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ABSTRACT: 
 
Over the past decade, the use of machine learning and deep learning algorithms to support 3D semantic segmentation of point clouds 
has significantly increased, and their impressive results has led to the application of such algorithms for the semantic modeling of 
heritage buildings. Nevertheless, such applications still face several significant challenges, caused in particular by the high number of 
training data required during training, by the lack of specific data in the heritage building scenarios, and by the time-consuming 
operations to data collection and annotation. This paper aims to address these challenges by proposing a workflow for synthetic image 
data generation in heritage building scenarios. Specifically, the procedure allows for the generation of multiple rendered images from 
various viewpoints based on a 3D model of a building. Additionally, it enables the generation of per-pixel segmentation maps 
associated with these images. In the first part, the procedure is tested by generating a synthetic simulation of a real-world scenario 
using the case study of Spedale del Ceppo. In the second part, several experiments are conducted to assess the impact of synthetic data 
during training. Specifically, three neural network architectures are trained using the generated synthetic images, and their performance 
in predicting the corresponding real scenarios is evaluated. 
 
 
 
 

1. INTRODUCTION 

Over the past few years, machine learning (ML) and deep 
learning (DL) techniques have gained popularity for tasks such 
as image classification, semantic segmentation, and object 
detection. One promising application in this domain is the 
generation of 3D Building Information Models (BIM) using deep 
learning-based semantic segmentation, known as Scan-To-BIM. 
However, training such models requires large datasets of 
supervised examples, which can be time-consuming to collect 
and process accurately. These challenges are especially prevalent 
in complex scenarios that demand a diverse range of finely 
annotated training samples to enhance model generalization and 
capability. To address these limitations, the use of synthetic data 
has emerged as a common approach. Synthetic data refers to 
artificially generated data that imitate real-world observations, 
enabling the training of machine learning algorithms when actual 
data collection is difficult or costly. Synthetic datasets can 
include binary, numerical, categorical, or unstructured data, such 
as images or videos. Synthetic data offers several advantages, 
including customization, cost-effectiveness, quick production, 
and data privacy preservation. However, generating synthetic 
data is still a complex process that requires skilled operators. If 
not appropriately synthesized, the data may provide an inaccurate 
representation of real-world events, leading to biases in the 
obtained results. Inaccurate or misrepresented synthetic data can 
hinder the proper testing and training of machine learning 
systems, as they fail to capture the essential patterns required for 
accurate performance. This work focuses on the use of synthetic 
data for semantic segmentation in heritage building scenarios. 
Specifically, we present a workflow for creating synthetic 
rendered image data to train a multiview-based deep learning 
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classifier proposed in the work by Pellis et al. (2022). The paper 
outlines a process to generate highly accurate rendered images 
from a Building Information Modeling (BIM) or three-
dimensional (3D) model of a historical building, with a case 
study conducted on the Spedale del Ceppo in Pistoia, Italy. 
Additionally, several training tests were conducted to evaluate 
the impact of synthetic data during the training process. 
 

2. EXISTING APPROACHES 

Generating synthetic data requires a robust model capable of 
recreating realistic datasets based on specific features of the 
target data. There are four main categories of methods used for 
synthetic data generation: 
Variational Autoencoders (VAEs) are autoencoders that 
incorporate regularization in the training process to ensure that 
the latent space possesses desirable properties for generating 
accurate new data. During training, a "reconstruction error" is 
computed and minimized by the model. VAEs are effective for 
continuous data but less so for categorical data. 
Generative Adversarial Networks (GANs) are supervised 
generative models that produce realistic and highly detailed data. 
This method involves training two neural networks: a generator, 
which generates fake data points, and a discriminator, which 
distinguishes between fake and real data points. The goal is to 
train the generator to generate data that the discriminator accepts 
as real. GANs excel in synthesizing images, videos, and 
unstructured data but require specialized knowledge for 
construction and training. They may also encounter issues where 
they produce a limited set of very similar fake data points. 
Neural Radiance Fields (NeRFs) generate new views of a 
partially-known 3D scene. By interpolating a set of input images, 
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the algorithm adds new perspectives to the same object. A fully 
connected neural network treats the static scene as a continuous 
5-dimensional function and predicts the content of each voxel. 
This technique is useful for generating realistic images from an 
existing set but suffers from slow training, slow rendering, and 
potential image quality or aliasing issues. Recent advancements 
in neural rendering algorithms aim to address these challenges. 
Simulated Data involves using a virtual camera to generate 
physics-based and photorealistic simulations. This method 
includes all necessary annotations, dimensions, and labels to 
produce realistic 3D data. Simulated data offer flexibility in 
generating a wide range of scenarios and are suitable for complex 
scenarios. They allow adjustments to light conditions, texture 
modifications, colour variations, layout changes, object 
placement, and capturing rare real-world cases. 
Each method has its advantages and limitations, and the choice 
depends on the specific application and requirements. For further 
insights into synthetic data, more detailed information can be 
found in specific literature reviews such as those conducted by 
Baraheem et al. (2023) and Man & Chahl (2022). 
 
In the field of Architecture Engineering and Construction (AEC), 
several studies have suggested the utilization of synthetic data to 
enhance machine learning and deep learning algorithms for 
diverse applications. These works have developed various 
workflows for generating the required data. In this work (Hong 
et al., 2021), the authors proposed a three-step workflow for 
synthetic data generation for infrastructure scene understanding 
using building information models. The first step is to train a 
GAN network to enable the translation between photographs and 
BIM images. The second step is to generate labelled synthetic 
images that closely resemble photographs from the BIM images 
using the trained GAN, and the final step is to combine the 
synthetic images together in order to create a comprehensive 
dataset of high-quality synthetic data. Ma et al. (2020) conducted 
an investigation on the utilization of synthetic point cloud data 
for training deep models and facilitating the development of as-
built BIM. They introduced a workflow that involved converting 
existing BIM models into synthetic point clouds using three 
different software tools. Subsequently, the generated data was 
employed to train a semantic segmentation model. Some 
researchers have proposed the generation of synthetic data for 
object recognition in construction site applications. The synthetic 
images are created by combining three-dimensional (3D) models 
of construction machines with various background images 
captured from construction sites (Soltani et al., 2016), or by 
utilizing rendered backgrounds (Barrera-Animas & Davila 
Delgado, 2023). In the heritage field few works dealing with 
synthetic data are available. In their research work (Tomalini et 
al., 2021), a methodology was proposed to enhance the training 
dataset required for developing software capable of recognizing 
architectural heritage using pictures captured from a mobile 
device. The proposed approach leverages Physically Based 
Rendering (PBR) tools. They devised a workflow that semi-
automatically generates multiple rendered images from a 3D 
textured mesh. This involves defining camera positions around 
the building through a series of paths and rendering the scenes 
accordingly. To support CH point cloud classification, the 
authors in (Pierdicca et al., 2019) presented a novel framework 
for automatically generating synthetic point cloud datasets. The 
framework utilizes Blender, an open-source software that 
provides access to individual points in an object, allowing for the 
creation of new meshes. The described algorithms enable the 
generation of a large number of synthetic point clouds, simulating 
a virtual laser scanner at varying distances. Additionally, these 
algorithms can simultaneously generate multiple point clouds 
from a scene in Blender, including the use of existing models of 

ancient architectures. A first assessment of the use of such 
synthetic data was provided in (Morbidoni et al., 2020), in which 
the authors test a Dynamic Graph CNN trained for the semantic 
segmentation of CH. In this paper (Dulecha et al., n.d.), the 
authors presented SynthPS, a benchmark that encompasses 
synthetic, physically-based renderings of Cultural Heritage 
object models with various assigned materials. SynthPS allows 
assessing the performance of classical, robust, and learning-
based Photometric Stereo approaches on materials with diverse 
light distributions. The study conducted by Garozzo et al. (2021) 
examined an approach that employed Generative Adversarial 
Networks (GANs) to automatically synthesize unrealistically 
composed photos. The aim was to overcome the scarcity of 
images available for training AI systems in the context of 
Cultural Heritage data understanding. The authors specifically 
proposed a method that utilized GAN techniques anchored to 
semantic ontology domain representation to guide the generation 
of realistic classical order images. 
 

3. METHODOLOGY 

The proposed methodology enables the creation of fully 
synthetic, simulated data by generating a series of rendered 
images from a detailed 3D model. While this study focuses on 
generating heritage building images, the method has the potential 
to be applied to various scenarios, allowing for the generation of 
images for objects of any type. The method consists of five 
primary steps: (i) generating the 3D model or scene of the object, 
(ii) applying and configuring the materials, (iii) setting and 
defining the object's views, (iv) configuring the scene with 
lighting and background, and (v) generating the rendered images 
along with their corresponding ground truth.  
In the subsequent paragraph, we will develop into each phase in 
detail, using the case study of Spedale del Ceppo in Pistoia for 
illustration. 
 
3.1 3D model generation 

The first step in the procedure is to create 3D scenes or objects 
that simulate the target scenario. Depending on the required 
dataset, the 3D model can represent a real-world scene or object, 
or it can be partially or entirely created from scratch. In this study, 
we present a real-world case study, the Spedale del Ceppo, a 
Renaissance-era hospital in Pistoia built around the 13th century 
(Figure 1).  

 
Figure 1. Photogrammetric point cloud of Spedale del Ceppo, 

Pistoia, Italy. 

The building is part of the image-point dataset developed in 
(Pellis et al., 2021), which includes several data sources for each 
building such as the laser point cloud, photogrammetric images, 
and related photogrammetric point cloud. The 3D model of the 
building was manually created using the photogrammetric point 
cloud as a reference and developed with Autodesk Revit, 
resulting in a Building Information Model (BIM) composed of 
parametric elements. There are several advantages to using a 
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BIM model over a standard CAD model: (i) the creation of the 
3D model is faster since standard parametric libraries of elements 
can be easily fitted to the real 3D elements, (ii) the model is 
quickly editable and customizable, allowing users to modify and 
change the main constructive elements of the building with 
several element typologies. Hence, it is possible to generate 
different scenes with the same model, increasing the variation in 
the final rendered images; (iii) The various element labels typical 
of a BIM model, such as material, family, instance, etc., allow for 
easier exporting of the 3D model, and thus, easier management 
during the scene setting and annotation phase. Figure 2 shows the 
BIM model of the Spedale del Ceppo. 

 
Figure 2. Building information model (BIM) of Spedale del 

Ceppo. 

3.2 Material definition and application 

The second step of the procedure involves the creation and the 
definition of the various materials and their application on the 
object surfaces. Material setting and application play a crucial 
role in the rendering process, significantly impacting the final 
visual quality and realism of a computer-generated image or 
animation. They determine how light interacts with surfaces, 
including properties such as colour, texture, reflectivity, 
transparency, and roughness. To create a proper functioning 
synthetic dataset with a good level of diversity and variance 
within the images, various material combinations can be applied 
to objects or the scene itself, allowing the model to predict a wide 
range of different objects. In the case study presented here, we 
aimed to simulate a real-world scenario and we applied a set of 
materials to the 3D model that were compatible with the existing 
building. There are various tools or software that allows the user 
to create, modify and apply materials to 3D object, and each 
software has its own unique interface and workflow for creating 
and applying material. Some popular licensed software are 
Autodesk 3ds Max, Autodesk Maya, Unreal Engine, or an open-
source solution is Blender. Despite also Autodesk Revit has its 
tools for rendering, in this study we used the support of V-Ray, a 
powerful commercial rendering engine, that provides a variety of 
tools for fine-tuning the rendering process, including control over 
material. V-Ray has been used exploiting the Rhinoceros 
software, hence the 3D model has been exported from the BIM 
working space to the Rhinoceros environment. Some standard 
used materials were already available in the V-Ray library, such 
as glass, wood or plaster, and they have been set in colour, 
reflection or refraction, according with the surface to model. 
Other materials have been created from scratch with the Material 
Editor using textures or images, to simulate the building as much 
as possible. To enhance the visual realism of rendered objects, 
displacement maps and bump maps have been used. They allow 
to add details and surface irregularities to the 3D scene during the 
rendering, without altering the geometry of the object itself, 
creating the illusion of depth and texture. Figure 3 shows the 3D 
model after the application of the materials. 

 
Figure 3. Render 3D model with materials. 

3.3 View setting 

The third step of the workflow involves setting up the views and 
the scene. Initially, to generate multiple rendered images of the 
3D building model, various views of the model must be 
established. This can be achieved by positioning the camera at 
different locations and angles around the building. The camera 
can be rotated and tilted to capture diverse perspectives of the 
building. Furthermore, adjusting the camera's field of view 
allows control over the portion of the building visible in the 
image. Depending on the scene and the desired number of views, 
different camera positioning strategies can be employed. In this 
study, we propose designing a series of paths around the object 
or building to determine the camera points of view, along with 
specifying the number of views for each path. These paths can be 
linear, curved, or follow a complex trajectory depending on the 
requirements of the object. For each point, a camera is positioned 
within the scene, and several parameters need then to be set. 
These parameters include the camera's orientation, to determine 
its pointing direction and rotation within the scene, and the field 
of view, to control the amount of the scene captured by the 
camera. Moreover, depending on the rendering software being 
used, additional parameters can be set to fine-tune the camera's 
behaviour, such as aperture, shutter speed, ISO, depth of field, or 
other camera effects. Define camera paths offers several 
advantages: (i) it enables to have more flexibility to refine and to 
adjust the views, (ii) it can save time and allows to automatically 
generate multiple views and to automatize the rendering, (iii) it 
allows to obtain a comprehensive view of the object and its 
details, and (iv) it gives the possibility to create animation or 
video sequences. Figure 4 shows the paths that have been set 
around the study case building. 

 
Figure 4. Render 3D model with materials. 

They consist in six different paths around the building, and for 
each paths ten views have been set up. Hence, at the end of the 
procedure 60 different images are generated. The z-coordinate of 
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the paths were positioned around 1.8 m to simulate a terrestrial 
photogrammetric acquisition. 
 
3.4 Scene and light setting 

In this phase the scene around the object needs to be set up. It 
involves the creation of the background and the light setting. 
Setting up the background for rendering involves creating an 
environment or backdrop that complements your scene and 
enhances its visual appeal. Depending on the application of the 
final rendered images it can be a solid colour, a gradient, an 
image, or a 3D environment. In the image generation presented 
in this work, we exploit a simplified 3D environment, simulating 
the background buildings with elementary 3D shapes, and we 
used the skydome to simulate the background sky . The skydome 
technique works by wrapping a spherical or hemispherical 
geometry with a texture or image representing the sky. This 
texture typically contains information about the sky appearance, 
including clouds, atmospheric effects, and the sun position. By 
using a skydome, the rendered scene receives ambient lighting 
and reflections that simulate the light coming from the sky, which 
contributes to the scene's overall lighting and realism. This 
technique is especially useful in outdoor scenes where the sky 
plays a significant role in the visual aesthetics and lighting 
conditions. Light setting is a fundamental phase in rendered data 
generation since it can greatly enhance the visual quality and 
realism of the 3D scene. It involves the definition of all the light 
in the scene, including their source types (point, directional, 
spotlight, area light) their intensity, positioning, colour, etc. 
Depending on the scene, the lights in the scene can be artificial, 
such as reflectors or diffusers, natural, such as the light of the sun, 
or a combination of both. 
Since in this work we aim to simulate a real-world outdoor 
environment, we exploit environmental lights, without the use of 
artificial sources. 
 
3.5 Image generation  

The final phase involves generating the rendered images and the 
corresponding ground truth map. There are several render 
engines available, and we propose using V-Ray for Rhinoceros 
in our workflow. Multiple rendering options are available, which 
allow for improvements in both image quality and rendering 
times. First, the output size needs to be determined. In this test, 
we generated images with a size of 519 x 775 pixels, striking a 
balance between quality and rendering time. Secondly, the output 
quality can be adjusted using various parameters, including the 
noise limit, bucket size, shading rate, and min/max subdivisions. 
However, the availability of these options may vary depending 
on the render engine used, so further details can be found in the 
respective software manual. Figure 5 displays some of the 
generated images of the Spedale del Ceppo. 
 

 
 

Figure 5. Example of rendered images. 

After generation, the final number of images is 60. In order to 
increase the size of the dataset and enhance its variability, we 
generated a series of images with different skydomes and various 
sun positions, as shown in Figure 6. More specifically, we created 
8 combinations, resulting in a total of 480 images. 

 

Figure 6. Examples of rendered images with different light 
conditions and setting. 

In addition to generating RGB images, it is necessary to create 
the corresponding ground truth maps. In this study, we propose 
generating a dataset that is compatible with the one described in 
(Pellis et al., 2021), following the guidelines outlined in the 
ARCHdataset (Matrone et al., 2020). To annotate the dataset, 
custom annotations must be directly set on the 3D model, and 
they are automatically generated during the rendering process. 
However, this procedure allows for the generation of various 
types of predefined output maps (as shown in Figure 7). These 
maps include the depth map, surface normals, object bounding 
boxes, materials, and many others. 

 

Figure 7. Example of semantic maps: a) RGB image, b) ARCH 
labels, c) depth map, d) surface normals. 

4. TRAINING TESTS 

To evaluate the proper functioning of the procedure, the quality 
of the generated images, and to assess the effect of synthetic data 
during training we performed a series of tests, using three state-
of-the-art neural networks for semantic segmentation: Fully 
Convolutional Network (FCN), SegNet, and Deeplabv3+. The 
tests have been performed on the study case of Spedale del 
Ceppo. For this building, the following data resources were 
available: the BIM model, used to generate the synthetic images 
with the proposed procedure, and a set of real images of the 
building, acquired during the photogrammetric survey of the 
building, belonging to the heritage dataset developed in (Pellis et 
al., 2021). The real images have been labelled according with the 
method developed in the work of Pellis et al., 2021, and the same 
semantic maps were generated for the rendered images. Based on 
the available data, two main tests were performed.  
Test 1. In the first test we evaluated the use of only synthetic data. 
For this purpose, all the synthetic generated images were 
combined to evaluate the model, by randomly shuffle them and 
splitting them in training (60%), validation (20%) and test set 
(20%). This test is similar to the test proposed in (Pellis et al., 
2021) with the real images of Spedale del Ceppo.  
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Test 2. The second test evaluated whether the use of only 
synthetic images can generalize the real scenario, based on 
training and validating the model only on synthetic images, and 
testing the network only on real images.  
 
4.1 Neural network architectures 

In this work three neural networks for image segmentation have 
been used, and they are described in the following sections. 
 
FCN (Long et al., 2014) is composed by a down-sampling part 
and an up-sampling part. The first part is a standard CNN 
composed by series of layers, in which the image features are 
extracted via convolution, followed by activation functions and 
pooling layers. At the end of the down-sampling network the 
number of channels is transformed into number of classes with a 
1 × 1 convolutional layer.  The up-sampling network transforms 
the height and width of the feature maps to those of the input 
image via deconvolution or transposed convolution. 
 
Deeplabv3+ (Chen et al., 2018) uses atrous convolution with up-
sampled filters to extract dense feature maps and capture long-
range context. Atrous convolution enables explicit control over 
the density of feature computation and prevents signal 
decimation caused by stride and pooling. The encoder module 
encodes multi-scale contextual information by applying atrous 
convolution at multiple scales, while the simple but effective 
decoder module refines segmentation results along object 
boundaries. 
 
SegNet (Badrinarayanan et al., 2017) is composed of an encoder 
network, a corresponding decoder network, and a final pixel-wise 
classification layer. The encoder network comprises 13 
convolutional layers, and each encoder performs a convolution to 
generate a set of feature maps. The maps are then batch 
normalized and passed through an element-wise rectified linear 
unit (ReLU), which applies the function max(0,x). The decoding 
technique in SegNet involves convolving the feature maps with a 
trainable decoder filter bank to generate a dense feature map, 
which is then batch normalized. The final high-dimensional 
feature output from the last decoder is passed to a trainable 
softmax classifier. 
 
4.2 Evaluation metrics 

In order to evaluate the performance of our models, we utilized 
two evaluation metrics: Global Accuracy (GA) and mean 
Intersection Over Union (mIoU), which are defined by the 
equations below: 
 

  𝐺𝐺𝐺𝐺 =  ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝑡𝑡𝑖𝑖𝑖𝑖

                             (4) 

  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  1
𝑛𝑛𝑐𝑐𝑐𝑐
∑ 𝑛𝑛𝑖𝑖𝑖𝑖

(𝑡𝑡𝑖𝑖 + ∑ 𝑛𝑛𝑗𝑗𝑗𝑗 − 𝑛𝑛𝑗𝑗𝑗𝑗)𝑗𝑗
𝑖𝑖            (5) 

 
where ncl = number of classes included in ground truth 
           nij = number of pixels of class i predicted to belong class j 
           ti = total number of pixels of class i in ground truth 
 
In addition, we will display the confusion matrix for each model 
to provide a more in-depth analysis of the semantic segmentation 
performance.

 
4.3 Results 

In this section, we present and compare the performances of the 
various models. First, we show and discuss the results obtained 
on Test 1. A comparison of the predicted maps with the three 
networks is showed, together with the obtained evaluation 
metrics. Second, we provide a detailed and extensive discussion 
of the results on Test 2, which are more representative of the 
usability of synthetic images in real-world scenarios. 
 
Test 1 
 

 

 

 
Figure 8. Test 1 – Prediction maps comparison between the 

three neural network models. 

 GA mean IoU Mean F1 
Deeplabv3+ 0,97 0,84 0,94 

FCN 0,90 0,74 0,82 
SegNet 0,95 0,83 0,87 

Table 1. Test 1 - Evaluation metrics comparison between the 
three models. 

The initial tests yielded an impressive performance with all three 
models accurately predicting the output segmentation maps 
(Figure 8). According to Table 1, Deeplabv3+ outperformed the 
other models, and it yielded a GA of 97% and a mIoU of 84%. 
Additionally, the models trained with synthetic images showed 
better results compared to the models trained on real-world 
images of the building, as demonstrated in the test proposed by 
(Pellis et al., 2022b). This indicates the superior quality of the 
synthetic images, and the increased accuracy of the generated 
ground truth maps. However, the results are not remarkable in the 
real-world applications, and they are not representative of the 
capability of the models to predict unseen scenes. 
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Test 2 
 
Fully Convolutional Network (FCN) 
 

 
Figure 9. Test 2 – Prediction maps comparison with FCN: a) 

input image, b) ground truth, and c) prediction. 

 
Figure 10. Test 2 – Confusion matrix with Deeplabv3+. 

 
 GA mean IoU Mean F1 

FCN 0,39 0,21 0,32 

Table 2. Test 2 - Evaluation metrics with FCN 

 
 
 
 

 
 
SegNet 
 

 
Figure 11. Test 2 – Prediction maps comparison with SegNet:  

a) input image, b) ground truth, and c) prediction. 

 
Figure 12. Test 2 – Confusion matrix with Deeplabv3+. 

 
 GA mean IoU Mean F1 

SegNet 0,43 0,26 0,36 

Table 3. Test 2 - Evaluation metrics with SegNet 
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Deeplabv3+ 
 

 
Figure 13. Test 2 – Prediction maps comparison with 

Deeplabv3+: a) input image, b) ground truth, and c) prediction. 

 
Figure 14. Test 2 – Confusion matrix with Deeplabv3+. 

 
 GA mean IoU Mean F1 

Deeplabv3+ 0,54 0,40 0,48 

Table 4. Test 2 - Evaluation metrics with Deeplabv3+. 

4.4 Result discussion 

This paragraph discusses the results of the conducted tests, 
highlighting the performance of different architectures in 
semantic segmentation. While the accuracies achieved in Test 1 
were remarkable and consistent across all architectures, 

Deeplabv3+ emerged as the clear frontrunner in Test 2, 
surpassing the other two networks with a GA of 54% and an 
mIoU of 40%. FCN and SegNet demonstrated similar 
performance, both achieving a GA of approximately 40% and an 
mIoU of around 20%. Although the synthetic scenario was built 
based on the real building, and the real and the synthetic images 
showed several similarities, the network performances were not 
significantly noteworthy. However, upon analysing the image 
predictions and confusion matrices, certain observations can be 
made. Across all three architectures, the primary prediction errors 
stemmed from the network tendency to overpredict the "none" 
class. Rather than considering this an actual misclassification, it 
can be viewed as a failure to classify, attributable to the high 
occurrence of the "none" class in synthetic images. Addressing 
this issue could involve reducing the number of background 
pixels during image generation or applying weights to the class 
during training. This problem was particularly prominent with 
the "wall" class, which Deeplabv3+ predicted as "none" 40% of 
the time and SegNet predicted as "none" 60% of the time. The 
bright uniform texture of wall surfaces and overexposure in real 
images likely contributed to this misclassification. Generating 
synthetic images with diverse wall textures, lighting conditions, 
and exposure settings could mitigate this issue and improve the 
overall quality of synthetic images. Additionally, using correctly 
exposed images for testing could yield better results. 
Furthermore, the models displayed a tendency to accurately 
predict classes for background buildings, even when they were 
annotated as "none" in the ground truth. These predictions 
introduce bias and hinder the model overall performance, 
especially when evaluating correct predictions. However, this 
problem is less significant in applications where the background 
can be easily removed using other methods, such as when 
segmentation maps are used as an intermediate representation for 
3D shape or point cloud segmentation (Pellis et al., 2022a). 
 

5. CONCLUSION 

This study presents a workflow for generating synthetic image 
data to facilitate the training and testing of machine learning 
systems for semantic segmentation. The process involves 
rendering multiple images from different perspectives and with 
varying lighting and scene conditions, all derived from a 3D 
model or scene. In the first part, the workflow was tested in the 
context of heritage building scenario generation, and specifically 
applied to the case study of Spedale del Ceppo. Results showed 
that the workflow is flexible and produces high-accuracy per-
pixel segmentation maps, as well as various other annotation 
maps such as depth and surface normals. In the second part, a set 
of generated images were used to train and test three neural 
network architectures, and although the preliminary results were 
not exceptional, they indicate promise for future development 
and highlight the potential of synthetic data for large-scale image 
tasks. In addition, the procedure could be extended to other 
domains or scenarios beyond heritage buildings, such as medical 
imaging or robotics. Further improvements to the segmentation 
performance using synthetic data and their effect on training will 
be explored in future work. At first, refining the synthetic image 
generation workflow to produce even more realistic images and 
ground truth maps, and increasing the number and the diversity 
of training and testing images. Secondly, investigating the 
effectiveness of combining real and synthetic data in training and 
testing the neural networks. The focus of future developments 
will also include the production of new 3D models and scenarios 
to generate additional images, thereby increasing the variability 
within the synthetic dataset. 
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