Encaps algorithm are computationally
indistinguishable from uniform ciphertexts in C. More formally, we define the
advantage of any adversary A in breaking the anonymity of the KEM by:

AdvanoKEM (A) =
∣∣∣∣ PrDR

[A(c) = 1]− Pr
D$

[A(c) = 1]

∣∣∣∣ ,
where

DR = {(pk, sk)← KeyGen(1κ); (c,K)← Encaps(pk) : c} and
D$ = {c←$ C : c}.

ElGamal Key Encapsulation Mechanism. In order to illustrate the above notions,
let us consider the particular KEM derived from the so-called ElGamal encryption
scheme [ElG85]. Let G be a group of prime order q, spanned by an element g:

– KeyGen(1κ): chooses a random x ←$ Zq and sets sk ← x, pk ← gx, with
SK = Zq and P = G;

– Encaps(pk): chooses a random r ←$ Zq and sets c ← gr, K ← pkr, with
C = G and K = G;

– Decaps(sk, c): outputs K ← csk.

It is well-know that the indistinguishability of this KEM relies on the Decisional
Diffie-Hellman assumption. From the above description, this is clear that public
keys are uniformly distributed in G, hence this KEM is fuzzy; and the ciphertexts
are also uniformly distributed in G, thus this KEM is also anonymous. Note that
the ElGamal KEM actually validates even stronger properties: perfect fuzziness
(or smoothness) and perfect anonymity. The perfect nature comes from the fact
that these notions are no longer computational but statistically ensured. As
will be later stated in Remark 1, these properties are less common for post-
quantum KEM protocols and thus will not be considered as requirements for our
constructions.

2.3 Learning with Errors

Three rounds of the NIST standardization campaign are already over and one
type of hardness assumption seems to be more enticing: lattices. Lattice prob-
lems provide strong worst-case to average-case reductions, making them excel-
lent candidates for long-term security. Indeed state of the art algorithm using
quantum adversaries are not far more efficient compared to current existing al-
gorithm to solve LWE. In this section, we introduce the Learning With Errors
(LWE) [Reg06] assumptions. It can be divided into two problems: a decisional
and a search problems. Both are assumed intractable in reasonable time, even
for a quantum computer. Let us introduce the decisional version.
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We directly consider this problem in a module structure named Module-LWE
(we refer to [LS15] for more details). We define Rq as the ring Zq[X]/(Xn + 1).
Let βη be the distribution on Rq where each coefficient of the polynomial is
generated according to a centered binomial distribution with parameter 2η. We
define the oracle Omlwe

m,k,η that outputs samples of the form (A,b = A ·s+e) with
s←$ βk

η , A←$Rm×k
q , and e←$ βm

η .

Definition 5 (Decisional MLWEm,k,η Problem). Given a set of parameters
m, k, η ∈ N, the advantage of any probabilistic polynomial time algorithm A in
deciding the d-MLWE over Rq is:

Advd−mlwe
m,k,η (A) =

∣∣∣∣ Pr[(A,b)← Omlwe
m,k,η : A(A,b) = 1]

−Pr[(A,b)←$Rm×k
q ×Rm

q : A(A,b) = 1]

∣∣∣∣ .
2.4 CRYSTALS-Kyber

Crystals-Kyber, also known as Kyber, is a Module-LWE-based KEM that is one
of the most efficient post-quantum solutions. It was introduced in response to
the NIST call for standardization of post-quantum primitives and was accepted
as the first post-quantum standard for key exchange in 2022. In its original pa-
per [BDK+18], Kyber is proposed as a KEM that is secure against chosen-plaintext
attacks (CPA-secure) and then achieves chosen-ciphertext attacks (CCA-secure)
with the Fujisaki-Okamoto transform.
In Figure 1, we present the CPA-secure version of Kyber, where Rq is the ring
Zq[X]/(Xn + 1). Following the last supplemented version (3.0) [SAB+22], the
suggested parameters are defined as follows: (Xn + 1) is the 2n-th cyclotomic
polynomial where n and q are equal respectively to 256 and q = 3329.
Additionally, for the sake of efficiency, Kyber includes an optimization using a
compression function that can be thought of as a bit cut. While we do not use
this compression in our protocol for the sake of clarity, it should be included in
any implementation of our protocols using Kyber for maximum efficiency and
correctness. We refer to the most recent NIST submission package [SAB+22] for
more detailed information.

3 Password Authenticated Key Exchange

3.1 Introduction to PAKE

Initially introduced by Bellovin and Merritt [BM92], a Password-Authenticated
Key Exchange (PAKE) is a protocol that allows two parties to establish a shared
secret session key over an insecure communication channel using a password as
the only authentication means. The goal of PAKEs is to ensure that the key
exchange is secure even if the password is weak or stolen by an attacker, the
only possible attack being an online exhaustive search, which can be detected
and stopped using some organizational action.
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Kyber.KeyGen(1κ)

1 : ρ, σ ←$ {0, 1}κ

2 : A←Rk×k
q := Sam(ρ)

3 : (s, e)← βk
η × βk

η := Sam(σ)

4 : b← A · s+ e

5 : return (pk = (ρ,b), sk = s)

Kyber.Encaps(pk = (ρ,b))

1 : τ ←$ {0, 1}κ

2 : m←$ {0, 1}n ⊆ Rq

3 : A←Rk×k
q := Sam(ρ)

4 : (r, e′, e”)← βk
η × βk

η × βη := Sam(τ)

5 : u← AT · r+ e′

6 : v ← bT · r+ e” +
⌈ q
2

⌋
·m

7 : return c← (u, v)

Kyber.Decaps(sk = s, c = (u, v))

1 : return

⌈
2

q

(
v − sT · u

)⌋

Fig. 1. Simplified Kyber KEM: Kyber.KeyGen, Kyber.Encaps, Kyber.Decaps

PAKE protocols are handy when strong authentication is required while other
forms of authentication (certificates) are not usable. They are often used in
combination with other protocols to provide a secure channel for communication.

PAKE protocols might be vulnerable to two types of attacks: offline-dictionary
attacks and online-dictionary attacks. The former occurs when an attacker gains
knowledge of the password using pre computed lists of common passwords and
exchanged information. Whereas, the latter involves an attacker actively trying
to obtain the password by attempting to log in with different guesses. PAKE
protocols often implement measures such as limiting the number of tries an
attacker can make to guess the password to protect against online-dictionary
attacks. Consequently, the security of a PAKE protocol ultimately relies on its
resistance to offline-dictionary attacks. In other words, the strength of a PAKE
protocol is determined by how difficult it is for an attacker to guess the password
from the public transcript, even if it has a lof of time and resources.

3.2 The Universal Composability (UC) Model

Overview of the UC Framework. The Universal Composability (UC) model
[Can01] is a simulation-based model in which an environment Z attempts to
differentiate the output of a protocol execution Π in the real world from the
output generated in an ideal world. In the real world, the execution takes place
between parties and an potential adversary. In the ideal world, dummy players
and an ideal adversary or simulator S interact solely with an ideal functionality
F to compute a specific function f . The ideal functionality can be informally
defined as a trusted party that honestly and unconditionally responds to any
query. A schematic representation is given in Figure 2.
The original paper [Can01] only uses sid as session identifiers, but a improved
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P1 P2 A

IC/
ROM

P1 P2

S:
IC/RO

FpwKE

Z

Real Ideal

Fig. 2. Real versus Ideal world: Z capability.

version of the UC model was published in [CR03] introducing subsession identi-
fiers ssid. For more clarity, throughout this article we use ssid for (sid, ssid). More
explicitly, two ssid could theoretically be equal on different sessions sid, but by
setting ssid := (sid, ssid), we enforce the uniqueness of ssid. This uniqueness is
necessary in the proofs provided in Appendices A and B.

The goal of the UC model is to emulate the protocol Π using the ideal
functionality. If the emulation is performed such that the environment Z cannot
distinguish (1) Π’s outputs with possible interactions with an adversary A from
(2) the outputs of dummy parties and a simulator interacting with the ideal
functionality F , then one can state that Π UC-emulates F .

In our case, the protocols are Password-Based Authenticated Key Exchange
(PAKE) and the ideal functionalities used throughout the paper specifically de-
signed for PAKEs [CHK+05,ACCP08] are FpwKE and FpwKE-sA (defined in
Figures 3 and 4).

Ideal Functionality FpwKE. We present here the ideal functionality that is
used for PAKEs. A detailed description of the functionality is provided in Fig-
ure 3. It consists of three types of queries: NewSession, TestPwd and NewKey:

– NewSession allows a party to initialize a connection to another opposing
party using its password. The functionality FpwKE uses this query to record
the connection as well as the initial party’s password.

– TestPwd models the unique online password test (online dictionary attacks)
that is enabled through the execution of a PAKE. This query additionally
impacts the view of the ideal functionality. Querying TestPwd changes the
view of FpwKE in the exchange of two parties by altering the behavior of
the next query NewKey, according to the correct or incorrect guess.

– NewKey interface allows to give parties a session key consistent with the state
of their record. If two fresh entities do not share/use the same password then
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PAKE Ideal Functionality: FpwKE

Session Initialization
On (NewSession, ssid, pw, Pi, Pj) from Pi:

– Sends (NewSession, ssid, Pi, Pj) to A.
– If this is the first NewSession query, or if it is the second NewSession query and

there is a record (ssid, Pj , Pi, pw′, ⋆) ∈ L, then record (ssid, Pi, Pj , pw, fresh) in L.

Active attack
Upon receiving a query (TestPwd, ssid, Pi, pw′) from the adversary A, if there exists
record (ssid, Pi, Pj , pw, fresh) ∈ L, do:

– If pw = pw′ mark the record as compromised and reply to A with "correct guess".
– If pw ̸= pw′, mark the record as interrupted and reply to A with "wrong guess".

Key Generation
Upon receiving a query (NewKey, ssid, Pi, SK) from S, where SK ∈ {keys}, if there is a
record of the form (ssid, Pi, Pj , pw, status) ∈ L, for any value status, and this is the
first NewKey query for Pi:

– If status = compromised, or if one of the players Pi or Pj is corrupted then send
(ssid, SK) to Pi;

– If status = fresh and there is a record (ssid, Pj , Pi, pw′, status′) with pw′ = pw,
and a session key SK′ has been sent to Pj , that was fresh at that time, then send
(ssid, SK′) to Pi;

– Else, choose a random key SK′ whose length is k and send (ssid, SK′) to Pi.

Update the record as completed.

Fig. 3. FpwKE : the ideal Functionality of a PAKE.

FpwKE does not give them the same key. Contrarily, if they do, this oracle
returns the same key for both parties. However the behavior is more refined
than that and takes account possible alterations from TestPwd (more details
in Figure 5).

Ideal Functionality with server authentication FpwKE-sA. We present
a variation FpwKE-sA of the previous ideal functionality to add explicit server
authentication. A detailed description of the functionality is provided in Figure 4.

– in each record in L (defined in Figure 3 and 4), we add a component
role ∈ {client, server}. From this point forward, L has components of the
form (ssid, Pi, Pj , pw, status, role).

– If the client queries NewKey at a time when the server still has not queried
NewKey in the same session ssid, then FpwKE-sA does nothing.

– If Pi and Pj do not share the same password: then the client gets abort
whatever the status is.
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PAKE Ideal Functionality with server Authentication: FpwKE-sA

Session Initialization
On (NewSession, ssid, role, pw, Pi, Pj) from Pi:

– Sends (NewSession, ssid, role, Pi, Pj) to A.
– If this is the first NewSession query, or if it is the second NewSession query and

there is a record (ssid, Pj , Pi, pw′, ⋆, ⋆) ∈ L, then record (ssid, Pi, Pj , pw, fresh, role)
in L.

Active attack
Upon receiving a query (TestPwd, ssid, Pi, pw′) from the adversary A, if there exists
record (ssid, Pi, Pj , pw, fresh, role) ∈ L, do:

– If pw = pw′ mark the record as compromised and reply to A with "correct guess".
– If pw ̸= pw′, mark the record as interrupted and reply to A with "wrong guess".

Key Generation
Upon receiving a query (NewKey, ssid, Pi, SK) from S, where SK ∈ {keys}, if there is a
record of the form (ssid, Pi, Pj , pw, status, role) ∈ L, for any value status, and this is
the first NewKey query for Pi:

– if role = client
• If status = compromised, or if one of the players Pi or Pj is corrupted and

there exists two records (ssid, Pi, Pj , pw, client) and (ssid, Pj , Pi, pw, server)
then send (ssid, SK) to Pi;

• Else if status = fresh and there is a record (ssid, Pj , Pi, pw′, client′) with pw′ =
pw, and a session key SK′ has been sent to Pj , that was fresh at that time,
then send (ssid, SK′) to Pi. Else if pw′ ̸= pw, choose a random key SK′ whose
length is k and send (ssid, SK′) to Pi.

• Else if status = fresh, and if no record completed record exists for Pj in ssid
do nothing.

• Else if status = interrupted, send (ssid, error) to Pi.
– if role = server
• If status = compromised, or if one of the players Pi or Pj is corrupted then

send (ssid, SK) to Pi;
• Else if status = fresh or status = interrupted, choose a random key SK′ ∈
{keys} and send (ssid, SK′) to Pi.

Update the record as completed.

Fig. 4. FpwKE-sA: the ideal Functionality of a PAKE with server explicit authentication.
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Model. To prove that a protocol UC-emulates FpwKE or FpwKE-sA, we first
need to set the model and assumptions for the proof. In this paper, we consider
the Random Oracle Model (ROM) and the Ideal Cipher (IC) model. We also
make use of the erasure model and assume that the adversary A is able to
perform either adaptive or static corruptions, depending on the protocol.

Random Oracle. We use the definition of ROM introduced by Hofheinz and
Müller-Quade [HM04] recalled in Figure 12 from Appendix C. This assump-
tion provides a powerful tool that coherently responds to queries and generates
answers that are uniformly random and independent of the input of the query.

Ideal Cipher. The ideal cipher model was first introduced in [BPR00]. It con-
siders that a cipher behaves as a perfectly independent random permutation for
every key used.We will generalize it a little bit by differentiating the input set
and the output set, and then considering random bijections for every key. This
model is presented in more details in Figure 13 from Appendix C.

Corruption. As mentioned earlier, we consider two types of corruptions in this
paper: static corruptions and adaptive corruptions. Static corruptions allow the
adversary to obtain the password of a party prior to the execution of the protocol.
This means that during a simulation, the simulator knows which parties have
been corrupted. Adaptive corruptions allow the adversary to corrupt any party
during the execution of the protocol by revealing the password and internal
state of the party. The adaptive corruption functionality is defined in Figure 14
of Appendix C.

Erasure model. The erasure model is a simple but powerful assumption. In this
model, we assume that any internal information that is no longer useful ceases
to exist. Therefore, in the event of information leakage, or adaptive corruption,
previous internal information is not leaked as it no longer exists.

4 Two Pieces of One Cake: Study of EKE and OEKE

In this study, we propose to examine the use of KEM with specific properties
in the context of EKE and One-Way Encrypted Key Exchange (OEKE). We
first introduce an evolved version of EKE called CAKE, that provides implicit
authentication only, and then extend it to OEKE using a variant called OCAKE,
that additionally provides explicit authentication of the receiver. We prove the
security of these protocols in the Universal Composability (UC) model, assuming
three properties of the KEM: semantic security, fuzziness, and anonymity. These
two studies offer a balance between security properties and efficiency: CAKE
handles adaptive corruptions, while OCAKE is proven secure in a relaxed model
that only allows static corruptions to provide explicit authentication.
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Alice : A, pw ssid Bob : B, pw
(pk, sk)← KEM.KeyGen(1κ)

Epk← E1(ssid∥pw, pk)
A,Epk

pk← D1(ssid∥pw,Epk)

(c,K)← KEM.Encaps(pk)

Ec← E2(ssid∥pw, c)
B,Ec

c′ ← D2(ssid∥pw,Ec)

K′ ← KEM.Decaps(sk, c′)
SK← H(ssid,A,B,Epk,Ec,K′) SK← H(ssid,A,B,Epk,Ec,K)

Fig. 5. CAKE with (E1, D1), (E2, D2) two pairs of ideal ciphers. E1 is a bijection from P
to P ′ while E2 is a bijection from C to C′.

4.1 CAKE

In this subsection, we present a study of the K(EM)-EKE protocol, referred to
as CAKE. This protocol is based on the use of generic KEM in EKE and is the
most conservative of the two constructions we propose.

To study CAKE properly, as well as expressing the necessary properties on
the underlying KEM, we first fix a KEM (KeyGen, Encaps, Decaps) with the sets SK,
P, C, and K as in Definition 1. Next, we define two ideal cipher pairs (E1, D1)
and (E2, D2). We additionally define a set of keys Key and two sets P ′ and C′
respectively bijections from P and C where both of them offer easy uniform
sampling:

E1 : Key× P → P ′ E2 : Key× C → C′
D1 : Key× P ′ → P D2 : Key× C′ → C

The actual keys of the ideal ciphers are the concatenations of the ssid and the
passwords, to ensure independent bijections between different executions of the
protocol. We introduce a description of CAKE in Figure 5 along with its security
theorem based on the fuzziness and anonymity of the underlying KEM in the ROM
and IC models, while allowing adaptive corruptions.

Theorem 1. Let (E1, D1), (E2, D2) be two pairs of ideal ciphers and H be a ran-
dom oracle. We note qD1 (resp. qD2) the maximal number of queries to the de-
cryption oracle D1 (resp. D2). We also note qE1 (resp. qE2) the maximal number
of queries to the encryption oracle E1 (resp. E2) explicitly asked by the adver-
sary. Finally, we note qs the number of sessions. The CAKE protocol described
in Figure 5 using KEM, a key encapsulation mechanism that is both fuzzy (Def. 3)
and anonymous (Def. 4) ensuring semantic security, UC-emulates FpwKE in the
erasure model with adaptive corruptions.
More precisely, if we define AdvcakeKEM (A) the advantage of an adversary A to break
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the above claim, it is bounded by

(2qs + qD1 + qD2) · Adv
ind
KEM(t)

+ (qs + qD1) · Adv
fuzzy
KEM (t) + qD1 · (qs + qD2) · Adv

ano
KEM (t)

+ qH · qs · 2−λk + q2E1 · 2
−λp−1 + q2E2 · 2

−λc−1,

where λk is the bit-length of the encapsulated keys, λp the bit-length of the public
keys, and λc the bit-length of the ciphertexts, for the KEM scheme.

Sketch of Proof: In the subsequent games, we denote Pr[G] the probability for
the environment Z to output 1 in the simulated game G. The goal is to prove
that Pr[G] is close to the probability to output 1 in the ideal game, while starting
from the real game G0. The sequence of games will end with G9 that only uses
the ideal functionality FpwKE , and is thus the ideal game. The complete proof
can be found in the Appendix A. We present here a sketch of proof:

G0: Real world protocol using the following assumptions: erasure model, ran-
dom oracle, ideal cipher, adaptive corruption and lastly a fuzzy and anony-
mous KEM, which is also indistinguishable.

G1: Honest simulation of the random oracle H and the pairs of ideal ciphers
(E1, D1) and (E2, D2) from Figure 5, where we abort in case of collision dur-
ing explicit encryption calls. Additionally, a private simulation of a random
oracle H∗ used for the simulation when S cannot extract private information.

G2: Embedding of the secrets during the simulation of D1 and D2.
G3: Simulation of Alice’s initialization with D1 instead of E1.
G4: Simulation of Bob’s answer with D2 instead of E2.
G5: Preparation of Alice’s reaction, by anticipating all the possible public keys

decrypted by D1 when a query is asked to D2.
G6: Simulation of Alice’s reaction, using the previous simulation of D2.
G7: Random session keys, where we replace all the unknown keys SK by random

values.
G8: Adaptive corruptions, where we program the random oracle H and provide

the secret values in case of corruption.
G9: Using on queries from FpwKE to detail the simulator in the ideal world.

A precise simulator is defined in Appendix A with Figures 7, 8 and 9. ⊓⊔

Remark 1. Instantiated with the KEM derived from ElGamal presented in Sec-
tion 2, CAKE-ElGamal is exactly the famous EKE [BM92]. But the proof tech-
nique actually differs because ElGamal enjoys perfect fuzziness (or smoothness)
and perfect anonymity, which facilitate the EKE security proof. However, post-
quantum algorithms cannot validate all these strong properties.

4.2 OCAKE

In this subsection, we modify the above CAKE protocol by adding explicit au-
thentication of the receiver, which allows to remove one encryption. The modifi-
cations are based on the OEKE [BCP03] protocol but with generic KEM protocols
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Alice : A, pw ssid Bob : B, pw
(pk, sk)← KEM.KeyGen(1κ)

Epk← E(ssid∥pw, pk)
A,Epk

pk← D(ssid∥pw,Epk)

(c,K)← KEM.Encaps(pk)
Auth← H1(ssid,A,B, pw,Epk, c,K)

B, c, Auth
K′ ← KEM.Decaps(sk, c)

H1(ssid,A,B, pw,Epk, c,K′) ?= Auth

SK← H2(ssid,A,B,Epk, c, Auth,K) SK← H2(ssid,A,B,Epk, c, Auth,K)

Fig. 6. OCAKE with (E, D) an ideal cipher. E is a bijection from P to P ′.

instead of a Diffie-Hellman based key exchange.

In this setting, we only handle static corruptions in the security model. In-
deed, it would have been possible to include adaptive corruptions in the security
model with a statistical notion for the anonymity, i.e. perfect anonymity. But
the computational property of our anonymity definition (see Definition 4) is
more realistic for post-quantum KEM protocols. And thus here, adaptive cor-
ruptions cannot be handled by our proof in the UC-framework: in case of honest
transcripts, we must generate a random c, on behalf of Bob. In case of Alice’s
corruption, one can program E in order to set a specific (pk, sk), but if the sim-
ulator commits on a specific c, then it cannot remain consistent. In particular,
the adversary could have tried many passwords when decrypting Epk, hence
one cannot anticipate the public key for c.

In order to thoroughly study this approach, we outline the modifications
in Fig. 6. We remove one encryption on the server flow to change it into an
authentication. However for the sake of the proof, we have to slightly change
how the hash query is usually done. Instead of using the public transcript, we
use part of the secret information for the sake of the simulation in the security
proof. Lastly we use FpwKE-sA in Fig. 4: the PAKE ideal functionality with
explicit authentication of the server.

Theorem 2. Let (E, D) be a pair of ideal cipher. Let H1 and H2 be two random
oracles. We note qD the maximal number of queries to the decryption oracle D. We
also note qE the maximal number of queries to the encryption oracle E, explicitly
asked by the adversary. And we note qs the number of sessions. The OCAKE
protocol described in Figure 6 using KEM, a key encapsulation mechanism that is
both fuzzy (Def. 3) and anonymous (Def. 4) while ensuring semantic security,
UC-emulates FpwKE-sA in the erasure model with static corruptions.
More precisely, if we define AdvocakeKEM (A) the advantage of an adversary A to
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break the above claim is bounded by

(qs + qD) · AdvfuzzyKEM (t) + (qs + qD + 1) · AdvindKEM(t) + qD · AdvanoKEM (A)
+ (qH1 + 2qs)

2 · 2−λH1−1 + q2E · 2−λp−1 + (qH1 + qH2) · qs · 2−λk ,

where λk is the bit-length of the encapsulated keys, λp the bit-length of the public
keys for the KEM scheme, and λH1 the bit-length of the authentication tag.

Sketch of Proof: Similarly to the proof of Theorem 1, in the subsequent games,
we denote Pr[G] the probability for the environment Z to output 1 in the sim-
ulated game G. The goal is to prove that Pr[G] is close to the probability to
output 1 in the ideal game, while starting from the real game G0. The sequence
of games will end with G8 that only uses the ideal functionality FpwKE-sA, and
is thus the ideal game. The complete proof can be found in the Appendix B. We
present here a sketch of proof:

G0: Real world protocol using the following assumptions: erasure model, ran-
dom oracle, ideal cipher, static corruption and lastly a fuzzy and anonymous
KEM, which is also indistinguishable.

G1: Honest simulation of two random oracles H1, H2 and an ideal cipher (E, D)
from Figure 6, where we abort in case of collision during explicit encryption
calls. Additionally a private simulation of each random oracle H∗1, H∗2 used
for the simulation when S does not know any passwords. We also exclude
collisions on H1 and H∗1.

G2: Embedding of the secret keys during the simulation of D.
G3: Simulation of an adversary finding Auth by chance.
G4: Simulation of Alice’s initialization with D instead of E.
G5: Simulation of Bob’s answer with (c, Auth).
G6: Simulation of Alice’s reaction, using the Auth and the abortion in case the

authentication is not verified.
G7: Random session keys, where we replace all the unknown authentication tags

Auth and keys SK by random values, except for correctly guessed passwords
G8: Using on queries from FpwKE-sA to detail the simulator in the ideal world.

A precise simulator is defined in Appendix B with Figures 10 and 11. ⊓⊔

Remark 2. Comparatively to remark 1, instantiated with the KEM derived from
ElGamal presented in Section 2, OCAKE-ElGamal is exactly OEKE [ACCP08].

Additional remarks :

Removing the cipher on pk and keeping it on c like OEKE is not possible.
To follow strictly its framework one would need a perfectly anonymous KEM
otherwise the client could construct a subset attack using the gap of a miscon-
structed cipher on decryption. Furthermore, we place our study in the con-
text of quantum-secure KEM and none of them allows for perfect anonymity.
Therefore the strict OEKE framework is not an enticing approach for long-
term usability.



18 Hugo Beguinet et al.

This protocol is only secure against static corruptions. An adversary allowed to
apply adaptive corruptions could corrupt the client a reception of (c, Auth)
before it computes Decaps. The adversary would then obtain sk because
Decaps needs it and implies that the erasure is not applied. Knowing sk, a
random c ←$ C is easily recognizable from a honestly built one leading the
adversary to distinguish the simulation in the above proof.

Adding an authentication of the client afterwards for mutual authentication is
entirely possible. The proof extensively use tricks before the derivation of the
session key to either extract private information or to send indistinguishable
random elements. Since this is done before, either the client would send a
honest authentication, a perfectly indistinguishable one or a recognizable
wrong one.

5 Crystal-Kyber

5.1 Security Properties

Crystals-Kyber has been introduced in Section 2. For the following results, we
set P = {0, 1}κ ×Rk

q , SK = βk
η , C = Rk

q ×Rq and K = {0, 1}n. First of all, we
recall the indistinguishability property of Crystals-Kyber [BDK+18]:

Lemma 1. Kyber on parameters (k, η, q, n) is an indistinguishable KEM:

AdvindKyber(A) ≤ Advd−mlwe
k,k,η (t) + Advd−mlwe

k+1,k,η(t)

Next, let us verify the anonymity and fuzziness properties guaranteed by
Kyber.

Lemma 2. Crystals-Kyber is an anonymous KEM in C = Rk
q ×Rq:

AdvanoKyber(A) ≤ Advd−mlwe
k,k,η (t) + Advd−mlwe

k+1,k,η(t)

Proof. Let sample a public key pk←$ (A,b), by definition of Kyber in Figure 1

c = (u, v) with
{
u = AT · r+ e′

v = bT · r+ e′′ +
⌈
q
2

⌋
·m

We can rewrite c as: [
u
v

]
←
[
A
b

]T
r+

[
e′

e′′ +
⌈
q
2

⌋
·m

]

It forms a Module-LWE instance

([
A
b

]T
,

[
u
v

])
provided that (A,b) is uni-

formly random onRk×k
q ×Rk

q which is true under the d-MLWEk,k,η assumption.
This directly gives:

AdvanoKyber(A) ≤ Advd−mlwe
k+1,k,η(t) + Advd−mlwe

k,k,η (t)

⊓⊔
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To prove anonimity in lemma 2, Kyber needs to ensure the decisional MLWE
argument, therefore:

Corollary 1. Crystals-Kyber is a fuzzy KEM with P = Rk
q :

AdvfuzzyKyber(A) ≤ Advd−mlwe
k,k,η (t)

Theorem 3. Let (E1, D1), (E2, D2) be two pairs of ideal ciphers, and H a random
oracle. We note qD1 (resp. qD2) the maximal number of queries to the decryption
oracle D1 (resp. D2), explicitly asked by the adversary, and qs the number of
session. The CAKE protocol from Figure 5 instantiated with Kyber UC-emulates
FpwKE in the erasure model with adaptive corruptions:

AdvcakeKyber(A) ≤ ((5qs + 3qD1 + 2qD2) + 2qD1 · (qs + qD2)) · Adv
d−mlwe
k+1,k,η(t)

+ qH · qs · 2−n + q−kn · (q2E1 · 2
−κ + q2E2 · q

−n)/2

Theorem 4. Let (E, D) be an ideal cipher, and H1, H2 two random oracles. We
note qD the maximal number of queries to the decryption oracle D, explicitly
asked by the adversary, and qs the number of session. The OCAKE protocol from
Figure 6 instantiated with Kyber UC-emulates FpwKE-sA in the erasure model
with static corruptions:

AdvocakeKyber (A) ≤ 2 · qD · (Advd−mlwe
k+1,k,η(t)) + 3 · qD · (Advd−mlwe

k,k,η (t))

+ (qH1 + qH2) · qs · 2−n + q2E · 2−κ + qH1 · 2−n

5.2 Instantiation of the Block Cipher

To prove the UC-security of both CAKE-Kyber and OCAKE-Kyber, the ideal ci-
pher model is crucial. More precisely it needs to ensure that finding a collision on
the encryption is statistically impossible without querying a decryption oracle.
It removes both the following approaches out of the equation: stream cipher and
one time pad. The conception of a relevant block cipher for our transformations
is actually nontrivial. In fact, the underlying sets, like Rq, are not convenient
for building a symmetric block cipher statistically following the necessary ideal
properties. We present here a solution issued from known ad-hoc techniques. We
believe that it can be improved for better performance but this task is left as
future work.

To keep light notations, we do not encrypt the seed of A, and thus consider
the encryption of an element in Rk

q ∼ Zn×k
q for the public key. We can do the

same with Rk
q ×Rq ∼ Zn×(k+1)

q for the ciphertext.
To encrypt pk ∈ Rk

q ∼ Zn×k
q , we can first encode pk into {0, . . . qnk − 1},

and then use a block cipher on ℓ-bits, such that 2ℓ−1 ≤ qnk < 2ℓ. We thus
have an encoding/decoding from Rk

q to {0, 1}ℓ that can be seen as a superset of
{0, . . . qnk − 1}. Let us thus consider all these encodings equivalent.
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From (E, D) on ℓ-bit blocks and κ-bit keys, we can build a permutation onto
the restricted set {0, . . . qnk − 1}: one defines the encryption scheme with key K
on b ∈ Rk

q ∼ {0, . . . qnk − 1} as E′K(b) = EK(. . . EK(b) . . .), stopping at the first
element in {0, . . . qnk − 1}. Decryption works the same way, and will stop at the
right place as all ignored intermediate values are outside the expected set.

Actually, the number of iterations will be small, as there is a probability less
than 1/2 at each step. This technique is vulnerable to timing attacks, but one
can always include virtual loops.

We emphasize that this study is done without using the optimized Kyber

(without) the compression, decompression functions. However, these two func-
tions map elements of Zq to Zq′ with q′ < q, therefore the study remains similar.

5.3 Parameters

The bounds in Theorems 3 and 4 are slightly looser than the ones that constrain
the choice of parameters for Kyber. Thus, some adaptations of the obtained se-
curity levels are necessary. We propose to recompute the security level for the
set of parameters taken from Kyber’s last submission to the NIST [SAB+22]
and choosing parameters that allow to reach around 100 bits of security against
quantum adversaries. While this can be argued to be weak, PAKE are not used in
highly critical applications but in highly efficient ones. Hence, 100 bits of security
against quantum adversaries would constitute a mid to long-term security target.

We present in Table 1 the security estimations for CAKE-Kyber and OCAKE-
Kyber obtained with the pq-crystal estimate [DS21] against a quantum adversary
with KYBER768 and KYBER1024 parameters.

Kyber parameters Bit-sec against quantum
adversaries obtained

with [DS21]
Kyber1024 102

CAKE− Kyber

Kyber768 98
Kyber1024 162

OCAKE− Kyber

Table 1. Bit security estimates of CAKE-Kyber and OCAKE-Kyber using parameters
from version 3.0 of the NIST [SAB+22] against a quantum adversary. Estimation done
using python script from pqcrystals github [DS21].
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The security/efficiency trade-off between CAKE and OCAKE is confirmed
in this example. According to Table 1, CAKE provides more conservative as-
sumptions as an adaptive adversary are included in the model however it is less
efficient that its OCAKE alternative.

6 Conclusion and perspectives

In this article we characterize the necessary properties for a key encapsulation
mechanism to be used in a password authenticated key exchange and more pre-
cisely in both EKE and OEKE. Additionally we prove that these properties are
respected by the newly standardized Kyber. To supplement this study we intro-
duce a set of possible parameters for Kyber, ensuring around 100 bit of security.
Lastly we propose a cipher respecting statistically ideal cipher properties for the
application of both CAKE (Fig. 5) and (OCAKE Fig. 6).
While our work focuses on post-quantum alternatives, one could improve our
results by supposing a random self-reducible KEM (like El-Gamal). Random self-
reducibility implies that arbitrarily many independant instances can be reduced
to only one such instance. Although current post-quantum schemes are not self-
reducible KEM but such an assumption would lead to tighter reductions and it
would allow for SPEKE or CPace constructions to be generalized to more KEM

protocols.
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Supplementary Material

These appendices are for the reviewer convenience.

A Proof of Theorem 1

Game G0: In this game we present a formalization of the CAKE protocol using
the random oracle model and the ideal cipher model. Our simulation is set in the
erasure model, in which secret information is erased from the memory of each
party when it is no longer needed during the protocol execution. The protocol
is executed in an adversarial environment, denoted as Z, in which the parties
can be adaptively corrupted by an adversary A to leak their private state. In
our simulation, Alice is referred to as Pi (the initiator) and Bob is referred to
as Pj (the responder). Additionally, pwA represents Alice’s password and pwB

represents Bob’s password, while pw represents an arbitrary password usually
used by the adversary.

Game G1: Simulation of FIC and FRO. This game builds the simulation
from S of the different oracles namely: the ideal cipher and the random oracle.
It is subdivisided into three subgames and each subgame represents respectively
the simulation of the random oracle and two differently modeled ideal ciphers,
starting from G0, with G0.1, G0.2, and G0.3 = G1:

Game G0.1: In this subgame, S models the random oracle H, where on each
query the oracle returns a uniformly random answer. To remain consistent with
previous answers S uses a list ΛH of tuples (ssid, Pi, Pj ,Epk,Ec,K, SK). This list
is initially set as empty and grows as the number of queries to H piles up in the
different sessions. On query H(ssid, Pi, Pj ,Epk,Ec,K), S uses ΛH to simulate it
as follows:

– If a record (ssid, Pi, Pj ,Epk,Ec,K, SK) exists in ΛH, S returns SK.
– Else, S samples a random SK, records (ssid, Pi, Pj ,Epk,Ec,K, SK) in ΛH, and

returns SK.

However throughout the simulation, S will have to simulate H while not know-
ing K, for generating SK. S uses a private oracle H∗ to record values in a list
ΛH∗ of items (ssid, Pi, Pj ,Epk,Ec, status, SK). S simulates H∗ as follows on input
(ssid, Pi, Pj ,Epk,Ec, status), where status can be success, failA, or failB , where
both success would lead to the same key SK, whereas a failure will lead to inde-
pendent keys:

– If a record (ssid, Pi, Pj ,Epk,Ec, status, SK) exists in ΛH∗ , S returns SK.
– Else, S samples a random SK, records (ssid, Pi, Pj ,Epk,Ec, status, SK) in ΛH∗ ,

and returns SK.

This simulation is perfectly identical to G0.
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Game G0.2: In this game, we simulate an ideal cipher from the first exchange of
the protocol. The simulation of this oracle needs to be consistent, meaning that
any query that has already been asked should return the same answer as the first
time it was asked. Additionally, the simulation needs to capture the properties of
an ideal cipher, which means simulating each encryption as a random bijection
for each key (actually, for each ssid∥pw). But for the following simulation, we
will need to avoid collisions during adversary’s encryption with different inputs.
Then, the simulator uses a list called Λ1 for encryption and decryption queries on
each oracle. Λ1 is composed of tuples of the form (ssid, pw,pk, sk, E1 ∨ D1,Epk),
even if the component sk will only appear later. S simulates E1 and D1 as follows:

– On E1(ssid∥pw, pk):
• If there exists a record (ssid, pw, pk, ⋆, ⋆,Epk) ∈ Λ1 then S returns Epk.
• Else, S samples Epk←$ P ′. If Epk already exists in Λ1, S aborts, else
S records (ssid, pw, pk,⊥, E1,Epk) in Λ1 and returns Epk.

– On D1(ssid∥pw,Epk):
• If there is a record (ssid, pw, pk, ⋆, ⋆,Epk) ∈ Λ1, S returns pk.
• Else, S samples pk ←$ P, records (ssid, pw, pk,⊥, D1,Epk) in Λ1, and

returns pk.

Analysis: Under the assumption of the Ideal Cipher model depicted by its ideal
functionality, Z can distinguish the real execution of the protocol from this game
if S aborts. Assuming the cardinal of P is 2λp , and if A makes up to qE1 queries
to the encryption oracle then by the birthday paradox bound:

| Pr[G0.2]− Pr[G0.1] | ≤ q2E1 · 2
−λp−1

Game G0.3: This game handles the simulation of the second ideal cipher for the
encryption of the ciphertext c. Equally to the previous game, S uses a list Λ2.
Λ2 is a list of items (ssid, pw, c,K, E2 ∨ D2,Ec), even if the component K will
only appear later. S simulates E2 and D2 as follows:

– On E2(ssid∥pw, c):
• If there exists a record (ssid, pw, c, ⋆, ⋆,Ec) ∈ Λ2 then S returns Ec.
• Else, S samples Ec ←$ C′. If Ec already exists in Λ2, S aborts, else S

records (ssid, pw, c,⊥, E2,Ec) in Λ2 and returns Ec.
– On D2(ssid∥pw,Ec):
• If there is a record (ssid, pw, c, ⋆, ⋆,Ec) ∈ Λ2, S returns c.
• Else, S samples c←$ C, records (ssid, pw, c,⊥, D2,Ec) in Λ2, and returns
c.

Analysis: Similarly to the simulation of E1, Z is able to distinguish this simula-
tion from the previous game if and only if S aborts. Assuming the cardinal of
C is 2λc , and if A makes up to qE2 queries to the encryption oracle then by the
birthday paradox bound:

| Pr[G0.3]− Pr[G0.2] | ≤ q2E2 · 2
−λc−1

Eventually, as G1 = G0.3, | Pr[G1]− Pr[G0] | ≤ q2E1 · 2
−λp−1 + q2E2 · 2

−λc−1.
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Game G2: Embedding of the Secrets. In this game we embed the associated
secret keys in the simulation of both D1 and D2. We do it in two steps, first dealing
with D1 in G1.1 and then with D2 in G2 = G1.2:

Game G1.1: We change the simulation of D1 and introduce the component sk in
the records in Λ1:

– On D1(ssid∥pw,Epk):
• If there is a record (ssid, pw, pk, ⋆, ⋆,Epk) ∈ Λ1, S returns pk.
• Else, S builds (pk, sk) ← KeyGen(1κ), records (ssid, pw, pk, sk, D1,Epk)

in Λ1, and returns pk.

Analysis: The unique difference is a real public key instead of a random public
key, which is exactly the fuzziness of the KEM, that we apply q′D1 times in a
hybrid sequence of games:

| Pr[G1.1]− Pr[G1] | ≤ q′D1 · Adv
fuzzy
KEM (t)

We stress that q′D1 will be the number of all the queries to D1 done by the
simulator and by the adversary. This might be larger than the sole number qD1
of queries asked by the adversary.

Game G1.2: Similarly to the previous subgame we change the simulation of
D2, and introduce the component K in the records in Λ2, but only for specific
decryption calls by the simulator itself, with an additional input pk, that has
necessarily been generated during the above simulation of D1:

– On D∗2(ssid∥pw,Ec, pk), by S:
• If there is a record (ssid, pw, c, ⋆, ⋆,Ec) ∈ Λ2, S returns c.
• If there is no record (ssid, pw, pk, ⋆, D1, ⋆) ∈ Λ1, S aborts.
• Else, S builds (c,K)← Encaps(pk), records (ssid, pw, c,K, D2,Ec) in Λ2,

and returns c.
– On D2(ssid∥pw,Ec), by A, there is no change:
• If there is a record (ssid, pw, c, ⋆, ⋆,Ec) ∈ Λ2, S returns c.
• Else, S samples c←$ C, records (ssid, pw, c,⊥, D2,Ec) in Λ2, and returns
c.

We will have to make sure the simulation never aborts here, with pk randomly
generated (not under control of the adversary), without needing sk.

Analysis: As above, the unique difference is a real ciphertext instead of a random
ciphertext, which is exactly the anonymity of the KEM, that we apply q∗D2 times
(the number of explicit D∗2 queries by the simulator) in a hybrid sequence of
games, by guessing the good D1-query for pk:

| Pr[G1.2]− Pr[G1.1] | ≤ qD1 · q∗D2 · Adv
ano
KEM (t)

As G2 = G1.2, | Pr[G2]− Pr[G1] | ≤ q′D1 · Adv
fuzzy
KEM (t) + qD1 · q∗D2 · Adv

ano
KEM (t).
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Game G3: Simulation of Alice’s Initialization. In this game, S simulates
the first flow of Alice, using D1 instead of E1: it samples Epk ←$ P ′, asks for
pk← D1(ssid∥pwA,Epk), which also generates sk, and sends Epk to Bob. This
makes no difference from the previous game: | Pr[G3]− Pr[G2] | = 0.

Game G4: Simulation of Bob’s Answer. In this game, S simulates the
second flow from an honest Bob, upon receiving Epk. The behavior of S depends
on the origin of the message Epk: whether it comes from a honest Alice, or from
the adversary A, that has corrupted, or not, Alice. We thus do it in two steps,
from G3, with G3.1 that deals with honestly generated Epk, and G4 = G3.2

that deals with adversarially generated Epk.

Game G3.1: Epk comes from Alice. Epk comes from the above simulation, with
(pwA, pk, sk, D1,Epk) in Λ1. S asks for pk′ ← D1(ssid∥pwB ,Epk), which is either
pk if the passwords are the same, or another pk′, with associated sk′. S samples
Ec ←$ C′, asks for c ← D∗2(ssid∥pwB ,Ec, pk′), computes K ← Decaps(sk′, c),
and sends Ec to Alice. This makes no difference from the previous game, as pk′

really comes from D1.

Game G3.2: Epk comes from A. From the uniqueness of Epk in Λ1, from explicit
encryption E1 (or no record at all), S can extract at most one pair (pw, pk) used
by A:

– If pw = pwB , with pk: S continues as Bob would do. It builds (c,K) ←
Encaps(pk), Ec← E1(ssid∥pwB , c), and SK← H(ssid, Pi, Pj ,Epk,Ec,K).

– Else (pw ̸= pwB , or pw = ⊥): S asks for pk ← D1(ssid∥pwB ,Epk), with
sk, samples Ec ← C′, asks for c ← D∗2(ssid∥pwB ,Ec, pk), computes K ←
Decaps(sk, c), and SK← H(ssid, Pi, Pj ,Epk,Ec,K).

This makes no difference from the previous game. As this last game G3.2 is G4,
| Pr[G4]− Pr[G3] | = 0.

Game G5: Preparation of Alice’s Reaction. We create a new list ΛEpk,
with records of the form (ssid,Epk), initialized as an empty list. We first update
the simulation of the first flow of Alice: for a new session with ssid, if there is a
record (ssid,Epk) ∈ ΛEpk, S uses this Epk, otherwise it samples an Epk←$ P ′,
and adds (ssid,Epk) to ΛEpk.

For any query D2(ssid∥pw,Ec) asked by the adversary or the simulator:

– If there is a record (ssid, pw, c, ⋆, ⋆,Ec) ∈ Λ2, S returns c.
– If there is a record (ssid,Epk) ∈ ΛEpk it uses Epk, otherwise it samples

an Epk ←$ P ′, and adds (ssid,Epk) to ΛEpk. Then, S first asks for pk′ ←
D1(ssid∥pw,Epk), with sk′, and then asks for D∗2(ssid∥pw,Ec, pk′) with K ′.

This makes no difference from the previous game, if we take care of the additional
D1 queries, as Epk is still randomly sampled in P ′: | Pr[G5]− Pr[G4] | = 0.
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Game G6: Simulation of Alice’s Reaction. In this game, S simulates the
key computation by Alice, upon receiving Ec, which has been sent by either
an honest Bob or the adversary. S first recovers Alice’s secret key sk generated
during the first honest flow. Then, we proceed in two steps, from G5, with
G5.1 that deals with honestly generated Ec, and G6 = G5.2 that deals with
adversarially generated Ec.

Game G5.1: Ec comes from Bob. We thus have (ssid, pw, c,K, D2,Ec) in Λ2. If
pw = pwA, we have both equalities c = c′ ← D2(ssid∥pwA,Ec) and K = K ′ ←
Decaps(sk, c′): then Alice and Bob have the same final session keys SK = SK′ ←
H(ssid, Pi, Pj ,Epk,Ec,K ′). If pw ̸= pwA, we have both inequalities (excepted
by chance) c ̸= c′ ← D2(ssid∥pwA,Ec) and K ̸= K ′ ← Decaps(sk, c′): then
SK′ ← H(ssid, Pi, Pj ,Epk,Ec,K ′) is independent from the SK computed by Bob,
excepted with random equality, which makes no difference from the previous
game.

Game G5.2: Ec comes from A. From the uniqueness of Ec in Λ2, from explicit
encryption E2 (or no record at all), S can extract at most one pair (pw, c) used
by A:

– If pw = pwA, with c: S computes K ′ ← Decaps(sk, c) as well as the session
key SK′ ← H(ssid, Pi, Pj ,Epk,Ec,K ′).

– Else (pw ̸= pwA, or pw = ⊥): S asks for c′ ← D2(ssid∥pwA,Ec), computes
K ′ ← Decaps(sk, c′), and gets SK′ ← H(ssid, Pi, Pj ,Epk,Ec,K ′).

We stress that we use the above simulation of D2. This makes no difference from
the previous game. As this last game G5.2 is G6, | Pr[G6]− Pr[G5] | = 0.

Game G7: Random Session Keys. Thanks to the above simulation of the
ideal ciphers, S has the ability to extract the tentative password used by the
adversary. It will be given access to two boolean functions;

– GoodPwd with input (ssid, Pi, pw) that answers whether this is the correct
password of party Pi.

– SamePwd with input (ssid, Pi, Pj) that answers whether Pi and Pj share the
same password.

We first replace session key K generation, for honest players, without knowing
the passwords, by using SamePwd when it did not extract the password and
GoodPwd when it successfully extracted pw using a private random oracle H∗K onto
K, in G6.1. We then replace the final session key SK generation in G7 = G6.2.

Game G6.1: Random K ′. We first use a private random oracle H∗K onto K to
replace K by random K ′, in some situations:

On Bob’s Side: Upon receiving Epk
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– From an honest Alice, instead of setting SK← H(ssid, Pi, Pj ,Epk,Ec,K),
if SamePwd(ssid, Pi, Pj) = true, one sets K ′ ← H∗K(ssid, success) other-
wise one sets K ′ ← H∗K(ssid, failB), and updates the definition SK ←
H(ssid, Pi, Pj ,Epk,Ec,K ′).

– From A, with extracted password pw: if GoodPwd(ssid, Pj , pw) = true, one
keeps SK← H(ssid, Pi, Pj ,Epk,Ec,K); else one sets K ′ ← H∗K(ssid, failB),
and updates the definition SK← H(ssid, Pi, Pj ,Epk,Ec,K ′).

On Alice’s Side: Upon receiving Ec

– From an honest Bob, instead of setting SK← H(ssid, Pi, Pj ,Epk,Ec,K),
if SamePwd(ssid, Pi, Pj) = true, one sets K ′ ← H∗K(ssid, success) other-
wise one sets K ′ ← H∗K(ssid, failA), and updates the definition SK ←
H(ssid, Pi, Pj ,Epk,Ec,K ′).

– From A, with extracted password pw: if GoodPwd(ssid, Pi, pw) = true, one
keeps SK ← H(ssid, Pi, Pj ,Epk,Ec,K ′); else sets K ′ ← H∗K(ssid, failA),
and updates the definition SK← H(ssid, Pi, Pj ,Epk,Ec,K ′).

Analysis: We replace real keys K by random independent keys K ′, excepted
when interacting with the adversary that has guessed the password. In all the
modified sessions, K has been generated from a fresh KEM instance: From an
honest Alice, Bob always uses a pk coming from D1 and a c coming from D∗2; if this
comes from A, unless the password was correctly guessed, pk also comes from
D1 and c from D∗2. On Alice’s side, unless the password was correctly guessed by
the adversary, pk also comes from D1 and c from D∗2, thanks to the list ΛEpk that
prepared Epk in advance for any session. We can thus proceed with a sequence
of hybrid games, replacing real keys by random keys.

– On Bob’s side, the pairs come from D1 and D∗2, with known (pk, sk) and
(c,K), with a unique call D∗2 per session: we can simply successively replace
(pk, c,K) by (pk, c,K ′), using the indistinguishability of the KEM: the gap
is bounded by q′D1 · Adv

ind
KEM(t).

– On Alice’s side, the pairs come from D1 and D∗2, with known (pk, sk) and
(c,K), but will have multiple generations per session: essentially, for each
query D2, such a tuple must be created. We can successively replace (pk, c,K)
by (pk, c,K ′), using the indistinguishability of the KEM: the gap is bounded
by q′D2 · Adv

ind
KEM(t), where q′D2 is the number of all the queries to D2 asked by

the simulator and by the adversary.

We thus have | Pr[G6.1]− Pr[G6] | ≤ (q′D1 + q′D2) · Adv
ind
KEM(t).

Game G6.2: Random SK. We now replace SK by random SK′, in some situations:

On Bob’s Side: Upon receiving Epk

– From an honest Alice, instead of setting SK← H(ssid, Pi, Pj ,Epk,Ec,K),
if SamePwd(ssid, Pi, Pj) = true, one updates the generation by SK ←
H∗(ssid, Pi, Pj ,Epk,Ec, success), otherwise one uses the generation SK←
H∗(ssid, Pi, Pj ,Epk,Ec, failB).



GeT a CAKE: Generic Transformation from KEM to PAKE 31

– From A, with extracted password pw: if GoodPwd(ssid, Pj , pw) = true,
one keeps SK ← H(ssid, Pi, Pj ,Epk,Ec,K); else one uses the generation
SK← H∗(ssid, Pi, Pj ,Epk,Ec, failB).

On Alice’s Side: Upon receiving Ec
– From an honest Bob, instead of setting SK← H(ssid, Pi, Pj ,Epk,Ec,K),

if SamePwd(ssid, Pi, Pj) = true, one updates the generation by SK ←
H∗(ssid, Pi, Pj ,Epk,Ec, success), otherwise one uses the generation SK←
H∗(ssid, Pi, Pj ,Epk,Ec, fail1).

– From A, with extracted password pw: if GoodPwd(ssid, Pi, pw) = true,
one keeps SK← H(ssid, Pi, Pj ,Epk,Ec,K ′); else one uses the generation
SK← H∗(ssid, Pi, Pj ,Epk,Ec, failA).

The only way for the environment to detect the difference is to have a call
H(ssid, Pi, Pj ,Epk,Ec,K) that has been replaced by a call to H∗. But in the
previous game, all the K that are in such changes are truly random, and there
are at most 2qs such changes, where qs is the number of sessions: We thus have
| Pr[G6.2]− Pr[G6.1] | ≤ qH · qs/2λk , where λk is the length of K. As this last
game G6.2 is G7, | Pr[G7]− Pr[G6] | ≤ (q′D1 + q′D2) · Adv

ind
KEM(t) + qH · qs/2λk .

Game G8: Adaptive Corruptions. Since the values K and K ′ are not needed
anymore to generate SK, we can postpone some evaluations that need the pass-
words of honest players, when corruptions happen:

– Alice’s initialization: S uses or adds Epk in ΛEpk and sends it. We postpone
the evaluation of pk ← D1(ssid∥pwA,Epk) with sk, at corruption time, to
provide sk.

– Bob’s answer to honest Epk: S samples Ec ←$ C′ and sends it. We post-
pone the evaluations c ← D∗2(ssid∥pwB ,Ec, pk) and K ← Decaps(sk, c), at
corruption time, to provide K. The evaluation of SK uses H∗, with inputs
depending on similar or different passwords.

– Alice’s reaction to honest Ec: The evaluation of SK uses H∗, with inputs
depending on similar or different passwords.

In case of late corruptions, after SK has been set, from the knowledge of the
passwords, one can program the random oracle H to make it consistent with K ′

obtained from H∗:

– if Alice is corrupted, from pwA, for all the (ssid, Pi, Pj ,Epk,Ec, status, SK) in
ΛH∗ , involving Alice as Pi, one queries pk← D1(ssid∥pwA,Epk) with sk, and
c← D2(ssid∥pwA,Ec). This always succeeds as Epk was a fresh value. Then
one can compute K ← Decaps(sk, c) to add (ssid, Pi, Pj ,Epk,Ec,K, SK) in
ΛH.

– if Bob is corrupted, from pwB , for all the (ssid, Pi, Pj ,Epk,Ec, status, SK) in
ΛH∗ , involving Bob as Pj , one queries pk← D1(ssid∥pwB ,Epk) with sk, and
c ← D2(ssid∥pwB ,Ec). This always succeeds as Epk has not been obtained
as an encryption under E1 (otherwise SK has already been generated with H).
Then one computes K ← Decaps(sk, c) to add (ssid, Pi, Pj ,Epk,Ec,K, SK)
in ΛH.
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In the previous game, we have already excluded queries on these specific inputs,
so all these programmings are possible: | Pr[G8]− Pr[G7] | = 0.

Game G9: Adding the Full FpwKE Interface. In this game we add the
full FpwKE interface to fully model the ideal world. First, S simulates its use of
GoodPwd by querying TestPwd to FpwKE on input (ssid, Pi, pw) to test if pw is
the password associated to Pi in ssid. Then, for key generation, when a value K
can be computed, and SK← H(ssid, Pi, Pj ,Epk,Ec,K), then one queries FpwKE

on (NewKey, ssid, P, SK), for any party P .
Let us show this provides the same output as in the previous game: First,

in the simulation, if S has extracted the password used by the adversary, then
a TestPwd query has been sent to FpwKE . According to the ideal functionality
two cases arise, according to the correct guess:

– If the guess is incorrect: the record is marked as interrupted.
– If the guess is correct: the record is marked as compromised.

If the session is compromised, NewKey(ssid, Pi, SK) returns SK to Pi, which are the
cases where we kept the definition of SK with H. If the session is interrupted it
returns a random SK′ to Pi, which are the cases where we used H∗ with fail. This
behavior of NewKey is exactly the one from that has been simulated by S and
therefore remains indistinguishable.

Now assuming that S could not extract a password: it has sent random flow
Epk and Ec and used its private oracle H∗ to build a random session key for
each party. Since S does not know the parties’ passwords it is not able to tell if
it needs to derive the same session key for both of them. Now, even though S
derived the same session key SK using H∗ on behalf of Alice and Bob, by definition
of the NewKey interface:

– Two honest parties in a fresh session, using the same password, derive the
same session key, because of a success status.

– Two honest parties in a fresh session, not using the same passwords, derive
two random different session keys, because of the fail status.

Laslty on NewSession, S does nothing more than what is described in the sim-
ulation. Only FpwKE does his internal computation.
Hence, we have | Pr[G9]− Pr[G8] | = 0, and this game is perfectly indistinguish-
able from the ideal world. Note that now the private oracle H does not need its
status component anymore because it is handled by FpwKE entirely.

The global gap is thus:

| Pr[G9]− Pr[G0] | ≤ q2E1 · 2
−λp−1 + q2E2 · 2

−λc−1

+ q′D1 · Adv
fuzzy
KEM (t) + qD1 · q∗D2 · Adv

ano
KEM (t)

+ (q′D1 + q′D2) · Adv
ind
KEM(t) + qH · qs/2λk

where we denote the global numbers of queries asked by the adversary qE1 , qD1 ,
qE2 , qD2 , and qH. But we also need to count the number of queries to D1, D2 and
D∗2 by the adversary and the simulator, at some point of the simulation:



GeT a CAKE: Generic Transformation from KEM to PAKE 33

– the global number of queries asked to D1 is qs (for initialization by Alice or
answer by Bob) plus qD1 , and qD2 , as all the queries to D2 make a call to D1;

– the global number of queries asked to D2 is qs (for answer by Bob) plus qD2 ;
– the global number of queries asked to D∗2 is qs (for answer by Bob) plus qD2 .

Hence,

| Pr[G9]− Pr[G0] | ≤ q2E1 · 2
−λp−1 + q2E2 · 2

−λc−1

+ (qs + qD1) · Adv
fuzzy
KEM (t) + qD1 · (qs + qD2) · Adv

ano
KEM (t)

+ (2qs + qD1 + qD2) · Adv
ind
KEM(t) + qH · qs/2λk

On H(ssid, Pi, Pj ,Epk,Ec,K)

If ∃(ssid, Pi, Pj ,Epk,Ec,K, SK) ∈ ΛH

return SK

Else:

sample SK←$ {0, 1}λH and record
(ssid, Pi, Pj ,Epk,Ec,K, SK) ∈ ΛH

return SK

On H∗(ssid, Pi, Pj ,Epk,Ec)

If ∃(ssid, Pi, Pj ,Epk,Ec, SK) ∈ ΛH∗

return SK

Else:

sample SK←$ {0, 1}λH and record:
(ssid, Pi, Pj ,Epk,Ec, SK) ∈ ΛH∗

return SK

On E1(ssid||pw,pk)

If ∃(ssid, pw,pk, ⋆, ⋆,Epk) ∈ Λ1 :

returns Epk.

Otherwise: Epk←$ P ′.

If: ∃(⋆, ⋆, ⋆, ⋆, ⋆,Epk) ∈ Λ1 :

S aborts.
Else: S records :

(ssid, pw, pk,⊥, E1,Epk) ∈ Λ1

returns Epk.

On D1(ssid||pw,Epk)

If ∃(ssid, pw, pk, ⋆, ⋆,Epk) ∈ Λ1: returns pk.
Else, S builds (pk, sk)← KeyGen(1κ)

records (ssid, pw, pk, sk, D1,Epk) ∈ Λ1

returns pk.

On E2(ssid||pw, c)

If ∃(ssid, pw, c, ⋆, ⋆,Ec) ∈ Λ2:
returns Ec.

Otherwise: Ec←$ C′.
If: ∃(⋆, ⋆, ⋆, ⋆, ⋆,Ec) ∈ Λ2:
S aborts.

Else: S records :
(ssid, pw, c,⊥, E2,Ec) ∈ Λ2,
returns Ec.

On D∗2(ssid||pw,Ec) by S

If ∃(ssid, pw, c, ⋆, ⋆,Ec) ∈ Λ2: returns c.
If ∄(ssid, pw, pk, ⋆, D1, ⋆) ∈ Λ1: S aborts.
Else, S builds (c,K)← Encaps(pk),
records (ssid, pw, c,K, D2,Ec) ∈ Λ2, returns c.
On D2(ssid||pw,Ec) by A

If ∃(ssid, pw, c, ⋆, ⋆,Ec) ∈ Λ2: returns c.
Else, S samples (c←$ C),
records: (ssid, pw, c,⊥, D2,Ec) ∈ Λ2, returns c.

Fig. 7. Simulation of the ideal ciphers and the random oracle in proof of Theorem 1.
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On (NewSession, ssid, Pi, Pj) from FpwKE

If Pi = client :

Epk←$ P ′, sends Epk

On (AdaptiveCorruption, ssid, Pi) from Z

S gets: (ssid, Pi, pwi).

→ Before SK is set:
client: pk← D1(ssid||pwA,Epk)

server: gets c← D
∗
2(ssid||pwB ,Ec, pk) and K ← Decaps(sk, c)

SK← H
∗ depending on pwA

?
= pwB

→ After SK is set:
client gets:

pk← D1(ssid||pwA,Epk), c← D
∗
2(ssid||pwA,Ec,pk) and K ← Decaps(sk, c)

server gets:
pk← D1(ssid||pwB ,Epk), c← D2(ssid||pwB ,Ec, pk) and K ← Decaps(sk, c)

Record: (ssid, Pclient, Pserver,Epk,Ec,K, SK) ∈ ΛH

Fig. 8. Simulation of the behavior against Z and FpwKE in proof of Theorem 1.
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Upon server Pi receiving Epk

If ∃(ssid, pw, pk, ⋆, ⋆,Epk):
Upon positive answer after querying: (TestPwd, ssid, Pi, pw) to FpwKE :

compute: (c,K)← Encaps(pk), SK← H(ssid, Pi, Pj ,Epk,Ec,K, SK)

Else:
sample: Ec←$ C′, SK← H

∗(ssid, Pi, Pj ,Epk,Ec)

send: Ec to Pj

send: (NewKey, ssid, Pi, SK)

Preparation of client Pi

On D2(ssid||pw,Ec) from A or S without existing record in Λ2:
If ∃(ssid,Epk) ∈ ΛEpk: return Epk

Else:
sample Epk←$ P ′, add (ssid,Epk) to ΛEpk

get pk′ ← D1(ssid||pw,Epk) with sk′

get c← D
∗
2(ssid||pw,Ec, pk′) and extract K

Upon client Pi receiving Ec

If ∃(ssid, pw, c, ⋆, ⋆,Ec):
Upon positive answer after querying: (TestPwd, ssid, Pi, pw) to FpwKE :

get: sk, pk← D1(ssid||pw,Epk)

extract K or compute: K ← Decaps(sk, c)
get: SK← H(ssid, Pi, Pj ,Epk,Ec,K, SK)

Else:
get: SK← H

∗(ssid, Pi, Pj ,Epk,Ec)

send: (NewKey, ssid, Pi, SK)

Fig. 9. Simulation of the protocol from the client and server point of view in proof of
Theorem 1.
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B Proof of Theorem 2

Game G0: In this game we present a formalization of the OCAKE protocol
using the random oracle model and the ideal cipher model. Our simulation is
set in the erasure model, in which secret information is erased from the memory
of each party when it is no longer needed during the protocol execution. The
protocol is executed in an adversarial environment, denoted as Z, in which the
parties can be statistically corrupted by an adversary A to leak their private
state. In our simulation, Alice is referred to as Pi (the initiator) and Bob is
referred to as Pj (the responder). Additionally, pwA represents Alice’s password
and pwB represents Bob’s password, while pw represents an arbitrary password
usually used by the adversary.

Game G1: Simulation of FIC and FRO. This game builds the simulation
from S of the different oracles namely: the ideal cipher and the random oracle.
It is subdivisided into three subgames and each subgame represents respectively
the simulation of two different random oracles and one ideal cipher, starting
from G0, with G0.1, G0.2, and G0.3 = G1:

Game G0.1: In this subgame, S models the random oracle H1 used for authenti-
cation, where on each query the oracle returns a uniformly random answer. We
will also need to exclude collisions. To remain consistent with previous answers S
uses a list ΛH1 of tuples (ssid, Pi, Pj ,Epk, c, pw,K, Auth). This list is initially set
as empty, then on a query H1(ssid, Pi, Pj ,Epk, c, pw,K), S uses ΛH1 to simulate
it as follows:

– If a record (ssid, Pi, Pj ,Epk, c, pw,K, Auth) exists in ΛH1 , S returns Auth.
– Else, S samples a random Auth, if Auth already exists as a previous answer,
S aborts, else S records (ssid, Pi, Pj ,Epk, c, pw,K, Auth) in ΛH1 , and returns
Auth.

However throughout the simulation, S will have to simulate H1 while not knowing
K nor pw, for generating Auth. S uses a private oracle H∗1 to record values in
a list ΛH∗1

of items (ssid, Pi, Pj ,Epk, c, status, Auth). S simulates H∗1 as follows
on input (ssid, Pi, Pj ,Epk, c, status), where status can be success or fail, where
success can lead to an accepted authentication with Auth, whereas a failure will
lead to a failed Auth meaning an abortion:

– If a record (ssid, Pi, Pj ,Epk, c, status, Auth) exists in ΛH∗1
, S returns Auth.

– Else, S samples a random Auth, if Auth already exists as a previous answer,
S aborts, else S, records (ssid, Pi, Pj ,Epk, c, status, Auth) in ΛH∗1

, and returns
Auth.

Additionally we set a query to H1 with K = ⊥ to return special character ∅ to
force the authentication fail.
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Analysis: Under the assumption of the Random Oracle model depicted by its
ideal functionality, Z can distinguish the real execution of the protocol from this
game if S aborts. Assuming the output length of H1 and H∗1 to be λH1 , and q′H1
being the global number of queries to H1 and H∗1 (by both the simulator and the
adversary), the birthday paradox gives:

| Pr[G0.1]− Pr[G0] | ≤ q′H1
2 · 2−λH1−1

Game G0.2: In this subgame, S models the random oracle H2 to build ses-
sion keys, where on each query the oracle returns a uniformly random an-
swer. To remain consistent with previous answers S uses a list ΛH2 of tuples
(ssid, Pi, Pj ,Epk, c, Auth,K, SK). This list is initially set as empty, and on a query
H2(ssid, Pi, Pj ,Epk, c, Auth,K, SK), S uses ΛH2 to simulate it as follows:

– If a record (ssid, Pi, Pj ,Epk, c, Auth,K, SK) exists in ΛH2 , S returns SK.
– Else, S samples a random SK, records (ssid, Pi, Pj ,Epk, c, Auth,K, SK) in

ΛH2 , and returns SK.

However throughout the simulation, S will have to simulate H2 while not know-
ing K, for generating SK. S uses a private oracle H∗2 to record values in a list ΛH∗2
of items (ssid, Pi, Pj ,Epk, c, Auth, status, SK). S simulates H∗2 as follows on in-
put (ssid, Pi, Pj ,Epk, c, Auth, status), where status can be success, failA, or failB ,
where both success would lead to the same key SK, whereas a failure will lead to
independent keys:

– If a record (ssid, Pi, Pj ,Epk,Ec, status, SK) exists in ΛH∗2
, S returns SK.

– Else, S samples a random SK, records (ssid, Pi, Pj ,Epk, c, Auth, status, SK) in
ΛH∗2

, and returns SK.

This simulation is perfectly identical to G0.1.

Game G0.3: In this game, we simulate an ideal cipher from the first exchange of
the protocol. The simulation of this oracle needs to be consistent, meaning that
any query that has already been asked should return the same answer as the first
time it was asked. Additionally, the simulation needs to capture the properties of
an ideal cipher, which means simulating each encryption as a random bijection
for each key (actually, for each ssid∥pw). But for the following simulation, we
will need to avoid collisions during adversary’s encryption with different inputs.
Then, the simulator uses a list called ΛE for encryption and decryption queries
on each oracle. ΛE is composed of tuples of the form (ssid, pw, pk, E ∨ D,Epk),
even if the component sk will only appear later. S simulates E and D as follows:

– On E(ssid∥pw, pk):
• If there exists a record (ssid, pw,pk, ⋆, ⋆,Epk) ∈ ΛE then S returns Epk.
• Else, S samples Epk ←$ P ′. If Epk already exists in ΛE, S aborts, else
S records (ssid, pw,pk, E,Epk) in ΛE and returns Epk.

– On D(ssid∥pw,Epk):
• If there is a record (ssid, pw, pk, ⋆, ⋆,Epk) ∈ ΛE, S returns pk.
• Else, S samples pk←$ P, records (ssid, pw, pk, D,Epk) in ΛE, and returns

pk.
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Analysis: Under the assumption of the Ideal Cipher model depicted by its ideal
functionality, Z can distinguish the real execution of the protocol from this game
if S aborts. Assuming the cardinal of P is 2λp , and if A makes up to qE queries
to the encryption oracle then by the birthday paradox bound:

| Pr[G0.3]− Pr[G0.2] | ≤ q2E · 2−λp−1

Eventually, as G1 = G0.3, | Pr[G1]− Pr[G0] | ≤ q′H1
2 · 2−λH1

−1 + q2E · 2−λp−1.

Game G2: Embedding of the Secrets. In this game we embed the associated
secret keys in the simulation of D and introduce the component sk in the records
in ΛE:

– On D1(ssid∥pw,Epk):
• If there is a record (ssid, pw,pk, ⋆, ⋆,Epk) ∈ ΛE, S returns pk.
• Else, S builds (pk, sk)← KeyGen(1κ), records (ssid, pw, pk, sk, D,Epk) in
ΛE, and returns pk.

Analysis: The unique difference is a real public key instead of a random public
key, which is exactly the fuzziness of the KEM, that we apply q′D1 times in a
hybrid sequence of games:

| Pr[G2]− Pr[G1] | ≤ q′D · Adv
fuzzy
KEM (t)

We stress that q′D will be the number of all the queries to D done by the simulator
and by the adversary. This might be larger than the sole number qD of queries
asked by the adversary.

Game G3: A randomly guessing Auth. In this game we model the capacity
of the adversary to randomly guess Auth, without asking the right query to H1.
If such a case happens, S now aborts.

Analysis: In such a case, Alice asks a fresh query to H1 which provides a random
answer:

| Pr[G3]− Pr[G2] | ≤ qs · 2−λH1

Game G4: Simulation of Alice’s Initialization. In this game, S simulates
the first flow of Alice, using D instead of E: it samples Epk ←$ P ′, asks for
pk ← D(ssid∥pwA,Epk), which also generates sk, and sends Epk to Bob. This
makes no difference from the previous game: | Pr[G4]− Pr[G3] | = 0.

Game G5: Simulation of Bob’s Answer. In this game, S simulates the
second flow from an honest Bob, upon receiving Epk. The behavior of S depends
on the origin of the message Epk: whether it comes from a honest Alice, or from
the adversary A, that has corrupted, or not, Alice. We thus do it in two steps,
from G4, with G4.1 that deals with honestly generated Epk, and G5 = G4.2

that deals with adversarially generated Epk.
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Game G4.1: Epk comes from Alice. Epk comes from the above simulation, with
(pwA, pk, sk, D,Epk) in ΛE. S asks for pk′ ← D(ssid∥pwB ,Epk), which is either
pk if the passwords are the same, or another pk′, with associated sk′. S builds
c ← Encaps(pk′), computes K ← Decaps(sk′, c), and sends c to Alice, together
with Auth = H1(ssid, Pi, Pj ,Epk, c, pwB ,K) This makes no difference from the
previous game, as pk′ really comes from D.

Game G4.2: Epk comes from A. From the uniqueness of Epk in ΛE, from explicit
encryption E (or no record at all), S can extract at most one pair (pw, pk) used
by A:

– If pw = pwB , with pk: S continues as Bob does, with (c,K)← Encaps(pk),
it gets Auth ← H1(ssid, Pi, Pj ,Epk, c, pw,K), and builds accordingly SK ←
H2(ssid, Pi, Pj ,Epk, c, Auth,K).

– Else (pw ̸= pwB , or pw = ⊥): S asks for pk ← D(ssid∥pwB ,Epk), with sk,
gets (c,K) ← Encaps(pk) and Auth ← H1(ssid, Pi, Pj , pw,Epk, c,K), and
SK← H2(ssid, Pi, Pj ,Epk, c, Auth,K).

This makes no difference from the previous game. As this last game G4.2 is G5,
| Pr[G5]− Pr[G4] | = 0.

Game G6: Simulation of Alice’s Reaction. In this game, S simulates the
key computation by Alice, upon receiving (c, Auth), which has been sent by either
an honest Bob or the adversary. S first recovers Alice’s secret key sk generated
during the first honest flow. Then, we proceed in two steps, from G5, with G5.1

that deals with honestly generated (c, Auth), and G6 = G5.2 that deals with
adversarially generated (c, Auth).

Game G5.1: (c, Auth) comes from Bob. If pw = pwA, we have both equalities K =
K ′ ← Decaps(sk, c′) and Auth = H1(ssid, Pi, Pj , pw,Epk, c,K ′): then Alice and
Bob have the same final session key SK = SK′ ← H2(ssid, Pi, Pj ,Epk, c, Auth,K ′).
If pw ̸= pwA, we have both inequalities (excepted by chance) K ̸= K ′ ←
Decaps(sk, c′) and Auth ̸= Auth′: then SK′ ← H2(ssid, Pi, Pj ,Epk, c, Auth,K ′)
is independent from the SK computed by Bob, excepted with random equality,
which makes no difference from the previous game.

Game G5.2: (c, Auth) comes from A. From the uniqueness of Auth (from G0.1)
in ΛH1 , from explicit query to H1 (or no record at all), S can extract at most one
pair (pw,K) used by A:

– If pw = pwA, with (c, Auth): S computes K ′ ← Decaps(sk, c), Auth′ ←
H1(ssid, Pi, Pj ,Epk, c, pw,K ′), and SK′ ← H2(ssid, Pi, Pj ,Epk, c, Auth′,K ′).

– Else (pw ̸= pwA, or pw = ⊥): S computes K ′ ← Decaps(sk, c), Auth′ ←
H1(ssid, Pi, Pj ,Epk, c, pw,K ′), and aborts.

As we have excluded collisions on H1, the latter case leads to Auth ̸= Auth, and
thus to an abort: this makes no difference from the previous game. As this last
game G5.2 is G6, | Pr[G6]− Pr[G5] | = 0.
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Game G7: Random Session Keys. Thanks to the above simulation of the
ideal cipher and the random oracle, S has the ability to extract the tentative
password used by the adversary. It will be given access to two boolean functions;

– GoodPwd with input (ssid, Pi, pw) that answers whether this is the correct
password of party Pi.

– SamePwd with input (ssid, Pi, Pj) that answers whether Pi and Pj share the
same password.

We first replace session key K generation, for honest players, without knowing
the passwords, by using SamePwd when it did not extract the password and
GoodPwd when it successfully extracted pw, using two private random oracles
H∗A and H∗K onto respectively {0, 1}λH1 and K, in G6.1. We then replace the
authentication Auth in G6.2 and lastly the final session key SK generation in
G7 = G6.3.

Game G6.1: Random K ′. We first use a private random oracle H∗K onto K to
replace K by random K ′, in some situations:

On Bob’s Side: Upon receiving Epk

– From an honest Alice, instead of using K to compute the authentica-
tion tag Auth← H1(ssid, Pi, Pj ,Epk, c, pwB ,K) and the final session key
SK← H2(ssid, Pi, Pj ,Epk, c, Auth,K), if SamePwd(ssid, Pi, Pj) = true, one
sets K ′ ← H∗K(ssid, success) otherwise one sets K ′ ← H∗K(ssid, failB), and
updates the definition of both Auth ← H1(ssid, Pi, Pj ,Epk, c, pwB ,K

′)
and SK← H2(ssid, Pi, Pj ,Epk, c, Auth′,K ′).

– From A, with extracted password pw: if GoodPwd(ssid, Pj , pw) = true,
one keeps the tag Auth ← H1(ssid, Pi, Pj ,Epk, c, pw,K) and the key
SK← H2(ssid, Pi, Pj ,Epk, c, Auth,K); else one sets K ′ ← H∗K(ssid, failB),
and updates the definitions: Auth← H1(ssid, Pi, Pj ,Epk, c, pwB ,K

′) and
SK← H2(ssid, Pi, Pj ,Epk, c, Auth′,K ′).

On Alice’s Side: Upon receiving (c, Auth)
– From an honest Bob, instead of using K to compute the authentica-

tion tag Auth← H1(ssid, Pi, Pj ,Epk, c, pwA,K) and the final session key
SK← H2(ssid, Pi, Pj ,Epk, c, Auth,K), if SamePwd(ssid, Pi, Pj) = true, one
sets K ′ ← H∗K(ssid, success) otherwise one sets K ′ ← H∗K(ssid, failA) and
lastly updates the definition Auth′ ← H1(ssid, Pi, Pj ,Epk, c, pwA,K

′).
In the former case, Auth = Auth′, since then authentication succeeded
S computes SK ← H2(ssid, Pi, Pj ,Epk, c, Auth′,K ′) otherwise Auth ̸=
Auth′, S aborts.

– From A, with extracted password pw: if GoodPwd(ssid, Pi, pw) = true,
one keeps the tag Auth ← H1(ssid, Pi, Pj ,Epk, c, pw,K) and the key
SK← H2(ssid, Pi, Pj ,Epk,Ec,K); else one sets K ′ ← H∗K(ssid, failA), and
updates the definitions Auth′ ← H1(ssid, Pi, Pj ,Epk, c, pwA,K

′), since
Auth ̸= Auth′: S aborts.
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Analysis: In this simulation we still use passwords. We replace real keys K by
random independent keys K ′, except when interacting with the adversary that
has guessed the password or when an abort occurs due to a failed authentication:
Auth ̸= Auth′. In all the modified sessions, K has been generated from a fresh
KEM instance: From an honest Alice, Bob always uses a pk coming from D, a
(c,K) coming from Encaps(pk) and Auth built honestly; if this comes from A,
unless the password was correctly guessed, pk also comes from D, (c,K) from
Encaps(pk) and Auth built honestly. On Alice’s side, unless the password was
correctly guessed by the adversary, pk also comes from D. However c can be
random, but S uses H1 to extract the password pw and get (sk, pk) from D. If at
some point either S can not build Auth′ or builds Auth′ ̸= Auth then it aborts
due to a failed authentication. Note that S does not abort if and only if both
(c,K) really come from an Encaps(pk) and Auth has been built honestly. We can
thus proceed with a sequence of hybrid games, replacing real keys by random
keys.

– On Bob’s side, pk comes from D, c is simulated by S and Auth built accord-
ingly, with known (pk, sk) and (c,K), we can simply successively replace
(pk, c,K) by (pk, c,K ′), using the indistinguishability of the KEM: the gap
is bounded by q′D · Adv

ind
KEM(t).

– On Alice’s side, the pairs come from D and more importantly (c, Auth) has
been built honestly otherwise S would have aborted. Using Auth the simu-
lation is done with known (pk, sk) and (c,K). We can replace (pk, c,K) by
(pk, c,K ′), using the indistinguishability of the KEM: because the Auth has
been honestly computed only one tuple needs to be replaced while S has
knowledge of pw the gap is bounded by AdvindKEM(t).

We thus have | Pr[G6.1]− Pr[G6] | ≤ (1 + q′D) · Adv
ind
KEM(t).

Game G6.2: Random Auth. We now remove knowledge on the passwords from
S, it can only use GoodPwd and SamePwd. We replace Auth by random Auth′ in
some situations:

On Bob’s Side: Upon receiving Epk
– From an honest Alice, instead of using the password to compute the fol-

lowing tag Auth ← H1(ssid, Pi, Pj ,Epk, c, pwB ,K), one first gets c ←$ C
then, if SamePwd(ssid, Pi, Pj) = true, one updates the generation by
Auth ← H∗1(ssid, Pi, Pj ,Epk, c, success), otherwise one uses the genera-
tion Auth← H∗1(ssid, Pi, Pj ,Epk, c, fail).

– From A, with extracted password pw: if GoodPwd(ssid, Pj , pw) = true,
one keeps Auth← H1(ssid, Pi, Pj ,Epk, c, pw,K); else one gets c ∈ C and
uses the generation Auth← H∗1(ssid, Pi, Pj ,Epk, c, fail).

On Alice’s Side: Upon receiving (c, Auth)
– From an honest Bob, instead of using the password to compute the tag

Auth′ ← H1(ssid, Pi, Pj ,Epk, c, pwA,K), if SamePwd(ssid, Pi, Pj) = true,
one updates the generation by Auth′ ← H∗1(ssid, Pi, Pj ,Epk, c, success),
otherwise S aborts because the authentication is bound to fail.



42 Hugo Beguinet et al.

– From A, with extracted password pw: if GoodPwd(ssid, Pi, pw) = true, one
keeps Auth′ ← H1(ssid, Pi, Pj ,Epk, c, pw,K); else whether password are
different or H1 has not been queried to obtain Auth, one aborts as the
authentication is bound to fail.

Note that according to H2 behavior, when the Auth is bound to fail (i.e. when
status = fail), Bob derives a random key still even though Alice will abort. The
environment can make this game fails using two ways. First on Bob’s behalf we
replaced c built from an Encaps with c ←$ C. Since the KEM is anonymous the
adversary can distinguish this simulation by querying qD times D to break the
anonimity. Lastly it can try to query H1 on an input that has been replaced by H∗1.
But in the previous game, all the K that are in such changes are truly random,
and there are at most 2qs such changes, where qs is the number of sessions: We
thus have | Pr[G6.2]− Pr[G6.1] | ≤ qD ·AdvanoKEM (A) + qH1 · qs/2λk , where λk is the
length of K.

Game G6.3: Random SK. We now replace SK by random SK′, in some situations:

On Bob’s Side: Upon receiving Epk
– From an honest Alice, instead of using K to compute the key SK ←

H2(ssid, Pi, Pj ,Epk, c, Auth,K), if SamePwd(ssid, Pi, Pj) = true, one up-
dates the generation by SK ← H∗2(ssid, Pi, Pj ,Epk, c, Auth, success), oth-
erwise one uses the generation SK← H∗2(ssid, Pi, Pj ,Epk, c, Auth, fail).

– From A, with extracted password pw: If GoodPwd(ssid, Pj , pw) = true, one
keeps SK← H2(ssid, Pi, Pj ,Epk, c, Auth,K); else one uses the generation
SK← H∗2(ssid, Pi, Pj ,Epk, c, Auth, fail).

On Alice’s Side: Upon receiving (c, Auth)
– From an honest Bob, instead of using K to compute the key SK ←

H2(ssid, Pi, Pj , pw,Epk, c,K), if SamePwd(ssid, Pi, Pj) = true, one up-
dates the generation by SK← H∗2(ssid, Pi, Pj ,Epk, c, Auth, success).

– From A, with extracted password pw: if GoodPwd(ssid, Pi, pw) = true and
Auth = Auth′ therefore one keeps SK← H2(ssid, Pi, Pj ,Epk, c, Auth′,K ′).

The only way for the environment to detect the difference is to have a call
H2(ssid, Pi, Pj ,Epk, c, Auth,K) that has been replaced by a call to H∗2. But in
the previous game, all the K that are in such changes are truly random, and
there are at most 2qs such changes, where qs is the number of sessions: We thus
have | Pr[G6.3]− Pr[G6.2] | ≤ qH2 · qs/2λk , where λk is the length of K.

As this last game G6.3 is G7, | Pr[G7]− Pr[G6] | ≤ (1 + q′D) ·Adv
ind
KEM(t) + qD ·

AdvanoKEM (A) + (qH1 + qH2) · qs/2λk .

Game G8: Adding the Full FpwKE-sA Interface. In this game we add
the full FpwKE-sA interface to fully model the ideal world. First, S simulates
its use of GoodPwd by querying TestPwd to FpwKE-sA on input (ssid, Pi, pw)
to test if pw is the password associated to Pi in ssid. Secondly, SamePwd on
(ssid, Pi, Pj) perfectly embodies the equality that FpwKE-sA does internally with
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knowledge of the passwords when using records (Pi, Pj , pw, status). Note that
here status represents client and server unline the previous game with success
and fail. Then, for key generation, when a value K can be computed, and
SK ← H2(ssid, Pi, Pj ,Epk, c, Auth,K), then one queries the ideal functionnality
FpwKE-sA on (NewKey, ssid, P, SK), for any party P .

Let us show this provides the same output as in the previous game: First, in
the simulation, if S has extracted the password used by the adversary, then a
TestPwd query has been sent to FpwKE-sA. According to the ideal functionality
two cases arise, according to the correct guess:

– If the guess is incorrect: the record is marked as interrupted.
– If the guess is correct: the record is marked as compromised.

If the session is compromised, FpwKE-sA returns (ssid, SK) to Pi on query to
NewKey with (ssid, Pi, SK). These are the cases where we kept the definition of
SK with H2.
If the session is interrupted it returns a random SK′ to the server and set an error
for the client, which are the cases where we used H∗1 with fail. This behavior
of NewKey is exactly the one from that has been simulated by S and therefore
remains indistinguishable.

Now assuming that S could not extract a password: it has sent random flow
Epk and (c, Auth) and used its private oracles H∗1 and H∗2 to build a random
session key for each party. Since S does not know the parties’ passwords it used
SamePwd to obtain know if they use the same password. By definition of the
NewKey interface:

– Two honest parties in a fresh session using the same password, derive the
same session key, because of a success status.

– Two honest parties in a fresh session not using the same passwords: the client
is returned abort from FpwKE-sA while the server obtains a random session
key because of the fail status.

Hence, we have | Pr[G8]− Pr[G7] | = 0, and this game is perfectly indistinguish-
able from the ideal world.

The global gap is thus:

| Pr[G9]− Pr[G0] | ≤ q′D · Adv
fuzzy
KEM (t) + (1 + q′D) · Adv

ind
KEM(t) + qD · AdvanoKEM (A)

+ q′H1
2 · 2−λH1

−1 + q2E · 2−λp−1 + qs · 2−λH1

+ (qH1 + qH2) · qs · 2−λk

where we denote the global numbers of queries asked by the adversary qE, qD,
and qH. But we also need to count the number of queries to H1 and D by the
adversary and the simulator, at some point of the simulation:

– the global number of queries asked to D is qs (for initialization by Alice or
answer by Bob) plus qD;

– the global number of queries asked to H1 is qs (for answer by Bob) plus qH.
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Laslty on NewSession, S sends Epk on behalf of the client and does nothing for
the server Only FpwKE does his internal computation.
The simulation of both H1 and H2 are independant of the status component as
it is handle by FpwKE-sA. Additionally we have,

| Pr[G9]− Pr[G0] | ≤ (qs + qD) · AdvfuzzyKEM (t) + (qs + qD + 1) · AdvindKEM(t)

+ qD · AdvanoKEM (A) + (qH1 + qs)
2 · 2−λH1

−1

+ (qH1 + qH2) · qs · 2−λk + q2E · 2−λp−1 + qs · 2−λH1

On H1(ssid, Pi, Pj ,Epk, c, pw,K)

If (ssid, Pi, Pj ,Epk, c, pw,K, Auth) ∈ ΛH1

return Auth

Else:

sample Auth←$ {0, 1}λH1 and record
(ssid, Pi, Pj ,Epk, c, pw,K, Auth) ∈ ΛH1

return Auth

On H∗1(ssid, Pi, Pj ,Epk, c, pw)

If (ssid, Pi, Pj ,Epk, c, pw, Auth) ∈ ΛH∗1

return Auth

Else:

sample Auth←$ {0, 1}λH1 and record:
(ssid, Pi, Pj ,Epk, c, pw, Auth) ∈ ΛH∗1

return Auth

On H2(ssid, Pi, Pj ,Epk, c, Auth,K)

If (ssid, Pi, Pj ,Epk, c, Auth,K, SK) ∈ ΛH2

return SK

Else:

sample SK←$ {0, 1}λH2 and record
(ssid, Pi, Pj ,Epk, c, Auth,K, SK) ∈ ΛH2

return SK

On H∗2(ssid, Pi, Pj ,Epk, c, Auth)

If (ssid, Pi, Pj ,Epk, c, Auth, SK) ∈ ΛH∗2

return SK

Else:

sample SK←$ {0, 1}λH2 and record:
(ssid, Pi, Pj ,Epk, c, Auth, SK) ∈ ΛH∗2

return SK

On E(ssid||pw, pk)

If ∃(ssid, pw, pk, ⋆, ⋆,Epk) ∈ ΛE :

returns Epk.

Otherwise: Epk←$ P ′.

If: ∃(⋆, ⋆, ⋆, ⋆, ⋆,Epk) ∈ ΛE :

S aborts.
Else: S records :

(ssid, pw,pk,⊥, E,Epk) ∈ ΛE

returns Epk.

On D(ssid||pw,Epk)

If ∃(ssid, pw,pk, ⋆, ⋆,Epk) ∈ ΛE: returns pk.
Else, S builds (pk, sk)← KeyGen(1κ)

records (ssid, pw,pk, sk, D,Epk) ∈ ΛE

returns pk.

Fig. 10. Simulation of the ideal ciphers and the random oracle in proof of Theorem 2.
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On (NewSession, ssid, role, Pi, Pj) from FpwKE-sA

If Pi = client :

Epk←$ P ′, sends Epk

Upon server Pi receiving Epk

If ∃(ssid, pw, pk, ⋆, ⋆,Epk):
Upon positive answer after querying: (TestPwd, ssid, Pi, pw) to FpwKE-sA :

compute: (c,K)← Encaps(pk),
Auth← H1(ssid, Pi, Pj ,Epk, c, pw,K, Auth),

SK← H2(ssid, Pi, Pj ,Epk, c, Auth,K, SK)

Else:
sample: Ec←$ C′,
Auth← H

∗
1(ssid, Pi, Pj ,Epk, c)

SK← H
∗
2(ssid, Pi, Pj ,Epk, c)

send: (Ec, Auth) to Pj and (NewKey, ssid, Pi, SK) to FpwKE-sA

Upon client Pi receiving (c, Auth)

If ∃(ssid, Pi, Pj ,Epk, c, pw,K, Auth) ∈ ΛH1 :
Upon positive answer after querying: (TestPwd, ssid, Pi, pw) to FpwKE-sA :

get: sk,pk← D1(ssid||pw,Epk)

extract K or compute: K′ ← Decaps(sk, c)
If K = K′ : get SK← H2(ssid, Pi, Pj ,Epk, c, Auth)
Else abort

Else:
If it comes from A, abort

If it comes from Pi :

get: Auth← H
∗
1(ssid, Pi, Pj ,Epk, c)

get: SK← H
∗
2(ssid, Pi, Pj ,Epk, c, Auth)

send: (NewKey, ssid, Pi, SK) to FpwKE-sA
(Note that SK = error is possible according to FpwKE-sA)

Fig. 11. Simulation of the protocol from the client and server point of view in proof of
Theorem 2.
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C IF

Functionnality FRO

On security parameter k, with parties P1, . . . , Pn and adversary S.

1. FRO keeps a list L (which is initially empty) of pairs of bitstrings.
2. Upon receiving a value (sid,m) (with m ∈ {0, 1}∗) from some party Pi or from
S, do:
– If there is a pair (m, h̄) or some (h̄ ∈ {0, 1}k) in the list L, set h := h̄.
– If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair (m,h)

in L.

Fig. 12. FRO: the ideal Functionality of the random oracle.

Functionnality FIC

On security parameter k, interact with an adversary S and with a set of dummy
parties P1, . . . , Pn:

– FIC keeps a (initially empty) list L containing 3-tuples of bitstrings and a number
of initially empty sets Ckey,sid, Mkey,sid.

– Upon receiving a query (sid, ENC, key,m) (with m ∈ {0, 1}k) from some
party Pi or S, do:
• If there is a 3-tuple (key,m, c̄) for some c̄ ∈ {0, 1}k in the list L, set c := c̄.
• If there is no such record, choose unformly c ∈ {0, 1}k\Ckey,sid

Once c is set, replu to the activating machine with (sid, c)
– Upon receiving a query (sid,DEC, key, c) (with c ∈ {0, 1}k) from party

Pi or S, do:
• If there is a 3-tuple (key, m̄, c) for some m̄ ∈ {0, 1}k in L, set m := m̄
• If there is no such record, choose uniformly m ∈ {0, 1}k\Mkey,sid which is

the set consisting of plaintexts not already used with key and sid. Next, it
stores the 3-tuple (key,m, c) ∈ L and set Mkey,sid ←Mkey,sid

⋃
{m}.

Once m is set, reply to the activating machine with (sid,m).

Fig. 13. FIC : the ideal Functionality of an ideal cipher.
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Adaptive Corruption

On (AdaptiveCorruption, sid, Pi) from A, if there exists a record < sid, Pi, Pj , pw >
then :

– if (sid,K) was output to Pi, send (sid, Pj , pw,K) to A.
– otherwise send (sid, Pj , pw,⊥) to A.

Fig. 14. Adaptive Corruption enforced by the environment Z.
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