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THACH NGOC DINH c, TAREK RAÏSSI c, AND MOHAMED FNADI d

aDistributed Control in Interconnected Systems, Department of Computing Science, Carl von
Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
e-mail address: andreas.rauh@uni-oldenburg.de, marit.lahme@uni-oldenburg.de

b Lab-STICC (Robex) of ENSTA Bretagne, F-29806 Brest, France
e-mail address: simon.rohou@ensta-bretagne.fr, lucjaulin@gmail.com

cCedric-Laetitia, Conservatoire National des Arts et Métiers, F-75141 Paris, France
e-mail address: ngoc-thach.dinh@lecnam.net, tarek.raissi@cnam.fr

d Laboratoire d’Informatique, Signal et Image de la Côte d’Opale, Université du Littoral Côte d’Opale,
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Abstract. Control and state estimation procedures need to be robust against imprecisely
known parameters, uncertainty in initial conditions, and external disturbances. Interval
methods and other set-based techniques form the basis for the implementation of powerful
approaches that can be used to identify parameters of dynamic system models in the
presence of the aforementioned types of uncertainty. Moreover, they are applicable to a
verified feasibility and stability analysis of controllers and state estimators. In addition
to these offline approaches for analysis, interval and set-based methods have also been
developed in recent years, which allow to solve the associated design tasks and to implement
reliable techniques that are applicable online. The latter approaches include set-based
model-predictive control, online parameter adaptation techniques for nonlinear variable-
structure and backstepping controllers, interval observers, and fault diagnosis techniques.
This paper provides an overview of the methodological background and reviews numerous
practical applications for which interval and other set-valued approaches have been employed
successfully.

1. Introduction

Interval analysis has become an active field of research over the past decades. Its fundamentals
can especially be traced back to the works of R.E. Moore and his famous book published in
1966 [57].

Key words and phrases: Interval analysis, uncertain systems, parameter identification, state estimation,
guaranteed stabilizing control, model-predictive control, interval observers.
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In its widest sense, interval analysis provides an approach to perform computations on
finitely large sets in such a way that the determined solutions contain all the solutions of the
mathematically stated problem with certainty [34,55]. In such a way, it is not only possible
to account for numerical errors due to the limited precision of the numbers representable in
floating point arithmetic on a CPU, but also for discretization and method errors. The latter
arise inevitably when solving, for example, ordinary differential equations with the help of
temporal series expansions truncated after a finite order [12,38,53,60,61]. In addition to
these effects, which are small (at least) for a single evaluation step, but can cause severe
damage if neglected, the same techniques also allow for computing with wider sets that result
from imperfectly known system parameters and initial conditions in (technical) applications.
This lack of knowledge is commonly referred to as epistemic uncertainty [44]. As such,
interval analysis provides a mathematically sound way to handle epistemic uncertainty that
can furthermore also be traced back to other kinds of a lack of knowledge of the actual
system behavior, for example, friction phenomena in rigid body-body dynamics of fluidic
applications.

In addition to the application domains mentioned above, further high-level functionalities
have been developed on the basis of interval analysis. These contain techniques for solving
sets of nonlinear algebraic equations with the help of Newton-type methods [47,62] or the
identification of feasible solution sets that satisfy (nonlinear) constraints in a guaranteed
manner [3]. In the latter class of problems, the SIVIA algorithm [34, 91] (set inversion
via interval analysis) as well as contractor approaches form the fundamental background,
commonly being combined with Newton-type methods. Moreover, extensions exist that
allow for handling outliers in a suitable manner by relaxed set intersections [33].

Besides the advantageous features mentioned above that interval techniques always
provide guaranteed enclosures of a mathematically formulated problem, they also come with
the disadvantage of a certain degree of pessimism. This pessimism is caused by the following
two fundamental issues [14,34,55]:

• The dependency effect: The difference of two intervals with numerically identical bounds
generally does not simplify to the value zero as shown in

[0 ; 1]− [0 ; 1] = [−1 ; 1] . (1.1)

This is due to the fact that the difference in the equation above does not carry any
information on whether both arguments are identical quantities or not. Therefore, variables
are generally treated as independent in any arithmetic operation according to{

x ◦ y|x ∈ [x] := [x ; x] , y ∈ [y] :=
[
y ; y

]}
, where ◦ ∈ {+,−, ·, /} , (1.2)

unless simplifications can be carried out on the basis of symbolic formula manipulation,
which allows to exploit knowledge that the two arguments x and y represent exactly the
same (physical) quantity. Therefore, in classical interval analysis, there do not exist any
set-based inversions for the operations of set-based addition and multiplication.

• The wrapping effect: Transformations of sets, for example, rotations and scalings even
in linear matrix-vector products as in the recursive evaluation of discrete-time dynamic
systems

[x](tk+1) = A · [x](tk) (1.3)

with the exemplarily chosen initial conditions and dynamics matrix

x(t0) ∈ [x](t0) =

[
[−1 ; 1]
[−1 ; 1]

]
, A =

1

2

√
2

[
1 1
−1 1

]
(1.4)
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may lead to an exponential increase in the volume of the solution enclosures

x(tk) ∈ 2
k
2 ·
[
[−1 ; 1]
[−1 ; 1]

]
(1.5)

if axis-aligned interval box enclosures were determined in each step (1.3) despite the fact
that the true volume would stay constant in the example above because the matrix A
in (1.4) represents a volume-preserving rotation of the initial box by 45◦ in each step.

In this example, changing the evaluation order according to

[x](tk+1) = Ak+1 · [x](t0) , (1.6)

where the integer-order powers of the point-valued matrix A are firstly determined, allows
to solve this problem [46]. However, there is no general solution available, especially in cases
where the transformations are nonlinear or the matrices A may themselves include intervals
in each element.

Then, a large variety of other set-representations may turn out to be more efficient,
for example, the use of ellipsoids [9, 49] (being mapped exactly to an ellipsoid in point-
valued linear transformations), (constrained) zonotopes [32, 82], zonotope bundles [5], or
polytopes [76, 85]. In nonlinear settings, the computationally inexpensive thick ellipsoid
approach recently published by two of the authors provides the possibility to detect pessimism
in the guaranteed outer enclosure by performing a comparison with an inner ellipsoidal
enclosure belonging to the solution set with certainty [65,71]. Moreover, computationally
more demanding techniques such as Taylor model arithmetic [11–13, 31] provide further
means to reduce the wrapping effect that is omnipresent in any dynamic system simulation
of solution finding to algebraic systems of equations or during the integration of sets of
differential equations.

Finally, coordinate transformations, as derived in [39, 40, 56] for systems with either
real or complex eigenvalues after their linearization, as well as the exploitation of specific
monotonicity properties, allow for reducing both the pessimism discussed above and the com-
putational effort required for its reduction. An example for the exploitation of monotonicity
properties is the design of interval observers [20,64] that allows for computing elementwise
lower and upper bounds for the state trajectories according to the following scheme [89].

An autonomous set of ordinary differential equations

ẋ(t) = f (x(t)) , x ∈ Rn (1.7)

is cooperative according to [6, 30,89] if the property

x
⟨1⟩
i (t) ≥ x

⟨2⟩
i (t) (1.8)

holds for all elements i ∈ {1, . . . , n} of the two vectors with x⟨1⟩ (0) and x⟨2⟩ (0) being the
initial conditions which satisfy again the inequalities

x
⟨1⟩
i (t0) ≥ x

⟨2⟩
i (t0) for all i ∈ {1, . . . , n} . (1.9)

For continuous-time systems, cooperativity can be checked by the sufficient sign conditions

Ji,j (x) ≥ 0 , i, j ∈ {1, . . . , n} , i ̸= j (1.10)

for all off-diagonal elements of the Jacobian

J (x) =
∂f

∂x
(x) (1.11)
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of the right-hand side of the state equations evaluated for all reachable states x = x(t).
Matrices satisfying this non-negativity property for the off-diagonal elements are also denoted
as Metzler matrices in the literature [63,64,73,89].

In the case of linear uncertain systems, this cooperativity property simplifies to an
elementwise sign condition for the off-diagonal elements of the lower interval bounds of the
uncertain dynamics matrix A ∈

[
A ; A

]
in the dynamic system model

ẋ(t) = A · x(t) . (1.12)

Guaranteed bounds for the state trajectories x(t) can be obtained in the form [x] (t) =
[v(t) ; w(t)] so that all reachable states are included by an evaluation of the following
coupled set of state equations (which are a direct consequence of [58])

v̇i(t) = inf ([Ai,i] · vi(t)) + inf

 n∑
j=1
j ̸=i

[Ai,j ] · [zj ] (t)


ẇi(t) = sup ([Ai,i] · wi(t)) + sup

 n∑
j=1
j ̸=i

[Ai,j ] · [zj ] (t)


(1.13)

with the resulting state bounds

[zi] (t) = [vi(t) ; wi(t)] . (1.14)

In the equations above, the operators inf (·) and sup (·) denote the lower and upper interval
bounds of the corresponding arguments.

Note that couplings between the vectors v(t) and w(t) can be ignored in (1.13) if the
system is positive, i.e., vi(t) ≥ 0 holds for all t ≥ 0, see for example [20, 64]. There, this
property is exploited for the design of a Luenberger-type interval observer, which allows for
guaranteed state estimation in the case of bounded measurement uncertainty.

Moreover, recent developments of the so-called mixed monotonicity approach and
remainder form decompositions [42,43] can be exploited as a relaxation of the aforementioned
evaluation technique based on cooperativity. In this case, a cooperative subsystem is extracted
from the dynamic system model, while the non-cooperative part is shifted in to an additive
bounded error term. In such a way, the possibility for extracting bounding systems is
preserved and the need for computing with general sets is still avoided.

For practical implementation of set-valued calculus, numerous software libraries exist.
The following short list is given without any claim for completeness: IntLab [86] for Matlab
and Octave, the Octave interval package [28], Versoft [83], Juliaintervals [87],
C-XSC [45], DynIbex [1], the CORA library [4], and codac [84].

This paper is structured as follows. Sec. 2 gives an overview of the fundamentals
of identifying parameters for dynamic systems with the help of interval and other set-
based approaches. These identification results are the basis for the variable-structure
control approaches reviewed in Sec. 3 as well as for the guaranteed model-predictive control
approaches in Sec. 4. Thereafter, we present approaches for set-based state estimation in
Sec. 5, applicable to the identification of the open-circuit voltage characteristic of Lithium-
ion batteries, and an ellipsoidal technique in Sec. 6 that allows for treating set-valued and
stochastic uncertainty and disturbances in a unified manner when solving state estimation
tasks. Finally, conclusions and a brief outlook on future work are given in Sec. 7.
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2. System Modeling and Verified Parameter Identification

The estimation of the parameters of both finite-dimensional sets of discrete-time difference
equations as well as continuous-time ordinary differential equations is crucial for the design
and implementation of all model-based control and state estimation procedures. Identification
experiments are typically performed (for asymptotically stable systems) with predefined,
time-dependent actuation signals so that measurements of selected outputs can be gathered
at certain discrete points of time tk, k ∈ N0. Here, t0 = 0 is assumed without loss of
generality. Due to the collection of measurements at discrete points of time, it is necessary
that parameter identification routines allow for a propagation of state information between
two subsequent measurement instants tk−1 and tk, k ≥ 1. The following description of the
set-based parameter identification approach is based on the more detailed discussions that
can be found in [74].

2.1. Predictor–Corrector Framework for the Verified Identification of Parame-
ters of Dynamic Systems. As summarized in Fig. 1, a first class of verified parameter
identification routines is characterized by an observer-based structure. This structure is
closely linked to the evaluation steps that are performed in classical state estimators such
as Luenberger-type observers or (Extended) Kalman Filters [35, 37]. Hence, prediction and
correction steps are separated from each other and evaluated in an alternating manner.

In this framework, the detection of feasible parameter domains is performed by means
of the following three-stage procedure [19,69]:

(1) A verified evaluation of the set of state equations is performed between two subsequent
measurement points. In the case of discrete-time state equations, the corresponding
expressions are evaluated with the help of interval arithmetic (or one of the alternative
set-valued approaches mentioned in the introduction of this article), while verified solvers
for initial value problems for ordinary differential equations [1, 2, 7, 38, 48, 52, 59–61]
are required if continuous-time processes are taken into consideration. In any case,
problem-specific approaches for the reduction of overestimation [75] — such as interval
subdivision, preconditioning of state equations, symbolic simplifications, or enclosures
allowing to trace the shape of the reachable state domains in a tight manner — shall be
employed to minimize the pessimism in the computed state and output boundaries that
is caused by both the dependency and wrapping effects [34,53].

(2) Information resulting from the prediction of state intervals up to the point at which new
measurements are available are combined with information obtained from sensors. The
applicable techniques are:
• A direct intersection of the enclosures of predicted state variables with directly
measured state intervals (in terms of an additive superposition of a point-valued
measurement with the respective tolerance interval);

• The use of contractors and set inversion approaches to determine an inverse mapping
from the measured outputs to the internal system states and parameters [32]. Example
are forward–backward contractors [34] initialized with the predicted state intervals
that are intersected with the associated measurement outputs or interval Newton
techniques in the case of nonlinear output equations or for output equations involving
more than one state variable.

(3) Parameter subdomains are eliminated either by the contractors for which details are
presented in the following section or after a subdivision of parameter intervals with
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associated multiple evaluations of the state equations. In the latter case, a parameter
subinterval is guaranteed to be inconsistent with the information provided by the specified
system model and the available measurements if the result of the state prediction
substituted into the measurement model and the interval-valued measured data do not
overlap. For a visualization of this exclusion text, see Fig. 2, where a branch-and-bound
procedure on the basis of multiple simulations of the state equations over the complete
horizon of gathered measured data is depicted. The corresponding consistency tests
correspond to those also used in the following subsection.

ym,ny
(tk)
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rm

at
io
n

Sensor 1

Sensor 2

Sensor ny

Nonlinear measurement
model with uncertainties

Estimate in the
correction step

ym,1 (tk)

ym,2 (tk) Intersection of
both verified

state enclosures

Nonlinear dynamical

with uncertainties
system model

unit delay

State and parameter estimate in the prediction step

x̂ (tk−1)

Improved estimate after transition from tk−1 to tk

Figure 1. Predictor–corrector scheme for combined state estimation and
parameter identification [74].

2.2. Simulation-Based Parameter Identification Procedures. Simulation-based pa-
rameter identification procedures, making use of multiple evaluations of the set of state
equations for subintervals of the complete initial domain of possible system parameters, are
a second option for parameter identification.
The underlying branch-and-bound procedure1 relies on the following assumptions:

• measured data are available at discrete points of time,
• worst-case bounds for measurement tolerances are known a-priori (modeling of the sensor
uncertainty),

• the model structure to be parameterized is assumed to be structurally correct,
• outer enclosures for the domains of possibly uncertain initial states are given, and
• interval bounds on the uncertain parameters are known in terms of conservative overap-
proximations.

To exclude parts of the domains of uncertain initial states and parts of the a-priori given
parameter intervals, a subdivision procedure of the respective domains is executed [15]. To
detect intervals for the parameterization of the system model which are guaranteed to be
inconsistent, directly measured and simulated state intervals are intersected at identical points
of time. If state variables are not directly measured, the contractor procedures mentioned
in the previous subsection are equally applicable here. Parameter interval subdivisions
are performed according to the following distinction of cases, where the directions in
which the determined parameter intervals are subdivided with the help of a sensitivity
analysis [19]. For accelerations by both additional (physics-inspired) contractors and GPU-
based parallelizations, the readers are referred to [8, 74]:

1Branching of the parameter domain by an interval subdivision approach with a subsequent simulation-
based bounding of the output trajectories.
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(b) Output trajectory including in-
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sible (undecided) system parame-
terization (Case 1).
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(c) Output trajectory including in-
terval uncertainty for a guaranteed
feasible system parameterization
(Case 2).

time tt 0 t 1 t 2 t 3 ...
m
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d 
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m
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k
)

[ ym](t 0)

[ ym](t1)
[ ym](t 3)
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(d) Output trajectory including in-
terval uncertainty for a guaranteed
infeasible system parameterization
(Case 3).

Figure 2. Simulation-based distinction between possibly feasible, guaran-
teed feasible, and infeasible system parameterizations [19,74].

Case 1: Parameter subintervals are yet undecided if their corresponding predicted output
intervals overlap at least partially for all available sensors at each point of time at
which measurements are available and are never outside the range of measured data.

Case 2: A parameter subinterval is guaranteed to be consistent if the corresponding output
intervals are true subintervals of the interval-valued measured data for each of the
available sensors at each point of time. This subinterval is no longer investigated but
stored in a list of guaranteed admissible boxes.

Case 3: A parameter subinterval is guaranteed to be inconsistent if the corresponding
output interval lies outside the range of the interval-valued measured data. This has
to hold true for at least one of the available sensors and for at least one point in
time. The resulting parameter subinterval is excluded from further evaluations and
the underlying simulation can be aborted as soon as the inconsistency is detected.

3. Interval-Based Variable-Structure Control Implementation

As mentioned in the previous section, the verified parameter identification is the prerequisite
for the implementation of guaranteed stabilizing control procedures. These include linear
matrix inequality methods for systems with polytopic and norm-bounded parameter uncer-
tainty [10,73], interval-based gain scheduling techniques [41], and variable structure as well
as backstepping-type controllers [77,78,80,88] without and with hard state constraints.

In this section, we review a robust control procedure that extends the sliding mode
design methodology by means of the online use of interval analysis to prevent the violation
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of state constraints with certainty [77, 79, 88]. For a similar approach, applicable to the
backstepping design methodology, the reader is referred to [72].

3.1. Fundamental Sliding Mode Control Laws. Both the treatment of strict inequality
constraints and bounded interval uncertainty can be combined with first- and second-order
sliding mode techniques [21,26].

3.1.1. First-Order Sliding Mode Control. For a summary of the fundamental sliding mode
control design of single-input single-output systems, consider the n-th order set of ordinary
differential equations

ẋ(t)=
[
ẋ1(t) . . . ẋn−1(t) ẋn(t)

]T
=
[
x2(t) . . . xn(t) a (x(t),p) + b (x(t),p)·v(t)

]T (3.1)

in nonlinear controller canonical form with the state vector x(t) ∈ Rn and the control input
(b (x(t),p) ̸= 0)

v(t) =
−a (x(t),p) + u(t)

b (x(t),p)
∈ R . (3.2)

For this system model, the output variable is given by

y(t) = x1(t) . (3.3)

Due to the assumed structure of the system (3.1), the output variable (3.3) has the

relative degree n [54], corresponding to the property that the n-th time derivative x
(n)
1 (t)

of the system output is the lowest-order derivative explicitly depending on either of the
control inputs v(t) and u(t). Therefore, the output y(t) corresponds to a (trivial) flat system
output [23] and an exact tracking of a sufficiently smooth desired trajectory x1,d(t) can be
achieved in the case of exactly known parameters.

On the basis of this desired trajectory, the corresponding tracking error (r = 0) and its
r-th time derivative2 are given by

ξ̃
(r)
1 = x

(r)
1 − x

(r)
1,d , r ∈ {0, 1, . . . , n} , (3.4)

with the sliding surface

s := s(t) =

n−1∑
r=0

αr ξ̃
(r)
1 (3.5)

in which the highest-order coefficient is normalized according to αn−1 = 1. To guarantee
asymptotic stability for states exactly located on this sliding surface, the parameters αr

have to fulfill the necessary and sufficient stability conditions for a Hurwitz polynomial of
the order n− 1.

A classical first-order sliding mode control can be derived with the help of the quadratic
radially unbounded candidate for a Lyapunov function

V ⟨I⟩ =
1

2
s2 > 0 for s ̸= 0 . (3.6)

2Time arguments are omitted, whenever the meaning is non-ambiguous.
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For s ̸= 0, (global) asymptotic stability of the dynamic system corresponds to the
(global) negative definiteness of the corresponding time derivative

V̇ ⟨I⟩ = s · ṡ =

(
n−1∑
r=0

αr ξ̃
(r)
1

)
·

(
n−1∑
r=0

αr ξ̃
(r+1)
1

)
< 0 . (3.7)

Following the derivation of the variable-structure control law according to [78,80], the
right-hand side of the inequality (3.7) is replaced by the more conservative formulation(

n−1∑
r=0

αr ξ̃
(r)
1

)
·

(
n−1∑
r=0

αr ξ̃
(r+1)
1

)
< −η · |s| = −η ·

(
n−1∑
r=0

αr ξ̃
(r)
1

)
· sign (s) (3.8)

which guarantees global asymptotic stability for η > 0. Here, the actual choice of η
significantly influences the dynamics and the maximum absolute values of the control signal
in the reaching phase characterized by s ≠ 0. As soon as s = 0 has been reached after a
finite time duration, the control amplitudes depend (in the unperturbed case) on the actual
choice of the reference trajectory x1,d and on the coefficients αr.

These latter values also have a major influence on the control amplitudes if non-modeled

errors and disturbances act on the system dynamics and if the error signals ξ̃
(r)
1 are corrupted

by non-negligible measurement noise or state reconstruction errors, preventing the perfect
tracking of the desired trajectory x1,d(t) and making it impossible that s ≡ 0 holds perfectly
after the end of the reaching phase.

The derivation of the control law is completed by enforcing that the second factor in (3.8)
becomes proportional to the sign of the actual value of s according to

n−2∑
r=0

αr ξ̃
(r+1)
1 + u− x

(n)
1,d + η · sign (s) = −β · sign (s) with β > 0 . (3.9)

Using η̃ := η + β > 0, the control law results in

u(t) = u⟨I⟩ = x
(n)
1,d −

n−2∑
r=0

αr ξ̃
(r+1)
1 − η̃ · sign (s) . (3.10)

3.1.2. Second-Order Sliding Mode Control. For a second-order sliding mode, both s = 0 and
ṡ = 0 have to be ensured by the feedback controller [21,26]. This can be achieved by adding
a first-order lag dynamics on the left-hand side of

γ1ṡ+ γ0s =
n−1∑
r=−1

αr ξ̃
(r)
1 with ξ̃

(−1)
1 (t) :=

∫ t

0
ξ̃1(τ)dτ . (3.11)

For the sake of asymptotic stability, the coefficients γ0 and γ1 need to be strictly positive.
For α−1 = 0, this sliding surface has a proportional and differentiating characteristic, while

α−1 ̸= 0 means that the integral ξ̃
(−1)
1 of the output error is additionally fed back in the

definition of the sliding variable s.
To ensure both s = 0 and ṡ = 0 for the closed-loop control system, the Lyapunov

function candidate, which was previously chosen as a function solely depending on the value
of s, is redefined in the form

V ⟨II⟩ =
1

2
·
(
s2 + λṡ2

)
with the scaling factor λ > 0 . (3.12)
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The computation of the time derivative of (3.12) results in

V̇ ⟨II⟩ = s · ṡ+ ṡ ·

(
−λγ0

γ1
ṡ+

λ

γ1

n∑
r=0

αr−1ξ̃
(r)
1

)
< 0 , (3.13)

where λ = γ1 > 0 is used without loss of generality [77]. Also according to [77], the
stabilization of the closed-loop system towards s = 0 can be achieved by setting

V̇ ⟨II⟩ < −η1 · |ṡ| − η2 · |s| · |ṡ| = −ṡ · sign (ṡ) · (η1 + η2 · |s|) . (3.14)

This finally leads to the nonlinear feedback controller [21, generalized form of Eqs. (22), (23)]

u = u⟨II⟩ = x
(n)
1,d +

1

αn−1
·

(
γ0ṡ− s−

n−1∑
r=0

αr−1ξ̃
(r)
1 − sign (ṡ) · (η̃1 + η̃2 · |s|)

)
(3.15)

with η̃i ≥ ηi > 0 for both i ∈ {1, 2}.

3.2. Extension by One- and Two-Sided Barrier Functions. Both control laws u⟨I⟩

and u⟨II⟩ can be extended by one- and two-sided barrier functions [90].

3.2.1. One-Sided State Constraints. For the case of a one-sided barrier, it is necessary that
the (time-varying) state (respectively output) constraint

x1 < x̄1,max := x1,d +∆x1,max with ∆x1,max > 0 (3.16)

is not violated for any point of time t > 0 if the initial conditions for the state vector x(t) at
t = 0 are also compatible with this constraint. Moreover, it is necessary that the sliding
surface s = 0 (equivalent to x1 = x1,d) lies within the admissible operating range defined
in (3.16).

Then, the extended Lyapunov function ansatz

V ⟨j,A⟩ = V ⟨j⟩ + V ⟨A⟩ > 0 for s ̸= 0 with (3.17)

V ⟨A⟩ = ρV · ln
(

σV·x̄1,max

x̄1,max−x1

)
and x1 < x̄1,max (3.18)

is introduced for both alternatives j ∈ {I, II}. In (3.18), ρV > 0 is selected so that the
singularity x̄1,max − x1 = 0 represents a repelling potential and that control constraints are

not violated for usual operating conditions. Then, the term V ⟨j⟩ has dominating influence in
the neighborhood of s = 0, while σV > 0 can be used to adapt the steepness of the barrier
function near its singularity.

In the case of the first-order sliding mode, the time derivative of (3.17) can be computed
as

V̇ ⟨j,A⟩ = V̇ ⟨j⟩ + V̇ ⟨A⟩ < 0 with V̇ ⟨A⟩ = ρV
x̄1,max

·
(
−x1· ˙̄x1,max+ẋ1·x̄1,max

x̄1,max−x1

)
, (3.19)

where V̇ ⟨A⟩ does not explicitly depend on the system input u.
In analogy to the fundamental first-order sliding mode control law u⟨I⟩(t) derived

from (3.9), the inequality

s ·

(
n−2∑
r=0

αr ξ̃
(r+1)
1 + u− x

(n)
1,d + η · sign (s) + 1

s
· V̇ ⟨A⟩

)
︸ ︷︷ ︸

−β·sign(s)

< 0 (3.20)
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is obtained. Following the same steps as in the derivation of u⟨I⟩(t) yields the control law

u = u⟨I,A⟩ = u⟨I⟩ − s
s2+ϵ̃

· V̇ ⟨A⟩ , (3.21)

in which 1
s in (3.20) has been approximated by s

s2+ϵ̃
with the small constant ϵ̃ > 0 to

ensure regularity of the control law u⟨I,A⟩(t) on the sliding surface s = 0. Moreover, this
modification guarantees that the barrier function becomes inactive as soon as the control
goal has been reached.

In analogy to (3.21), the second-order sliding mode control (3.15) can be extended by
the barrier function (3.18). Following the same steps as in Eqs. (3.19)–(3.21) leads to

u = u⟨II,A⟩ = u⟨II⟩ − 1
αn−1

· ṡ
ṡ2+ϵ̃

· V̇ ⟨A⟩ . (3.22)

3.2.2. Two-Sided State Constraints. For the case of two-sided state constraints, the Lyapunov
functions V ⟨j⟩, j ∈ {I, II}, are extended according to

V ⟨j,B⟩ = V ⟨j⟩ + V ⟨B⟩ > 0 for s ̸= 0 , (3.23)

where the additive term V ⟨B⟩ is chosen in this paper so that state deviations |x1 − x1,d| ≥ χ̄
are prevented. For the alternative option |s| ≥ χ̄, the reader is referred to [77]. Symmetric
barriers can be enforced by specifying a barrier function in the form

V ⟨B⟩ = ρV · ln
(

χ̄2l

χ̄2l−(x1−x1,d)
2l

)
with l ∈ N . (3.24)

Large values for l typically lead to the fact that resulting state trajectories come closer to
the edges of the admissible operating range. As before, the time derivative of the additive
term (3.24) is computed, which yields

V̇ ⟨B⟩ = ρV · 2l·(x1−x1,d)
2l−1·(ẋ1−ẋ1,d)

χ̄2l−(x1−x1,d)
2l . (3.25)

In full analogy to Eqs. (3.19)–(3.22), the requirement V̇ ⟨j,B⟩ < 0 for s ≠ 0 (and ṡ ̸= 0, resp.)
leads to the extension

u⟨I,B⟩ = u⟨I⟩ − s−1 · V̇ ⟨B⟩ (3.26)

of the first-order sliding mode controller and to

u⟨II,B⟩ = u⟨II⟩ − (αn−1 · ṡ)−1 · V̇ ⟨B⟩ (3.27)

for the second-order case, where the same regularization strategies for the rational terms
1
s and 1

ṡ become necessary as before. The term ṡ (if required) is typically estimated by a
low-pass filtered differentiation or by means of an observer.
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3.3. Interval Extensions to Handle Bounded Parameter Uncertainty and State
Estimation Errors. To guarantee asymptotic stability despite bounded uncertainty in
both the measured (resp., estimated) states x and system parameters p included in the
control law, interval techniques can be applied at run-time during the execution of the
previously derived control laws if they are extended according to [77,78]. x ∈ [x] = [x ; x]
of the measured or estimated state vector. In addition, it is assumed that the system model
is given as an n-th order set of ODEs (3.1) in nonlinear controller canonical form. If this is
not the case, extended control approaches according to [88] are applicable.

For the sake of controllability (and, hence, also for the existence of the following
interval-based variable-structure controllers), it has to be guaranteed that

0 ̸∈ b ([x] , [p]) (3.28)

holds for all x ∈ [x] and p ∈ [p], describing, respectively, the reachable domain in the
state-space and the guaranteed enclosure of all uncertain parameters. To handle the set-
valued state and parameter uncertainty, the output tracking error and its r-th derivative are
enclosed by the intervals

ξ̃
(r)
1 ∈

[
ξ̃
(r)
1

]
=
[
x
(r)
1

]
− x

(r)
1,d (3.29)

for each r ∈ {0, 1, . . . , n}. These tracking error intervals can be used to generalize the
first-order variable-structure controller (without and with state constraints) according to

[
v⟨I⟩
]
=

−a([x],[p])+x
(n)
1,d−

n−2∑
r=0

αr·
[
ξ̃
(r+1)
1

]
−η̃·sign([s])

b([x],[p]) , (3.30)[
v⟨I,A⟩

]
=
[
v⟨I⟩
]
− 1

b([x],[p]) ·
[s]

[s]2+ϵ̃
·
[
V̇ ⟨A⟩

]
, (3.31)

and [
v⟨I,B⟩

]
=
[
v⟨I⟩
]
− 1

b([x],[p]) ·
[s]

[s]2+ϵ̃
·
[
V̇ ⟨B⟩

]
. (3.32)

Similarly, interval-based generalizations can be defined for all before-mentioned second-order
formulations. For a detailed discussion of restrictions in the case that accounts for integrator
extensions in the definition of the sliding surface s = 0, the reader is referred to [77].

In all expressions above, a ([x] , [p]), b ([x] , [p]),
[
V̇ ⟨A⟩

]
, and [s] denote the interval-

dependent evaluations of the corresponding entries of the state equations, the time deriva-
tives of the barrier function, and the sliding surface, respectively. For the actual control
implementation, all interval expressions are evaluated by means of a suitable interval library.

In previous work such as [72,77–79], where this approach was applied successfully to
the control of the thermal behavior of high-temperature solid oxide fuel cells as well as
for the control of inverted pendulum systems, the C++ toolbox C-XSC [45] was used.
Required derivatives, necessary to transform general nonlinear state equations into the system
representation assumed in this section, can easily be obtained with the help of algorithmic
differentiation. The template-based library FADBAD++ has shown its efficiency for this
purpose, because it cannot only be applied to expressions involving classical point-valued
data types but also interval variables.

It has to be pointed out that the actual implementation of the control laws (3.30)–(3.32)
is performed in such a way that a point-valued control signal v is chosen from the computed
intervals so that it guarantees asymptotic stability regardless of the sign of b(x,p). According
to [77], this is done by testing the negative definiteness of the Lyapunov function candidate
for the infima and suprema v := inf{[v]} and v := sup{[v]}. To account for roundoff and
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representation errors, these values are inflated by a small constant ϵ > 0 to obtain the
final set of candidates V := {v − ϵ, v + ϵ, v − ϵ, v + ϵ}, from which the signal with minimum

absolute value is chosen that ensures V̇ < 0 (or more generally V̇ ⟨j,A⟩ < 0, V̇ ⟨j,B⟩ < 0,
j ∈ {I, II}) despite the considered interval uncertainty.

4. Guaranteed Model Predictive Control

Predictive control techniques are powerful approaches for controlling uncertain systems,
where the corresponding dynamics are formulated initial value problems for finite-dimensional
sets of nonlinear ordinary differential equations. Besides stabilizing the dynamics towards a
desired reference trajectory, it is possible to formulate the involved optimization problem
in such a way that constraints for the admissible state trajectories and system inputs are
handled. Classical approaches for nonlinear model predictive control commonly do not
account for interval bounds in initial states and system parameters. This issue is resolved in
this section, by presenting a control procedure for interval-valued initial value problems in
the form [25] 

ẋ(t) = f(t,x(t),u,p)
x0 ∈ [x0] ⊆ IRn

u ∈ [u] ⊆ IRm

p ∈ [p] ⊆ IRp,

(4.1)

where the state vector is denoted by x(t), the vector of dynamic parameters by p, and

the control vector by u. The sets [x0] =
[
[x10] . . . [xn0]

]T
, [u] =

[
[u1] . . . [um]

]T
, and

[p] =
[
[p1] . . . [pp]

]T
, expressed as interval boxes, are respectively the initial condition of

the state vector, the interval-bounded input, and the set of feasible dynamic parameters. We
assume that this interval-based initial value problem has a unique solution x(t)(t,x0,u,p)
at t > 0 since f : R×Rn×Rm×Rp → Rn is supposed to be continuous in t and Lipschitz in
x(t). For the use of the proposed solution algorithm, we further require that f is sufficiently
smooth, i.e., of class Ck. For an approach applicable to linear time-invariant and linear
parameter-varying systems, which is similar to the one described subsequently, the reader is
referred to [16–18].

4.1. Interval-Based Nonlinear Model Predictive Control. The interval-based non-
linear model predictive control approach presented in [24, 25] is a generalization of the
optimization approach in [70] and is based on the computation of interval bounds for the
control sequence over a receding horizon which takes into account bounded uncertainties in
the parameters of the dynamic system model and in the measured data.

The control intervals are calculated such that the convergence to the set-point interval
is ensured (i.e., x(tj) → [xr], ∀j, and all the state and input constraints are satisfied (i.e.,
x(ti) ∈ [x(ti)] and u(tj) ∈ [u(tj)], ∀i, j). The corresponding interval algorithm encompasses
two stages [24], namely,

• Filtering and branching: This first step provides a sequence of guaranteed input
interval boxes at each time-step tk over the prediction horizon Np, denoted as [U(tk)] =
[u(tk)] × [u(tk+1)] × . . . × [u(tk+Np−1)]. Branching and filtering procedures allow the
computation of safe input intervals along the receding time horizon that satisfy the state
constraints (i.e., ∀j, [x(tj)] ⊆ [xmin(tj),xmax(tj)], where xmin(tj) and xmax(tj) are the
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bounds for the admissible domain for each state variable) and ensure convergence to the
reference interval (i.e., [xk] → [xr]).

• Interval optimization: Since safe inputs are computed over a finite time horizon, the
optimization algorithm is launched to compute the optimal inputs [U(tk)]

⋆ by minimizing
as much as possible a newly formulated interval objective function to reduce both the
norm of the input intervals and the error between the predicted as well as the reference
outputs.

4.2. Formulation and Minimization of Interval Cost Functions. For the feasible
intervals of input values that satisfy the constraints on the state trajectories and system
inputs, an optimization procedure is required to find the optimal control box and — on this
basis — a point-valued input u(tk) that can be applied to the actuator of the considered
system [24, 25]. The continuous cost function to be minimized can be expressed over the
prediction horizon Tp = Tc ×Np, with the control update step size Tc, as

J(x(t),u(t)) =

∫ t+Tp

t
F (x(τ),u(τ))dτ . (4.2)

Here, F is commonly chosen as a quadratic function that minimizes the norm of the inputs
and the error between the predicted outputs x and the reference xr according to

F (x(τ),u(τ)) = (x(τ)− xr)
T Q (x(τ)− xr) + u(τ)TRu(τ) , (4.3)

where Q and R are both positive (semi-)definite weighting matrices.
Under the assumption of piecewise constant control inputs, the continuous objective

function (4.2) takes the form

J(x(t),u(t)) =

∫ t+Tp

t

(
(x(τ)− xr)

T
Q (x(τ)− xr) + u(τ)TRu(τ)

)
dτ

=

Np∑
k=1

∫ t+kTc

t+(k−1)Tc

(
(x(τ)− xr)

T
Q (x(τ)− xr)

)
dτ +

Np∑
k=1

∫ t+kTc

t+(k−1)Tc

u(τ)TRu(τ)dτ .

(4.4)

As shown in [24, 25], the value of cost function (4.4) can be enclosed with the help
of techniques from interval analysis. This is achieved by applying a validated integration
method for the initial value problem under consideration. This method provides a list of
tight enclosures [x0], [x1], . . . , [xK ] for the solution of the model (4.1). These enclosures are
obtained starting from the initial conditions [x0] with bounded, piecewise constant control
sequences [uj ]. Here, each solution enclosure [xt] is defined as a box so that x(t) ∈ [xt] holds
for all t ∈ [t+ (k − 1)Tc ; t+ kTc]. By using these piecewise constant interval enclosures,
bounds for the cost function are obtained according to

J(xt,u) ∈ Tc

k+Np−1∑
j=k

((
[x[j:j+1]]− xr

)T
Q
(
[x[j:j+1]]− xr

)
+ [uj ]

TR[uj ]
)

≤ sup

Tc

k+Np−1∑
j=k

((
[x[j:j+1]]− xr

)T
Q
(
[x[j:j+1]]− xr

)
+ [uj ]

TR[uj ]
) ,

(4.5)

where [x[j:j+1]] is a guaranteed enclosure of all reachable states over the temporal slice
t ∈ [tj ; tj + Tc] and sup{·} signifies the upper bound of the corresponding interval.
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Figure 3 gives an overview of the extension of the interval-based nonlinear model-
predictive control procedure by a further pre-stabilization of open-loop unstable plants with
the help of linear matrix inequality (LMI) techniques. In such cases, the interval-based
optimization procedure does not directly provide the overall control sequence but rather a
feedforward control sequence [uff ] that allows for optimizing the tracking behavior within the
operating domain in which the underlying feedback controller possesses provable asymptotic
stability properties [25]. This paper also demonstrates the successful implementation of the
control procedure to the swing-up control of a rotary inverse pendulum.

Reference set-point
[𝐱r]

Guaranteed nonlinear
model-predictive control

Validated Simulation:
Guaranteed State Enclosures

IVP-ODE
[𝐮1]

IVP-ODE
[𝐮2]

IVP-ODE
[𝐮𝑁p−1]

[𝐔𝑘] = 𝐮1 × ⋯ × [𝐮𝑁p−1]

Interval Optimization
Optimal box 𝐔𝑘

⋆

𝐱0

𝐩

𝐮min ; 𝐮max 𝐱min ; 𝐱max

𝑁p

𝑇c

[𝐱𝑘]

Uncertain 
Environment

Plant,
including

LMI-based
pre-stabilization

Sensors

Feedforward

control 𝐮ff

Figure 3. Overall structure of the interval-based nonlinear model predictive
control approach, extended by an underlying pre-stabilization of the plant
dynamics.

5. An Interval Observer-Based Approach for the Identification of the
Open-Circuit Voltage Characteristic of Battery Cells

In this section, a continuous-time interval observer design is combined with a set-based
identification of state-dependent output nonlinearities for the online-identification of the
model of a Lithium-ion battery. According to [51], this approach makes use of an equivalent
circuit model of the battery as described in [22].

In a first stage, the state variables of the system model

ẋ(t) = A (σ(t)) · x(t) + b (σ(t)) · u(t) (5.1)

=

0 0 0

0 −1
CTS(σ(t))·RTS(σ(t))

0

0 0 −1
CTL(σ(t))·RTL(σ(t))

 · x(t) +


−1
CBat
1

CTS(σ(t))
1

CTL(σ(t))

 · u(t)
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with the state vector
x(t) =

[
σ(t) vTS(t) vTL(t)

]T
(5.2)

are estimated. These state variables denote the state of charge of the battery as well as
two voltages across resistor–capacitor sub-networks included in the equivalent circuit to
represent delay phenomena between state-like changes of the terminal current and measurable
variations of the terminal voltage. According to [51], interval enclosures of the state variables
are estimated after reformulation of both the state equations (5.1) and the output equation

ṽOC(σ(t)) = C (σ(t)) · x(t) (5.3)

= ηOC (σ(t)) · σ(t) = vOC(σ(t))− v0 − v2 (5.4)

=

(
v0 ·

ev1·σ(t) − 1

σ(t)
+ v3 + v4 · σ(t) + v5 · σ2(t)

)
· σ(t) (5.5)

in a quasi-linear form in which state of charge dependent matrices and vectors A (σ(t)),
b (σ(t)), and C (σ(t)), respectively, are separated from the state vector x(t) and the input
variable u(t), which is represented by the terminal current iT.

In a second stage, an interval-based set intersection approach is subsequently used
to identify the unknown characteristic of the open circuit voltage vOC(σ(t)). This overall
approach is summarized in Fig. 4.

For the observer design, cooperativity of the system model (as discussed in the intro-
duction of this article) as well as stability of the estimation error dynamics are ensured by
choosing the observer gain matrix H according to [29], in the form

H =
[
h1 0 0

]T
(5.6)

with h1 > 0.
In such a way, interval bounds x̂ ∈ [x̂] :=

[
x̂ ; x̂

]
can be determined for the true,

non-measurable state vector x by the decoupled lower and upper bounding systems [29,63],
following Müller’s theorem [58],

AOx̂+ bu+Hy
m
≤ ˙̂x ≤ AOx̂+ bu+Hym , x̂ ∈ [x̂] , (5.7)

where
AO = A−HC ∈

[
AO ; AO

]
(5.8)

is a Metzler matrix [27,36,40] with non-negative off-diagonal elements and

[ym] :=
[
y
m
; ym

]
= ym + [−∆ym ; ∆ym] (5.9)

is the measured system output with bounded uncertainty.
The estimated state of charge, enclosed by the interval [σ̂], together with the estimated

open-circuit voltage
ṽOC(t) = y∗m(t) + v̂TS(t) + v̂TL(t) , (5.10)

with v̂TS(t) ∈ [v̂TS(t)] and v̂TL(t) ∈ [v̂TL(t)], allow for constructing the interval box [Γ] =
[σ(t)]× [ṽOC(t)] with σ(t) ∈ [σ(t) ; σ(t)] and ṽOC(t) ∈

[
ṽOC(t) ; ṽOC(t)

]
.

Successive intersections of these interval boxes — at different points in time — are
utilized to improve the approximation of the true vOC(σ(t)) characteristic according to
Figure 5.

For strategies, allowing for a reduction of the computational complexity due to a large
number of interval boxes to be intersected, the interval merging routine according to [46] is
employed. Moreover, refinements of the estimated open-circuit voltage characteristic are
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Battery

Figure 4. Estimation of the open-circuit voltage and the state of charge.

1 3,2999997749 -2
0,9 2,7549988852 -16
0,8 2,3119944785 1
0,7 1,9589726516 0,6
0,6 1,6838645425 -0,3
0,5 1,4743290747 2
0,4 1,3166768855
0,3 1,1905405059
0,2 1,042475592
0,1 0,655206964
0 -1

Figure 5. Identification of nonlinear dependencies using interval methods.

possible by implementing a forward–backward contractor, as discussed from a methodological
point of view in [34]. These refinements have been demonstrated recently in [50].

6. Combination of Set-Based and Stochastic Uncertainty Representations:
An Application to Iterative-Learning Observer Design

In the final part of this article, a combination of stochastic and set-based (in this case,
ellipsoidal) uncertainty representations is considered. This approach allows, on the one hand,
for a rigorous quantification of predefined confidence levels in stochastic state estimation
procedures. On the other hand, it allows for handling nonlinearities in such a way that the
previously mentioned tolerance bounds are definitely not determined in an overly optimistic
manner [67,68,81].

In addition to the properties mentioned above, we present a formulation of the state
estimation procedure that allows to iteratively enhance the estimation accuracy for the case
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of periodically recurring trajectories and disturbance profiles (e.g., due to errors caused by a
deterministic model mismatch due to purposefully performed model simplifications). For
that purpose, assume the discrete time system model

zk+1 = Φ (zk,p) · zk (6.1)

with the bounded parameter vector p ∈
[
p ; p

]
. As discussed in the following, the vector

zk ∈ Rñ consists of both system states and noise variables. Furthermore, assume that the
ellipsoidal domain

Ek

(
µk,Γ

′
k, r
)
:=
{
zk ∈ Rn

∣∣ (zk − µk)
T Γ′

k
−T

Γ′
k
−1

(zk − µk) ≤ r2
}

(6.2)

specifies the confidence bound of a given percentage if the vector zk is normally distributed

with the positive definite covariance matrix Q′
k = Γ′

kΓ
′
k
T ≻ 0 and the ellipsoid midpoint

(expected value) µk ∈ Rñ. Here, the parameter r describes a magnification factor according
to [92] associated with this confidence level.

6.1. Ellipsoidal Calculus for the Guaranteed Preduction of Covariance Ellip-
soids. For the implementation of an ellipsoidal covariance prediction step (based on the
references [65,66,71]), we use the definitions

Γk := r · Γ′
k and Qk := r2 ·Q′

k . (6.3)

For the compactness of notation, reformulate the system model (6.1) into the form

zk+1 = Φ (zk,p) · žk + Φ̃ · µk +
(
Φ (zk,p)− Φ̃

)
· µk (6.4)

with zk = žk + µk, where

zk ∈Ek =Ek

(
µk,Γ

′
k, r
)

. (6.5)

Here, Ek denotes the uncertainty on the non-origin centered states zk,

žk ∈ Ěk = Ěk

(
0,Γ′

k, r
)

(6.6)

the uncertainty on žk after shifting the ellipsoid to the origin, and

Φ̃ = Φ (µk,mid ([p])) (6.7)

is the midpoint approximation of the quasi-linear system matrix with

mid ([p]) =
1

2
·
(
p+ p

)
. (6.8)

Let also □Ek denote an axis-aligned enclosure of Ek in the form of an ñ-dimensional
interval box. An alternative to the definition (6.7) is given by

Φ̃ = mid (Φ (□Ek, [p])) , (6.9)

which is preferable if (6.7) and (6.9) strongly differ from each other in the case of large
uncertainty.

Then, a confidence bound of the predicted states zk+1 of magnification r is given by

the ellipsoid Ek+1

(
µk+1,Γ

′
k+1, r

)
with the covariance Q′

k+1 = Γ′
k+1

(
Γ′
k+1

)T
for which the

parameters are computed in the following steps.
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P1 : Apply
žk+1 = Φ (zk,p) · žk (6.10)

to the ellipsoid Ěk in (6.6). The outer ellipsoid enclosure of the image set is described
by an ellipsoid with the shape matrix

Q̌k+1 = α2
k+1 · Γk+1 · ΓT

k+1 , (6.11)

where αk+1 ≥ 0 is the smallest value for which the LMI

Mk+1 := Λ

[
−Q−1

k ΦT (zk,p) · Φ̃
−T

Φ̃
−1 ·Φ (zk,p) −α2

k+1Rk

]
Λ ⪯ 0 (6.12)

is satisfied for all zk ∈ □Ek and p ∈ [p] with

Rk := Γk · ΓT
k . (6.13)

In (6.12), the symbol ⪯ denotes the negative semi-definiteness of the corresponding
matrix expression and Λ is a preconditioning matrix chosen according to [66].

P2 : Compute interval bounds for the term

bk =
(
Φ (p)− Φ̃

)
· µk ∈ [bk] (6.14)

which accounts for a non-zero ellipsoid midpoint with zk, Φ̃, and p defined accord-
ing to (6.5), (6.7), and (6.8). Inflate the ellipsoid bound described by the shape
matrix (6.11) according to [71]

Qk+1 = (1 + ρO,k+1)
2 · Q̌k+1 , (6.15)

ρO,k+1 = sup
{∥∥α−1

k+1 · Γ
−1
k · [bk]

∥∥} . (6.16)

P3 : Compute the updated ellipsoid midpoint

µk+1 = Φ̃ · µk (6.17)

and its factorized shape matrix

Γ′
k+1 = αk+1 · (1 + ρO,k+1) · Φ̃ · Γ′

k . (6.18)

6.2. Stochastic Iterative-Learning Observer Design for Quasi-Linear State Equa-
tions. Consider the quasi-linear discrete-time state-space representation

xk+1 = A (xk,p) · xk +E (xk,p) ·wk

yk = C (xk,p) · xk + vk
(6.19)

with the state vector xk ∈ Rn, the measured output vector yk ∈ Rm (m ≤ n), as well as the
uncorrelated process and measurement noise vectors wk ∈ Rnw and vk ∈ Rnv , respectively.
Let both noise vectors be normally distributed with the covariances Cw,k and Cv,k and
vanishing mean. The iterative-learning observer is designed in this section to estimate the
state vector xk as well as its uncertainty (expressed by its covariance) by a Kalman Filter-like
procedure. This estimator does not only operate along the time domain k but also enhances
the estimates successively from the trial i to the trial i + 1. Moreover, to allow for the
identification of a systematic model mismatch, a lumped correction term δk is added to the
state equations (6.19) in the form

xk+1 = A (xk,p) · xk +E (xk,p) ·wk + δk . (6.20)
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For the derivation of the learning-type framework, consider the trials ξ = i and ξ = i+1

with the actually measured data yξ
m,k = Cξ

k · x
ξ
k + vξ

k corresponding to the realizations of

the general outputs yk in (6.19) for these two trials.
For the recursive formulation of the iterative-learning observer, we assume that both

process and measurement noise are uncorrelated and normally distributed with zero mean.
The superscript p denotes the result of the prediction step, while the superscript e refers to
the estimation result as the outcome of the measurement-based innovation step.

6.2.1. Prediction Step for State- and Parameter-Dependent Disturbance Inputs E (xk,p) [67].
Define an ellipsoid for the augmented state vector

zk =
[(
xi
k

)T (
xi+1
k

)T (
wi

k

)T (
wi+1

k

)T ]T (6.21)

corresponding to the result of the preceding innovation step, augmented by the influence of
the uncorrelated process noise in both trials i and i+ 1 in the form

E
e,i|i+1
k




µe,i
k

µe,i+1
k
0
0

 ,Γe
k, r

 (6.22)

with

Γe
k =

 Γ
e,i|i+1
k 02n×2nw

02nw×2n

[
Cw,k 0
0 Cw,k

] 1
2

 (6.23)

containing the matrix square root Γ
e,i|i+1
k of the combined state covariance matrix

C
e,i|i+1
k = Γ

e,i|i+1
k ·

(
Γ
e,i|i+1
k

)T
(6.24)

as well as of the iteration-independent noise covariance Cw,k, and the magnification factor
r ≥ 1 as a user-defined degree of freedom.

Then, the application of the system model

Φ (zk,p) =


A
(
xi
k,p
)

0n×n E
(
xi
k,p
)

0n×nw

0n×n A
(
xi+1
k ,p

)
0n×nw E

(
xi+1
k ,p

)
0nw×n 0nw×n Inw×nw 0nw×nw

0nw×n 0nw×n 0nw×nw Inw×nw

 (6.25)

to the ellipsoid (6.22) according to Sec. 6.1 yields the ellipsoid

E
p,i|i+1
k+1



µp,i
k+1

µp,i+1
k+1
0
0

 ,Γp
k+1, r

 (6.26)

in which the first 2n components of the midpoint represent the predicted expected value

vector

[(
µp,i
k+1

)T (
µp,i+1
k+1

)T]T
and the covariance C

p,i|i+1
k+1 is obtained by extracting the

upper left (2n× 2n) block of the matrix product Γp
k+1 ·

(
Γp
k+1

)T
. For the simplified case, in

which the disturbance input matrix E is constant, the reader is referred to [67].
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6.2.2. Innovation Step. The measurement-based innovation step makes use of the deviations

∆yi
k = yi

m,k −Ci
k · µ

p,i
k (6.27)

and

∆yi+1
k = yi+1

m,k −Ci+1
k · µp,i+1

k (6.28)

between the measured data in the trials i and i + 1, respectively, and the corresponding
output forecasts based on the prediction step of the previous subsection. Using these output
deviations, and assuming the standard detectability requirements of the Kalman Filter
design to be satisfied, the expected values are updated according to [68] by[

µe,i
k

µe,i+1
k

]
=

[
µp,i
k

µp,i+1
k

]
+ H̃k ·

[
yi
m,k

yi+1
m,k

]
− H̃kC̃k ·

[
µp,i
k

µp,i+1
k

]
, (6.29)

where the combined output matrix

C̃k :=

[
Ci

k 0

0 Ci+1
k

]
(6.30)

results from pointwise evaluations of the quasi-linear system’s output matrix according to

Ci
k := Ck

(
µp,i
k ,mid ([p])

)
(6.31)

and

Ci+1
k := Ck

(
µp,i+1
k ,mid ([p])

)
(6.32)

The corresponding estimation error covariance is, then, given as

C
e,i|i+1
k = E

{[
xi
k − µe,i

k

xi+1
k − µe,i+1

k

]
·
[

xi
k − µe,i

k

xi+1
k − µe,i+1

k

]T}

= Cov

{[
xi
k − µe,i

k

xi+1
k − µe,i+1

k

]}
= MkC

p,i|i+1
k MT

k + H̃kC̃v,kH̃
T
k , (6.33)

where

Mk =

[
I 0
0 I

]
− H̃kC̃k (6.34)

and

H̃k :=

[
Hi+1

1,k 0

Hi+1
2,k Hi+1

1,k −Hi+1
2,k

]
. (6.35)

As shown in [68], the estimation error covariance is minimized by the filter gain matrices
Hi+1

1,k and Hi+1
2,k that are derived in the following, where the predicted covariance is partitioned

in a blockwise manner according to

C
p,i|i+1
k =

[
Cp

A,k Cp
B,k

⋆ Cp
C,k

]
, (6.36)

and ⋆ denotes blocks that can be inferred from the symmetry of the result. Moreover, the
residual covariance is defined as

P · Γ̃e
k ·
(
Γ̃
e
k

)T
·PT + C̃v,k =

[
CA,k CB,k

⋆ CC,k

]
(6.37)
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with the projection matrix P =
[
Im×m 0m×(n−m)

]
and the trial-independent measurement

noise covariance

C̃v,k :=

[
Cv,k 0
0 Cv,k

]
. (6.38)

As a specific feature introduced in [67], aiming at a robustification of the innovation stage

against nonlinearities, the matrix Γ̃
e
k is obtained by the consideration of the quasi-linearity

of the output equation with the help of the ellipsoid

E
p,i|i+1
k

([
µp,i
k

µp,i+1
k

]
,Γ

p,i|i+1
k , r

)
(6.39)

that is propagated through a quasi-linear system model in the form (6.1) with the associated
system matrix (yi

m,k,y
i+1
m,k ∈ Rm)

Φ (zk,p) =


C
(
xi
k,p
)

0m×n

0m×n C
(
xi+1
k ,p

)
0(n−m)×m I(n−m)×(n−m) 0(n−m)×n

0(n−m)×n 0(n−m)×m I(n−m)×(n−m)

 , (6.40)

where Φ (zk,p) ∈ R2n×2n. The evaluation of this quasi-linear model yields an ellipsoid

Ee
k

(
µ̃e
k, Γ̃

e
k, r
)

(6.41)

from which the associated shape matrix Γ̃
e
k ·
(
Γ̃
e
k

)T
is computed in Eq. (6.37), followed by

an extraction of the upper left (2m× 2m) block that corresponds to the actually measured
output quantities. This subblock extraction is performed by the multiplication with the
projection matrix P in the first summand of Eq. (6.37).

The optimal iterative-learning observer gains, in the sense of a minimization of the
estimation error covariance, jointly considering the trials i and i+ 1 are given by[

Hi+1
1,k Hi+1

2,k

]
=

[(
Ci

kC
p
A,k +Ci+1

k Cp
C,k

)T (
Ci

kC
p
B,k −Ci+1

k Cp
C,k

)T]

·

[
CA,k +CC,k ⋆

CB,k −CC,k CA,k −
(
CB,k +CT

B,k

)
+CC,k

]−1

.

(6.42)

For a proof of this expression for the filter gain matrices, see [68]. The reference [67]
demonstrates the successful application of this iterative-learning observer for the state and
disturbance estimation of a Lithium-ion battery with periodically recurring input current
profiles. Compared to the work [68], where an Extended Kalman Filter methodology was
used in the form of a point-valued linearization of the state and output equations during the
covariance computation in the prediction and innovation stages, the combination with the
ellipsoidal calculus allows for a significant improvement of the state estimation accuracy,
also yielding significantly tighter uncertainty bounds.
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7. Conclusions and Future Work

In this paper, a comprehensive overview of recent advances concerning the offline and online
use of interval and other set-based approaches for control and state estimation has been
given. We have equally addressed methodological approaches and selected fields of practical
applications in our review, where we have put a focus on the tasks of parameter estimation,
robust and model-predictive control, as well as state estimation procedures.

Future work will focus especially on widening the field of applications by an investigation
of control and state estimation tasks for distributed and large-scale, interconnected systems
with parameter uncertainty and disturbances that are, among others, omnipresent in control
scenarios in the Industry 4.0 as well as in the domain of energy systems. To cope with
such systems, we will focus especially on the development of decentralized techniques for
the parameter identification of large-scale system models, which will again form the basis
for control and state estimator design. Moreover, we will further develop approaches that
allow for removing restrictive monotonicity assumptions as already shown in works such
as [42,43,93].
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[17] A. dos Reis de Souza, D. Efimov, and T. Räıssi. Robust output feedback mpc for lpv systems using
interval observers. IEEE Transactions on Automatic Control, 67(6):3188–3195, 2022.
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